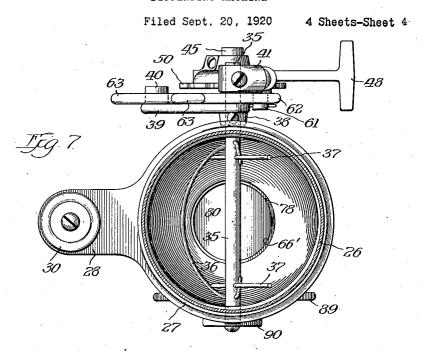
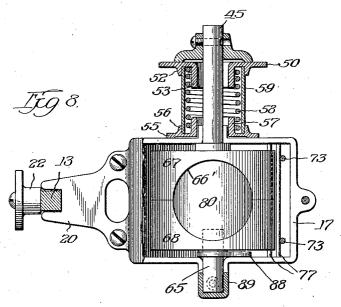

DISPENSING MACHINE


DISPENSING MACHINE



DISPENSING MACHINE

DISPENSING MACHINE

Witness:

Inveritor: Siguort Hanson By James Awalsh, Illy

UNITED STATES PATENT OFFICE.

SIGVORT HANSON, OF RACINE, WISCONSIN, ASSIGNOR TO RACINE DISPENSER MANU-FACTURING COMPANY, OF RACINE, WISCONSIN, A CORPORATION.

DISPENSING MACHINE.

Application filed September 20, 1920. Serial No. 411,628.

To all whom it may concern:

Racine, in the county of Racine and State of Wisconsin, have invented certain new and useful Improvements in Dispensing Machines, of which the following is a speci-

My present invention relates to dispensing 10 machines of that character which are designed to contain a supply of material and dispense the same in predetermined measured quantities so that in serving drinks containing pulverulent material such as 27, embodying a handle, 28, said handle hav-15 malted milk powder and the like, or portions ing an aperture, 29, adapted to register with 70 of such character of material for other purdispensed for each such service without adjustment of any parts of the machine other into standard 13, at 31. In the use of my than its preliminary adjustment upon demachine I prefer to employ a container, as 75 20 than its preliminary adjustment upon determining the quantity of material to be dispensed at each operation of the machine. And it is my object to generally improve the ordinary bottles or containers of com-and simplify the construction and operation merce, and which container 26 I place in 25 of such machines, an example of which is disclosed in Patent 1,211,577, issued Janucounters, and can be readily manipulated by 30 inexperienced dispensers to deliver a uniform portion of material at all times.

In the accompanying drawings, forming part hereof, Figure 1 is a front elevation of my improved machine; Fig. 2, a side eleva-35 tion thereof; Fig. 3, a transverse vertical sectional view of the same; Fig. 4, a vertical detail sectional view showing certain inter-nal mechanisms embodying my inventions as seen when looking toward the right in 40 Fig. 3; Fig. 5, a fragmentary side elevation showing adjusting mechanisms which I employ; Fig. 6, a detail sectional view taken from Fig. 5 and showing parts controlled by said adjusting mechanisms; Fig. 7, a plan as seen when looking into the machine as shown in Fig. 4; and Fig. 8 is a detail sectional view taken on the dotted line 8-8 in its outer end.

In said drawings the portions marked, 50 10, indicate a base to which is secured an upright support, 11, having a guide-way, 12, therein in which is movably mounted a standard, 13, which latter may be adjusted as desired, and held in position by the screw-55 bolt, 14.

A combined material containing chamber, Be it known that I, Sigvort Hanson, 16, and measuring and charge ejecting a citizen of the United States, residing at chamber, 17, suitably connected at, 18, are provided with arms, 19, 20, which are supported on standard, 13, the arm 19 preferably 60 being provided with a socket portion, 21, placed upon the upper end of said standard, while arm 20 is held in position upon said standard by a screw-bolt, 22, the latter arm being provided with a stud, 23, and wings, 24. Chamber 16, as indicated in Fig. 4, is provided with a flange, 25, for the reception of a container, 26, which is secured to a ring, 27, embodying a handle, 28, said handle havthe socket portion 21 of arm 19, and secured poses, a positive uniform quantity will be to standard 13 by a screw-bolt, 30, passing dispensed for each such service without ad-through said handle and arm and threaded 26, of a desired capacity, into which the material to be dispensed is transferred from position within the flanged end, 32, of cham- 80. ber 16, so that when so positioned material ary 9, 1917, upon my application, so that may be deposited thereinto by removing its they will occupy but limited space upon cover, 26', and its contents are thus protected from dust or other extraneous matter, and may be fed as desired by the mechanisms to 85 be hereinafter referred to.

Passing through chamber 16 is a shaft, 35, to which is secured agitators, 36, 37, preferably in the form of wires, the agitator 36 being arranged so that when shaft 35 is 90 rotated it will sweep radially through the lower portion of chamber 16, while the agitators 37 at the same time follow the rocking movement of said shaft 35 to produce a rotary motion. One end of said shaft 35 is 95 fixedly mounted in a collar, 38, from which extends an arm, 39, having a stud, 40, at its outer end, said assemblage of parts constituting a rock-shaft, while upon the extreme outer end of said shaft is secured a 100 stop, 41, having cushioning material, 42, in

In the ejecting chamber 17 I mount a driving-shaft, 45, in bearing, 46, at the outer end of which shaft is secured an operating 105 lever, 47, provided with a cross-arm or handhold, 48. A spring adjuster, 50, is mounted about said shaft 45, said adjuster being provided with a series of holes, 50', by which the same is secured to lever 47 by a pin or 110 of material to be dispensed at each service an annular flange, 52, and a hub, 53. Secured to chamber 17 is a plate, 55, embodying an annular flange, 56, and hub, 57, of a similar arrangement as said flange and said hub on adjuster 50. A helical spring, 58, surrounds said hubs 53, 57, one end of said spring being secured to chamber 17, at 58', while the opposite end is engaged in adjuster 50, at 58'', said spring and hubs being ensconced within a protecting collar, 59. By the series of holes 50' in adjuster 50, and the screw 51, it will be understood that the tension of spring 58 may be regulated by rotating said adjuster to the desired position and fixedly securing the same by said screw.

At the inner side of said lever 47 I place a stud, 61, which is in alignment with the stud 40 on the arm 39, said studs being connected by a compound lever strap, 62, comprising the slotted members, 63, 64, for a purpose which will hereinafter appear.

Mounted upon said driving-shaft 45 and 25 also upon stud-shaft 65 is an ejecting chamber 66, preferably comprising two members, 67, 68, (Fig. 8) secured together by pins, 69, (Fig. 4), the peripheral surface thereof being of a smooth and polished character. The wall of member 67 is provided with a hub, 70, mounted upon driving-shaft 45, and a leg, 71, extends downwardly from said hub and is provided with ears, 72, in which one end of a transverse scraper in 35 the form of a wire, 73, is secured, as indicated in Fig. 4, the space between said leg and wall (indicated in dotted lines) forming a guide-way, 74, for a purpose to be explained. The opposite member 68 of said 40 ejector (Fig. 6) is mounted on stud-shaft 65, and embodies a leg, 75, having the ears, 76, and guide-way, 74, similar in respect to the leg 71 and ears 72, in which ears 76 the opposite end of scraper 73 is connected, said 45 scraper being so positioned that its transverse portion which extends across from walls 67, 68, will move in relation to the bars, 77, which are fixed in transverse position within chamber 17, and pass across 50 said bars as said ejector 66 is rotated, thus disintegrating material being discharged through that side of chamber 17.

The ejector 66 is formed with a circular aperture, 66', which, when in registry with the throat or discharge opening, 78, of chamber 16, constitutes a portion of the pocket or hopper into which material is delivered from said chamber 16, and in which hopper the quantity of material to be dispensed at each operation of the machine is determined. This is accomplished by an adjustable bottom, 80, which may be raised and lowered in the hopper as desired so that the capacity thereof may be regulated to hold a greater or lesser amount

of the machine. Said bottom 80 is preferably of convex form on its upper surface and has secured thereto, at 81, a vertical shaft, 82, its lower end being secured, as at 70 83, to a cross-shaft, 84, having bearings, 85, 86, 87, at its ends, the latter two bearings being seated in the guide-ways 74 so as to move vertically therein, while the bearing 85 is in alignment with a cam, 88, mounted 75 on stud-shaft 65, upon which stud-shaft is fixedly secured a slotted segment, 89, the movement of which is controlled by a set-screw, 90, connected to chamber 16. When it is desired to diminish the quantity to be 80 held and delivered by hopper, 78, 66', said segment 89 is moved rearwardly in the direction of standard 13, and as said segment and the cam 88 are fixedly secured to studshaft 65, the movement of said shaft causes 85 spring 92, which is held between studs, 93 and 94, on cylinder, 66, and the hopper bottom 80, to contract, thus permitting the cross-shaft 84 by its release through the eccentric movement of cam 88 to move up- 90 wardly, consequently carrying with it said bottom 80, and, reversely, when it is desired to increase the capacity of said hopper, the forward movement of said segment, through shaft 65, operates said cam 88 to impel 95 cross-shaft 84 downwardly, and thus accordingly moving said bottom 80 downwardly and increasing the capacity of said hopper portion 66'.

At the lower end of said ejecting chamber 17 I provide a valve or delivery door, 95, which is hinged, at 96, to said chamber, which valve is held normally closed to the mouth, 97, of said chamber, as indicated in Fig. 2, and has embodied therewith an opening device 98, said valve 95 and the arm 20 having interposed therebetween a spring, 99, mounted upon the studs 23, 100, for automatically closing said valve. Said valve, as will be understood, is opened by the pressure of a glass or receptacle against the opening device 98.

In the construction of my improved machine I have the base and parts supported thereby so arranged that it is of a portable character, and may be shifted to different positions, the parts being so related that it is unnecessary to fixedly secure the machine upon a counter or otherwise, as I have so balanced the same that the frequent operation of the machine will not disturb its equilibrium, although the machine occupies a comparatively small space, say eight by six inches, which is an important consideration generally in the installation of devices for soda stands and the like, where the advantage and conservation of space is essential.

55 regulated to hold a greater or lesser amount my improved dispensing machine are so 130

1,475,341 **8**

timed that the delivery of material there-from is accomplished both simply and ferring a predetermined amount of material quickly, and the discharge of material from hopper 66' to the receiving receptacle (not 5 shown) is by a simple operation. The material, of course, which is held in store by container 26, is discharging into chamber 16. Upon the forward movement of lever ejector 66, so that the pocket or hopper 47, agitator-shaft 35 and driving-shaft 45 10 are simultaneously operated through the communication and action of strap-lever 62 so that shaft 35 is rocked, carrying with it the agitators 36, 37, which have a sweeping and disintegrating effect upon the material while the same is being discharged through throat 78 into hopper 66'. At the same in-stant the ejector 66 is revolved by the rotary motion of shaft 45 so that the material resting upon the bottom 80 and confined within 20 the ejector walls 67, 68, constituting ejector 66, to the uppermost limit of said hopper, is cut off from the remainder of the supply in throat 78 by the rotary movement of the ejector, which portion is carried around by said ejector to the influence of the scraper 73, which, through the cooperation of bars 77 over which it passes, further disintegrates the material, so that as the cylindrical ejector 66 is rotated forwardly by such actuation of said lever, the quantity of material thus carried around is delivered through the discharge end 17' (Fig. 4) of chamber 17 into a receptacle (not shown) which has been inserted against the device 98 to open said 35 valve 95, which, through the action of pushing the receptacle against said device 98 opens said valve and causes the material to discharge directly into the receptacle beneath, and upon the withdrawal of said receptacle the valve instantly closes through the action of spring 99. In this manner it will be understood that the material to be served is kept enclosed within the machine until such time as a portion is to be discharged, and that the door or valve is opened only momentarily for the introduction of the charge into a receptacle, after which it instantly becomes automatically closed, and the entrance of dust, insects, and the like, is thus prevented. It will be observed that, by controlling shaft 45 through spring 58, and the flexible connection of said shaft and the shaft 35, there is a synchronous operation of the mechanisms when lever 47 is actuated, which assures the continuous agitation and delivery of material through the bottom in said ejector, actuating means for chambers 16, 17, and that instantly a charge is apportioned and cut off by the rotary motion of ejector 66, the same is carried around and dumped by the forward manipuaround and dumped by the forward manipulation of said lever, which, when released, ejector, a driving shaft to which said ejector automatically returns to normal position by the action of said spring 58 and shaft 45, said lever abutting against and being held

- 1

into container 26, say for example three pounds, and it is desired to divide such an amount into a certain number of portions 70 to be served, the size of such portions may be regulated by adjusting bottom 80 in the within the confines of the ejector walls 67, 68, and bottom 80 will be adjusted to con-76 tain just the quantity required to make an equal division of the gross amount held in said container.

In handling material of the character herein referred to it will be understood that 80 atmospheric conditions seriously affect the same to a large degree, and it is important to protect the material from humidity, otherwise rapid crystallization occurs, resulting in the hardening and deterioration of the 85 material and resultant loss. Therefore, in providing a system of intercommunicating compartments which constantly protect the supply and discharge of such material from outside atmospheric influences I am enabled 90 to dispense the same without exposing it to such conditions, and also to exclude the entrance of extraneous matter into the machine, as hereinbefore explained.

I claim as my invention:

1. In a dispensing machine, an apertured ejector therein, a bottom in said aperture, a shaft connected to said bottom, a crossshaft connected to said shaft, guide-ways in said ejector in which said cross-shaft 100 travels, yielding means interposed between said bottom and said ejector, and means for actuating said cross-shaft to permit said bottom to raise and lower in said ejector.

2. In a dispensing machine, a cylindri- 105 cally formed rotary ejector having a pocket and a single adjustable bottom arranged diametrically therein, a shaft upon which said ejector is mounted, a lever connected to said shaft, a spring connecting with said lever and charge ejecting chamber, and a handle on said lever for actuating the samto rotate said ejector to select a charge of material and discharge the same in a downward direction.

3. In a dispensing machine, an ejector having side walls the peripheries of which are cylindrically formed, means for uniting said walls, legs extending downwardly from said walls to produce guide-ways, a movable 120 said bottom seated in said guide-ways, and means for operating said actuating means to adjust said bottom in said ejector.

is fixedly secured, a stud-shaft for supporting said ejector, a movable bottom in said ejector, actuating means in said ejector to from rearward movement by the stop 41. which said bottom is connected, a cam on

115

means, and means for rotating said studshaft to actuate said cam to permit vertical

movement of said actuating means.

5. In a dispensing machine, a rotary ejector, a shaft to which said ejector is fixedly secured, a stud-shaft for supporting said ejector, a movable bottom in said ejector, yielding means interposed between said ejec-10 tor and bottom, actuating means in said ejector to which said bottom is connected, and means associated with said stud-shaft for permitting vertical movement of said actuating means through the action of said 16 yielding means.

6. In a dispensing machine, an ejector therein, a movable bottom in said ejector, a stud-shaft upon which said ejector is supported, a cam on said stud-shaft, means as-20 sociated with said bottom with which said cam engages, adjusting means secured to said stud-shaft for actuating the same and said cam for permitting vertical movement of said bottom, and means for fixedly securing said adjusting means to retain said bot-

tom in predetermined position.

7. In a dispensing machine, a rotary ejector therein, a scraper connected to said ejector, bars in said machine arranged trans-30 versely therein, and means for acutating said ejector whereby said scraper moves across said bars for disintegrating material

discharging from said ejector.

8. In a dispensing machine, a material re-35 celving and ejecting chamber, an ejector in said chamber, a shaft upon which said ejector is mounted, a lever at the end of said shaft for actuating the same, a spring adjuster secured to said lever, and a spring se-40 cured to said chamber and said adjuster for returning said shaft to normal position after said lever has actuated the same.

9. In a dispensing machine, a drivingshaft, a cylindrical ejector connected there-45 to and having a single diametrically formed pocket therein, a bottom in said pocket adapted to be adjusted to increase and decrease the capacity thereof, a flanged plate secured to said machine, a lever at the end 50 of said shaft, a spring adjuster secured to said lever, a spring mounted upon said plate and said adjuster, and a protecting collar surrounding said spring and retained be-

tween said plate and adjuster.

10. In a dispensing machine, a container having an opening for the introduction of material, a receiving chamber to which said container is secured for delivering material thereinto, an agitator in said chamber for

60 disintegrating material, an ejector beneath said chamber having a pocket arranged dia-

said stud-shaft engaging said actuating metrically therein, an adjustable bottom mounted in said pocket, a shaft upon which said ejector is mounted, a lever connected to said shaft for rotating the same, and spring actuating means connected to said chamber and lever for automatically returning the same to normal position after being depressed.

> 11. In a dispensing machine, a container 70 having an opening for the introduction of material, a receiving chamber with which said container communicates for delivering material thereinto, an agitator in said container for disintegrating material, an ejector 75 beneath said container embodying a diametrically arranged pocket and having an adjustable bottom therein, a scraper secured to said ejector, a shaft upon which said ejector is mounted, and a lever connected 80 to said shaft for rotating the same to position said ejector for discharging material

from said machine.

12. In a dispensing machine, a revoluble measuring element having a pocket formed 85 therein and provided with guides, a reciprocating bottom fitted in said pocket and provided with a centrally arranged stem, a cross-shaft secured to said stem and operating in said guides to hold said bottom 90 in operative position, a bearing on said cross-shaft, a cam engaging said bearing and adapted to be set to hold said bottom in various retracted positions so as to vary the capacity of said pocket, and means for 95 holding said cam in said set position.

13. In a dispensing machine, the combination with a container having a discharge opening in the bottom thereof, an ejecting chamber arranged beneath said discharge 100 opening, a revoluble measuring element in said chamber, means for varying the capacity of said element, driving means for revolving said measuring element, and means for detachably connecting said element to 105 said driving means to permit said element

to be removed from said chamber.

14. In a dispensing machine, the combination with a container adapted to hold the material to be dispensed, a measuring element adapted to segregate a measured quantity of said material and subsequently discharge the same, means for operating said measuring element, means automatically operating to hold said measuring element in its 116 filling position so as to insure against an accidental discharge of material, and means for varying the capacity of said element to deliver apportionments of varying quanti-

In testimony whereof I affix my signature. SIGVORT HANSON.