

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2006216844 B2

(54) Title
Immunogens from uropathogenic escherichia coli

(51) International Patent Classification(s)
C07K 14/245 (2006.01) **A61K 38/16** (2006.01)

(21) Application No: **2006216844** (22) Date of Filing: **2006.02.17**

(87) WIPO No: **WO06/091517**

(30) Priority Data

(31) Number **60/654,632** (32) Date **2005.02.18** (33) Country **US**

(43) Publication Date: **2006.08.31**
(44) Accepted Journal Date: **2012.11.08**

(71) Applicant(s)
Novartis Vaccines and Diagnostics S.r.l.

(72) Inventor(s)
Pizza, Mariagrazia;Berlanda, Scorza, Francesco;Fontana, Maria; Rita;Serino, Laura;Gomes Moriel, Danilo

(74) Agent / Attorney
FB Rice, Level 23 44 Market Street, Sydney, NSW, 2000

(56) Related Art
**WELCH R. A. ET AL: "Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 99, no. 26, 24 December 2002, pages 17020-17024,
DATABASE Uni Prot[Online]1, 21 March 2003, Sub Name: Full=Putative conserved protein;" Retrieved from EBI accession no. UNIPROT: Q8FAG2 Database accession no.
Q8FAG2**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 August 2006 (31.08.2006)

PCT

(10) International Publication Number
WO 2006/091517 A3

(51) International Patent Classification:
C07K 14/245 (2006.01) *A61K 38/16* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2006/005912

(22) International Filing Date:
17 February 2006 (17.02.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/654,632 18 February 2005 (18.02.2005) US

(71) Applicant (for all designated States except US): CHIRON CORPORATION [US/US]; 4560 Horton Street, Emeryville, California 94608-8097 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PIZZA, Maria-grazia [IT/IT]; c/O CHIRON CORPORATION, P.o. Box 8097, Emeryville, California 94662-8097 (US). SERINO, Laura [—/IT]; C/O CHIRON CORPORATION, P.o. Box 8097, Emeryville, California 94662-8097 (US). BERLANDA SCORZA, Francesco [IT/IT]; C/O CHIRON CORPORATION, P.o. Box 8097, Emeryville, California 94662-8097 (US). MASIGNANI, Vega [IT/IT]; C/O CHIRON CORPORATION, P.o. Box 8097, Emeryville, California 94662-8097 (US).

(74) Agents: LEE, Helen et al.; CHIRON CORPORATION, INTELLECTUAL PROPERTY-R338, P.o. Box 8097, Emeryville, California 94662-8097 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:
1 February 2007

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/091517 A3

(54) Title: IMMUNOGENS FROM UROPATHOGENIC *ESCHERICHIA COLI*

(57) Abstract: Disclosed herein are various genes that can be included in immunogenic compositions specific for pathogenic *E. coli* strains. The genes are from uropathogenic strains but are absent from non-pathogenic strains, and their encoded proteins have cellular locations which render them accessible to the immune system.

IMMUNOGENS FROM UROPATHOGENIC *ESCHERICHIA COLI*

All documents cited herein are incorporated by reference in their entirety.

RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/654,632, filed February 18, 2005, which teachings are incorporated herein in their entirety by reference.

TECHNICAL FIELD

This invention is in the field of *Escherichia coli* biology, and in particular relates to immunogens for use in immunising against extraintestinal pathogenic *E. coli* (ExPEC) strains.

BACKGROUND ART

Few microorganisms are as versatile as *E. coli*. As well as being an important member of the normal intestinal microflora of mammals, it has been widely exploited as a host in recombinant DNA technology. In addition, however, *E. coli* can also be a deadly pathogen.

E. coli strains have traditionally been classified as either commensal or pathogenic, and pathogenic strains are then sub-classified as intestinal or extraintestinal strains. More recent taxonomic techniques such as multilocus enzyme electrophoresis (MLEE) classify *E. coli* into five phylogenetic groups (A, B1, B2, D & E), and these groupings do not match the traditional ones. For instance, MLEE group B1 includes both commensal and pathogenic strains, and group D includes both intestinal and extraintestinal strains.

The extraintestinal pathogenic strains (or 'ExPEC' strains [1]) of *E. coli* fall into MLEE groups B2 and D, and include both uropathogenic (UPEC) strains and meningitis/sepsis-associated (MNEC) strains. UPEC strains cause urinary tract infections (UTIs), and are the most common form of cystitis. They also cause pyelonephritis (and its complications such as sepsis) and catheter-associated infections. MNEC strains cause neonatal meningitis (0.1 cases per 1000 live births) with case fatality rates ranging from 25 to 40%, and are also responsible for around 1/6 of sepsis cases.

Most previous ExPEC vaccines have been based on cell lysates or on cellular structures. SOLCOUROVAC™ includes ten different heat-killed bacteria including six ExPEC strains, and a successful phase II clinical trial was reported in reference 2. URO-VAXOM™ is an oral tablet vaccine containing lyophilised bacterial lysates of 18 selected *E. coli* strains [3]. Baxter Vaccines developed a UTI vaccine based on pili from 6 to 10 different strains, but this product has been abandoned. MedImmune developed a product called MEDI 516 based on the FimH adhesin complex [4], but phase II clinical trials show inadequate efficacy. Moreover, there was a risk with this vaccine that it would also affect non-pathogenic FimH^{+ve} strains in the normal intestinal flora, and it was expected that this vaccine would be effective against UPEC strains only, because of its bladder-specific adherence mechanism, leaving other ExPEC strains uncontrolled.

There is thus a need for improved ExPEC vaccines, including a need to move away from crude cell lysates and towards better-defined molecules, and a need to identify further antigens that are suitable for inclusion in vaccines, particularly antigens that are prevalent among clinical ExPEC strains without also being found in commensal strains.

5 One way of addressing these needs was reported in reference 5, where the inventors looked for genes present in genomes of MLEE types B2 and D but absent from MLEE types A and B1. Further comparative approaches, based on subtractive hybridisation, were reported in references 6 and 7. Virulence genes in ExPEC strains have also been identified in reference 8. Reference 9 discloses an analysis of four pathogenicity islands in UPEC *E. coli* strain 536.

10 Reference 10 used the genome sequence of UPEC (O6:K2:H1) strain CFT073 [11,12] to identify sequences not present in non-pathogenic *E. coli* strains. Reference 13 discloses a comparison of the genome sequence of *E. coli* human pyelonephritis isolate 536 (O6:K15:H31), an UPEC, with sequence data for strains CFT073 (UPEC), EDL933 (enterohemorrhagic) and MG1655 (non-pathogenic laboratory strain). Genome sequences of pathogenic strains are available in the 15 databases under accession numbers AE005174, BA000007 and NC-004431. A sequence from a non-pathogenic strain is available under accession number U00096.

It is an object of the invention to provide further antigens for use in immunisation against pathogenic *E. coli* strains, particularly ExPEC strains, and more particularly UPEC strains.

SUMMARY OF THE INVENTION

20 The inventors have identified various genes that can be included in immunogenic compositions specific for pathogenic *E. coli* strains. The genes are from uropathogenic strains (UPEC) but are absent from non-pathogenic strains, and their encoded proteins have cellular locations which render them accessible to the immune system.

In one aspect, the invention relates to a polypeptide comprising: (a) an amino acid sequence selected 25 from the group consisting of SEQ ID NOs 22, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 30 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 35 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,

240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299,
300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,
5 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339,
340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,
360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399,
400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419,
10 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439,
440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,
460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479,
480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499,
500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519,
15 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539,
540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579,
580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598 and
599; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of
20 (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an
amino acid sequence of (a); or (d) an amino acid sequence having at least 80% sequence identity to
an amino acid sequence of (a) and including a fragment of at least 10 consecutive amino acids from
an amino acid sequence of (a). In a particular embodiment, polypeptides of this aspect of the
invention comprise a fragment which comprises at least one B-cell epitope of (a).
25 In another aspect, the invention relates to a polypeptide comprising: (a) an amino acid sequence
selected from the group consisting of SEQ ID NOS 22, 120, 219, 221, 305, 371, 400, 489, 555, 565,
597, 598 and 599; (b) an amino acid sequence having at least 80% sequence identity to an amino
acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive
amino acids from an amino acid sequence of (a); or (d) an amino acid sequence having at least 80%
30 sequence identity to an amino acid sequence of (a) and including a fragment of at least 10
consecutive amino acids from an amino acid sequence of (a). In a particular embodiment,
polypeptides of this aspect of the invention comprise a fragment which comprises at least one B-cell
epitope of (a).

The polypeptides of the invention can be used in medicine and in the manufacture of a medicament
35 for raising an immune response in a patient.
The present invention also relates to a pharmaceutical composition comprising a polypeptide of the
invention in admixture with a pharmaceutically acceptable carrier. The invention further relates to a

pharmaceutical composition comprising two or more polypeptides of the invention in admixture with a pharmaceutically acceptable carrier. In a particular embodiment, the pharmaceutical compositions of the invention further comprise a vaccine adjuvant.

The present invention further relates to immunogenic compositions comprising one or more outer membrane vesicles (OMVs) expressing or overexpressing one or more polypeptides comprising: (a) an amino acid sequence selected from the group consisting of SEQ ID NOs 22, 120, 219, 221, 305, 371, 400, 489, 555, 565, 597, 598 and 599; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); or (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and including a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a). In a particular embodiment, the immunogenic composition of this aspect of the invention comprises one or more polypeptides comprising a fragment which comprises at least one B-cell epitope of (a).

The present invention also relates to methods for raising an immune response in a patient, comprising the step of administering to the patient a pharmaceutical composition or immunogenic composition of the invention. In a particular embodiment, the immune response is protective against ExPEC infection.

Further aspects of the invention are described below.

20 BRIEF DESCRIPTION OF THE DRAWING

Figure 1 shows the % survival of mice after challenge with CFT073 following immunization with heat-inactivated CFT073.

DETAILED DESCRIPTION OF THE INVENTION

The inventors have identified various genes that can be included in immunogenic compositions specific for pathogenic *E. coli* strains. The genes are from UPEC strains but are absent from non-pathogenic strains, and their encoded proteins have cellular locations which render them accessible to the immune system.

Polypeptides

The invention provides polypeptides comprising the amino acid sequences disclosed in the examples. These amino acid sequences are given in the sequence listing as SEQ ID NOs 1 to 596 and 597 to 599. Preferred subsets of SEQ ID NOs 1 to 596 are given in Tables 2, 3 and 5.

The invention also provides polypeptides comprising amino acid sequences that have sequence identity to the amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of sequence identity is preferably greater than 50% (e.g. 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more). These polypeptides include

homologs, orthologs, allelic variants and mutants. Typically, 50% identity or more between two polypeptide sequences is considered to be an indication of functional equivalence. Identity between polypeptides is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with 5 parameters *gap open penalty*=12 and *gap extension penalty*=1.

These polypeptides may, compared to the sequences of the examples, include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) conservative amino acid replacements *i.e.* replacements of one amino acid with another which has a related side chain. Genetically-encoded amino acids are generally divided into four families: (1) acidic *i.e.* aspartate, glutamate; (2) basic *i.e.* lysine, arginine, histidine; (3) 10 non-polar *i.e.* alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar *i.e.* glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In general, substitution of single amino acids within these families does not have a major effect on the biological activity. The polypeptides may have one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) 15 single amino acid deletions relative to a reference sequence. The polypeptides may also include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) insertions (e.g. each of 1, 2, 3, 4 or 5 amino acids) relative to a reference sequence.

Preferred polypeptides include polypeptides that are lipidated, that are located in the outer membrane, that are located in the inner membrane, or that are located in the periplasm. Particularly 20 preferred polypeptides are those that fall into more than one of these categories *e.g.* lipidated polypeptides that are located in the outer membrane. Lipoproteins may have a N-terminal cysteine to which lipid is covalently attached, following post-translational processing of the signal peptide.

Polypeptides that may be lipidated include SEQ ID NOS: 1, 2, 7, 12, 13, 14, 15, 16, 17, 18, 22, 26, 28, 29, 33, 34, 38, 40, 45, 50, 51, 59, 67, 68, 69, 71, 77, 80, 82, 83, 84, 92, 98, 103, 104, 105, 120, 25 121, 124, 125, 126, 127, 130, 131, 133, 134, 138, 142, 147, 159, 160, 176, 184, 185, 186, 187, 192, 206, 210, 215, 222, 223, 225, 226, 228, 233, 234, 246, 251, 252, 268, 272, 273, 275, 284, 287, 293, 295, 297, 298, 299, 300, 302, 303, 304, 305, 310, 311, 312, 314, 315, 320, 326, 327, 330, 331, 336, 340, 359, 360, 364, 366, 367, 369, 370, 371, 374, 378, 379, 386, 387, 388, 389, 390, 395, 400, 401, 407, 408, 418, 419, 422, 423, 425, 429, 431, 433, 434, 435, 436, 438, 441, 442, 444, 447, 453, 464, 30 465, 472, 478, 492, 500, 506, 509, 517, 518, 519, 523, 526, 531, 536, 540, 543, 544, 546, 548, 551, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 574, 577, 583, 584, 585, 586, 593 and 594.

Preferred polypeptides are those listed in Tables 2, 3 and 5, particularly those listed in Table 3.

The invention further provides polypeptides comprising fragments of the amino acid sequences disclosed in the examples. The fragments should comprise at least *n* consecutive amino acids from 35 the sequences and, depending on the particular sequence, *n* is 7 or more (e.g. 8, 10, 12, 14, 16, 18,

20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more). The fragment may comprise at least one T-cell or, preferably, a B-cell epitope of the sequence. T- and B-cell epitopes can be identified empirically (e.g. using PEPSCAN [14,15] or similar methods), or they can be predicted (e.g. using the Jameson-Wolf antigenic index [16], matrix-based approaches [17], TEPIPOPE [18], 5 neural networks [19], OptiMer & EpiMer [20,21], ADEPT [22], Tsites [23], hydrophilicity [24], antigenic index [25] or the methods disclosed in reference 26, *etc.*). Other preferred fragments are (a) the N-terminal signal peptides of the polypeptides of the invention, (b) the polypeptides, but without their N-terminal signal peptides, (c) the polypeptides, but without their N-terminal amino acid residue.

10 Other preferred fragments are those that begin with an amino acid encoded by a potential start codon (ATG, GTG, TTG). Fragments starting at the methionine encoded by a start codon downstream of the indicated start codon are polypeptides of the invention.

Other preferred fragments are those that are common to a polypeptide of the invention and to a polypeptide identified in any of references 5, 6, 8, 10 and 11.

15 Polypeptides of the invention can be prepared in many ways *e.g.* by chemical synthesis (in whole or in part), by digesting longer polypeptides using proteases, by translation from RNA, by purification from cell culture (e.g. from recombinant expression), from the organism itself (e.g. after bacterial culture, or direct from patients), *etc.* A preferred method for production of peptides <40 amino acids long involves *in vitro* chemical synthesis [27,28]. Solid-phase peptide synthesis is particularly 20 preferred, such as methods based on tBoc or Fmoc [29] chemistry. Enzymatic synthesis [30] may also be used in part or in full. As an alternative to chemical synthesis, biological synthesis may be used *e.g.* the polypeptides may be produced by translation. This may be carried out *in vitro* or *in vivo*. Biological methods are in general restricted to the production of polypeptides based on L-amino acids, but manipulation of translation machinery (e.g. of aminoacyl tRNA molecules) can be 25 used to allow the introduction of D-amino acids (or of other non natural amino acids, such as iodotyrosine or methylphenylalanine, azidohomoalanine, etc.) [31]. Where D-amino acids are included, however, it is preferred to use chemical synthesis. Polypeptides of the invention may have covalent modifications at the C-terminus and/or N-terminus.

Polypeptides of the invention can take various forms (e.g. native, fusions, glycosylated, 30 non-glycosylated, lipidated, non-lipidated, phosphorylated, non-phosphorylated, myristoylated, non-myristoylated, monomeric, multimeric, particulate, denatured, *etc.*).

Polypeptides of the invention are preferably provided in purified or substantially purified form *i.e.* substantially free from other polypeptides (e.g. free from naturally-occurring polypeptides), particularly from other ExPEC or host cell polypeptides, and are generally at least about 50% pure 35 (by weight), and usually at least about 90% pure *i.e.* less than about 50%, and more preferably less

than about 10% (*e.g.* 5% or less) of a composition is made up of other expressed polypeptides. Polypeptides of the invention are preferably ExPEC polypeptides.

Polypeptides of the invention may be attached to a solid support. Polypeptides of the invention may comprise a detectable label (*e.g.* a radioactive or fluorescent label, or a biotin label).

5 The term “polypeptide” refers to amino acid polymers of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included 10 within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, *etc.*), as well as other modifications known in the art. Polypeptides can occur as single chains or associated chains. Polypeptides of the invention can be naturally or non-naturally glycosylated (*i.e.* the polypeptide has a glycosylation pattern that differs from the glycosylation pattern found in the corresponding naturally occurring polypeptide).

15 Polypeptides of the invention may be at least 40 amino acids long (*e.g.* at least 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 350, 400, 450, 500 or more). Polypeptides of the invention may be shorter than 500 amino acids (*e.g.* no longer than 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 350, 400 or 450 amino acids).

20 The invention provides polypeptides comprising a sequence -X-Y- or -Y-X-, wherein: -X- is an amino acid sequence as defined above and -Y- is not a sequence as defined above *i.e.* the invention provides fusion proteins. Where the N-terminus codon of a polypeptide-coding sequence is not ATG then that codon will be translated as the standard amino acid for that codon rather than as a Met, which occurs when the codon is translated as a start codon.

25 The invention provides a process for producing polypeptides of the invention, comprising the step of culturing a host cell of to the invention under conditions which induce polypeptide expression.

The invention provides a process for producing a polypeptide of the invention, wherein the polypeptide is synthesised in part or in whole using chemical means.

The invention provides a composition comprising two or more polypeptides of the invention.

30 The invention also provides a hybrid polypeptide represented by the formula $\text{NH}_2\text{-A-}[-\text{X-L-}]_n\text{-B-COOH}$, wherein X is a polypeptide of the invention as defined above, L is an optional linker amino acid sequence, A is an optional N-terminal amino acid sequence, B is an optional C-terminal amino acid sequence, and n is an integer greater than 1. The value of n is between 2 and x , and the value of x is typically 3, 4, 5, 6, 7, 8, 9 or 10. Preferably n is 2, 3 or 4; it is more preferably 2 or 3; most preferably, $n = 2$. For each n instances, -X- may be the same or different. For each n instances of

[-X-L-], linker amino acid sequence -L- may be present or absent. For instance, when $n=2$ the hybrid may be $\text{NH}_2\text{-X}_1\text{-L}_1\text{-X}_2\text{-L}_2\text{-COOH}$, $\text{NH}_2\text{-X}_1\text{-X}_2\text{-COOH}$, $\text{NH}_2\text{-X}_1\text{-L}_1\text{-X}_2\text{-COOH}$, $\text{NH}_2\text{-X}_1\text{-X}_2\text{-L}_2\text{-COOH}$, *etc.* Linker amino acid sequence(s) -L- will typically be short (*e.g.* 20 or fewer amino acids *i.e.* 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include short peptide sequences which facilitate cloning, poly-glycine linkers (*i.e.* Gly_n where $n = 2, 3, 4, 5, 6, 7, 8, 9, 10$ or more), and histidine tags (*i.e.* His_n where $n = 3, 4, 5, 6, 7, 8, 9, 10$ or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. -A- and -B- are optional sequences which will typically be short (*e.g.* 40 or fewer amino acids *i.e.* 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1).

10 Examples include leader sequences to direct polypeptide trafficking, or short peptide sequences which facilitate cloning or purification (*e.g.* histidine tags *i.e.* His_n where $n = 3, 4, 5, 6, 7, 8, 9, 10$ or more). Other suitable N-terminal and C-terminal amino acid sequences will be apparent to those skilled in the art.

15 Various tests can be used to assess the *in vivo* immunogenicity of polypeptides of the invention. For example, polypeptides can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the polypeptide and patient serum indicates that the patient has previously mounted an immune response to the protein in question *i.e.* the protein is an immunogen. This method can also be used to identify immunodominant proteins.

Antibodies

20 The invention provides antibodies that bind to polypeptides of the invention. These may be polyclonal or monoclonal and may be produced by any suitable means (*e.g.* by recombinant expression). To increase compatibility with the human immune system, the antibodies may be chimeric or humanised [*e.g.* refs. 32 & 33], or fully human antibodies may be used. The antibodies may include a detectable label (*e.g.* for diagnostic assays). Antibodies of the invention may be attached to a solid support. Antibodies of the invention are preferably neutralising antibodies.

25 Monoclonal antibodies are particularly useful in identification and purification of the individual polypeptides against which they are directed. Monoclonal antibodies of the invention may also be employed as reagents in immunoassays, radioimmunoassays (RIA) or enzyme-linked immunosorbent assays (ELISA), *etc.* In these applications, the antibodies can be labelled with an analytically-detectable reagent such as a radioisotope, a fluorescent molecule or an enzyme. The monoclonal antibodies produced by the above method may also be used for the molecular identification and characterization (epitope mapping) of polypeptides of the invention.

30 Antibodies of the invention are preferably specific to ExPEC strains of *E. coli*, *i.e.* they bind preferentially to ExPEC *E. coli* relative to other bacteria (*e.g.* relative to non-ExPEC *E. coli* and

relative to non-*E.coli* bacteria). More preferably, the antibodies are specific to UPEC strains *i.e.* they bind preferentially to UPEC bacteria relative to other bacteria, including other ExPEC *E. coli*.

Antibodies of the invention are preferably provided in purified or substantially purified form.

Typically, the antibody will be present in a composition that is substantially free of other

5 polypeptides *e.g.* where less than 90% (by weight), usually less than 60% and more usually less than 50% of the composition is made up of other polypeptides.

Antibodies of the invention can be of any isotype (*e.g.* IgA, IgG, IgM *i.e.* an α , γ or μ heavy chain), but will generally be IgG. Within the IgG isotype, antibodies may be IgG1, IgG2, IgG3 or IgG4 subclass. Antibodies of the invention may have a κ or a λ light chain.

10 Antibodies of the invention can take various forms, including whole antibodies, antibody fragments such as F(ab')₂ and F(ab) fragments, Fv fragments (non-covalent heterodimers), single-chain antibodies such as single chain Fv molecules (scFv), minibodies, oligobodies, *etc.* The term “antibody” does not imply any particular origin, and includes antibodies obtained through non-conventional processes, such as phage display.

15 The invention provides a process for detecting polypeptides of the invention, comprising the steps of: (a) contacting an antibody of the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

The invention provides a process for detecting antibodies of the invention, comprising the steps of: (a) contacting a polypeptide of the invention with a biological sample (*e.g.* a blood or serum sample) 20 under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Preferred antibodies bind to a polypeptide of the invention with substantially greater affinity than antibodies known in the art. Preferably, the affinity is at least 1.5-fold, 2-fold, 5-fold 10-fold, 100-fold, 10³-fold, 10⁴-fold, 10⁵-fold, 10⁶-fold *etc.* stronger than antibodies known in the art.

25 ***Nucleic acids***

The invention also provides nucleic acid comprising a nucleotide sequence encoding the polypeptides of the invention. The invention also provides nucleic acid comprising nucleotide sequences having sequence identity to such nucleotide sequences. Identity between sequences is preferably determined by the Smith-Waterman homology search algorithm as described above.

30 The invention also provides nucleic acid which can hybridize to these nucleic acids. Hybridization reactions can be performed under conditions of different “stringency”. Conditions that increase stringency of a hybridization reaction of widely known and published in the art [*e.g.* page 7.52 of reference 34]. Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25°C, 37°C, 50°C, 55°C and 68°C; buffer concentrations of 10 x SSC, 6

x SSC, 1 x SSC, 0.1 x SSC (where SSC is 0.15 M NaCl and 15 mM citrate buffer) and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from 5 minutes to 24 hours; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6 x SSC, 1 x SSC, 0.1 x SSC, or de-ionized water.

5 Hybridization techniques and their optimization are well known in the art [e.g. see refs 34-37, *etc.*].

In some embodiments, nucleic acid of the invention hybridizes to a target under low stringency conditions; in other embodiments it hybridizes under intermediate stringency conditions; in preferred embodiments, it hybridizes under high stringency conditions. An exemplary set of low stringency hybridization conditions is 50°C and 10 x SSC. An exemplary set of intermediate 10 stringency hybridization conditions is 55°C and 1 x SSC. An exemplary set of high stringency hybridization conditions is 68°C and 0.1 x SSC.

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the sequences and, depending on the particular sequence, n is 10 or more (e.g. 12, 14, 15, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more).

15 Preferred fragments are those that are common to a nucleic acid sequence of the invention and to a nucleic acid sequence identified in any of references 5, 6, 8, 10 and 11.

The invention provides nucleic acid of formula 5'-X-Y-Z-3', wherein: -X- is a nucleotide sequence consisting of x nucleotides; -Z- is a nucleotide sequence consisting of z nucleotides; -Y- is a nucleotide sequence consisting of either (a) a fragment of a nucleic acid sequence encoding one of 20 SEQ ID NOS: 1 to 596, (b) a fragment of a nucleic acid sequence encoding one of SEQ ID NOS: 597 to 599, or (c) the complement of (a) or (b); and said nucleic acid 5'-X-Y-Z-3' is neither (i) a fragment of either a nucleic acid sequence encoding one of SEQ ID NOS: 1 to 596 or encoding one of SEQ ID NOS: 597 to 599 nor (ii) the complement of (i). The -X- and/or -Z- moieties may comprise a promoter sequence (or its complement).

25 The invention includes nucleic acid comprising sequences complementary to these sequences (e.g. for antisense or probing, or for use as primers).

Nucleic acids of the invention can be used in hybridisation reactions (e.g. Northern or Southern blots, or in nucleic acid microarrays or 'gene chips') and amplification reactions (e.g. PCR, SDA, SSSR, LCR, TMA, NASBA, *etc.*) and other nucleic acid techniques.

30 Nucleic acid according to the invention can take various forms (e.g. single-stranded, double-stranded, vectors, primers, probes, labelled *etc.*). Nucleic acids of the invention may be circular or branched, but will generally be linear. Unless otherwise specified or required, any embodiment of the invention that utilizes a nucleic acid may utilize both the double-stranded form and each of two complementary single-stranded forms which make up the double-stranded form.

35 Primers and probes are generally single-stranded, as are antisense nucleic acids.

Nucleic acids of the invention are preferably provided in purified or substantially purified form *i.e.* substantially free from other nucleic acids (*e.g.* free from naturally-occurring nucleic acids), particularly from other ExPEC or host cell nucleic acids, generally being at least about 50% pure (by weight), and usually at least about 90% pure. Nucleic acids of the invention are preferably ExPEC 5 nucleic acids.

Nucleic acids of the invention may be prepared in many ways *e.g.* by chemical synthesis (*e.g.* phosphoramidite synthesis of DNA) in whole or in part, by digesting longer nucleic acids using nucleases (*e.g.* restriction enzymes), by joining shorter nucleic acids or nucleotides (*e.g.* using ligases or polymerases), from genomic or cDNA libraries, *etc.*

10 Nucleic acid of the invention may be attached to a solid support (*e.g.* a bead, plate, filter, film, slide, microarray support, resin, *etc.*). Nucleic acid of the invention may be labelled *e.g.* with a radioactive or fluorescent label, or a biotin label. This is particularly useful where the nucleic acid is to be used in detection techniques *e.g.* where the nucleic acid is a primer or as a probe.

15 The term "nucleic acid" includes in general means a polymeric form of nucleotides of any length, which contain deoxyribonucleotides, ribonucleotides, and/or their analogs. It includes DNA, RNA, DNA/RNA hybrids. It also includes DNA or RNA analogs, such as those containing modified backbones (*e.g.* peptide nucleic acids (PNAs) or phosphorothioates) or modified bases. Thus the invention includes mRNA, tRNA, rRNA, ribozymes, DNA, cDNA, recombinant nucleic acids, branched nucleic acids, plasmids, vectors, probes, primers, *etc.*. Where nucleic acid of the invention 20 takes the form of RNA, it may or may not have a 5' cap.

Nucleic acids of the invention comprise sequences, but they may also comprise non-ExPEC sequences (*e.g.* in nucleic acids of formula 5'-X-Y-Z-3', as defined above). This is particularly useful for primers, which may thus comprise a first sequence complementary to a nucleic acid target and a second sequence which is not complementary to the nucleic acid target. Any such 25 non-complementary sequences in the primer are preferably 5' to the complementary sequences. Typical non-complementary sequences comprise restriction sites or promoter sequences.

Nucleic acids of the invention can be prepared in many ways *e.g.* by chemical synthesis (at least in part), by digesting longer nucleic acids using nucleases (*e.g.* restriction enzymes), by joining shorter nucleic acids (*e.g.* using ligases or polymerases), from genomic or cDNA libraries, *etc.*

30 Nucleic acids of the invention may be part of a vector *i.e.* part of a nucleic acid construct designed for transduction/transfection of one or more cell types. Vectors may be, for example, "cloning vectors" which are designed for isolation, propagation and replication of inserted nucleotides, "expression vectors" which are designed for expression of a nucleotide sequence in a host cell, "viral vectors" which is designed to result in the production of a recombinant virus or virus-like particle, or 35 "shuttle vectors", which comprise the attributes of more than one type of vector. Preferred vectors

are plasmids. A "host cell" includes an individual cell or cell culture which can be or has been a recipient of exogenous nucleic acid. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. Host cells 5 include cells transfected or infected *in vivo* or *in vitro* with nucleic acid of the invention.

Where a nucleic acid is DNA, it will be appreciated that "U" in a RNA sequence will be replaced by "T" in the DNA. Similarly, where a nucleic acid is RNA, it will be appreciated that "T" in a DNA sequence will be replaced by "U" in the RNA.

The term "complement" or "complementary" when used in relation to nucleic acids refers to 10 Watson-Crick base pairing. Thus the complement of C is G, the complement of G is C, the complement of A is T (or U), and the complement of T (or U) is A. It is also possible to use bases such as I (the purine inosine) *e.g.* to complement pyrimidines (C or T). The terms also imply a direction – the complement of 5'-ACAGT-3' is 5'-ACTGT-3' rather than 5'-TGTCA-3'.

Nucleic acids of the invention can be used, for example: to produce polypeptides; as hybridization 15 probes for the detection of nucleic acid in biological samples; to generate additional copies of the nucleic acids; to generate ribozymes or antisense oligonucleotides; as single-stranded DNA primers or probes; or as triple-strand forming oligonucleotides.

The invention provides a process for producing nucleic acid of the invention, wherein the nucleic acid is synthesised in part or in whole using chemical means.

20 The invention provides vectors comprising nucleotide sequences of the invention (*e.g.* cloning or expression vectors) and host cells transformed with such vectors.

The invention also provides a kit comprising primers (*e.g.* PCR primers) for amplifying a template sequence contained within an ExPEC nucleic acid sequence, the kit comprising a first primer and a second primer, wherein the first primer is substantially complementary to said template sequence 25 and the second primer is substantially complementary to a complement of said template sequence, wherein the parts of said primers which have substantial complementarity define the termini of the template sequence to be amplified. The first primer and/or the second primer may include a detectable label (*e.g.* a fluorescent label).

The invention also provides a kit comprising first and second single-stranded oligonucleotides which 30 allow amplification of a ExPEC template nucleic acid sequence contained in a single- or double-stranded nucleic acid (or mixture thereof), wherein: (a) the first oligonucleotide comprises a primer sequence which is substantially complementary to said template nucleic acid sequence; (b) the second oligonucleotide comprises a primer sequence which is substantially complementary to the complement of said template nucleic acid sequence; (c) the first oligonucleotide and/or the second

oligonucleotide comprise(s) sequence which is not complementary to said template nucleic acid; and (d) said primer sequences define the termini of the template sequence to be amplified. The non-complementary sequence(s) of feature (c) are preferably upstream of (*i.e.* 5' to) the primer sequences. One or both of these (c) sequences may comprise a restriction site [*e.g.* ref. 38] or a 5 promoter sequence [*e.g.* 39]. The first oligonucleotide and/or the second oligonucleotide may include a detectable label (*e.g.* a fluorescent label).

The invention provides a process for detecting nucleic acid of the invention, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridising conditions to form duplexes; and (b) detecting said duplexes.

10 The invention provides a process for detecting in a biological sample (*e.g.* blood), comprising the step of contacting nucleic acid according to the invention with the biological sample under hybridising conditions. The process may involve nucleic acid amplification (*e.g.* PCR, SDA, SSSR, LCR, TMA, NASBA, *etc.*) or hybridisation (*e.g.* microarrays, blots, hybridisation with a probe in solution *etc.*). PCR detection of ExPEC in clinical samples has been reported [*e.g.* see ref. 40].

15 Clinical assays based on nucleic acid are described in general in ref. 41.

The invention provides a process for preparing a fragment of a target sequence, wherein the fragment is prepared by extension of a nucleic acid primer. The target sequence and/or the primer are nucleic acids of the invention. The primer extension reaction may involve nucleic acid amplification (*e.g.* PCR, SDA, SSSR, LCR, TMA, NASBA, *etc.*).

20 Nucleic acid amplification according to the invention may be quantitative and/or real-time.

For certain embodiments of the invention, nucleic acids are preferably at least 7 nucleotides in length (*e.g.* 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300 nucleotides or longer).

25 For certain embodiments of the invention, nucleic acids are preferably at most 500 nucleotides in length (*e.g.* 450, 400, 350, 300, 250, 200, 150, 140, 130, 120, 110, 100, 90, 80, 75, 70, 65, 60, 55, 50, 45, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15 nucleotides or shorter).

30 Primers and probes of the invention, and other nucleic acids used for hybridization, are preferably between 10 and 30 nucleotides in length (*e.g.* 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides).

Vesicles

Reference 42 describes the preparation of vesicles from a uropathogenic (UPEC) strain by the knockout of *mltA* (a murein lytic transglycosylase) or one or more of the components of the *E.coli*

Tol-Pal complex [43], such as *tolA*, *tolQ*, *tolB*, *pal* and/or *tolR*. These vesicles can be improved by making one or more further genetic changes to the chromosome of the bacterium or through insertion of episomal elements (e.g. expression vectors) in order to increase the amount of and/or immunoaccessibility of protective antigens on the surface the vesicles.

5 One way of obtaining such improvements is to up-regulate the expression of the polypeptides of the invention. Many different genetic strategies for increasing the expression of a target protein are well-known in the art and can be distinguished into two broad categories: one relying on modifications of the chromosome (e.g. replacement of the wild-type promoter with a stronger promoter, inactivation of natural repressor genes, etc.) to increase expression of an endogenous gene, and the other based
10 on recombinant expression by episomal elements (e.g. high-copy number plasmids, vectors harboring an engineered target gene, etc.) or integration of a exogenous gene in the chromosome. Practical examples for each of these approaches can be found in references 44 to 50.

Another way of increasing vesicle immunogenicity and selectivity is to down-regulate the expression of immunodominant non-protective antigens or to down-regulate proteins that are homologous to
15 proteins found in commensal strains. Further improvements can be achieved by detoxification of the Lipid A moiety of LPS. Similar changes have been previously described to produce improved vesicles from other Gram-negative pathogens (see for example references 51 & 52).

All the above strategies can be used either alone or in combination to obtain improved vesicles for
use in immunogenic compositions. The invention provides a pathogenic *Escherichia coli* bacterium
20 (particularly a UPEC) having a knockout of *mltA* and/or of a component of its Tol-Pal complex, and one or more of: (i) a chromosomal gene encoding a polypeptide of the invention under the control of a promoter that provides higher expression levels of the polypeptide than the promoter that is naturally associated with the gene encoding the polypeptide; (ii) an autonomously-replicating extrachromosomal element encoding a polypeptide of the invention; and/or (iii) a genetic
25 modification to reduce the toxicity of the Lipid A moiety of *E.coli* LPS relative to wild-type LPS.

The invention also provides vesicles obtainable by culturing such a bacterium, such as the vesicles that, during culture of the bacterium, are released into the culture medium.

Pharmaceutical compositions

The invention provides compositions comprising: (a) polypeptide, antibody, vesicles and/or nucleic
30 acid of the invention; and (b) a pharmaceutically acceptable carrier. These compositions may be suitable as immunogenic compositions, for instance, or as diagnostic reagents, or as vaccines. Vaccines according to the invention may either be prophylactic (i.e. to prevent infection) or therapeutic (i.e. to treat infection), but will typically be prophylactic.

In a particular aspect, the invention provides immunogenic compositions comprising one or more outer membrane vesicles (OMVs) expressing or overexpressing one or more polypeptides of the invention. In a particular embodiment, the invention provides an immunogenic composition comprising one or more OMVs expressing or overexpressing one or more polypeptides comprising:

5 (a) an amino acid sequence selected from the group consisting of SEQ ID NOS 22, 120, 219, 221, 305, 371, 400, 489, 555, 565, 597, 598 and 599; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); or (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and including a

10 fragment of at least 10 consecutive amino acids from an amino acid sequence of (a). In a further embodiment, the immunogenic composition comprises a polypeptide comprising a fragment which comprises at least one B-cell epitope of an amino acid sequence selected from the group consisting of SEQ ID NOS 22, 120, 219, 221, 305, 371, 400, 489, 555, 565, 597, 598 and 599.

A 'pharmaceutically acceptable carrier' includes any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, sucrose, trehalose, lactose, and lipid aggregates (such as oil droplets or liposomes). Such carriers are well known to those of ordinary skill in the art. The vaccines may also contain diluents, such as water, saline, glycerol, *etc.*

20 Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. Sterile pyrogen-free, phosphate-buffered physiologic saline is a typical carrier. A thorough discussion of pharmaceutically acceptable excipients is available in ref. 296.

Compositions of the invention may include an antimicrobial, particularly if packaged in a multiple dose format.

25 Compositions of the invention may comprise detergent *e.g.* a Tween (polysorbate), such as Tween 80. Detergents are generally present at low levels *e.g.* <0.01%.

Compositions of the invention may include sodium salts (*e.g.* sodium chloride) to give tonicity. A concentration of $10\pm2\text{mg/ml}$ NaCl is typical.

Compositions of the invention will generally include a buffer. A phosphate buffer is typical.

30 Compositions of the invention may comprise a sugar alcohol (*e.g.* mannitol) or a disaccharide (*e.g.* sucrose or trehalose) *e.g.* at around 15-30mg/ml (*e.g.* 25 mg/ml), particularly if they are to be lyophilised or if they include material which has been reconstituted from lyophilised material. The pH of a composition for lyophilisation may be adjusted to around 6.1 prior to lyophilisation.

Polypeptides of the invention may be administered in conjunction with other immunoregulatory agents. In particular, compositions will usually include a vaccine adjuvant. The adjuvant may be selected from one or more of the group consisting of a TH1 adjuvant and TH2 adjuvant, further discussed below. Adjuvants which may be used in compositions of the invention include, but are not limited to:

A. Mineral-containing compositions

Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts. The invention includes mineral salts such as hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), sulphates, etc. [e.g. see chapters 8 & 9 of ref. 53], or mixtures of different mineral compounds (e.g. a mixture of a phosphate and a hydroxide adjuvant, optionally with an excess of the phosphate), with the compounds taking any suitable form (e.g. gel, crystalline, amorphous, etc.), and with adsorption to the salt(s) being preferred. Mineral containing compositions may also be formulated as a particle of metal salt [54].

A typical aluminium phosphate adjuvant is amorphous aluminium hydroxyphosphate with PO_4/Al molar ratio between 0.84 and 0.92, included at 0.6mg Al^{3+}/ml . Adsorption with a low dose of aluminium phosphate may be used e.g. between 50 and 100 $\mu\text{g Al}^{3+}$ per conjugate per dose. Where an aluminium phosphate is used and it is desired not to adsorb an antigen to the adjuvant, this is favoured by including free phosphate ions in solution (e.g. by the use of a phosphate buffer).

The point of zero charge (PZC) of aluminium phosphate is inversely related to the degree of substitution of phosphate for hydroxyl, and this degree of substitution can vary depending on reaction conditions and concentration of reactants used for preparing the salt by precipitation. PZC is also altered by changing the concentration of free phosphate ions in solution (more phosphate = more acidic PZC) or by adding a buffer such as a histidine buffer (makes PZC more basic). Aluminium phosphates used according to the invention will generally have a PZC of between 4.0 and 7.0, more preferably between 5.0 and 6.5 e.g. about 5.7.

Suspensions of aluminium salts used to prepare compositions of the invention may contain a buffer (e.g. a phosphate or a histidine or a Tris buffer), but this is not always necessary. The suspensions are preferably sterile and pyrogen-free. A suspension may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM. The suspensions may also comprise sodium chloride.

The invention can use a mixture of both an aluminium hydroxide and an aluminium phosphate. In this case there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. $\geq 5:1$, $\geq 6:1$, $\geq 7:1$, $\geq 8:1$, $\geq 9:1$, etc.

Aluminum salts may be included in vaccines of the invention such that the dose of Al³⁺ is between 0.2 and 1.0 mg per dose.

B. Oil Emulsions

Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer) [Chapter 10 of ref. 53; see also refs. 55-57, chapter 12 of ref. 58]. MF59 is used as the adjuvant in the FLUAD™ influenza virus trivalent subunit vaccine. The emulsion advantageously includes citrate ions e.g. 10mM sodium citrate buffer.

Particularly preferred adjuvants for use in the compositions are submicron oil-in-water emulsions. Preferred submicron oil-in-water emulsions for use herein are squalene/water emulsions optionally containing varying amounts of MTP-PE, such as a submicron oil-in-water emulsion containing 4-5% w/v squalene, 0.25-1.0% w/v Tween 80 (polyoxyethylenesorbitan monooleate), and/or 0.25-1.0% Span 85 (sorbitan trioleate), and, optionally, N-acetylmuramyl-L-alanyl-D-isogluatminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE). Submicron oil-in-water emulsions, methods of making the same and immunostimulating agents, such as muramyl peptides, for use in the compositions, are described in detail in references 55 & 59-60.

An emulsion of squalene, a tocopherol, and Tween 80 can be used. The emulsion may include phosphate buffered saline. It may also include Span 85 (e.g. at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% Tween 80, and the weight ratio of squalene:tocopherol is preferably ≤ 1 as this provides a more stable emulsion. One such emulsion can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90ml of this solution with a mixture of (5 g of DL- α -tocopherol and 5 ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250 nm, preferably about 180nm.

An emulsion of squalene, a tocopherol, and a Triton detergent (e.g. Triton X-100) can be used.

An emulsion of squalane, polysorbate 80 and poloxamer 401 (“Pluronic™ L121”) can be used. The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the “SAF-1” adjuvant [61] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the “AF” adjuvant [62] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.

Complete Freund’s adjuvant (CFA) and incomplete Freund’s adjuvant (IFA) may also be used as adjuvants in the invention.

C. Saponin formulations [chapter 22 of ref. 53]

Saponin formulations may also be used as adjuvants in the invention. Saponins are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponins isolated from the bark of the *Quillaja saponaria* Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from *Smilax ornata* (sarsaprilla), *Gypsophilla paniculata* (brides veil), and *Saponaria officianalis* (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs.

Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C. Preferably, the saponin is QS21. A method of production of QS21 is disclosed in ref. 63. Saponin formulations may also comprise a sterol, such as cholesterol [64].

Combinations of saponins and cholesterols can be used to form unique particles called immunostimulating complexes (ISCOMs) [chapter 23 of ref. 53]. ISCOMs typically also include a phospholipid such as phosphatidylethanolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs. Preferably, the ISCOM includes one or more of QuilA, QHA and QHC. ISCOMs are further described in refs. 64-66. Optionally, the ISCOMS may be devoid of additional detergent(s) [67].

A review of the development of saponin based adjuvants can be found in refs. 68 & 69.

20 *D. Virosomes and virus-like particles*

Virosomes and virus-like particles (VLPs) can also be used as adjuvants in the invention. These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome. The viral proteins may be recombinantly produced or isolated from whole viruses. These viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Q β -phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein p1). VLPs are discussed further in refs. 70-75. Virosomes are discussed further in, for example, ref. 76

E. Bacterial or microbial derivatives

Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.

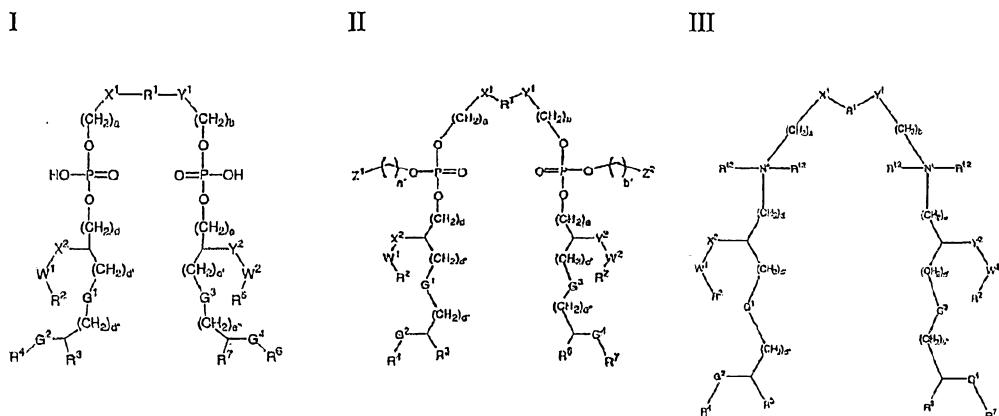
Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL). 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains. A preferred “small particle” form of 3 De-O-acylated monophosphoryl lipid A is disclosed in ref. 77. Such “small particles” of 3dMPL are small enough to be sterile filtered through a 0.22 μ m membrane [77]. Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives e.g. RC-529 [78,79].

Lipid A derivatives include derivatives of lipid A from *Escherichia coli* such as OM-174. OM-174 is described for example in refs. 80 & 81.

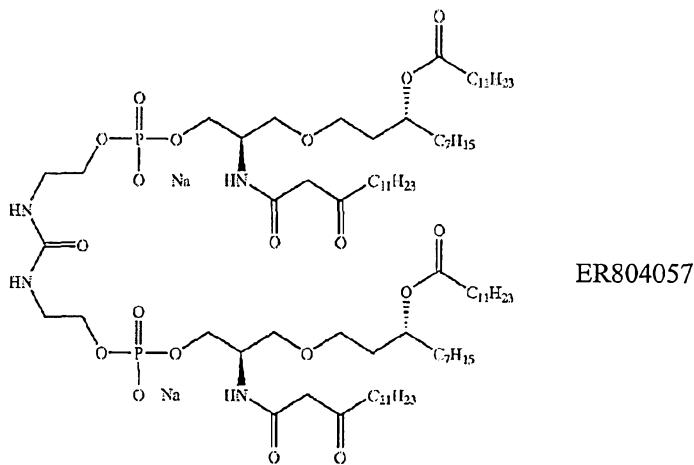
10 Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.

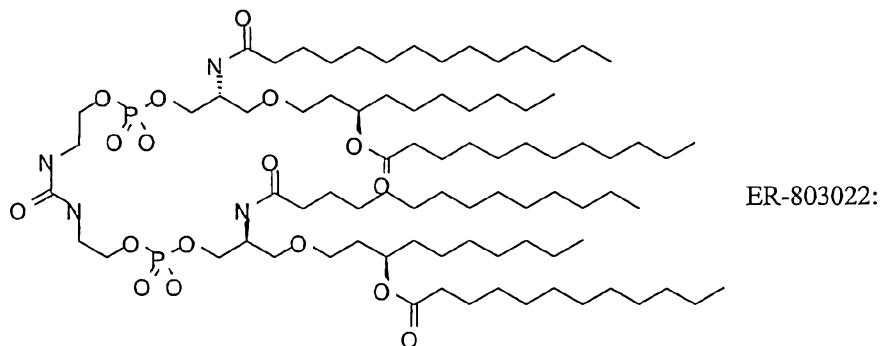
15 The CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded. References 82, 83 and 84 disclose possible analog substitutions e.g. replacement of guanosine with 2'-deoxy-7-deazaguanosine. The adjuvant effect of CpG oligonucleotides is further discussed in refs. 85-90.

20 The CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTTCGTT [91]. The CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN. CpG-A and CpG-B ODNs are discussed in refs. 92-94. Preferably, the CpG is a CpG-A ODN.


Preferably, the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition. Optionally, two CpG oligonucleotide sequences may be attached at their 3' ends to form “immunomers”. See, for example, refs. 91 & 95-97.

25 Other immunostimulatory oligonucleotides include a double-stranded RNA, or an oligonucleotide containing a palindromic sequence, or an oligonucleotide containing a poly(dG) sequence.


Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention. Preferably, the protein is derived from *E.coli* (*E.coli* heat labile enterotoxin “LT”), cholera (“CT”), or pertussis (“PT”). The use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in ref. 98 and as parenteral adjuvants in ref. 99. The toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits. Preferably, the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated. Preferably, the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G192. The use of ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in


refs. 100-107. Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADP-ribosylating toxins set forth in ref. 108.

Compounds of formula I, II or III, or salts thereof, can also be used as adjuvants:

as defined in reference 109, such as 'ER 803058', 'ER 803732', 'ER 804053', ER 804058', 'ER 804059', 'ER 804442', 'ER 804680', 'ER 804764', ER 803022 or 'ER 804057' e.g.:

F. Human immunomodulators

Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 [110], etc.) [111], interferons (e.g. 5 interferon- γ), macrophage colony stimulating factor, tumor necrosis factor and macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta [112].

G. Bioadhesives and Mucoadhesives

10 Bioadhesives and mucoadhesives may also be used as adjuvants in the invention. Suitable bioadhesives include esterified hyaluronic acid microspheres [113] or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrrolidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention [114].

H. Microparticles

15 Microparticles may also be used as adjuvants in the invention. Microparticles (i.e. a particle of \sim 100nm to \sim 150 μ m in diameter, more preferably \sim 200nm to \sim 30 μ m in diameter, and most preferably \sim 500nm to \sim 10 μ m in diameter) formed from materials that are biodegradable and non-toxic (e.g. a poly(α -hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.), with poly(lactide-co-glycolide) are preferred, optionally treated to have a negatively-charged surface (e.g. with SDS) or a positively-charged surface (e.g. with a cationic 20 detergent, such as CTAB).

I. Liposomes (Chapters 13 & 14 of ref. 53)

Examples of liposome formulations suitable for use as adjuvants are described in refs. 115-117.

J. Polyoxyethylene ether and polyoxyethylene ester formulations

25 Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters [118]. Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol [119] as well as polyoxyethylene alkyl ethers or ester surfactants in

combination with at least one additional non-ionic surfactant such as an octoxynol [120]. Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-stearyl ether, polyoxyethylene-8-stearyl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.

5 *K. Phosphazenes e.g. PCPP*

Phosphazene adjuvants include poly[di(carboxylatophenoxy)phosphazene] ("PCPP") as described, for example, in refs. 121 and 122.

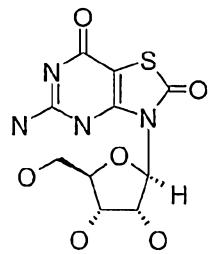
L. Muramyl peptides

Examples of muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-10 muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-*sn*-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).

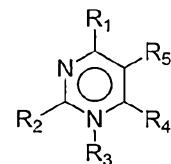
M. Imidazoquinoline Compounds.

15 Imidazoquinoline adjuvants include Imiquimod ("R-837") [123,124], Resiquimod ("R-848") [125], and their analogs; and salts thereof (e.g. the hydrochloride salts). Further details about immunostimulatory imidazoquinolines can be found in references 126 to 130.

N. Thiosemicarbazone Compounds.


20 Examples of thiosemicarbazone compounds, as well as methods of formulating, manufacturing, and screening for compounds all suitable for use as adjuvants in the invention include those described in ref. 131. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- α .

O. Tryptanthrin Compounds.

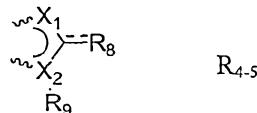

25 Examples of tryptanthrin compounds, as well as methods of formulating, manufacturing, and screening for compounds all suitable for use as adjuvants in the invention include those described in ref. 132. The tryptanthrin compounds are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- α .

P. Nucleoside analogs

Various nucleoside analogs can be used as adjuvants, such as (a) Isatorabine (ANA-245; 7-thia-8-oxoguanosine):

and prodrugs thereof; (b) ANA975; (c) ANA-025-1; (d) ANA380; (e) the compounds disclosed in references 133 to 135; (f) a compound having the formula:

5


wherein:

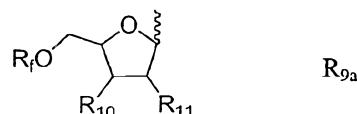
R₁ and R₂ are each independently H, halo, -NR_aR_b, -OH, C₁₋₆ alkoxy, substituted C₁₋₆ alkoxy, heterocyclyl, substituted heterocyclyl, C₆₋₁₀ aryl, substituted C₆₋₁₀ aryl, C₁₋₆ alkyl, or substituted C₁₋₆ alkyl;

10

R₃ is absent, H, C₁₋₆ alkyl, substituted C₁₋₆ alkyl, C₆₋₁₀ aryl, substituted C₆₋₁₀ aryl, heterocyclyl, or substituted heterocyclyl;

R₄ and R₅ are each independently H, halo, heterocyclyl, substituted heterocyclyl, -C(O)-R_d, C₁₋₆ alkyl, substituted C₁₋₆ alkyl, or bound together to form a 5 membered ring as in R₄₋₅:

15

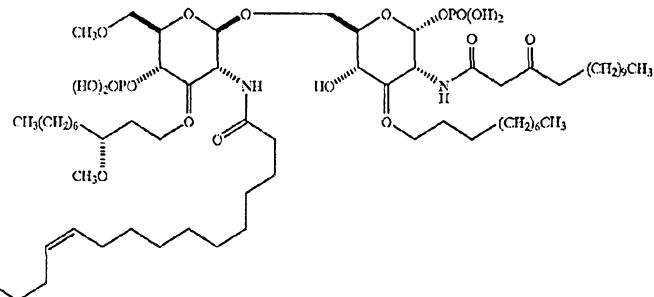

the binding being achieved at the bonds indicated by a ~~~

X₁ and X₂ are each independently N, C, O, or S;

R₈ is H, halo, -OH, C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, -OH, -NR_aR_b, -(CH₂)_n-O-R_c, -O-(C₁₋₆ alkyl), -S(O)_pR_e, or -C(O)-R_d;

20

R₉ is H, C₁₋₆ alkyl, substituted C₁₋₆ alkyl, heterocyclyl, substituted heterocyclyl or R_{9a}, wherein R_{9a} is:


the binding being achieved at the bond indicated by a ~~~

R_{10} and R_{11} are each independently H, halo, C_{1-6} alkoxy, substituted C_{1-6} alkoxy, - NR_aR_b , or -OH;
 each R_a and R_b is independently H, C_{1-6} alkyl, substituted C_{1-6} alkyl, -C(O) R_d , C_{6-10} aryl;
 each R_c is independently H, phosphate, diphosphate, triphosphate, C_{1-6} alkyl, or substituted C_{1-6} alkyl;
 each R_d is independently H, halo, C_{1-6} alkyl, substituted C_{1-6} alkyl, C_{1-6} alkoxy, substituted C_{1-6} alkoxy, -NH₂, -NH(C_{1-6} alkyl), -NH(substituted C_{1-6} alkyl), -N(C_{1-6} alkyl)₂, -N(substituted C_{1-6} alkyl)₂, C_{6-10} aryl, or heterocyclyl;
 each R_e is independently H, C_{1-6} alkyl, substituted C_{1-6} alkyl, C_{6-10} aryl, substituted C_{6-10} aryl, heterocyclyl, or substituted heterocyclyl;
 each R_f is independently H, C_{1-6} alkyl, substituted C_{1-6} alkyl, -C(O) R_d , phosphate, diphosphate, or triphosphate;
 each n is independently 0, 1, 2, or 3;
 each p is independently 0, 1, or 2; or
 15 or (g) a pharmaceutically acceptable salt of any of (a) to (f), a tautomer of any of (a) to (f), or a pharmaceutically acceptable salt of the tautomer.

Q. Lipids linked to a phosphate-containing acyclic backbone

Adjuvants containing lipids linked to a phosphate-containing acyclic backbone include the TLR4 antagonist E5564 [136,137]:

20

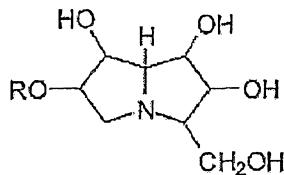
R. Small molecule immunopotentiators (SMIPs)

SMIPs include:

25

- N2-methyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2,N2-dimethyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2-ethyl-N2-methyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2-methyl-1-(2-methylpropyl)-N2-propyl-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- 1-(2-methylpropyl)-N2-propyl-1H-imidazo[4,5-c]quinoline-2,4-diamine;

- N2-butyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2-butyl-N2-methyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2-methyl-1-(2-methylpropyl)-N2-pentyl-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2-methyl-1-(2-methylpropyl)-N2-prop-2-enyl-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- 5 • 1-(2-methylpropyl)-2-[(phenylmethyl)thio]-1H-imidazo[4,5-c]quinolin-4-amine;
- 1-(2-methylpropyl)-2-(propylthio)-1H-imidazo[4,5-c]quinolin-4-amine ;
- 2-[[4-amino-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-2-yl](methyl)amino]ethanol;
- 2-[[4-amino-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-2-yl](methyl)amino]ethyl acetate;
- 10 • 4-amino-1-(2-methylpropyl)-1,3-dihydro-2H-imidazo[4,5-c]quinolin-2-one;
- N2-butyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2-butyl-N2-methyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- 15 • N2-methyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- N2,N2-dimethyl-1-(2-methylpropyl)-N4,N4-bis(phenylmethyl)-1H-imidazo[4,5-c]quinoline-2,4-diamine;
- 1-{4-amino-2-[methyl(propyl)amino]-1H-imidazo[4,5-c]quinolin-1-yl}-2-methylpropan-2-ol;
- 20 • 1-[4-amino-2-(propylamino)-1H-imidazo[4,5-c]quinolin-1-yl]-2-methylpropan-2-ol;
- N4,N4-dibenzyl-1-(2-methoxy-2-methylpropyl)-N2-propyl-1H-imidazo[4,5-c]quinoline-2,4-diamine.


S. Proteosomes

25 One adjuvant is an outer membrane protein proteosome preparation prepared from a first Gram-negative bacterium in combination with a liposaccharide preparation derived from a second Gram-negative bacterium, wherein the outer membrane protein proteosome and liposaccharide preparations form a stable non-covalent adjuvant complex. Such complexes include “TVX-908”, a complex comprised of *Neisseria meningitidis* outer membrane and lipopolysaccharides. They have been used as adjuvants for influenza vaccines [138].

T. Other adjuvants

Other substances that act as immunostimulating agents are disclosed in references 53 and 58. Further useful adjuvant substances include:

- Methyl inosine 5'-monophosphate (“MIMP”) [139].
- 35 • A polyhydroxlated pyrrolizidine compound [140], such as one having formula:

where R is selected from the group comprising hydrogen, straight or branched, unsubstituted or substituted, saturated or unsaturated acyl, alkyl (e.g. cycloalkyl), alkenyl, alkynyl and aryl groups, or a pharmaceutically acceptable salt or derivative thereof. Examples include, but are not limited to: casuarine, casuarine-6- α -D-glucopyranose, 3-*epi*-casuarine, 7-*epi*-casuarine, 5 3,7-die*pi*-casuarine, etc.

- A gamma inulin [141] or derivative thereof, such as algammulin.
- Compounds disclosed in reference 142.
- Compounds disclosed in reference 143, including: Acylpiperazine compounds, Indoledione compounds, Tetrahydراisoquinoline (THIQ) compounds, Benzocyclodione compounds, Aminoazaviny1 compounds, Aminobenzimidazole quinolinone (ABIQ) compounds [144,145], Hydrapthalamide compounds, Benzophenone compounds, Isoxazole compounds, Sterol compounds, Quinazolinone compounds, Pyrrole compounds [146], Anthraquinone compounds, Quinoxaline compounds, Triazine compounds, Pyrazalopyrimidine compounds, 10 and Benzazole compounds [147].
- Loxoribine (7-allyl-8-oxoguanosine) [148].
- A formulation of a cationic lipid and a (usually neutral) co-lipid, such as aminopropyl-dimethyl-myristoleyoxy-propanaminium bromide-diphytanoylphosphatidyl-ethanolamine (“VaxfectinTM”) or aminopropyl-dimethyl-bis-dodecyloxy-propanaminium bromide-dioleoylphosphatidyl-ethanolamine (“GAP-DLRIE:DOPE”). Formulations containing (\pm)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyoxy)-1-propanaminium salts are 15 preferred [149].

The invention may also comprise combinations of one or more of the adjuvants identified above. For example, the following combinations may be used as adjuvant compositions in the invention: (1) a 25 saponin and an oil-in-water emulsion [150]; (2) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) [151]; (3) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) + a cholesterol; (4) a saponin (e.g. QS21) + 3dMPL + IL-12 (optionally + a sterol) [152]; (5) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions [153]; (6) SAF, 30 containing 10% squalane, 0.4% Tween 80TM, 5% pluronic-block polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion. (7) RibiTM adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A

(MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (8) one or more mineral salts (such as an aluminum salt) + a non-toxic derivative of LPS (such as 3dMPL); and (9) one or more mineral salts (such as an aluminum salt) + an immunostimulatory oligonucleotide (such as a nucleotide sequence including a CpG motif).

5 The compositions of the invention will preferably elicit both a cell mediated immune response as well as a humoral immune response in order to effectively address a uropathogenic infection. This immune response will preferably induce long lasting (e.g. neutralising) antibodies and a cell mediated immunity that can quickly respond upon exposure to UPEC-associated antigens.

Two types of T cells, CD4 and CD8 cells, are generally thought necessary to initiate and/or enhance
10 cell mediated immunity and humoral immunity. CD8 T cells can express a CD8 co-receptor and are commonly referred to as cytotoxic T lymphocytes (CTLs). CD8 T cells are able to recognize or interact with antigens displayed on MHC Class I molecules. CD4 T cells can express a CD4 co-receptor and are commonly referred to as T helper cells. CD4 T cells are able to recognize antigenic peptides bound to MHC class II molecules. Upon interaction with a MHC class II
15 molecule, the CD4 cells can secrete factors such as cytokines. These secreted cytokines can activate B cells, cytotoxic T cells, macrophages, and other cells that participate in an immune response. Helper T cells or CD4⁺ cells can be further divided into two functionally distinct subsets: TH1 phenotype and TH2 phenotypes which differ in their cytokine and effector function.

Activated TH1 cells enhance cellular immunity (including an increase in antigen-specific CTL production) and are therefore of particular value in responding to intracellular infections. Activated TH1 cells may secrete one or more of IL-2, IFN- γ , and TNF- β . A TH1 immune response may result in local inflammatory reactions by activating macrophages, NK (natural killer) cells, and CD8 cytotoxic T cells (CTLs). A TH1 immune response may also act to expand the immune response by stimulating growth of B and T cells with IL-12. TH1 stimulated B cells may secrete IgG2a.

25 Activated TH2 cells enhance antibody production and are therefore of particular value in responding to extracellular infections. Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10. A TH2 immune response may result in the production of IgG1, IgE, IgA and memory B cells for future protection.

An enhanced immune response may include one or more of an enhanced TH1 immune response and
30 a TH2 immune response. An enhanced TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFN- γ , and TNF- β), an increase in activated macrophages, an increase in NK activity, or an increase in the production of IgG2a. Preferably, the enhanced TH1 immune response will include an increase in IgG2a production. An enhanced TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response

(such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgG1, IgE, IgA and memory B cells. Preferably, the enhanced TH2 immune response will include an increase in IgG1 production.

A TH1 immune response may be elicited using a TH1 adjuvant. A TH1 adjuvant will generally elicit increased levels of IgG2a production relative to immunization of the antigen without adjuvant.

5 TH1 adjuvants suitable for use in the invention may include for example saponin formulations, virosomes and virus like particles, non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), immunostimulatory oligonucleotides. Immunostimulatory oligonucleotides, such as oligonucleotides containing a CpG motif, are preferred TH1 adjuvants for use in the invention.

10 A TH2 immune response may be elicited using a TH2 adjuvant. A TH2 adjuvant will generally elicit increased levels of IgG1 production relative to immunization of the antigen without adjuvant. TH2 adjuvants suitable for use in the invention include, for example, mineral containing compositions, oil-emulsions, and ADP-ribosylating toxins and detoxified derivatives hereof. Mineral containing compositions, such as aluminium salts are preferred TH2 adjuvants for use in the invention.

15 Preferably, the invention includes a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant. Preferably, such a composition elicits an enhanced TH1 and an enhanced TH2 response *i.e.* an increase in the production of both IgG1 and IgG2a production relative to immunization without an adjuvant. Still more preferably, the composition comprising a combination of a TH1 and a TH2 adjuvant elicits an increased TH1 and/or an increased TH2 immune response relative to immunization with a single adjuvant (*i.e.* relative to immunization with a TH1 adjuvant alone or immunization with a TH2 adjuvant alone).

The immune response may be one or both of a TH1 immune response and a TH2 response. Preferably, immune response provides for one or both of an enhanced TH1 response and an enhanced TH2 response.

25 The enhanced immune response may be one or both of a systemic and a mucosal immune response. Preferably, the immune response provides for one or both of an enhanced systemic and an enhanced mucosal immune response. Preferably the mucosal immune response is a TH2 immune response. Preferably, the mucosal immune response includes an increase in the production of IgA.

The use of an aluminium hydroxide or aluminium phosphate adjuvant is particularly preferred, and antigens are generally adsorbed to these salts. Calcium phosphate is another preferred adjuvant.

30 The pH of compositions of the invention is preferably between 6 and 8, preferably about 7. Stable pH may be maintained by the use of a buffer. Where a composition comprises an aluminium hydroxide salt, it is preferred to use a histidine buffer [154]. The composition may be sterile and/or pyrogen-free. Compositions of the invention may be isotonic with respect to humans.

Compositions may be presented in vials, or they may be presented in ready-filled syringes. The syringes may be supplied with or without needles. A syringe will include a single dose of the composition, whereas a vial may include a single dose or multiple doses. Injectable compositions will usually be liquid solutions or suspensions. Alternatively, they may be presented in solid form (e.g. freeze-dried) for solution or suspension in liquid vehicles prior to injection.

5 Compositions of the invention may be packaged in unit dose form or in multiple dose form. For multiple dose forms, vials are preferred to pre-filled syringes. Effective dosage volumes can be routinely established, but a typical human dose of the composition for injection has a volume of 0.5ml.

10 Where a composition of the invention is to be prepared extemporaneously prior to use (e.g. where a component is presented in lyophilised form) and is presented as a kit, the kit may comprise two vials, or it may comprise one ready-filled syringe and one vial, with the contents of the syringe being used to reactivate the contents of the vial prior to injection.

15 Thus the invention provides for a kit comprising a first component and a second component, wherein: the first component comprises one or more polypeptide, antibody, vesicle and/or nucleic acid of the invention; and the second component comprises one or more of the following: instructions for administering a composition to a patient, a syringe or other delivery device, an adjuvant, and/or a pharmaceutically acceptable formulating solution.

20 The invention also provides a delivery device (e.g. a syringe) pre-filled with the immunogenic compositions of the invention.

25 Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen(s), as well as any other components, as needed. By 'immunologically effective amount', it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (e.g. non-human primate, primate, *etc.*), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials, and a typical quantity of each meningococcal saccharide antigen per dose is between 1 μ g and 10mg per antigen.

Pharmaceutical uses

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of a composition of the invention. The patient may either be at risk from the disease themselves or may be a pregnant woman ('maternal immunisation' [155]).

5 The invention provides nucleic acid, polypeptide, vesicle or antibody of the invention for use as medicaments (*e.g.* as immunogenic compositions or as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, polypeptide, vesicle or antibody of the invention in the manufacture of: (i) a medicament for treating or preventing disease and/or infection caused by an ExPEC bacterium; (ii) a diagnostic reagent for detecting the presence of or of antibodies raised against an
10 ExPEC bacterium; and/or (iii) a reagent which can raise antibodies against an ExPEC bacterium. Said ExPEC bacterium can be of any serotype or strain. Preferably the ExPEC bacterium is a UPEC strain.

15 The invention is useful for the prevention and/or treatment of diseases such as bacteremia, meningitis, a urinary tract infection, pyelonephritis and/or cystitis. The invention is particularly useful for the treatment of urinary tract infections.

20 The patient is preferably a human. The human is preferably an adult (*e.g.* aged between 20 and 55). A vaccine intended for children or adolescents may also be administered to adults *e.g.* to assess safety, dosage, immunogenicity, *etc.* Female patients are a preferred subset, with sexually-active females aged 20-55 being a particularly preferred patient group. Another groups of patients is females aged 12-20, particularly for prophylactic use.

Other possible patient animals include dogs, which may be carriers of ExPEC [156,157].

25 One way of checking efficacy of therapeutic treatment involves monitoring infection after administration of the composition of the invention. One way of checking efficacy of prophylactic treatment involves monitoring immune responses against an administered polypeptide after administration. Immunogenicity of compositions of the invention can be determined by administering them to test subjects (*e.g.* children 12-16 months age, or animal models *e.g.* a mouse model) and then determining standard parameters including ELISA titres (GMT) of IgG. These immune responses will generally be determined around 4 weeks after administration of the composition, and compared to values determined before administration of the composition. Where
30 more than one dose of the composition is administered, more than one post-administration determination may be made. Various mouse models of UTI are available [*e.g.* refs. 158 & 159-160].

Administration of polypeptide antigens is a preferred method of treatment for inducing immunity. Administration of antibodies of the invention is another preferred method of treatment. This method

of passive immunisation is particularly useful for newborn children or for pregnant women. This method will typically use monoclonal antibodies, which will be humanised or fully human.

Compositions of the invention will generally be administered directly to a patient. Direct delivery may be accomplished by parenteral injection (e.g. subcutaneously, intraperitoneally, intravenously,

5 intramuscularly, or to the interstitial space of a tissue), or by rectal, oral (e.g. tablet, spray), vaginal, topical, transdermal, transcutaneous, intranasal, sublingual, ocular, aural, pulmonary or other mucosal administration. Intramuscular administration to the thigh or the upper arm is preferred. Injection may be via a needle (e.g. a hypodermic needle), but needle-free injection may alternatively be used. A typical intramuscular dose is 0.5 ml.

10 The invention may be used to elicit systemic and/or mucosal immunity. Preferably the enhanced systemic and/or mucosal immunity is reflected in an enhanced TH1 and/or TH2 immune response. Preferably, the enhanced immune response includes an increase in the production of IgG1 and/or IgG2a and/or IgA.

15 Dosage treatment can be a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. A primary dose schedule may be followed by a booster dose schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Suitable timing between priming doses (e.g. between 4-16 weeks), and between priming and boosting, can be routinely determined. For example, a primary course of 20 vaccination may include 1-10 separate doses, followed by other doses given at subsequent time intervals required to maintain and/or reinforce an immune response, for example, at 1-4 months for a second dose, and if needed, a subsequent dose or doses after several months.

25 Bacterial infections affect various areas of the body and so compositions may be prepared in various forms. For example, the compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared (e.g. a lyophilised or a spray-freeze dried composition). The composition may be prepared for topical administration e.g. as an ointment, cream or powder. The composition may be prepared for oral administration e.g. as a tablet or capsule, as a spray or as a syrup (optionally flavoured). The composition may be prepared for pulmonary administration e.g. as an inhaler, using 30 a fine powder or a spray. The composition may be prepared as a suppository or pessary. The composition may be prepared for nasal, aural or ocular administration e.g. as spray, drops, gel or powder [e.g. refs 161 & 162]. The composition may be in kit form, designed such that a combined composition is reconstituted just prior to administration to a patient. Such kits may comprise one or more antigens in liquid form and one or more lyophilised antigens.

Compositions of the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis 5 vaccine, a DTP vaccine, a conjugated *H.influenzae* type b vaccine, a human papillomavirus vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a pneumococcal conjugate vaccine, a meningococcal conjugate vaccine, etc. Similarly, they may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) an antibiotic, and in particular an antibiotic compound active against UPEC.

10 ***Further antigenic components of compositions of the invention***

The invention also provides a composition comprising a polypeptide or the invention and one or more of the following further antigens:

- a saccharide antigen from *N.meningitidis* serogroup A, C, W135 and/or Y (preferably all four), such as the oligosaccharide disclosed in ref. 163 from serogroup C [see also ref. 164] 15 or the oligosaccharides of ref. 165.
- an antigen from *N.meningitidis* serogroup B such as those disclosed in refs. 166-174, etc.
- a saccharide antigen from *Streptococcus pneumoniae* [e.g. 175, 176, 177].
- an antigen from hepatitis A virus, such as inactivated virus [e.g. 178, 179].
- an antigen from hepatitis B virus, such as the surface and/or core antigens [e.g. 179, 180].
- 20 – an antigen from hepatitis C virus [e.g. 181].
- an antigen from HIV [182]
- a diphtheria antigen, such as a diphtheria toxoid [e.g. chapter 3 of ref. 183] e.g. the CRM₁₉₇ mutant [e.g. 184].
- a tetanus antigen, such as a tetanus toxoid [e.g. chapter 4 of ref. 183].
- 25 – an antigen from *Bordetella pertussis*, such as pertussis holotoxin (PT) and filamentous haemagglutinin (FHA) from *B.pertussis*, optionally also in combination with pertactin and/or agglutinogens 2 and 3 [e.g. refs. 185 & 186].
- a saccharide antigen from *Haemophilus influenzae* B [e.g. 164].
- 30 – polio antigen(s) [e.g. 187, 188] such as IPV.
- measles, mumps and/or rubella antigens [e.g. chapters 9, 10 & 11 of ref. 183].
- varicella antigens.
- 35 – influenza antigen(s) [e.g. chapter 19 of ref. 183], such as the haemagglutinin and/or neuraminidase surface proteins. Influenza antigens may be derived from interpandemic (annual) flu strains. Influenza antigens may be derived from strains with the potential to cause a pandemic outbreak (i.e., influenza strains with new haemagglutinin compared to the haemagglutinin in currently circulating strains, or influenza strains which are pathogenic in

avian subjects and have the potential to be transmitted horizontally in the human population, or influenza strains which are pathogenic to humans). Influenza antigens may be derived from viruses grown in eggs or cell culture.

- an antigen from *Moraxella catarrhalis* [e.g. 189].
- 5 – a saccharide antigen from *Streptococcus agalactiae* (group B streptococcus).
- an protein antigen from *Streptococcus agalactiae* (group B streptococcus) [e.g. 190-195]
- an antigen from *N.gonorrhoeae* [e.g. 196-199].
- an antigen from *Chlamydia pneumoniae* [e.g. refs. 200 to 206] or a combination of antigens from *C.pneumoniae* [e.g. 207].
- 10 – an antigen from *Chlamydia trachomatis*, or a combination of antigens from *C.trachomatis* [e.g. 208].
- an antigen from *Porphyromonas gingivalis* [e.g. 209].
- rabies antigen(s) [e.g. 210] such as lyophilised inactivated virus [e.g. 211, RabAvertTM].
- antigen(s) from a paramyxovirus such as respiratory syncytial virus (RSV [212, 213]) and/or
- 15 – parainfluenza virus (PIV3 [214]).
- an antigen from *Bacillus anthracis* [e.g. 215, 216, 217].
- an antigen from *Streptococcus pyogenes* (group A streptococcus) [e.g. 191,218, 219].
- an antigen from *Staphylococcus aureus* [e.g. 220].
- an antigen from a virus in the flaviviridae family (genus flavivirus), such as from yellow
- 20 fever virus, Japanese encephalitis virus, four serotypes of Dengue viruses, tick-borne encephalitis virus, West Nile virus.
- a pestivirus antigen, such as from classical porcine fever virus, bovine viral diarrhoea virus, and/or border disease virus.
- a parvovirus antigen e.g. from parvovirus B19.
- 25 – a human papilloma virus (HPV) antigen [221]

The composition may comprise one or more of these further antigens.

In another embodiment, antigens of the invention are combined with one or more additional, non-*E.coli* antigens suitable for use in a vaccine designed to protect females against genitourinary and/or sexually transmitted diseases. For example, the antigens may be combined with an antigen derived from the group 30 consisting of *Streptococcus agalactiae*, *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, papillomavirus and herpes simplex virus. Where human papillomavirus antigens are used, they may be from one or more of HPV 16, HPV 18, HPV 6 and/or HPV 11.

Preferred *Gonococcal* antigens include one or more of ngs13 (OmpA), OmpH, ngs576 (peptidyl-prolyl cis/trans isomerase (PPIase) protein), ngs41 and ngs117.

Preferred HPV antigens include one or more of HPV 16, HPV 18, HPV 6 and HPV 11.

Preferred *Chlamydia trachomatis* antigens include one or more of: CT045, CT089, CT242, CT316, CT381, CT396, CT398, CT444, CT467, CT547, CT587, CT823, CT761 and specific combinations of these antigens as disclosed in WO 05/002619.

5 Preferred *Chlamydia pneumoniae* antigens include one or more of: CPn0324, Cpn0301, Cpn0482, Cpn0503, Cpn0525, Cpn0558, Cpn0584, Cpn0800, Cpn0979, Cpn0498, Cpn0300, Cpn0042, Cpn0013, Cpn450, Cpn0661, Cpn0557, Cpn0904, Clpn0795, Cpn0186 and Cpn0604 and specific combinations of these antigens as disclosed in WO 05/084306.

Preferred GBS antigens include one or more of GBS80, GBS 104, GBS 59, GBS 67, GBS 322 and GBS 10 276.

In another embodiment, the antigen combinations of the invention are combined with one or more additional, non-ExPEC antigens suitable for use in a vaccine designed to protect elderly or immunocompromised individuals. For example, the antigen combinations may be combined with an antigen derived from the group consisting of *Enterococcus faecalis*, *Staphylococcus aureus*, 15 *Staphylococcus epidermidis*, *Pseudomonas aeruginosa*, *Legionella pneumophila*, *Listeria monocytogenes*, *Neisseria meningitidis*, influenza, and Parainfluenza virus ('PIV').

Toxic protein antigens may be detoxified where necessary (e.g. detoxification of pertussis toxin by chemical and/or genetic means [186]).

Where a diphtheria antigen is included in the composition it is preferred also to include tetanus 20 antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens. DTP combinations are thus preferred.

Saccharide antigens are preferably in the form of conjugates. Carrier proteins for the conjugates 25 include bacterial toxins (such as diphtheria toxoid or tetanus toxoid), the *N.meningitidis* outer membrane protein [222], synthetic peptides [223,224], heat shock proteins [225,226], pertussis proteins [227,228], protein D from *H.influenzae* [229,230], cytokines [231], lymphokines [231], *H.influenzae* proteins, hormones [231], growth factors [231], toxin A or B from *C.difficile* [232], iron-uptake proteins [233], artificial proteins comprising multiple human CD4+ T cell epitopes from 30 various pathogen-derived antigens [234] such as the N19 protein [235], pneumococcal surface protein PspA [236], pneumolysin [237], etc. A preferred carrier protein is CRM197 protein [238].

Antigens in the composition will typically be present at a concentration of at least 1 μ g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.

Antigens are preferably adsorbed to an aluminium salt.

Nucleic acid immunisation

The immunogenic compositions described above include polypeptide antigens from UPEC. As an alternative to using proteins antigens in the immunogenic compositions of the invention, nucleic acid (preferably DNA *e.g.* in the form of a plasmid) encoding the antigen may be used, to give

5 compositions, methods and uses based on nucleic acid immunisation. Nucleic acid immunisation is now a developed field (*e.g.* see references 239 to 246 *etc.*), and has been applied to many vaccines.

The nucleic acid encoding the immunogen is expressed *in vivo* after delivery to a patient and the expressed immunogen then stimulates the immune system. The active ingredient will typically take the form of a nucleic acid vector comprising: (i) a promoter; (ii) a sequence encoding the 10 immunogen, operably linked to the promoter; and optionally (iii) a selectable marker. Preferred vectors may further comprise (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii). In general, (i) & (v) will be eukaryotic and (iii) & (iv) will be prokaryotic.

Preferred promoters are viral promoters *e.g.* from cytomegalovirus (CMV). The vector may also include transcriptional regulatory sequences (*e.g.* enhancers) in addition to the promoter and which interact functionally with the promoter. Preferred vectors include the immediate-early CMV enhancer/promoter, and more preferred vectors also include CMV intron A. The promoter is operably linked to a downstream sequence encoding an immunogen, such that expression of the immunogen-encoding sequence is under the promoter's control.

20 Where a marker is used, it preferably functions in a microbial host (*e.g.* in a prokaryote, in a bacteria, in a yeast). The marker is preferably a prokaryotic selectable marker (*e.g.* transcribed under the control of a prokaryotic promoter). For convenience, typical markers are antibiotic resistance genes.

25 The vector of the invention is preferably an autonomously replicating episomal or extrachromosomal vector, such as a plasmid.

The vector of the invention preferably comprises an origin of replication. It is preferred that the origin of replication is active in prokaryotes but not in eukaryotes.

Preferred vectors thus include a prokaryotic marker for selection of the vector, a prokaryotic origin of replication, but a eukaryotic promoter for driving transcription of the immunogen-encoding 30 sequence. The vectors will therefore (a) be amplified and selected in prokaryotic hosts without polypeptide expression, but (b) be expressed in eukaryotic hosts without being amplified. This arrangement is ideal for nucleic acid immunization vectors.

The vector of the invention may comprise a eukaryotic transcriptional terminator sequence downstream of the coding sequence. This can enhance transcription levels. Where the coding

sequence does not have its own, the vector of the invention preferably comprises a polyadenylation sequence. A preferred polyadenylation sequence is from bovine growth hormone.

The vector of the invention may comprise a multiple cloning site.

In addition to sequences encoding the immunogen and a marker, the vector may comprise a second 5 eukaryotic coding sequence. The vector may also comprise an IRES upstream of said second sequence in order to permit translation of a second eukaryotic polypeptide from the same transcript as the immunogen. Alternatively, the immunogen-coding sequence may be downstream of an IRES.

The vector of the invention may comprise unmethylated CpG motifs *e.g.* unmethylated DNA sequences which have in common a cytosine preceding a guanosine, flanked by two 5' purines and 10 two 3' pyrimidines. In their unmethylated form these DNA motifs have been demonstrated to be potent stimulators of several types of immune cell.

Vectors may be delivered in a targeted way. Receptor-mediated DNA therapy techniques are described in, for example, references 247 to 252. Therapeutic compositions containing a nucleic acid are administered in a range of about 100ng to about 200mg of DNA for local administration in a 15 gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1 μ g to about 2 mg, about 5 μ g to about 500 μ g, and about 20 μ g to about 100 μ g of DNA can also be used during a gene therapy protocol. Factors such as method of action (*e.g.* for enhancing or inhibiting levels of the encoded gene product) and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy. Where greater expression is desired over a 20 larger area of tissue, larger amounts of vector or the same amounts re-administered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions may be required to effect a positive therapeutic outcome. In all cases, routine experimentation in clinical trials will determine specific ranges for optimal therapeutic effect.

Vectors can be delivered using gene delivery vehicles. The gene delivery vehicle can be of viral or 25 non-viral origin (see generally references 253 to 256).

Viral-based vectors for delivery of a desired nucleic acid and expression in a desired cell are well known in the art. Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (*e.g.* references 257 to 267), alphavirus-based vectors (*e.g.* Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River virus (ATCC VR-373; ATCC 30 VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532); hybrids or chimeras of these viruses may also be used), poxvirus vectors (*e.g.* vaccinia, fowlpox, canarypox, modified vaccinia Ankara, *etc.*), adenovirus vectors, and adeno-associated virus (AAV) vectors (*e.g.* see refs. 268 to 273). Administration of DNA linked to killed adenovirus [274] can also be employed.

Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone [*e.g.* 274], ligand-linked DNA [275], eukaryotic cell delivery vehicles cells [*e.g.* refs. 276 to 280] and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed. Exemplary naked 5 DNA introduction methods are described in refs. 281 and 282. Liposomes (*e.g.* immunoliposomes) that can act as gene delivery vehicles are described in refs. 283 to 287. Additional approaches are described in references 288 & 289.

Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in ref. 289. Moreover, the coding sequence and the product of expression of such 10 can be delivered through deposition of photopolymerized hydrogel materials or use of ionizing radiation [*e.g.* refs. 290 & 291]. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun [292] or use of ionizing radiation for activating transferred genes [290 & 293].

Delivery DNA using PLG {poly(lactide-co-glycolide)} microparticles is a particularly preferred 15 method *e.g.* by adsorption to the microparticles, which are optionally treated to have a negatively-charged surface (*e.g.* treated with SDS) or a positively-charged surface (*e.g.* treated with a cationic detergent, such as CTAB).

General

The term “comprising” encompasses “including” as well as “consisting” *e.g.* a composition 20 “comprising” X may consist exclusively of X or may include something additional *e.g.* X + Y.

The term “about” in relation to a numerical value x means, for example, $x \pm 10\%$.

The word “substantially” does not exclude “completely” *e.g.* a composition which is “substantially free” from Y may be completely free from Y. Where necessary, the word “substantially” may be omitted from the definition of the invention.

25 The N-terminus residues in the amino acid sequences in the sequence listing are given as the amino acid encoded by the first codon in the corresponding nucleotide sequence. Where the first codon is not ATG, it will be understood that it will be translated as methionine when the codon is a start codon, but will be translated as the indicated non-Met amino acid when the sequence is at the C-terminus of a fusion partner. The invention specifically discloses and encompasses each of the 30 amino acid sequences of the sequence listing having a N-terminus methionine residue (*e.g.* a formyl-methionine residue) in place of any indicated non-Met residue. It also specifically discloses and encompasses each of the amino acid sequences of the sequence listing starting at any internal methionine residues in the sequences.

As indicated in the above text, nucleic acids and polypeptides of the invention may include sequences that:

- (a) are identical (*i.e.* 100% identical) to the sequences disclosed in the sequence listing;
- (b) share sequence identity with the sequences disclosed in the sequence listing;
- 5 (c) have 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 single nucleotide or amino acid alterations (deletions, insertions, substitutions), which may be at separate locations or may be contiguous, as compared to the sequences of (a) or (b); and
- 10 (d) when aligned with a particular sequence from the sequence listing using a pairwise alignment algorithm, a moving window of x monomers (amino acids or nucleotides) moving from start (N-terminus or 5') to end (C-terminus of 3'), such that for an alignment that extends to p monomers (where $p > x$) there are $p-x+1$ such windows, each window has at least $x \cdot y$ identical aligned monomers, where: x is selected from 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200; y is selected from 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99; and if $x \cdot y$ is not an integer then it is rounded up to the nearest integer. The preferred pairwise alignment algorithm is the Needleman-Wunsch global alignment algorithm [294], using default parameters (*e.g.* with Gap opening penalty = 10.0, and with Gap extension penalty = 0.5, using the EBLOSUM62 scoring matrix). This algorithm is conveniently implemented in the *needle* tool in the EMBOSS package [295].

20 The nucleic acids and polypeptides of the invention may additionally have further sequences to the N-terminus/5' and/or C-terminus/3' of these sequences (a) to (d).

The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, *e.g.*, references 296-303, *etc.*

25 EXPERIMENTAL

Below are examples of specific embodiments or modes for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

Efforts have been made to ensure accuracy with respect to numbers used (*e.g.*, amounts, 30 temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.

MODES FOR CARRYING OUT THE INVENTION

Computer-based comparative and predictive tools were used to identify 596 polypeptides that are (a) common to at least two UPEC strains but are not found in non-pathogenic strains, and (b) surface- or membrane-associated. These 596 polypeptides are listed in Table 1, and their amino

acid sequences are in the sequence listing as SEQ ID NOS: 1 to 596. Table 1 gives the 'gi' (GenInfo Identifier) accession numbers for these 596 sequences [11], and this information can be used to retrieve information including (a) the full sequence database record for the polypeptide and (b) the corresponding coding sequence from within the *E.coli* genome. For example, the NCBI *Entrez* 5 system [304] can be queried with '26111674' to give a single record [305], and the 'CDS' link within that record can be clicked to reveal the corresponding coding sequence [306].

As the polypeptide sequences of the invention are already available in public databases, their annotated functions are also available. Some of the 596 polypeptides have no recognised function in the current annotation (e.g. they are annotated in the databases as 'hypothetical protein'). Although 10 the inventors have not elucidated the basic underlying biological function of these polypeptides, the invention does now provide a credible utility for these polypeptides, namely in the provision of immunogenic compositions as described herein.

Table 4 reports the closest matches to SEQ ID NOS: 1-596 in the non-pathogenic K12 sequences for strains MG1655 [307], W3110 and DH10B.

15 Table 5 shows the 414/596 polypeptides with the strongest matches between two different UPEC genomes, with the underlined SEQ ID numbers being those with 100% conservation. The remaining 182 polypeptides are more-weakly conserved between UPEC strains, and so the Table 5 polypeptides are preferred (particularly underlined ones).

20 Of the 596 sequences, 156 were selected in preference (Table 2). Table 6 shows various pieces of information for these 156 sequences.

66 further preferred antigens were selected (Table 3) as being absent from non-pathogenic strains, surface-associated, present in at least two UPEC strains, and not previously identified as antigens. 19 of these were selected for initial work (marked with '+' in Table 3).

25 These polypeptides are cloned, expressed and purified. The purified antigens are used to immunise mice, whose sera are analysed by Western blot, ELISA and FACS, and are further tested in both *in vitro* and *in vivo* experiments. Suitable *in vitro* experiments include testing the ability of antibodies to induce complement-mediated bacterial killing and/or opsonophagocytosis activity, to block binding of ExPEC strains (or the purified antigen) to human epithelial cells (e.g. in bladder cells) or other cell lines, and/or to inhibit adhesion/invasion of *E.coli* bacteria (e.g. K1 strain) to brain 30 microvascular endothelial cells (BMEC). Suitable *in vivo* experiments include active and/or passive systemic immunisations and challenge in mouse models of UTI (adult mice), protection by active or passive immunisations against bacteremia and meningitis in 5-day-old rats challenged with *E.coli* K1 strain, and immunisation and intraperitoneal infection of adult mice with an ExPEC strain.

The importance of the proteins to the bacterial life-cycle is tested by creating isogenic knockout mutants. The mutants can also be used to ensure that sera raised by an antigen are specific for that antigen. Microarrays are used to study expression patterns. Conservation and/or variability is assessed by sequencing the genes from multiple different ExPEC strains.

5 Assays were carried out in order to select predicted surface-exposed proteins, which are specific for UPEC strains and absent in non-pathogenic strains (commensal and laboratory strains). Once selected these proteins are expressed and purified and used to immunize mice.

It is known from reference 43 that a mutation in any of the tol-pal genes of *E. coli* results in the formation of vesicles containing native outer membrane proteins. By comparing the proteins present 10 in vesicles of UPEC strains and non-pathogenic strains it is possible to select a small group of proteins that could be used as potential antigens.

Lambda red-mediated gene manipulation in commensal and pathogenic *E. coli*

This method is a rapid PCR-based method used to inactivate the tolR gene from the wild-type *E. coli* strains [308]. Briefly, the first step consists in amplifying independently the upstream and 15 downstream regions of the target gene (tolR) and the resistance marker cassette. The two PCR products obtained in step 1 are mixed with the amplification producer of the AB cassette at equimolar concentrations and submitted to a second round of PCR (a three way PCR) to generate a resistance marker cassette flanked by upstream and downstream 500bp (or more) regions homologous to the target gene. In the third step, large amounts (1 μ g) of the desired linear DNA are 20 electroporated into lamda-red competent cells.

Vesicle Preparation

1. Vesicle preparation by precipitation with TCA

LB media was inoculated with bacteria grown on plates and incubated overnight at 37°C under gentle shaking. The culture was used to inoculate 200ml of LB at OD600 0.1. Bacteria were grown 25 to OD600 0.4 (or as specified). Culture was centrifuged for 10 minutes at 4000 x g and the supernatant was filtered through a 0.22mm filter to remove residual bacteria.

The same experiments were also performed under iron limiting conditions by adding Dipyridyl (0.25mM) to the LB media.

Precipitation was performed by adding to the culture supernatant 10% final of a solution at 100% 30 (w/v) TCA, 0.4% (w/v) deoxycholate. The precipitation was allowed to proceed for 30 minutes at 4°C. Precipitate was recovered by 10 minutes centrifugation at 20000 x g at 4°C. The pellet was washed once with 10% TCA (w/v) and twice with absolute ethanol. The pellet was dried with speed vac, and stored at -20°C.

The wild type and mutated strains were subjected to SDS polyacrylamide gel electrophoresis from which it could be observed that there were many more bands in the supernatant of the mutated strains than the wildtype strains. Randomly picked bands demonstrated that all the proteins in the supernatant were membrane proteins.

5 *2. Vesicle preparation by ultracentrifugation*

Culture supernatant was ultracentrifuged at 200000 x g for 2 hours at 4°C. The pellet was washed with PBS, resuspended in PBS, and stored at -20°C.

3. *Guanidinium denaturation of the vesicles*

Prior to the guanidinium denaturation, Vesicles were precipitated with ethanol. 10µg of OMV in 10 PBS were precipitate by adding cold absolute ethanol to 90% final. Precipitation was allowed to proceed for 20 minutes at -20°C. Precipitate was recovered by 10 minutes centrifugation at 13000 x g. Pellet was resuspended with 50ml, 6M guanidinium, 15mM DTT, 200mM Tris-HCl, pH 8.0. Denaturation was allowed to proceed for 60 minutes at 60°C. Prior to digestion, solution was diluted 1/8 with a solution of 1.5M Tris pH 8.0 and 5mg of trypsin were added to the diluted solution. 15 Digestion was allowed to proceed overnight at 37°C. Reaction was stopped by adding 0.1% final of formic acid. Peptides were extracted using Oasis extraction cartridges. Peptides were analyzed by LC coupled MS-MS.

4. *Surface digestion*

5mg of trypsin were added to 10mg of vesicles in PBS and incubated at 37°C for 3 hours. Reaction 20 was stopped by adding 0,1% final of formic acid. Peptides were recovered by filtration through a 30Kda cut-off filter and extracted with Oasis extraction cartridge. Peptides were analyzed with LC coupled MSMS.

VESICLE ANALYSIS

Protein quantification

25 Proteins were quantified with the Bradford method, using the BSA as standard.

SDS-PAGE

Samples were analyzed with a sodium dodecyl sulfate (SDS) 4-12% polyacrylamide gel, using a Mini-Protean II electrophoresis apparatus. Samples were suspended in SDS sample buffer (0.06 M Tris-HCl pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 10 mg/ml 30 bromophenol blue) and heated to 100°C for 5 min before SDS-polyacrylamide gel electrophoresis. After the run, gels were stained with Coomassie Blue

MALDI-TOF mass spectrometry.

Protein bands or spots were excised from gels, washed with 50 mM ammonium bicarbonate/acetonitrile (50/50, v/v), and dried with a Speed-Vac centrifuge (Savant). The dried spots were digested at 37°C for 2 h by adding 7 to 1.0 ml of a solution containing 5 mM ammonium bicarbonate, 0.012 mg of sequencing-grade trypsin. After digestion 0.6 ml were loaded on a matrix pre-spotted target and air-dried. Spots were washed with 0.6ml of a solution of 70% ethanol, 0.1% trifluoroacetic acid. Mass spectra were acquired on an ultraflex MALDI TOF mass spectrometer. Spectra were externally calibrated by using a combination of standards pre-spotted on the target. Protein identification was carried out by both automatic and manual comparisons of experimentally generated monoisotopic peaks of peptides in the mass range of 700 to 3,000 Da with computer-generated fingerprints, using the Mascot program.

Bi-dimensional electrophoresis

200mg of vesicles were resuspended in an Immobiline re-swelling solution (7M urea, 2M thiourea, 2% (w/v) CHAPS (2% w/v) ASB14, 2% (v/v) IPG buffer pH 3–10 NL, 2mM TBP, 65mM DTT), and adsorbed overnight on 7 cm Immobiline DryStrips (pH 3–10 NL). Proteins were then separated by 2D electrophoresis. The first dimension was run using a IPGphor Isoelectric Focusing Unit, applying sequentially 150 V for 35 minutes, 500 V for 35 minutes, 1,000 V for 30 minutes, 2,600 V for 10 minutes, 3,500 V for 15 minutes, 4,200 V for 15 minutes, and finally 5,000 V to reach 10kVh. For the second dimension, the strips were equilibrated by two 10 minute -incubations in 4 M urea, 2 M thiourea, 30% glycerol, 2% SDS, 5mM TBP, 50Mm Tris HCl pH 8.8, 2.5% acrylamide, Bromophenol Blue 0.2%. Proteins were then separated on linear 4-12 % precasted polyacrylamide gels.

Gels were stained with colloidal Coomassie Blue and scanned with a Personal Densitometer SI. Images were analyzed with Image Master 2D Elite software.

Nano-LC/MS/MS

Peptides were separated by nano-LC on a CapLC HPLC system connected to a Q-ToF Micro ESI mass spectrometer equipped with a nanospray source. Samples were loaded onto an Atlantis C18 NanoEase column (100 μ m i.d. x 100mm), through a C18 trap column (300 μ m i.d. x 5 mm). Peptides were eluted with a 50-min gradient from 2% to 60% of 95% ACN, in a solution of 0.1% formic acid at a flow rate of 400 nl/minute. The eluted peptides were subjected to an automated data-dependent acquisition program, using the MassLynx software, version 4.0, where a MS survey scan was used to automatically select multi-charged peptides over the m/z range of 400-2,000 for further MS/MS fragmentation. Up to three different components were subjected to MS/MS fragmentation at the same time. After data acquisition, the individual MS/MS spectra were combined, smoothed and centroided by MassLynx. Search and identification of peptides were performed in batch mode with a licensed version of MASCOT. The MASCOT search parameters were: (1) species: ExPEC (2)

allowed number of missed cleavages (only for trypsin digestion): 6; (3) variable post-translational modifications: methionine oxidation; (4) peptide tolerance: ± 500 ppm; (5) MS/MS tolerance: ± 0.3 Da and (6): peptide charge: from +1 to +4. As for the previous platform, only significant hits as defined by MASCOT probability analysis were considered. The score thresholds for acceptance of 5 protein identifications from at least one peptide were set by MASCOT as 18 for trypsin digestion and 36 for proteinase K digestion.

Results

As a result of the above analyses, 13 preferred antigens were identified from the CFT073 strain. Namely: gi-26110866 (SEQ ID No 489), gi-26109898 (SEQ ID No 597), gi-26107513 (SEQ ID No 10 120), gi-26108604 (SEQ ID No 598), gi-26109137 (SEQ ID No 305), gi-26106493 (SEQ ID No 22), gi-26108194 (SEQ ID No 221), gi-26108192 (SEQ ID No 219), gi-26109931 (SEQ ID No 400), gi-26111428 (SEQ ID No 565), gi-26109835 (SEQ ID No 371), gi-26109866 (SEQ ID No 599) and gi-26111414 (SEQ ID No 555). These are listed in Table 7.

ANTIGEN ANALYSIS

15 Mouse Model of Systemic Infection

To screen a large number of antigens selected by comparative genome analysis between pathogenic and non pathogenic *E. coli* strains, a protection model based on a classical virulence assay has been established. Alternative experimental models that may also be used include those outlined in references 158,159 and 160.

20 The experimental model (immunization and infection) uses 5 week old - CD1 outbreed mice which are challenged with intraperitoneal inoculation of virulent CFT073 *E. coli* strain. The challenge dose has been experimentally determined as the amount of bacteria able to kill 80% of adult mice within 72 hours and corresponds to 7×10^7 cfu/mouse for the CFT073 strain.

Immunization Protocol

25 Mice are immunized three times by subcutaneous injection of 150 μ l of protein solution using freund's adjuvants as shown in the table below:

	Control mice:	Immunized mice:
Day 0	75 μ l of saline solution 75 μ l of complete freund's adjuvant	75 μ l of protein solution (20 μ g) 75 μ l of complete freund's adjuvant
Day 21	75 μ l of saline solution 75 μ l of incomplete freund's adjuvant	75 μ l of protein solution (20 μ g) 75 μ l of incomplete freund's adjuvant
Day 35	75 μ l of saline solution 75 μ l of incomplete freund's adjuvant	75 μ l of protein solution (20 μ g) 75 μ l of incomplete freund's adjuvant

Blood samples are collected the day before the first immunization (preimmune serum), at day 34 and 48 (day before challenge). Sera from immunized animals are tested by western blot and ELISA to determine the antibodies titer.

Challenge

5 At day 48 *E.coli* CFT073 strain is streaked on LB agar plate from frozen stock and incubated overnight (ON) at 37° C in incubator. At Day 49 the ON plate-culture is used to inoculate 50 ml of LB medium to have an O.D.₆₀₀ = 0.1, and grown for 1.5 hours at 37°C under agitation until the bacterial culture reaches an O.D.₆₀₀ = 0.6 which corresponds to 7×10^8 cfu/ml for the CFT073 strain. The culture is centrifuged and the pellet resuspended in the same volume with physiological solution
10 and used for challenge undiluted. The culture is plated using a standard plate count method to verify the inoculum. 100µl of the cell suspension containing 7×10^7 CFT073 bacteria is injected intraperitoneally, using a 1ml syringe, to control and immunized mice. The number of deaths in each animal group at 24, 48 and 72 hours after infection are recorded.

15 The protection due to vaccination is evaluated by comparison of the survival in the vaccinated group and the survival in control group of mice at 72 hours from the challenge. Percentage of survival relative to controls is calculated using the formula:

$$\frac{\text{rate of survival in vaccine group} - \text{rate of survival in control group}}{\text{rate of survival in control group}}$$

RESULTS

20 Immunization was carried out with heat-inactivated CFT073. As can be seen in Figure 1, the % survival of the mice after challenge with CFT073 is increased following immunization with heat-inactivated CFT073.

Immunisation studies

25 Antigens are selected for combining to give a composition of the invention. BALB/c mice are divided into nine groups and immunized as follows:

Group	Immunizing Composition	Route of Delivery
1	Mixture of antigens (10-20 µg protein/each) + CFA (Complete Freund's Adjuvant)	Intra-peritoneal or intra-nasal or subcutaneous
2	Mixture of antigens (5 µg/each) +Al-hydroxide (200µg)	Intra-peritoneal or intra-nasal or subcutaneous
3	Mixture of antigens (10-20µg protein /each) +CpG (10µg)	Intra-peritoneal or intra-nasal or subcutaneous
4	Mixture of antigens (10-20µg protein /each) + Al-hydroxide (200µg) + CpG (10µg)	Intra-peritoneal or intra-nasal or subcutaneous
5	CFA	Intra-peritoneal or intra-nasal or subcutaneous

6	Mixture of antigens (10-20 μ g protein/each) + LTK63 (5 μ g)	Intra-peritoneal or Intranasal or subcutaneous
7	Al-hydroxide (200 μ g) + CpG (10 μ g)	Intra-peritoneal or intra-nasal or subcutaneous
8	CpG (10 μ g)	Intra-peritoneal or intra-nasal or subcutaneous
9	LTK63 (5 μ g)	Intra-peritoneal or intra-nasal or subcutaneous

Mice are immunized at two-week intervals. Two to three weeks after the last immunization, all mice are challenged with the appropriate UPEC strain. When mucosal immunization (e.g. intranasal) is used, the animal model is also challenged mucosally to test the protective effect of the mucosal immunogen. Immediately prior to challenge, mice are bled to determine antibody titre to the antigens that were administered.

For the mouse challenge, virulent bacteria will be grown in appropriate media. Bacteria are harvested by centrifugation, re-suspended, and serially diluted for the challenge inoculum. BALB/c mice are challenged and observed daily for 30 days post-exposure.

10 Total IgG and IgG1/IgG2A subtypes can be measured in mouse sera resulting from the different immunization regimens by using an ELISA assay on whole bacteria and on purified recombinant proteins. Furthermore, assessment of antigen-specific CD4+ and CD8+Th-cells in spleen cells and/or PBMC isolated from immunized mice can be carried out by multi-parametric FACS analysis, to evaluate the cytokine expression profiles of antigen-specific T-cells. In particular production of

15 IFN- γ and IL-5 can be measured after *in vitro* stimulation of T cells with purified antigens. In addition, splenocytes and/or PBMC from mice immunized with each antigen/vaccine formulation may be collected 10-12 days after the last immunization dose and stimulated with UPEC bacteria. After 4 hours of stimulation, Brefeldin A is added to the cells for the following 12 hours, to block cytokine secretion. Afterwards cells are fixed and stained with antibodies to detect UPEC-specific T

20 cells expressing IFN- γ and IL-5.

T cells can be isolated from peripheral blood lymphocytes (PBLs) by a variety of procedures known to those skilled in the art. For example, T cell populations can be "enriched" from a population of PBLs through the removal of accessory and B cells. In particular, T cell enrichment can be accomplished by the elimination of non-T cells using anti-MHC class II monoclonal antibodies.

25 Similarly, other antibodies can be used to deplete specific populations of non-T cells. For example, anti-Ig antibody molecules can be used to deplete B cells and anti-MacI antibody molecules can be used to deplete macrophages.

T cells can be further fractionated into a number of different subpopulations by techniques known to those skilled in the art. Two major subpopulations can be isolated based on their differential

expression of the cell surface markers CD4 and CD8. For example, following the enrichment of T cells as described above, CD4+ cells can be enriched using antibodies specific for CD4. The antibodies may be coupled to a solid support such as magnetic beads. Conversely, CD8+ cells can be enriched through the use of antibodies specific for CD4 (to remove CD4+ cells), or can be isolated by the use of CD8 antibodies coupled to a solid support. CD4 lymphocytes from UPEC-infected patients can be expanded *ex vivo*, before or after transduction.

Following purification of T cells, the purified T cells are pre-stimulated with various cytokines including but not limited to rIL-2, IL-10, IL-12, and IL-15, which promote growth and activation of lymphocytes.

UPEC-specific T cells, may be activated by the above described immunogenic polypeptides. UPEC-specific T cells can be CD8+ or CD4+. UPEC-specific CD8+ T cells can be cytotoxic T lymphocytes (CTL) which can kill UPEC-infected cells that display any of the above described polypeptides or fragments thereof complexed with an MHC class I molecule. Chlamydia-specific CD8+ T cells can be detected by, for example, ^{51}Cr release assays. ^{51}Cr release assays measure the ability of UPEC-specific CD8+ T cells to lyse target cells displaying one or more of these epitopes. UPEC-specific CD8+ T cells which express antiviral agents, such as IFN γ , are also contemplated herein and can also be detected by immunological methods, preferably by intracellular staining for IFN- γ or alike cytokines after in vitro stimulation with one or more of the above described UPEC polypeptides. UPEC-specific CD4+ T cells can be detected by a lymphoproliferation assay. Lymphoproliferation assays measure the ability of UPEC-specific CD4+ T cells to proliferate in response to one or more of the above described polypeptides.

It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

TABLE 1 — 599 pathogenic *E.coli* sequences

	gi-26106321 (SEQ ID NO: 1)	gi-26106323 (SEQ ID NO: 2)	gi-26106335 (SEQ ID NO: 3)
	gi-26106336 (SEQ ID NO: 4)	gi-26106340 (SEQ ID NO: 5)	gi-26106348 (SEQ ID NO: 6)
	gi-26106390 (SEQ ID NO: 7)	gi-26106403 (SEQ ID NO: 8)	gi-26106445 (SEQ ID NO: 9)
5	gi-26106446 (SEQ ID NO: 10)	gi-26106449 (SEQ ID NO: 11)	gi-26106454 (SEQ ID NO: 12)
	gi-26106474 (SEQ ID NO: 13)	gi-26106475 (SEQ ID NO: 14)	gi-26106476 (SEQ ID NO: 15)
	gi-26106477 (SEQ ID NO: 16)	gi-26106478 (SEQ ID NO: 17)	gi-26106479 (SEQ ID NO: 18)
	gi-26106480 (SEQ ID NO: 19)	gi-26106483 (SEQ ID NO: 20)	gi-26106492 (SEQ ID NO: 21)
	gi-26106493 (SEQ ID NO: 22)	gi-26106557 (SEQ ID NO: 23)	gi-26106569 (SEQ ID NO: 24)
10	gi-26106579 (SEQ ID NO: 25)	gi-26106582 (SEQ ID NO: 26)	gi-26106583 (SEQ ID NO: 27)
	gi-26106584 (SEQ ID NO: 28)	gi-26106585 (SEQ ID NO: 29)	gi-26106592 (SEQ ID NO: 30)
	gi-26106594 (SEQ ID NO: 31)	gi-26106595 (SEQ ID NO: 32)	gi-26106596 (SEQ ID NO: 33)
	gi-26106597 (SEQ ID NO: 34)	gi-26106598 (SEQ ID NO: 35)	gi-26106601 (SEQ ID NO: 36)
	gi-26106624 (SEQ ID NO: 37)	gi-26106625 (SEQ ID NO: 38)	gi-26106626 (SEQ ID NO: 39)
15	gi-26106627 (SEQ ID NO: 40)	gi-26106628 (SEQ ID NO: 41)	gi-26106629 (SEQ ID NO: 42)
	gi-26106630 (SEQ ID NO: 43)	gi-26106633 (SEQ ID NO: 44)	gi-26106635 (SEQ ID NO: 45)
	gi-26106637 (SEQ ID NO: 46)	gi-26106645 (SEQ ID NO: 47)	gi-26106648 (SEQ ID NO: 48)
	gi-26106649 (SEQ ID NO: 49)	gi-26106652 (SEQ ID NO: 50)	gi-26106656 (SEQ ID NO: 51)
	gi-26106657 (SEQ ID NO: 52)	gi-26106658 (SEQ ID NO: 53)	gi-26106659 (SEQ ID NO: 54)
20	gi-26106662 (SEQ ID NO: 55)	gi-26106663 (SEQ ID NO: 56)	gi-26106664 (SEQ ID NO: 57)
	gi-26106689 (SEQ ID NO: 58)	gi-26106690 (SEQ ID NO: 59)	gi-26106694 (SEQ ID NO: 60)
	gi-26106705 (SEQ ID NO: 61)	gi-26106706 (SEQ ID NO: 62)	gi-26106710 (SEQ ID NO: 63)
	gi-26106722 (SEQ ID NO: 64)	gi-26106723 (SEQ ID NO: 65)	gi-26106740 (SEQ ID NO: 66)
	gi-26106931 (SEQ ID NO: 67)	gi-26107030 (SEQ ID NO: 68)	gi-26107046 (SEQ ID NO: 69)
25	gi-26107049 (SEQ ID NO: 70)	gi-26107050 (SEQ ID NO: 71)	gi-26107051 (SEQ ID NO: 72)
	gi-26107053 (SEQ ID NO: 73)	gi-26107067 (SEQ ID NO: 74)	gi-26107097 (SEQ ID NO: 75)
	gi-26107223 (SEQ ID NO: 76)	gi-26107228 (SEQ ID NO: 77)	gi-26107235 (SEQ ID NO: 78)
	gi-26107239 (SEQ ID NO: 79)	gi-26107241 (SEQ ID NO: 80)	gi-26107246 (SEQ ID NO: 81)
	gi-26107247 (SEQ ID NO: 82)	gi-26107248 (SEQ ID NO: 83)	gi-26107249 (SEQ ID NO: 84)
30	gi-26107251 (SEQ ID NO: 85)	gi-26107258 (SEQ ID NO: 86)	gi-26107260 (SEQ ID NO: 87)
	gi-26107263 (SEQ ID NO: 88)	gi-26107265 (SEQ ID NO: 89)	gi-26107266 (SEQ ID NO: 90)
	gi-26107267 (SEQ ID NO: 91)	gi-26107269 (SEQ ID NO: 92)	gi-26107309 (SEQ ID NO: 93)
	gi-26107393 (SEQ ID NO: 94)	gi-26107451 (SEQ ID NO: 95)	gi-26107452 (SEQ ID NO: 96)
	gi-26107455 (SEQ ID NO: 97)	gi-26107459 (SEQ ID NO: 98)	gi-26107461 (SEQ ID NO: 99)
35	gi-26107465 (SEQ ID NO: 100)	gi-26107468 (SEQ ID NO: 101)	gi-26107469 (SEQ ID NO: 102)
	gi-26107470 (SEQ ID NO: 103)	gi-26107471 (SEQ ID NO: 104)	gi-26107473 (SEQ ID NO: 105)
	gi-26107476 (SEQ ID NO: 106)	gi-26107477 (SEQ ID NO: 107)	gi-26107480 (SEQ ID NO: 108)
	gi-26107483 (SEQ ID NO: 109)	gi-26107484 (SEQ ID NO: 110)	gi-26107486 (SEQ ID NO: 111)
	gi-26107498 (SEQ ID NO: 112)	gi-26107499 (SEQ ID NO: 113)	gi-26107502 (SEQ ID NO: 114)
40	gi-26107505 (SEQ ID NO: 115)	gi-26107506 (SEQ ID NO: 116)	gi-26107507 (SEQ ID NO: 117)
	gi-26107508 (SEQ ID NO: 118)	gi-26107509 (SEQ ID NO: 119)	gi-26107513 (SEQ ID NO: 120)
	gi-26107514 (SEQ ID NO: 121)	gi-26107515 (SEQ ID NO: 122)	gi-26107516 (SEQ ID NO: 123)
	gi-26107517 (SEQ ID NO: 124)	gi-26107518 (SEQ ID NO: 125)	gi-26107524 (SEQ ID NO: 126)
	gi-26107525 (SEQ ID NO: 127)	gi-26107528 (SEQ ID NO: 128)	gi-26107529 (SEQ ID NO: 129)
45	gi-26107530 (SEQ ID NO: 130)	gi-26107534 (SEQ ID NO: 131)	gi-26107537 (SEQ ID NO: 132)
	gi-26107540 (SEQ ID NO: 133)	gi-26107541 (SEQ ID NO: 134)	gi-26107542 (SEQ ID NO: 135)
	gi-26107544 (SEQ ID NO: 136)	gi-26107548 (SEQ ID NO: 137)	gi-26107550 (SEQ ID NO: 138)
	gi-26107554 (SEQ ID NO: 139)	gi-26107578 (SEQ ID NO: 140)	gi-26107639 (SEQ ID NO: 141)
	gi-26107666 (SEQ ID NO: 142)	gi-26107673 (SEQ ID NO: 143)	gi-26107682 (SEQ ID NO: 144)
50	gi-26107688 (SEQ ID NO: 145)	gi-26107690 (SEQ ID NO: 146)	gi-26107692 (SEQ ID NO: 147)
	gi-26107693 (SEQ ID NO: 148)	gi-26107698 (SEQ ID NO: 149)	gi-26107699 (SEQ ID NO: 150)

	gi-26107703 (SEQ ID NO: 151)	gi-26107707 (SEQ ID NO: 152)	gi-26107708 (SEQ ID NO: 153)
	gi-26107714 (SEQ ID NO: 154)	gi-26107719 (SEQ ID NO: 155)	gi-26107725 (SEQ ID NO: 156)
	gi-26107730 (SEQ ID NO: 157)	gi-26107735 (SEQ ID NO: 158)	gi-26107739 (SEQ ID NO: 159)
	gi-26107741 (SEQ ID NO: 160)	gi-26107751 (SEQ ID NO: 161)	gi-26107753 (SEQ ID NO: 162)
5	gi-26107755 (SEQ ID NO: 163)	gi-26107757 (SEQ ID NO: 164)	gi-26107759 (SEQ ID NO: 165)
	gi-26107765 (SEQ ID NO: 166)	gi-26107774 (SEQ ID NO: 167)	gi-26107788 (SEQ ID NO: 168)
	gi-26107791 (SEQ ID NO: 169)	gi-26107794 (SEQ ID NO: 170)	gi-26107808 (SEQ ID NO: 171)
	gi-26107811 (SEQ ID NO: 172)	gi-26107813 (SEQ ID NO: 173)	gi-26107817 (SEQ ID NO: 174)
	gi-26107823 (SEQ ID NO: 175)	gi-26107835 (SEQ ID NO: 176)	gi-26107839 (SEQ ID NO: 177)
10	gi-26107843 (SEQ ID NO: 178)	gi-26107851 (SEQ ID NO: 179)	gi-26107854 (SEQ ID NO: 180)
	gi-26107855 (SEQ ID NO: 181)	gi-26107858 (SEQ ID NO: 182)	gi-26107861 (SEQ ID NO: 183)
	gi-26107864 (SEQ ID NO: 184)	gi-26107866 (SEQ ID NO: 185)	gi-26107867 (SEQ ID NO: 186)
	gi-26107869 (SEQ ID NO: 187)	gi-26107890 (SEQ ID NO: 188)	gi-26107912 (SEQ ID NO: 189)
	gi-26107916 (SEQ ID NO: 190)	gi-26107917 (SEQ ID NO: 191)	gi-26107918 (SEQ ID NO: 192)
15	gi-26107919 (SEQ ID NO: 193)	gi-26107926 (SEQ ID NO: 194)	gi-26107942 (SEQ ID NO: 195)
	gi-26107956 (SEQ ID NO: 196)	gi-26107959 (SEQ ID NO: 197)	gi-26107960 (SEQ ID NO: 198)
	gi-26107961 (SEQ ID NO: 199)	gi-26107962 (SEQ ID NO: 200)	gi-26108027 (SEQ ID NO: 201)
	gi-26108028 (SEQ ID NO: 202)	gi-26108030 (SEQ ID NO: 203)	gi-26108031 (SEQ ID NO: 204)
	gi-26108032 (SEQ ID NO: 205)	gi-26108047 (SEQ ID NO: 206)	gi-26108073 (SEQ ID NO: 207)
20	gi-26108075 (SEQ ID NO: 208)	gi-26108076 (SEQ ID NO: 209)	gi-26108084 (SEQ ID NO: 210)
	gi-26108096 (SEQ ID NO: 211)	gi-26108136 (SEQ ID NO: 212)	gi-26108146 (SEQ ID NO: 213)
	gi-26108147 (SEQ ID NO: 214)	gi-26108151 (SEQ ID NO: 215)	gi-26108157 (SEQ ID NO: 216)
	gi-26108164 (SEQ ID NO: 217)	gi-26108174 (SEQ ID NO: 218)	gi-26108192 (SEQ ID NO: 219)
	gi-26108193 (SEQ ID NO: 220)	gi-26108194 (SEQ ID NO: 221)	gi-26108196 (SEQ ID NO: 222)
25	gi-26108213 (SEQ ID NO: 223)	gi-26108215 (SEQ ID NO: 224)	gi-26108216 (SEQ ID NO: 225)
	gi-26108299 (SEQ ID NO: 226)	gi-26108374 (SEQ ID NO: 227)	gi-26108422 (SEQ ID NO: 228)
	gi-26108563 (SEQ ID NO: 229)	gi-26108639 (SEQ ID NO: 230)	gi-26108640 (SEQ ID NO: 231)
	gi-26108650 (SEQ ID NO: 232)	gi-26108651 (SEQ ID NO: 233)	gi-26108654 (SEQ ID NO: 234)
	gi-26108656 (SEQ ID NO: 235)	gi-26108657 (SEQ ID NO: 236)	gi-26108659 (SEQ ID NO: 237)
30	gi-26108660 (SEQ ID NO: 238)	gi-26108662 (SEQ ID NO: 239)	gi-26108663 (SEQ ID NO: 240)
	gi-26108668 (SEQ ID NO: 241)	gi-26108676 (SEQ ID NO: 242)	gi-26108677 (SEQ ID NO: 243)
	gi-26108678 (SEQ ID NO: 244)	gi-26108680 (SEQ ID NO: 245)	gi-26108682 (SEQ ID NO: 246)
	gi-26108683 (SEQ ID NO: 247)	gi-26108684 (SEQ ID NO: 248)	gi-26108686 (SEQ ID NO: 249)
	gi-26108689 (SEQ ID NO: 250)	gi-26108692 (SEQ ID NO: 251)	gi-26108708 (SEQ ID NO: 252)
35	gi-26108711 (SEQ ID NO: 253)	gi-26108712 (SEQ ID NO: 254)	gi-26108714 (SEQ ID NO: 255)
	gi-26108715 (SEQ ID NO: 256)	gi-26108716 (SEQ ID NO: 257)	gi-26108717 (SEQ ID NO: 258)
	gi-26108720 (SEQ ID NO: 259)	gi-26108721 (SEQ ID NO: 260)	gi-26108722 (SEQ ID NO: 261)
	gi-26108723 (SEQ ID NO: 262)	gi-26108724 (SEQ ID NO: 263)	gi-26108725 (SEQ ID NO: 264)
	gi-26108726 (SEQ ID NO: 265)	gi-26108728 (SEQ ID NO: 266)	gi-26108739 (SEQ ID NO: 267)
40	gi-26108747 (SEQ ID NO: 268)	gi-26108756 (SEQ ID NO: 269)	gi-26108765 (SEQ ID NO: 270)
	gi-26108768 (SEQ ID NO: 271)	gi-26108769 (SEQ ID NO: 272)	gi-26108770 (SEQ ID NO: 273)
	gi-26108775 (SEQ ID NO: 274)	gi-26108776 (SEQ ID NO: 275)	gi-26108778 (SEQ ID NO: 276)
	gi-26108779 (SEQ ID NO: 277)	gi-26108810 (SEQ ID NO: 278)	gi-26108811 (SEQ ID NO: 279)
	gi-26108813 (SEQ ID NO: 280)	gi-26108816 (SEQ ID NO: 281)	gi-26108817 (SEQ ID NO: 282)
45	gi-26108818 (SEQ ID NO: 283)	gi-26108826 (SEQ ID NO: 284)	gi-26108860 (SEQ ID NO: 285)
	gi-26108862 (SEQ ID NO: 286)	gi-26108877 (SEQ ID NO: 287)	gi-26108896 (SEQ ID NO: 288)
	gi-26108898 (SEQ ID NO: 289)	gi-26108915 (SEQ ID NO: 290)	gi-26108952 (SEQ ID NO: 291)
	gi-26109000 (SEQ ID NO: 292)	gi-26109006 (SEQ ID NO: 293)	gi-26109008 (SEQ ID NO: 294)
	gi-26109026 (SEQ ID NO: 295)	gi-26109062 (SEQ ID NO: 296)	gi-26109065 (SEQ ID NO: 297)
50	gi-26109126 (SEQ ID NO: 298)	gi-26109127 (SEQ ID NO: 299)	gi-26109128 (SEQ ID NO: 300)
	gi-26109129 (SEQ ID NO: 301)	gi-26109130 (SEQ ID NO: 302)	gi-26109131 (SEQ ID NO: 303)

	gi-26109132 (SEQ ID NO: 304)	gi-26109137 (SEQ ID NO: 305)	gi-26109141 (SEQ ID NO: 306)
	gi-26109143 (SEQ ID NO: 307)	gi-26109160 (SEQ ID NO: 308)	gi-26109178 (SEQ ID NO: 309)
	gi-26109277 (SEQ ID NO: 310)	gi-26109278 (SEQ ID NO: 311)	gi-26109279 (SEQ ID NO: 312)
	gi-26109311 (SEQ ID NO: 313)	gi-26109396 (SEQ ID NO: 314)	gi-26109400 (SEQ ID NO: 315)
5	gi-26109404 (SEQ ID NO: 316)	gi-26109406 (SEQ ID NO: 317)	gi-26109409 (SEQ ID NO: 318)
	gi-26109428 (SEQ ID NO: 319)	gi-26109447 (SEQ ID NO: 320)	gi-26109452 (SEQ ID NO: 321)
	gi-26109490 (SEQ ID NO: 322)	gi-26109512 (SEQ ID NO: 323)	gi-26109518 (SEQ ID NO: 324)
	gi-26109519 (SEQ ID NO: 325)	gi-26109522 (SEQ ID NO: 326)	gi-26109548 (SEQ ID NO: 327)
	gi-26109581 (SEQ ID NO: 328)	gi-26109582 (SEQ ID NO: 329)	gi-26109583 (SEQ ID NO: 330)
10	gi-26109585 (SEQ ID NO: 331)	gi-26109587 (SEQ ID NO: 332)	gi-26109613 (SEQ ID NO: 333)
	gi-26109629 (SEQ ID NO: 334)	gi-26109630 (SEQ ID NO: 335)	gi-26109631 (SEQ ID NO: 336)
	gi-26109636 (SEQ ID NO: 337)	gi-26109637 (SEQ ID NO: 338)	gi-26109639 (SEQ ID NO: 339)
	gi-26109640 (SEQ ID NO: 340)	gi-26109641 (SEQ ID NO: 341)	gi-26109642 (SEQ ID NO: 342)
	gi-26109643 (SEQ ID NO: 343)	gi-26109645 (SEQ ID NO: 344)	gi-26109647 (SEQ ID NO: 345)
15	gi-26109648 (SEQ ID NO: 346)	gi-26109650 (SEQ ID NO: 347)	gi-26109730 (SEQ ID NO: 348)
	gi-26109741 (SEQ ID NO: 349)	gi-26109750 (SEQ ID NO: 350)	gi-26109751 (SEQ ID NO: 351)
	gi-26109753 (SEQ ID NO: 352)	gi-26109760 (SEQ ID NO: 353)	gi-26109761 (SEQ ID NO: 354)
	gi-26109766 (SEQ ID NO: 355)	gi-26109801 (SEQ ID NO: 356)	gi-26109807 (SEQ ID NO: 357)
	gi-26109809 (SEQ ID NO: 358)	gi-26109811 (SEQ ID NO: 359)	gi-26109812 (SEQ ID NO: 360)
20	gi-26109813 (SEQ ID NO: 361)	gi-26109816 (SEQ ID NO: 362)	gi-26109817 (SEQ ID NO: 363)
	gi-26109826 (SEQ ID NO: 364)	gi-26109827 (SEQ ID NO: 365)	gi-26109828 (SEQ ID NO: 366)
	gi-26109829 (SEQ ID NO: 367)	gi-26109831 (SEQ ID NO: 368)	gi-26109833 (SEQ ID NO: 369)
	gi-26109834 (SEQ ID NO: 370)	gi-26109835 (SEQ ID NO: 371)	gi-26109837 (SEQ ID NO: 372)
	gi-26109841 (SEQ ID NO: 373)	gi-26109842 (SEQ ID NO: 374)	gi-26109844 (SEQ ID NO: 375)
25	gi-26109845 (SEQ ID NO: 376)	gi-26109849 (SEQ ID NO: 377)	gi-26109852 (SEQ ID NO: 378)
	gi-26109853 (SEQ ID NO: 379)	gi-26109855 (SEQ ID NO: 380)	gi-26109861 (SEQ ID NO: 381)
	gi-26109862 (SEQ ID NO: 382)	gi-26109864 (SEQ ID NO: 383)	gi-26109867 (SEQ ID NO: 384)
	gi-26109868 (SEQ ID NO: 385)	gi-26109870 (SEQ ID NO: 386)	gi-26109871 (SEQ ID NO: 387)
	gi-26109873 (SEQ ID NO: 388)	gi-26109877 (SEQ ID NO: 389)	gi-26109878 (SEQ ID NO: 390)
30	gi-26109879 (SEQ ID NO: 391)	gi-26109880 (SEQ ID NO: 392)	gi-26109881 (SEQ ID NO: 393)
	gi-26109895 (SEQ ID NO: 394)	gi-26109908 (SEQ ID NO: 395)	gi-26109915 (SEQ ID NO: 396)
	gi-26109927 (SEQ ID NO: 397)	gi-26109928 (SEQ ID NO: 398)	gi-26109930 (SEQ ID NO: 399)
	gi-26109931 (SEQ ID NO: 400)	gi-26109935 (SEQ ID NO: 401)	gi-26109936 (SEQ ID NO: 402)
	gi-26109938 (SEQ ID NO: 403)	gi-26109941 (SEQ ID NO: 404)	gi-26109951 (SEQ ID NO: 405)
35	gi-26109955 (SEQ ID NO: 406)	gi-26109956 (SEQ ID NO: 407)	gi-26109957 (SEQ ID NO: 408)
	gi-26109990 (SEQ ID NO: 409)	gi-26109991 (SEQ ID NO: 410)	gi-26109993 (SEQ ID NO: 411)
	gi-26109994 (SEQ ID NO: 412)	gi-26109995 (SEQ ID NO: 413)	gi-26110009 (SEQ ID NO: 414)
	gi-26110010 (SEQ ID NO: 415)	gi-26110011 (SEQ ID NO: 416)	gi-26110012 (SEQ ID NO: 417)
	gi-26110024 (SEQ ID NO: 418)	gi-26110025 (SEQ ID NO: 419)	gi-26110026 (SEQ ID NO: 420)
40	gi-26110029 (SEQ ID NO: 421)	gi-26110030 (SEQ ID NO: 422)	gi-26110031 (SEQ ID NO: 423)
	gi-26110032 (SEQ ID NO: 424)	gi-26110033 (SEQ ID NO: 425)	gi-26110145 (SEQ ID NO: 426)
	gi-26110198 (SEQ ID NO: 427)	gi-26110269 (SEQ ID NO: 428)	gi-26110271 (SEQ ID NO: 429)
	gi-26110273 (SEQ ID NO: 430)	gi-26110457 (SEQ ID NO: 431)	gi-26110458 (SEQ ID NO: 432)
	gi-26110460 (SEQ ID NO: 433)	gi-26110461 (SEQ ID NO: 434)	gi-26110462 (SEQ ID NO: 435)
45	gi-26110465 (SEQ ID NO: 436)	gi-26110466 (SEQ ID NO: 437)	gi-26110467 (SEQ ID NO: 438)
	gi-26110529 (SEQ ID NO: 439)	gi-26110530 (SEQ ID NO: 440)	gi-26110532 (SEQ ID NO: 441)
	gi-26110559 (SEQ ID NO: 442)	gi-26110564 (SEQ ID NO: 443)	gi-26110568 (SEQ ID NO: 444)
	gi-26110614 (SEQ ID NO: 445)	gi-26110650 (SEQ ID NO: 446)	gi-26110651 (SEQ ID NO: 447)
	gi-26110658 (SEQ ID NO: 448)	gi-26110671 (SEQ ID NO: 449)	gi-26110674 (SEQ ID NO: 450)
50	gi-26110675 (SEQ ID NO: 451)	gi-26110685 (SEQ ID NO: 452)	gi-26110699 (SEQ ID NO: 453)
	gi-26110700 (SEQ ID NO: 454)	gi-26110708 (SEQ ID NO: 455)	gi-26110734 (SEQ ID NO: 456)

	gi-26110736 (SEQ ID NO: 457)	gi-26110737 (SEQ ID NO: 458)	gi-26110738 (SEQ ID NO: 459)
	gi-26110745 (SEQ ID NO: 460)	gi-26110746 (SEQ ID NO: 461)	gi-26110747 (SEQ ID NO: 462)
	gi-26110749 (SEQ ID NO: 463)	gi-26110752 (SEQ ID NO: 464)	gi-26110754 (SEQ ID NO: 465)
	gi-26110762 (SEQ ID NO: 466)	gi-26110764 (SEQ ID NO: 467)	gi-26110766 (SEQ ID NO: 468)
5	gi-26110768 (SEQ ID NO: 469)	gi-26110769 (SEQ ID NO: 470)	gi-26110776 (SEQ ID NO: 471)
	gi-26110780 (SEQ ID NO: 472)	gi-26110782 (SEQ ID NO: 473)	gi-26110783 (SEQ ID NO: 474)
	gi-26110785 (SEQ ID NO: 475)	gi-26110786 (SEQ ID NO: 476)	gi-26110788 (SEQ ID NO: 477)
	gi-26110789 (SEQ ID NO: 478)	gi-26110794 (SEQ ID NO: 479)	gi-26110797 (SEQ ID NO: 480)
	gi-26110801 (SEQ ID NO: 481)	gi-26110805 (SEQ ID NO: 482)	gi-26110811 (SEQ ID NO: 483)
10	gi-26110816 (SEQ ID NO: 484)	gi-26110818 (SEQ ID NO: 485)	gi-26110835 (SEQ ID NO: 486)
	gi-26110844 (SEQ ID NO: 487)	gi-26110856 (SEQ ID NO: 488)	gi-26110866 (SEQ ID NO: 489)
	gi-26110976 (SEQ ID NO: 490)	gi-26110977 (SEQ ID NO: 491)	gi-26110984 (SEQ ID NO: 492)
	gi-26110987 (SEQ ID NO: 493)	gi-26111004 (SEQ ID NO: 494)	gi-26111005 (SEQ ID NO: 495)
	gi-26111007 (SEQ ID NO: 496)	gi-26111008 (SEQ ID NO: 497)	gi-26111009 (SEQ ID NO: 498)
15	gi-26111010 (SEQ ID NO: 499)	gi-26111011 (SEQ ID NO: 500)	gi-26111013 (SEQ ID NO: 501)
	gi-26111014 (SEQ ID NO: 502)	gi-26111016 (SEQ ID NO: 503)	gi-26111024 (SEQ ID NO: 504)
	gi-26111025 (SEQ ID NO: 505)	gi-26111026 (SEQ ID NO: 506)	gi-26111027 (SEQ ID NO: 507)
	gi-26111070 (SEQ ID NO: 508)	gi-26111071 (SEQ ID NO: 509)	gi-26111072 (SEQ ID NO: 510)
	gi-26111073 (SEQ ID NO: 511)	gi-26111074 (SEQ ID NO: 512)	gi-26111075 (SEQ ID NO: 513)
20	gi-26111076 (SEQ ID NO: 514)	gi-26111094 (SEQ ID NO: 515)	gi-26111139 (SEQ ID NO: 516)
	gi-26111140 (SEQ ID NO: 517)	gi-26111141 (SEQ ID NO: 518)	gi-26111143 (SEQ ID NO: 519)
	gi-26111166 (SEQ ID NO: 520)	gi-26111169 (SEQ ID NO: 521)	gi-26111170 (SEQ ID NO: 522)
	gi-26111221 (SEQ ID NO: 523)	gi-26111225 (SEQ ID NO: 524)	gi-26111226 (SEQ ID NO: 525)
	gi-26111229 (SEQ ID NO: 526)	gi-26111264 (SEQ ID NO: 527)	gi-26111265 (SEQ ID NO: 528)
25	gi-26111266 (SEQ ID NO: 529)	gi-26111270 (SEQ ID NO: 530)	gi-26111272 (SEQ ID NO: 531)
	gi-26111278 (SEQ ID NO: 532)	gi-26111279 (SEQ ID NO: 533)	gi-26111280 (SEQ ID NO: 534)
	gi-26111281 (SEQ ID NO: 535)	gi-26111284 (SEQ ID NO: 536)	gi-26111287 (SEQ ID NO: 537)
	gi-26111294 (SEQ ID NO: 538)	gi-26111301 (SEQ ID NO: 539)	gi-26111302 (SEQ ID NO: 540)
	gi-26111303 (SEQ ID NO: 541)	gi-26111304 (SEQ ID NO: 542)	gi-26111322 (SEQ ID NO: 543)
30	gi-26111323 (SEQ ID NO: 544)	gi-26111324 (SEQ ID NO: 545)	gi-26111325 (SEQ ID NO: 546)
	gi-26111394 (SEQ ID NO: 547)	gi-26111395 (SEQ ID NO: 548)	gi-26111398 (SEQ ID NO: 549)
	gi-26111404 (SEQ ID NO: 550)	gi-26111405 (SEQ ID NO: 551)	gi-26111407 (SEQ ID NO: 552)
	gi-26111409 (SEQ ID NO: 553)	gi-26111411 (SEQ ID NO: 554)	gi-26111414 (SEQ ID NO: 555)
	gi-26111418 (SEQ ID NO: 556)	gi-26111419 (SEQ ID NO: 557)	gi-26111420 (SEQ ID NO: 558)
35	gi-26111421 (SEQ ID NO: 559)	gi-26111422 (SEQ ID NO: 560)	gi-26111424 (SEQ ID NO: 561)
	gi-26111425 (SEQ ID NO: 562)	gi-26111426 (SEQ ID NO: 563)	gi-26111427 (SEQ ID NO: 564)
	gi-26111428 (SEQ ID NO: 565)	gi-26111431 (SEQ ID NO: 566)	gi-26111441 (SEQ ID NO: 567)
	gi-26111442 (SEQ ID NO: 568)	gi-26111443 (SEQ ID NO: 569)	gi-26111450 (SEQ ID NO: 570)
	gi-26111453 (SEQ ID NO: 571)	gi-26111510 (SEQ ID NO: 572)	gi-26111525 (SEQ ID NO: 573)
40	gi-26111536 (SEQ ID NO: 574)	gi-26111537 (SEQ ID NO: 575)	gi-26111542 (SEQ ID NO: 576)
	gi-26111560 (SEQ ID NO: 577)	gi-26111573 (SEQ ID NO: 578)	gi-26111587 (SEQ ID NO: 579)
	gi-26111589 (SEQ ID NO: 580)	gi-26111591 (SEQ ID NO: 581)	gi-26111596 (SEQ ID NO: 582)
	gi-26111597 (SEQ ID NO: 583)	gi-26111612 (SEQ ID NO: 584)	gi-26111614 (SEQ ID NO: 585)
	gi-26111620 (SEQ ID NO: 586)	gi-26111626 (SEQ ID NO: 587)	gi-26111630 (SEQ ID NO: 588)
45	gi-26111638 (SEQ ID NO: 589)	gi-26111652 (SEQ ID NO: 590)	gi-26111659 (SEQ ID NO: 591)
	gi-26111660 (SEQ ID NO: 592)	gi-26111670 (SEQ ID NO: 593)	gi-26111671 (SEQ ID NO: 594)
	gi-26111673 (SEQ ID NO: 595)	gi-26111674 (SEQ ID NO: 596)	gi-26109898 (SEQ ID NO: 597)
	gi-26108604 (SEQ ID NO: 598)	gi-26109866 (SEQ ID NO: 599)	

TABLE 2 — 156 preferred antigens

5	gi-26106323 (SEQ ID NO: 2)	gi-26106348 (SEQ ID NO: 6)	gi-26106390 (SEQ ID NO: 7)
	gi-26106557 (SEQ ID NO: 23)	gi-26106579 (SEQ ID NO: 25)	gi-26106582 (SEQ ID NO: 26)
	gi-26106584 (SEQ ID NO: 28)	gi-26106585 (SEQ ID NO: 29)	gi-26106592 (SEQ ID NO: 30)
5	gi-26106594 (SEQ ID NO: 31)	gi-26106595 (SEQ ID NO: 32)	gi-26106601 (SEQ ID NO: 36)
	gi-26106649 (SEQ ID NO: 49)	gi-26106664 (SEQ ID NO: 57)	gi-26106690 (SEQ ID NO: 59)
	gi-26106931 (SEQ ID NO: 67)	gi-26107030 (SEQ ID NO: 68)	gi-26107223 (SEQ ID NO: 76)
	gi-26107228 (SEQ ID NO: 77)	gi-26107241 (SEQ ID NO: 80)	gi-26107246 (SEQ ID NO: 81)
10	gi-26107247 (SEQ ID NO: 82)	gi-26107248 (SEQ ID NO: 83)	gi-26107249 (SEQ ID NO: 84)
	gi-26107251 (SEQ ID NO: 85)	gi-26107260 (SEQ ID NO: 87)	gi-26107263 (SEQ ID NO: 88)
	gi-26107265 (SEQ ID NO: 89)	gi-26107309 (SEQ ID NO: 93)	gi-26107393 (SEQ ID NO: 94)
	gi-26107452 (SEQ ID NO: 96)	gi-26107498 (SEQ ID NO: 112)	gi-26107502 (SEQ ID NO: 114)
15	gi-26107517 (SEQ ID NO: 124)	gi-26107518 (SEQ ID NO: 125)	gi-26107550 (SEQ ID NO: 138)
	gi-26107554 (SEQ ID NO: 139)	gi-26107666 (SEQ ID NO: 142)	gi-26107673 (SEQ ID NO: 143)
15	gi-26107688 (SEQ ID NO: 145)	gi-26107692 (SEQ ID NO: 147)	gi-26107698 (SEQ ID NO: 149)
	gi-26107699 (SEQ ID NO: 150)	gi-26107708 (SEQ ID NO: 153)	gi-26107719 (SEQ ID NO: 155)
	gi-26107739 (SEQ ID NO: 159)	gi-26107741 (SEQ ID NO: 160)	gi-26107751 (SEQ ID NO: 161)
	gi-26107759 (SEQ ID NO: 165)	gi-26107774 (SEQ ID NO: 167)	gi-26107794 (SEQ ID NO: 170)
20	gi-26107808 (SEQ ID NO: 171)	gi-26107835 (SEQ ID NO: 176)	gi-26107843 (SEQ ID NO: 178)
	gi-26107851 (SEQ ID NO: 179)	gi-26107855 (SEQ ID NO: 181)	gi-26107861 (SEQ ID NO: 183)
	gi-26107864 (SEQ ID NO: 184)	gi-26107890 (SEQ ID NO: 188)	gi-26107926 (SEQ ID NO: 194)
	gi-26107942 (SEQ ID NO: 195)	gi-26107959 (SEQ ID NO: 197)	gi-26107960 (SEQ ID NO: 198)
	gi-26107961 (SEQ ID NO: 199)	gi-26107962 (SEQ ID NO: 200)	gi-26108028 (SEQ ID NO: 202)
25	gi-26108073 (SEQ ID NO: 207)	gi-26108075 (SEQ ID NO: 208)	gi-26108076 (SEQ ID NO: 209)
	gi-26108084 (SEQ ID NO: 210)	gi-26108096 (SEQ ID NO: 211)	gi-26108136 (SEQ ID NO: 212)
	gi-26108216 (SEQ ID NO: 225)	gi-26108422 (SEQ ID NO: 228)	gi-26108650 (SEQ ID NO: 232)
	gi-26108651 (SEQ ID NO: 233)	gi-26108656 (SEQ ID NO: 235)	gi-26108657 (SEQ ID NO: 236)
	gi-26108659 (SEQ ID NO: 237)	gi-26108660 (SEQ ID NO: 238)	gi-26108663 (SEQ ID NO: 240)
	gi-26108668 (SEQ ID NO: 241)	gi-26108779 (SEQ ID NO: 277)	gi-26108811 (SEQ ID NO: 279)
30	gi-26108813 (SEQ ID NO: 280)	gi-26108816 (SEQ ID NO: 281)	gi-26108818 (SEQ ID NO: 283)
	gi-26108826 (SEQ ID NO: 284)	gi-26108898 (SEQ ID NO: 289)	gi-26108915 (SEQ ID NO: 290)
	gi-26109141 (SEQ ID NO: 306)	gi-26109160 (SEQ ID NO: 308)	gi-26109178 (SEQ ID NO: 309)
	gi-26109396 (SEQ ID NO: 314)	gi-26109400 (SEQ ID NO: 315)	gi-26109406 (SEQ ID NO: 317)
35	gi-26109490 (SEQ ID NO: 322)	gi-26109512 (SEQ ID NO: 323)	gi-26109519 (SEQ ID NO: 325)
	gi-26109522 (SEQ ID NO: 326)	gi-26109548 (SEQ ID NO: 327)	gi-26109730 (SEQ ID NO: 348)
	gi-26109753 (SEQ ID NO: 352)	gi-26109761 (SEQ ID NO: 354)	gi-26109807 (SEQ ID NO: 357)
	gi-26109809 (SEQ ID NO: 358)	gi-26109811 (SEQ ID NO: 359)	gi-26109831 (SEQ ID NO: 368)
	gi-26109842 (SEQ ID NO: 374)	gi-26109844 (SEQ ID NO: 375)	gi-26109849 (SEQ ID NO: 377)
40	gi-26109861 (SEQ ID NO: 381)	gi-26109871 (SEQ ID NO: 387)	gi-26109877 (SEQ ID NO: 389)
	gi-26109878 (SEQ ID NO: 390)	gi-26109879 (SEQ ID NO: 391)	gi-26109908 (SEQ ID NO: 395)
	gi-26109915 (SEQ ID NO: 396)	gi-26109927 (SEQ ID NO: 397)	gi-26109935 (SEQ ID NO: 401)
	gi-26109936 (SEQ ID NO: 402)	gi-26109938 (SEQ ID NO: 403)	gi-26109941 (SEQ ID NO: 404)
	gi-26109956 (SEQ ID NO: 407)	gi-26109994 (SEQ ID NO: 412)	gi-26110029 (SEQ ID NO: 421)
	gi-26110198 (SEQ ID NO: 427)	gi-26110532 (SEQ ID NO: 441)	gi-26110614 (SEQ ID NO: 445)
45	gi-26110650 (SEQ ID NO: 446)	gi-26110671 (SEQ ID NO: 449)	gi-26110746 (SEQ ID NO: 461)
	gi-26110762 (SEQ ID NO: 466)	gi-26110764 (SEQ ID NO: 467)	gi-26110766 (SEQ ID NO: 468)
	gi-26110782 (SEQ ID NO: 473)	gi-26110785 (SEQ ID NO: 475)	gi-26110794 (SEQ ID NO: 479)
	gi-26110844 (SEQ ID NO: 487)	gi-26110856 (SEQ ID NO: 488)	gi-26110976 (SEQ ID NO: 490)
	gi-26110977 (SEQ ID NO: 491)	gi-26110987 (SEQ ID NO: 493)	gi-26111303 (SEQ ID NO: 541)
50	gi-26111394 (SEQ ID NO: 547)	gi-26111411 (SEQ ID NO: 554)	gi-26111424 (SEQ ID NO: 561)
	gi-26111431 (SEQ ID NO: 566)	gi-26111525 (SEQ ID NO: 573)	gi-26111536 (SEQ ID NO: 574)
	gi-26111542 (SEQ ID NO: 576)	gi-26111573 (SEQ ID NO: 578)	gi-26111614 (SEQ ID NO: 585)
	gi-26111620 (SEQ ID NO: 586)	gi-26111630 (SEQ ID NO: 588)	gi-26111673 (SEQ ID NO: 595)

TABLE 3 — 66 preferred antigens

1	gi-26106348	(SEQ ID NO: 6)		
2	gi-26106390	(SEQ ID NO: 7)	+	
3	gi-26106664	(SEQ ID NO: 57)		
5	4	gi-26106931	(SEQ ID NO: 67)	+
	5	gi-26107030	(SEQ ID NO: 68)	
	6	gi-26107260	(SEQ ID NO: 87)	
	7	gi-26107452	(SEQ ID NO: 96)	
	8	gi-26107502	(SEQ ID NO: 114)	
10	9	gi-26107517	(SEQ ID NO: 124)	+
	10	gi-26107518	(SEQ ID NO: 125)	+
	11	gi-26107666	(SEQ ID NO: 142)	
	12	gi-26107741	(SEQ ID NO: 160)	
	13	gi-26107835	(SEQ ID NO: 176)	+
15	14	gi-26107864	(SEQ ID NO: 184)	
	15	gi-26107890	(SEQ ID NO: 188)	
	16	gi-26108075	(SEQ ID NO: 208)	+
	17	gi-26108076	(SEQ ID NO: 209)	
	18	gi-26108084	(SEQ ID NO: 210)	
20	19	gi-26108096	(SEQ ID NO: 211)	
	20	gi-26108136	(SEQ ID NO: 212)	
	21	gi-26108216	(SEQ ID NO: 225)	+
	22	gi-26108650	(SEQ ID NO: 232)	+
	23	gi-26108651	(SEQ ID NO: 233)	+
25	24	gi-26108656	(SEQ ID NO: 235)	
	25	gi-26108657	(SEQ ID NO: 236)	+
	26	gi-26108659	(SEQ ID NO: 237)	+
	27	gi-26108660	(SEQ ID NO: 238)	
	28	gi-26108668	(SEQ ID NO: 241)	
30	29	gi-26108811	(SEQ ID NO: 279)	+
	30	gi-26108813	(SEQ ID NO: 280)	+
	31	gi-26108816	(SEQ ID NO: 281)	
	32	gi-26108818	(SEQ ID NO: 283)	
	33	gi-26109160	(SEQ ID NO: 308)	
35	34	gi-26109396	(SEQ ID NO: 314)	
	35	gi-26109519	(SEQ ID NO: 325)	

36 gi-26109522 (SEQ ID NO: 326) +
37 gi-26109548 (SEQ ID NO: 327) +
38 gi-26109753 (SEQ ID NO: 352)
39 gi-26109761 (SEQ ID NO: 354)
5 40 gi-26109807 (SEQ ID NO: 357)
41 gi-26109809 (SEQ ID NO: 358)
42 gi-26109831 (SEQ ID NO: 368) +
43 gi-26109842 (SEQ ID NO: 374)
44 gi-26109844 (SEQ ID NO: 375)
10 45 gi-26109871 (SEQ ID NO: 387)
46 gi-26109877 (SEQ ID NO: 389) +
47 gi-26109878 (SEQ ID NO: 390) +
48 gi-26109941 (SEQ ID NO: 404)
49 gi-26109956 (SEQ ID NO: 407)
15 50 gi-26109994 (SEQ ID NO: 412)
51 gi-26110029 (SEQ ID NO: 421)
52 gi-26110614 (SEQ ID NO: 445)
53 gi-26110650 (SEQ ID NO: 446)
54 gi-26110746 (SEQ ID NO: 461)
20 55 gi-26110766 (SEQ ID NO: 468)
56 gi-26110782 (SEQ ID NO: 473)
57 gi-26110844 (SEQ ID NO: 487)
58 gi-26110976 (SEQ ID NO: 490)
59 gi-26110977 (SEQ ID NO: 491)
25 60 gi-26110987 (SEQ ID NO: 493)
61 gi-26111303 (SEQ ID NO: 541)
62 gi-26111424 (SEQ ID NO: 561)
63 gi-26111536 (SEQ ID NO: 574) +
64 gi-26111542 (SEQ ID NO: 576)
30 65 gi-26111630 (SEQ ID NO: 588)
66 gi-26111673 (SEQ ID NO: 595)

TABLE 4 — K12 hits

SEQ ID	K12			JW3110			DH10B		
	e value	overlap	%id	e value	overlap	%id	e value	overlap	%id
1	1.E-50	87/100	87	4.E-50	86/100	86	7.E-50	86/100	86
2			10			10	1.E-17	42/63	66
3	2.E-29	81/263	30	2.E-29	81/263	30	7.E-26	45/123	36
4	1.E-32	135/531	25	1.E-32	135/531	25	2.E-32	135/531	25
5			10			10			10
6	5.E-07	30/112	26	5.E-07	30/112	26	8.E-07	30/112	26
7			10			10			10
8			10			10			10
9			10			10			10
10			10			10			10
11	1.E-31	86/286	30	3.E-31	85/284	29	8.E-24	60/184	32
12	0.E+00	540/625	86	0.E+00	540/625	86	0.E+00	526/628	83
13	e-147	259/422	61	e-147	259/422	61	e-144	224/385	58
14	7.E-86	152/198	76	7.E-86	152/198	76	1.E-85	152/198	76
15	2.E-75	142/202	70	2.E-75	142/202	70	3.E-75	142/202	70
16	1.E-79	144/189	76	1.E-79	144/189	76	2.E-79	144/189	76
17	0.E+00	750/859	87	0.E+00	750/859	87	0.E+00	750/859	87
18	e-124	210/246	85	e-124	210/246	85	e-123	210/246	85
19	2.E-93	169/196	86	2.E-93	169/196	86	9.E-71	140/209	66
20	1.E-80	143/159	89	1.E-80	143/159	89	2.E-80	143/159	89
21			10			10	3.E-14	33/51	64
22	0.E+00	672/753	89	0.E+00	672/753	89	0.E+00	418/495	84
23			10			10			10
24			10			10			10
25			10			10	4.E-52	104/247	42
26			10			10			10
27			10			10			10
28			10			10			10
29	6.E-22	51/146	34	6.E-22	51/146	34	2.E-20	53/148	35
30			10			10			10
31			10			10			10
32			10			10			10
33	6.E-32	167/753	22	6.E-32	167/753	22	5.E-14	91/420	21
34	2.E-05	42/170	24	2.E-05	42/170	24			10
35	1.E-39	108/328	32	1.E-39	108/328	32	6.E-40	109/330	33
36			10			10			10
37	2.E-15	95/465	20	2.E-15	95/465	20	4.E-15	95/465	20
38			10			10			10
39			10			10			10
40			10			10			10
41			10			10			10
42			10			10			10
43			10			10			10
44	2.E-43	96/253	37	2.E-43	96/253	37	3.E-43	96/254	37
45	4.E-72	148/422	35	4.E-72	148/422	35	5.E-67	141/388	36
46	2.E-52	122/398	30	2.E-52	122/398	30	6.E-48	93/318	29
47	2.E-18	260/1249	20	2.E-18	260/1249	20	7.E-12	147/708	20

48	1.E-18	133/596	22	1.E-18	133/596	22	2.E-24	146/605	24
49			10			10			10
50			10			10			10
51	7.E-06	59/250	23	7.E-06	59/250	23			10
52	2.E-38	137/455	30	2.E-38	137/455	30	1.E-36	131/573	22
53	1.E-06	58/216	26	1.E-06	58/216	26	4.E-06	73/329	22
54	2.E-20	306/1435	21	2.E-20	306/1435	21	3.E-19	334/1518	22
55			10			10			10
56			10			10			10
57			10			10			10
58	2.E-24	220/1026	21	2.E-24	220/1026	21	2.E-20	165/740	22
59			10			10			10
60			10			10			10
61	5.E-23	82/266	30	5.E-23	82/266	30	8.E-23	82/266	30
62	1.E-59	123/298	41	2.E-59	123/298	41	2.E-59	123/298	41
63	4.E-49	97/223	43	3.E-36	87/254	34	4.E-54	110/258	42
64	5.E-49	124/431	28	5.E-49	124/431	28	6.E-45	98/295	33
65			10			10			10
66			10			10			10
67			10			10			10
68	5.E-06	46/189	24	5.E-06	46/189	24	2.E-05	37/149	24
69	2.E-12	43/149	28	4.E-12	42/146	28	7.E-12	42/146	28
70	2.E-79	148/237	62	2.E-79	148/237	62	3.E-79	148/237	62
71	3.E-30	74/227	32	3.E-30	74/227	32	2.E-27	84/260	32
72	4.E-38	110/379	29	4.E-38	110/379	29	6.E-38	110/379	29
73	2.E-50	119/324	36	1.E-50	119/324	36	3.E-50	119/324	36
74			10			10	1.E-09	26/34	76
75			10			10			10
76			10			10			10
77			10			10			10
78			10			10			10
79			10			10			10
80			10			10			10
81			10			10			10
82	3.E-16	57/172	33	3.E-16	57/172	33	5.E-16	57/172	33
83			10			10	0.002	24/102	23
84			10			10			10
85			10			10			10
86			10			10			10
87	6.E-10	84/348	24	6.E-10	84/348	24	7.E-09	44/140	31
88			10			10			10
89			10			10			10
90	7.E-05	48/208	23	7.E-05	48/208	23	5.E-05	52/185	28
91			10			10			10
92	1.E-18	37/67	55	1.E-18	37/67	55	2.E-18	37/67	55
93			10			10	1.E-23	55/79	69
94			10			10	9.E-47	85/96	88
95			10			10			10
96	2.E-05	17/43	39	2.E-05	17/43	39			10
97	e-101	191/462	41	e-101	191/462	41	e-100	191/462	41
98			10			10			10

99	8.E-51	92/114	80	8.E-51	92/114	80	1.E-50	92/114	80
100	7.E-67	160/414	38	7.E-67	160/414	38	1.E-66	160/414	38
101	2.E-35	102/322	31	2.E-35	102/322	31	4.E-35	102/322	31
102			10			10			10
103			10			10			10
104			10			10			10
105			10			10	0.001	27/84	32
106			10			10	0.005	22/63	34
107			10			10			10
108			10			10			10
109			10			10			10
110			10			10	3.E-04	76/334	22
111			10			10			10
112			10			10			10
113			10			10			10
114			10			10			10
115			10			10			10
116	8.E-50	130/503	25	8.E-50	130/503	25	1.E-49	130/503	25
117			10			10			10
118			10			10			10
119			10			10			10
120	4.E-58	117/182	64	4.E-58	117/182	64	2.E-36	87/183	47
121	8.E-51	95/171	55	8.E-51	95/171	55	7.E-17	50/149	33
122	6.E-82	144/223	64	6.E-82	144/223	64	8.E-48	94/224	41
123	0.E+00	546/853	64	0.E+00	546/853	64	0.E+00	384/839	45
124	8.E-30	69/171	40	8.E-30	69/171	40	4.E-18	52/154	33
125	6.E-27	68/151	45	6.E-27	68/151	45	5.E-23	70/169	41
126	0.E+00	387/755	51	0.E+00	387/755	51	0.E+00	156/246	63
127			10			10			10
128	4.E-65	157/564	27	4.E-65	157/564	27	8.E-65	157/564	27
129			10			10			10
130			10			10			10
131			10			10			10
132	1.E-31	86/286	30	3.E-31	85/284	29	8.E-24	60/184	32
133	4.E-17	132/556	23	4.E-17	132/556	23	7.E-17	132/556	23
134			10			10			10
135	1.E-07	36/134	26	1.E-07	36/134	26	2.E-07	36/134	26
136	5.E-53	118/315	37	5.E-53	118/315	37	9.E-53	118/315	37
137	0.E+00	917/1091	84	0.E+00	897/1039	86	0.E+00	257/288	89
138			10			10			10
139			10			10	1.E-55	113/264	42
140			10			10	2.E-16	38/43	88
141			10			10	1.E-15	33/43	76
142	e-133	232/262	88	e-133	232/262	88	e-133	232/262	88
143			10			10	1.E-93	162/181	89
144			10			10	0.009	14/20	70
145			10			10			10
146			10			10	6.E-04	14/23	60
147			10			10	3.E-14	33/57	57
148	e-179	296/348	85	e-179	296/348	85	e-156	146/167	87
149			10			10			10

150	6.E-40	66/107	61	6.E-40	66/107	61	1.E-39	66/107	61
151	8.E-30	57/71	80	8.E-30	57/71	80	1.E-29	57/71	80
152	3.E-44	96/154	62	1.E-44	97/155	62	2.E-44	97/154	62
153			10			10			10
154	2.E-19	48/118	40	2.E-19	48/118	40	1.E-18	51/121	42
155			10			10			10
156			10			10			10
157	1.E-06	23/42	54	1.E-06	23/42	54	2.E-06	23/42	54
158			10			10			10
159			10			10	0.008	25/56	44
160			10			10			10
161			10			10			10
162	8.E-09	69/284	24	1.E-05	45/175	25	1.E-08	69/284	24
163			10			10			10
164			10			10			10
165			10			10			10
166			10			10			10
167			10			10			10
168			10			10			10
169	1.E-31	86/286	30	3.E-31	85/284	29	8.E-24	60/184	32
170			10			10			10
171			10			10			10
172			10			10			10
173			10			10			10
174			10			10			10
175	1.E-31	86/286	30	3.E-31	85/284	29	8.E-24	60/184	32
176	5.E-13	33/81	40	5.E-13	33/81	40	8.E-13	33/81	40
177	8.E-31	65/118	55	8.E-31	65/118	55	1.E-30	65/118	55
178			10			10			10
179			10			10			10
180	1.E-07	24/42	57	1.E-07	24/42	57	2.E-07	24/42	57
181			10			10			10
182			10			10	0.005	18/32	56
183			10			10	1.E-05	33/81	40
184			10			10			10
185	2.E-19	64/250	25	2.E-19	64/250	25	3.E-19	64/250	25
186	2.E-23	63/235	26	2.E-23	63/235	26	4.E-23	63/235	26
187	5.E-13	59/274	21	5.E-13	59/274	21	8.E-13	59/274	21
188			10			10	0.002	19/31	61
189	1.E-11	78/262	29	1.E-11	78/262	29	6.E-14	143/685	20
190	4.E-32	74/238	31	4.E-32	74/238	31	7.E-32	74/238	31
191	3.E-46	116/278	41	3.E-46	116/278	41	6.E-46	116/278	41
192	7.E-06	54/229	23	7.E-06	54/229	23	1.E-05	54/229	23
193			10			10			10
194			10			10			10
195			10	1.E-23	51/92	55	2.E-23	51/92	55
196	2.E-26	85/314	27	2.E-26	85/314	27	3.E-26	85/314	27
197			10			10			10
198	9.E-07	46/194	23	1.E-06	38/158	24	2.E-06	38/158	24

199			10			10			10
200			10			10			10
201	3.E-95	186/362	51	3.E-95	186/362	51	4.E-95	191/383	49
202			10			10			10
203	0.E+00	569/1007	56	0.E+00	569/1007	56	0.E+00	546/1003	54
204	4.E-74	166/456	36	4.E-74	166/456	36	3.E-71	90/190	47
205	9.E-50	115/382	30	6.E-47	108/367	29	1.E-33	67/184	36
206			10			10	2.E-27	52/65	80
207	6.E-17	41/54	75	6.E-17	41/54	75	1.E-16	41/54	75
208	2.E-12	32/86	37	2.E-12	32/86	37	3.E-12	32/86	37
209	6.E-09	33/124	26	6.E-09	33/124	26	5.E-08	22/56	39
210			10			10			10
211			10			10	0.002	13/15	86
212	2.E-21	50/56	89	2.E-21	50/56	89	4.E-21	50/56	89
213			10			10			10
214			10			10			10
215			10			10			10
216	e-119	199/226	88	e-119	199/226	88	e-119	199/226	88
217			10			10	e-121	232/327	70
218			10			10	1.E-13	35/45	77
219	0.E+00	497/862	57	0.E+00	497/862	57	0.E+00	231/536	43
220	1.E-75	133/208	63	1.E-75	133/208	63	1.E-52	100/217	46
221	4.E-62	121/187	64	4.E-62	121/187	64	6.E-37	84/171	49
222	2.E-54	97/194	50	2.E-54	97/194	50	3.E-49	77/156	49
223	e-167	285/541	52	e-167	285/541	52	e-166	285/541	52
224	1.E-72	163/443	36	1.E-72	163/443	36	2.E-72	163/443	36
225	2.E-13	42/102	41	2.E-13	42/102	41	3.E-13	42/102	41
226			10			10	3.E-13	34/40	85
227	9.E-40	76/86	88			10	2.E-39	76/86	88
228			10			10			10
229			10			10	9.E-15	35/42	83
230	e-108	205/382	53	e-108	205/382	53	e-114	149/247	60
231			10			10			10
232	9.E-05	86/394	21	9.E-05	86/394	21			10
233			10			10			10
234			10			10			10
235			10			10			10
236			10			10			10
237			10			10			10
238			10			10			10
239			10			10			10
240			10			10			10
241			10			10			10
242	1.E-20	99/376	26	1.E-20	99/376	26	3.E-20	99/376	26
243	3.E-60	172/595	28	3.E-60	172/595	28	6.E-60	172/595	28
244	2.E-60	169/578	29	2.E-60	169/578	29	3.E-60	169/578	29
245	1.E-57	238/911	26	1.E-57	238/911	26	2.E-21	47/142	33
246			10			10			10
247	7.E-26	83/277	29	7.E-26	83/277	29	1.E-25	83/277	29
248			10			10	0.002	32/127	25
249			10			10			10

250	4.E-80	169/408	41	4.E-80	169/408	41	7.E-76	112/232	48
251	2.E-15	87/336	25	2.E-15	87/336	25	3.E-15	87/336	25
252	2.E-22	95/372	25	2.E-22	95/372	25	3.E-18	84/322	26
253	1.E-63	269/1057	25	1.E-63	269/1057	25	6.E-28	64/193	33
254	6.E-17	88/436	20	6.E-17	88/436	20	0.007	45/208	21
255	3.E-63	258/939	27	3.E-63	258/939	27	6.E-36	62/192	32
256	8.E-86	298/1062	28	8.E-86	298/1062	28	6.E-47	70/191	36
257	4.E-27	110/434	25	4.E-27	110/434	25	7.E-27	110/434	25
258	e-102	312/1088	28	e-102	312/1088	28	1.E-25	80/229	34
259	5.E-23	84/328	25	5.E-23	84/328	25	9.E-23	84/328	25
260			10			10			10
261			10			10			10
262	9.E-41	97/285	34	9.E-41	97/285	34	2.E-40	97/285	34
263	4.E-24	109/441	24	1.E-23	108/436	24	6.E-24	109/448	24
264	7.E-22	67/215	31	7.E-22	67/215	31	1.E-21	67/215	31
265	6.E-64	249/954	26	6.E-64	249/954	26	2.E-50	64/189	33
266			10			10			10
267			10			10			10
268			10			10			10
269			10			10			10
270			10			10			10
271	1.E-39	108/328	32	1.E-39	108/328	32	6.E-40	109/330	33
272	2.E-05	42/170	24	2.E-05	42/170	24			10
273	6.E-32	167/753	22	6.E-32	167/753	22	5.E-14	91/420	21
274			10			10			10
275			10			10			10
276	3.E-60	102/153	66	3.E-60	102/153	66	5.E-60	102/153	66
277			10			10	6.E-38	80/175	45
278	0.E+00	338/471	71	0.E+00	338/471	71	0.E+00	198/290	68
279			10			10			10
280			10			10			10
281			10			10			10
282			10			10			10
283	7.E-25	98/406	24	7.E-25	98/406	24	7.E-23	82/315	26
284			10			10	4.E-09	24/33	72
285			10			10			10
286			10			10			10
287			10			10			10
288	0.E+00	520/641	81	0.E+00	408/526	77	0.E+00	776/924	83
289			10			10	4.E-26	60/83	72
290			10			10	6.E-19	43/49	87
291	e-164	277/313	88	e-164	277/313	88	e-172	295/352	83
292			10			10	8.E-16	36/42	85
293			10			10	3.E-30	60/72	83
294			10			10	e-155	177/224	79
295	0.E+00	1036/1252	82	0.E+00	1036/125 2	82	0.E+00	521/682	76
296	2.E-78	133/153	86	2.E-78	133/153	86	3.E-78	133/153	86
297			10			10	5.E-14	30/37	81
298	6.E-75	151/295	51	4.E-73	148/290	51	2.E-74	150/295	50
299	2.E-67	123/152	80	2.E-67	123/152	80	4.E-67	123/152	80

300	1.E-51	98/162	60	1.E-51	98/162	60	2.E-51	98/162	60
301	2.E-57	106/167	63	2.E-57	106/167	63	3.E-57	106/167	63
302	e-107	186/250	74	e-107	186/250	74	e-107	186/250	74
303	0.E+00	444/578	76	0.E+00	444/578	76	0.E+00	681/883	77
304	4.E-72	137/189	72	4.E-72	137/189	72	7.E-67	91/124	73
305	0.E+00	351/456	76	0.E+00	351/456	76	0.E+00	351/456	76
306			10			10			10
307	e-103	390/1363	28	e-103	390/1363	28	e-131	290/918	31
308	3.E-43	81/91	89	3.E-43	81/91	89	5.E-43	81/91	89
309	7.E-51	98/114	85			10	4.E-53	102/119	85
310	5.E-05	104/439	23	5.E-05	104/439	23	5.E-06	207/951	21
311			10			10			10
312	7.E-71	159/458	34	9.E-71	159/458	34	5.E-67	139/378	36
313			10			10	2.E-06	22/37	59
314			10			10			10
315			10			10	9.E-09	61/152	40
316			10			10	0.005	18/32	56
317			10			10			10
318	1.E-07	24/42	57	1.E-07	24/42	57	2.E-07	24/42	57
319	1.E-79	148/165	89	3.E-79	147/165	89	5.E-79	147/165	89
320			10			10			10
321			10			10			10
322			10			10			10
323			10			10	e-133	258/343	75
324			10			10			10
325	5.E-31	62/134	46	5.E-31	62/134	46	8.E-31	62/134	46
326			10			10			10
327			10			10	0.004	25/90	27
328			10			10	7.E-07	23/36	63
329			10			10			10
330	2.E-49	115/308	37	2.E-49	115/308	37	2.E-41	100/273	36
331	1.E-16	46/153	30	1.E-16	46/153	30	7.E-13	36/118	30
332	e-131	224/291	76	e-131	224/291	76	e-122	209/255	81
333			10			10	2.E-17	40/45	88
334			10			10			10
335			10			10			10
336	4.E-14	40/104	38	4.E-14	40/104	38	4.E-08	45/127	35
337			10			10			10
338			10			10			10
339			10			10			10
340			10			10			10
341			10			10			10
342			10			10			10
343			10			10	0.006	24/88	27
344			10			10			10
345	6.E-30	77/250	30	6.E-30	77/250	30	1.E-29	77/250	30
346	4.E-44	97/184	52	4.E-44	97/184	52	1.E-36	76/148	51
347	e-115	218/523	41	e-115	218/523	41	e-115	218/523	41
348			10			10	2.E-15	36/49	73
349	e-165	298/343	86	e-165	298/343	86	e-145	271/343	79
350			10			10			10

351			10			10			10
352	2.E-23	66/215	30	2.E-23	66/215	30	3.E-23	68/209	32
353	2.E-11	46/158	29	2.E-11	46/158	29	4.E-11	46/158	29
354			10	7.E-10	31/46	67	2.E-15	49/101	48
355			10			10			10
356			10			10			10
357	2.E-23	74/229	32	2.E-23	74/229	32	4.E-23	74/229	32
358			10			10			10
359			10			10			10
360			10			10			10
361			10			10	0.003	32/100	32
362	2.E-73	179/543	32	2.E-73	179/543	32	3.E-73	179/543	32
363			10			10			10
364			10			10			10
365	4.E-05	32/119	26	4.E-05	32/119	26	3.E-04	32/137	23
366	2.E-05	46/185	24	2.E-05	46/185	24			10
367	3.E-09	58/177	32	3.E-09	58/177	32	4.E-08	52/157	33
368			10			10			10
369	e-162	316/830	38	e-146	306/844	36	0.E+00	359/827	43
370	3.E-08	42/160	26	3.E-08	42/160	26	6.E-05	38/139	27
371	2.E-16	63/183	34	2.E-16	63/183	34	2.E-11	38/130	29
372	3.E-22	55/159	34	3.E-22	55/159	34	6.E-22	55/159	34
373			10			10			10
374	6.E-06	25/83	30	6.E-06	25/83	30	1.E-05	25/83	30
375	2.E-07	45/177	25	2.E-07	45/177	25	3.E-07	45/177	25
376			10			10			10
377			10			10			10
378			10			10			10
379	7.E-81	214/679	31	7.E-81	214/679	31	1.E-80	214/679	31
380	5.E-54	108/122	88	2.E-53	107/122	87			10
381			10			10			10
382	7.E-21	212/963	22	7.E-21	212/963	22	8.E-18	179/807	22
383			10			10			10
384			10			10			10
385			10			10			10
386			10			10			10
387	3.E-09	86/354	24	3.E-09	86/354	24	7.E-08	96/395	24
388	e-108	176/316	55	e-108	176/316	55	e-107	176/316	55
389	6.E-99	159/348	45	6.E-99	159/348	45	1.E-98	159/348	45
390	2.E-87	144/235	61	2.E-87	144/235	61	4.E-87	144/235	61
391			10			10			10
392	0.E+00	316/472	66	0.E+00	316/472	66	e-170	273/410	66
393	4.E-79	152/284	53	4.E-79	152/284	53	7.E-79	152/284	53
394	e-138	241/456	52	e-138	241/456	52	e-138	241/456	52
395			10			10			10
396			10			10	4.E-51	94/107	87
397			10			10			10
398			10			10			10
399			10			10	0.004	43/246	17
400	2.E-08	54/204	26	2.E-08	54/204	26			10
401			10			10			10

402			10			10			10
403			10			10			10
404	5.E-06	34/156	21	5.E-06	34/156	21			10
405	2.E-26	137/573	23	2.E-26	137/573	23	2.E-21	91/374	24
406	2.E-39	100/356	28	2.E-39	100/356	28	2.E-39	104/376	27
407	3.E-25	97/340	28	3.E-25	97/340	28	6.E-25	97/340	28
408	8.E-55	100/184	54	8.E-55	100/184	54	1.E-54	100/184	54
409	e-122	232/464	50	e-122	232/464	50	e-121	232/475	48
410	e-108	189/338	55	e-108	189/338	55	1.E-44	108/341	31
411	5.E-33	89/327	27	5.E-33	89/327	27	9.E-33	89/327	27
412	1.E-06	32/154	20	1.E-06	32/154	20			10
413	4.E-77	151/414	36	4.E-77	151/414	36	3.E-79	154/423	36
414	2.E-10	51/206	24	2.E-10	51/206	24	4.E-10	51/206	24
415	3.E-08	60/221	27	3.E-08	60/221	27	6.E-05	46/162	28
416	2.E-42	102/313	32	2.E-42	102/313	32	3.E-42	102/313	32
417	4.E-53	127/321	39	4.E-53	127/321	39	4.E-53	128/324	39
418			10			10			10
419	7.E-14	64/227	28	7.E-14	64/227	28	3.E-13	62/221	28
420	2.E-09	40/126	31	2.E-09	40/126	31	3.E-09	40/126	31
421			10			10	2.E-18	40/59	67
422	1.E-54	110/185	59	1.E-54	110/185	59	3.E-50	103/172	59
423	0.E+00	451/803	56	0.E+00	348/818	42	0.E+00	453/803	56
424	2.E-68	117/227	51	2.E-68	117/227	51	1.E-63	99/196	50
425	1.E-59	134/357	37	1.E-59	134/357	37	7.E-55	119/313	38
426	2.E-58	113/257	43	2.E-58	113/257	43	3.E-58	113/258	43
427			10			10	1.E-36	75/107	70
428	3.E-63	133/312	42	3.E-63	133/312	42	6.E-63	133/312	42
429	9.E-36	95/292	32	9.E-36	95/292	32	2.E-35	95/292	32
430			10			10			10
431			10			10			10
432			10			10			10
433	1.E-14	45/163	27	1.E-14	45/163	27	1.E-12	57/223	25
434	2.E-37	84/227	37	2.E-37	84/227	37	4.E-37	84/227	37
435	2.E-17	59/183	32	2.E-17	59/183	32	4.E-17	59/183	32
436	0.E+00	404/834	48	0.E+00	404/834	48	0.E+00	256/536	47
437	2.E-53	102/224	45	2.E-53	102/224	45	4.E-43	88/218	40
438	6.E-11	53/180	29	6.E-11	53/180	29	1.E-10	53/180	29
439	9.E-13	33/93	35	9.E-13	33/93	35	1.E-12	33/93	35
440	e-100	178/437	40	e-100	178/437	40	2.E-99	178/437	40
441			10			10			10
442	1.E-29	172/695	24	1.E-29	172/695	24	2.E-29	172/695	24
443	2.E-22	67/220	30	2.E-22	67/220	30	4.E-22	67/220	30
444	2.E-55	126/321	39	2.E-55	126/321	39	4.E-54	117/284	41
445			10			10	3.E-43	83/100	83
446	5.E-61	112/149	75	5.E-61	112/149	75	2.E-56	63/74	85
447	0.E+00	339/390	86	0.E+00	339/390	86	0.E+00	361/425	84
448			10			10	e-107	182/230	79
449			10			10	3.E-64	113/136	83
450			10			10			10
451	3.E-17	244/1144	21	3.E-17	244/1144	21	1.E-13	157/679	23
452			10			10	8.E-35	67/87	77

453	1.E-44	115/390	29	1.E-44	115/390	29	2.E-44	117/394	29
454	3.E-18	46/139	33	3.E-18	46/139	33	4.E-14	24/72	33
455	e-143	243/332	73	e-143	243/332	73	e-148	251/344	72
456	9.E-69	126/305	41	3.E-68	123/296	41	2.E-68	126/305	41
457	2.E-36	96/280	34	2.E-36	96/280	34	7.E-36	87/232	37
458	2.E-75	142/328	43	2.E-75	142/328	43	3.E-75	142/328	43
459	2.E-23	51/99	51	2.E-23	51/99	51	4.E-23	51/99	51
460			10			10			10
461	2.E-22	91/347	26	2.E-22	91/347	26	7.E-18	86/330	26
462	e-103	177/416	42	e-103	177/416	42	e-103	177/416	42
463	2.E-31	103/382	26	2.E-31	103/382	26	3.E-31	103/382	26
464	6.E-95	184/480	38	6.E-95	184/480	38	1.E-94	184/480	38
465	3.E-89	169/470	35	3.E-89	169/470	35	6.E-89	169/470	35
466			10			10			10
467			10			10			10
468			10			10			10
469			10			10			10
470			10			10			10
471	2.E-43	98/237	41	2.E-43	98/237	41	4.E-43	98/237	41
472	e-115	203/392	51	e-115	203/392	51	e-112	185/345	53
473	3.E-13	32/47	68	3.E-13	32/47	68	5.E-13	32/47	68
474	1.E-07	52/206	25	1.E-07	52/206	25	2.E-07	52/206	25
475			10			10			10
476	3.E-15	56/188	29	3.E-15	56/188	29	5.E-15	56/188	29
477	2.E-54	110/268	41	2.E-54	110/268	41	3.E-54	110/268	41
478			10			10			10
479			10			10			10
480	e-143	243/382	63	e-143	243/382	63	e-142	243/382	63
481	e-128	215/344	62	e-128	215/344	62	e-128	215/344	62
482			10			10			10
483			10			10			10
484	3.E-40	97/226	42	3.E-40	97/226	42	2.E-20	49/89	55
485			10			10			10
486			10	5.E-46	87/97	89	4.E-56	105/120	87
487			10			10			10
488			10			10	3.E-18	41/52	78
489	1.E-38	73/118	61	1.E-38	73/118	61	9.E-49	92/143	64
490			10			10	5.E-07	27/36	75
491			10			10	1.E-15	34/47	72
492			10			10			10
493			10			10			10
494	2.E-27	55/82	67	2.E-27	55/82	67	4.E-27	55/82	67
495			10			10			10
496	e-105	213/487	43	e-105	213/487	43	e-105	213/487	43
497	0.E+00	452/658	68	0.E+00	452/659	68	0.E+00	434/663	65
498	3.E-17	64/268	23	3.E-17	64/268	23	5.E-15	62/273	22
499	4.E-49	101/294	34	4.E-49	101/294	34	5.E-46	97/282	34
500	3.E-31	106/400	26	3.E-31	106/400	26			10
501	2.E-75	155/319	48	2.E-75	155/319	48	8.E-69	123/232	53
502	e-119	216/466	46	e-119	216/466	46	e-115	214/461	46
503	e-100	214/511	41	e-100	214/511	41	2.E-94	134/277	48

504			10			10			10
505			10			10			10
506			10			10			10
507	5.E-31	83/202	41	5.E-31	83/202	41	3.E-44	91/195	46
508	e-103	186/260	71	e-103	186/260	71	e-103	186/260	71
509	e-112	199/297	67	e-112	199/297	67	e-107	106/154	68
510	e-118	211/292	72	e-118	211/292	72	e-118	130/181	71
511	e-108	194/288	67	e-108	194/288	67	e-102	171/258	66
512	2.E-34	99/316	31	2.E-34	99/316	31	3.E-34	99/316	31
513	9.E-26	112/428	26	9.E-26	112/428	26	6.E-22	91/377	24
514	9.E-97	175/424	41	9.E-97	175/424	41	2.E-96	175/424	41
515			10			10			10
516	e-106	169/262	64	e-106	169/262	64	e-106	169/262	64
517	2.E-19	140/630	22	2.E-19	140/630	22	3.E-19	140/630	22
518	9.E-30	132/525	25	9.E-30	132/525	25	2.E-18	120/566	21
519	8.E-25	121/497	24	8.E-25	121/497	24	5.E-21	119/542	21
520	e-137	239/427	55	e-137	239/427	55	7.E-58	74/198	37
521	1.E-34	121/426	28	1.E-34	121/426	28	3.E-34	121/426	28
522	1.E-56	138/416	33	1.E-56	138/416	33	9.E-52	128/428	29
523			10			10			10
524	1.E-96	170/272	62	1.E-96	170/272	62	5.E-91	137/205	66
525	6.E-92	160/252	63	6.E-92	160/252	63	5.E-78	115/172	66
526	3.E-30	90/271	33	3.E-30	90/271	33	3.E-29	88/271	32
527	2.E-07	107/560	19	2.E-07	107/560	19			10
528	1.E-79	156/420	37	1.E-79	156/420	37	7.E-64	144/420	34
529	2.E-35	88/254	34	2.E-35	88/254	34	4.E-35	88/254	34
530			10			10			10
531	2.E-15	47/204	23	2.E-15	47/204	23	3.E-15	47/204	23
532	1.E-77	176/458	38	1.E-77	176/458	38	1.E-61	112/289	38
533	e-115	216/386	55	e-115	216/386	55	e-114	216/386	55
534	e-116	196/290	67	e-116	196/290	67	e-116	196/290	67
535	2.E-39	134/486	27	2.E-39	134/486	27	1.E-38	126/430	29
536	1.E-20	62/231	26	1.E-20	62/231	26	4.E-13	97/410	23
537			10			10	6.E-08	23/35	65
538			10			10	9.E-18	37/44	84
539	5.E-27	79/275	28	5.E-27	79/275	28	5.E-26	73/241	30
540			10			10			10
541	2.E-12	36/109	33	2.E-12	36/109	33	3.E-12	36/109	33
542	7.E-33	77/224	34	7.E-33	77/224	34	1.E-32	77/224	34
543	2.E-47	109/277	39	2.E-47	109/277	39	3.E-46	110/263	41
544	4.E-66	121/266	45	3.E-66	121/266	45	6.E-66	121/266	45
545	5.E-71	145/332	43	5.E-71	145/332	43	1.E-70	145/332	43
546	2.E-42	146/504	28	2.E-42	146/504	28	3.E-41	144/502	28
547			10			10	1.E-31	63/129	48
548	2.E-59	100/137	72	2.E-59	100/137	72	3.E-59	100/137	72
549			10			10			10
550			10			10			10
551			10			10			10
552	7.E-22	67/217	30	2.E-21	66/215	30	1.E-17	42/118	35
553			10			10			10
554			10			10	0.006	15/43	34

555	e-103	254/698	36	e-103	254/698	36	e-103	254/698	36
556	5.E-31	84/286	29	2.E-30	83/284	29	8.E-24	60/184	32
557			10			10			10
558	4.E-05	32/119	26	4.E-05	32/119	26	3.E-04	32/137	23
559	2.E-05	46/185	24	2.E-05	46/185	24			10
560	3.E-09	58/177	32	3.E-09	58/177	32	4.E-08	52/157	33
561			10			10			10
562	3.E-51	99/243	40	3.E-51	99/243	40	5.E-51	99/243	40
563	e-162	316/830	38	e-146	306/844	36	0.E+00	359/827	43
564	3.E-08	42/160	26	3.E-08	42/160	26	6.E-05	38/139	27
565	9.E-15	60/182	32	9.E-15	60/182	32	7.E-12	50/184	27
566			10			10			10
567	3.E-85	169/437	38	3.E-85	169/437	38	5.E-85	169/437	38
568			10			10			10
569	2.E-18	58/215	26	2.E-18	58/215	26	2.E-13	50/195	25
570			10			10			10
571	7.E-31	85/286	29	2.E-30	84/284	29	6.E-24	65/202	32
572			10			10	3.E-22	43/49	87
573			10			10	e-114	196/221	88
574			10			10			10
575	e-122	200/424	47	e-122	200/424	47	e-122	200/424	47
576	7.E-24	75/255	29	7.E-24	75/255	29	1.E-23	75/255	29
577	3.E-47	107/304	35	3.E-47	107/304	35	5.E-47	107/304	35
578			10			10	9.E-40	91/126	72
579	3.E-63	145/495	29	3.E-63	145/495	29	7.E-35	86/326	26
580	1.E-84	164/298	55	1.E-84	164/298	55	1.E-82	161/295	54
581			10			10			10
582	2.E-35	71/132	53	2.E-35	71/132	53	3.E-34	70/131	53
583	9.E-43	85/227	37	9.E-43	85/227	37	2.E-42	85/227	37
584			10			10			10
585			10			10			10
586			10			10	0.006	17/50	34
587			10			10			10
588			10			10	1.E-48	103/138	74
589			10			10	7.E-04	22/42	52
590			10			10			10
591	e-105	185/294	62	e-105	185/294	62	e-105	185/294	62
592			10			10			10
593	2.E-66	130/414	31	2.E-66	130/414	31	1.E-67	136/419	32
594	5.E-08	27/95	28	5.E-08	27/95	28	5.E-06	22/74	29
595			10			10			10
596	e-179	321/549	58	e-179	321/549	58	2.E-96	181/334	54
597	0	927/1041	89	0	891/1040	89	0	267/288	92
598	1.E-175	295/329	89	1.00e0175	295/329	89	1.E-174	395/329	89
599	3.00E-12	146/711	20	3.00e-12	146/711	20	5.00E-12	146/711	20

A blank box indicates no hit above 10% identity in that strain

TABLE 5 — SEQ ID NOs with strongest inter-UPEC hits

	1	3	4	6	7	11	12	13	14	15	16	17	18	19	20	22
	<u>24</u>	<u>33</u>	<u>34</u>	<u>35</u>	<u>37</u>	<u>41</u>	<u>42</u>	44	<u>45</u>	<u>46</u>	<u>47</u>	<u>48</u>	<u>50</u>	<u>51</u>	<u>52</u>	<u>53</u>
5	<u>54</u>	<u>55</u>	<u>56</u>	<u>57</u>	<u>58</u>	<u>60</u>	61	62	63	<u>64</u>	65	<u>67</u>	<u>68</u>	<u>69</u>	70	71
	<u>72</u>	<u>73</u>	<u>75</u>	<u>82</u>	<u>87</u>	<u>96</u>	<u>97</u>	<u>99</u>	<u>100</u>	<u>101</u>	<u>106</u>	<u>110</u>	111	<u>114</u>	<u>115</u>	<u>116</u>
	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
	<u>133</u>	134	<u>135</u>	<u>136</u>	<u>137</u>	<u>140</u>	142	<u>151</u>	<u>152</u>	<u>154</u>	<u>156</u>	<u>157</u>	<u>158</u>	<u>160</u>	<u>162</u>	169
	175	<u>176</u>	<u>177</u>	<u>180</u>	182	<u>184</u>	185	186	187	<u>188</u>	<u>189</u>	190	191	<u>192</u>	194	<u>195</u>
10	<u>196</u>	<u>201</u>	<u>203</u>	<u>204</u>	<u>205</u>	<u>208</u>	<u>209</u>	<u>210</u>	<u>211</u>	<u>212</u>	<u>214</u>	<u>215</u>	216	<u>219</u>	<u>220</u>	<u>221</u>
	222	223	<u>224</u>	<u>225</u>	<u>227</u>	<u>230</u>	<u>232</u>	<u>233</u>	234	235	236	<u>237</u>	<u>238</u>	<u>239</u>	<u>241</u>	<u>242</u>
	<u>243</u>	<u>244</u>	<u>245</u>	<u>246</u>	<u>247</u>	<u>248</u>	<u>249</u>	<u>250</u>	<u>251</u>	<u>252</u>	<u>253</u>	<u>254</u>	<u>255</u>	<u>256</u>	<u>257</u>	<u>258</u>
	<u>259</u>	<u>261</u>	262	<u>263</u>	<u>264</u>	<u>265</u>	<u>266</u>	<u>268</u>	<u>269</u>	<u>270</u>	<u>271</u>	<u>272</u>	<u>273</u>	274	<u>275</u>	<u>276</u>
	<u>278</u>	<u>279</u>	<u>280</u>	<u>281</u>	<u>283</u>	285	<u>286</u>	<u>288</u>	<u>291</u>	<u>295</u>	<u>296</u>	<u>298</u>	<u>299</u>	<u>300</u>	<u>301</u>	302
15	<u>303</u>	304	<u>305</u>	<u>307</u>	<u>308</u>	<u>310</u>	<u>311</u>	<u>312</u>	<u>314</u>	316	<u>318</u>	<u>325</u>	<u>326</u>	<u>327</u>	329	330
	<u>331</u>	332	<u>334</u>	335	<u>336</u>	<u>340</u>	<u>341</u>	<u>342</u>	343	<u>344</u>	<u>345</u>	<u>346</u>	<u>347</u>	<u>349</u>	350	351
	352	353	<u>354</u>	355	357	<u>358</u>	360	<u>361</u>	<u>362</u>	<u>363</u>	364	<u>365</u>	<u>366</u>	<u>367</u>	368	<u>369</u>
	370	<u>371</u>	<u>372</u>	<u>374</u>	<u>375</u>	<u>379</u>	<u>380</u>	<u>382</u>	<u>387</u>	388	<u>389</u>	<u>390</u>	<u>392</u>	<u>393</u>	<u>394</u>	<u>399</u>
	<u>400</u>	404	<u>405</u>	<u>406</u>	<u>407</u>	408	<u>409</u>	<u>410</u>	<u>411</u>	<u>412</u>	<u>413</u>	414	415	<u>416</u>	417	<u>418</u>
20	419	420	<u>421</u>	<u>422</u>	423	<u>424</u>	<u>425</u>	<u>426</u>	<u>428</u>	429	431	<u>432</u>	<u>433</u>	<u>434</u>	<u>435</u>	<u>436</u>
	437	438	<u>439</u>	<u>440</u>	<u>442</u>	<u>443</u>	444	<u>445</u>	<u>446</u>	<u>447</u>	450	<u>451</u>	<u>453</u>	<u>454</u>	<u>455</u>	456
	<u>457</u>	<u>458</u>	<u>459</u>	<u>461</u>	462	<u>463</u>	<u>464</u>	<u>465</u>	<u>468</u>	<u>471</u>	472	<u>473</u>	<u>474</u>	<u>476</u>	<u>477</u>	480
	481	<u>482</u>	484	485	<u>486</u>	487	<u>489</u>	<u>490</u>	<u>491</u>	492	493	494	<u>496</u>	<u>497</u>	498	499
	<u>500</u>	501	<u>502</u>	<u>503</u>	<u>504</u>	<u>505</u>	<u>506</u>	507	508	509	510	511	<u>512</u>	<u>513</u>	<u>514</u>	<u>515</u>
25	516	<u>517</u>	<u>518</u>	<u>519</u>	<u>520</u>	<u>521</u>	<u>522</u>	<u>523</u>	524	525	526	<u>527</u>	<u>528</u>	<u>529</u>	530	531
	<u>532</u>	<u>533</u>	534	<u>535</u>	<u>536</u>	<u>539</u>	<u>541</u>	542	543	544	<u>545</u>	<u>546</u>	<u>548</u>	549	552	<u>553</u>
	555	556	557	<u>558</u>	<u>559</u>	<u>560</u>	561	562	<u>563</u>	564	<u>565</u>	<u>567</u>	<u>568</u>	<u>569</u>	571	574
	<u>575</u>	576	<u>577</u>	<u>579</u>	580	<u>582</u>	583	<u>588</u>	591	<u>592</u>	<u>593</u>	<u>594</u>	<u>595</u>	<u>596</u>		

TABLE 6

SEQ ID	PSORT	LP	TMDs	Top hit	HitLen	e	Identities	%Query	%Target
2	I	*	1	Propionibacterium acnes transporter-related polypeptide WO03/33515	221	3e-01	21/69	24	9
6	I		3	Propionibacterium acnes immunogenic polypeptide WO03/33515	318	2e-10	49/171	27	15
7	O	*	0	AmEPV late transcription factor-2 (AMV047) WO200212526	259	0.011	33/114	23	12
23	I		1	Enterohaemoragic E. coli 0157:H7-specific protein SEQ ID NO: 1295 JP2002355074	470	0.059	16/57	14	3
25	I		1	Human XB51 JP2003164298	273	3e-01	14/28	4	5
26	I	*	1	Protein encoded by Prokaryotic essential gene WO200277183	324	9e-02	15/38	9	4
28	P	*	0	Protein sequence SEQ ID 2281 EP1258494	503	2e-02	21/81	9	4
29	O	*	0	Novel human diagnostic protein WO200175067	1395	6e-17	42/120	25	3
30	I		1	Leishmania extended antigen LmgSP10 US2002169285	320	1e-02	36/157	9	11
31	I		1	Protein encoded by Prokaryotic essential gene WO200277183	249	6e-02	27/95	11	10
32	I		1	Acinetobacter baumannii protein US6562958	284	1e-06	53/215	19	18
36	I		2	C. glutamicum homeostasis and adaptation protein SEQ ID 32 WO03/40290	513	4e-02	15/33	10	2
49	I		1	Prostate cancer marker protein WO03/09814	338	4e-01	16/52	30	4
57	I		1	Photorhabdus luminescens protein sequence WO200294867	149	4e-02	15/41	36	10
59	O	*	0	Protein encoded by Prokaryotic essential gene WO200277183	512	4e-02	13/40	20	2
67	I	*	1	Mycobacterium tuberculosis nutrient starvation-inducible protein WO03/04520	429	4e-02	17/43	15	3
68	I	*	5	Acinetobacter baumannii protein US6562958	273	6e-23	68/204	10	24
76	I		2	Plasmodium falciparum chromosome 2 related protein SEQ ID NO:152 WO20025728	980	2e-05	42/172	13	4
77	P	*	0	Mycoplasma genitalium outlier protein US2003039963	1139	9e-02	13/37	19	1
80	O	*	0	Novel human diagnostic protein WO200175067	812	2e-01	33/111	7	4
81	I		2	Histophilus somni holin fragment WO03/59392	74	3e-02	15/52	21	20
82	P	*	0	Heamin-binding protein from ORF5 of plasmid pRAP501 WO9321323	178	2e-20	61/163	35	34
83	I	*	3	Hepatitis GB virus protein sequence SEQ ID NO:53 US6051374	177	0.033	23/75	16	12
84	P	*	0	Novel human secreted and transmembrane protein WO03/72035	591	0.004	26/80	18	4
85	I		1	Mycobacterium species protein sequence 46C WO9909186	119	5e-02	28/84	15	23
87	I		8	Enzyme EPS11 involved in exopolysaccharide biosynthesis WO9962316	504	3e-23	86/320	25	17
88	I		1	Herbicidally active polypeptide SEQ ID NO 2856 WO200210210	638	3e-01	35/139	18	5
89	I		1	Protein encoded by Prokaryotic essential gene WO200277183	734	8e-02	12/24	7	1
93	I		1	Human GPCR protein SEQ ID NO:1506 EP1270724	156	1e-01	20/66	15	12
94	I		0	Plasmodium falciparum chromosome 2 related protein WO200025728	471	3e-02	16/74	16	3
96	I		0	Protein encoded by Prokaryotic essential gene WO200277183	87	6e-09	28/47	51	32
112	I		0	Staphylococcus aureus protein WO200294868	190	1e-01	12/36	15	6
114	I		1	Novel human secreted and transmembrane protein US2003008352	1894	2e-04	23/61	23	1
124	O	*	0	E.coli proliferation associated protein SEQ ID 365 WO200044906	176	6e-28	69/171	39	39
125	O	*	0	E. coli proliferation associated protein SEQ ID 366 WO200044906	167	4e-25	68/151	40	40
138	O	*	0	Protein encoded by Prokaryotic essential gene WO200277183	312	4e-02	26/101	17	8
139	I		1	Human parathyroid cell calcium receptor 5.2 (HuPCaR 5.2) US5688938	1088	7e-02	32/118	10	2
142	I	*	2	Protein encoded by Prokaryotic essential gene WO200277183	285	2e-02	32/158	12	11
143	I		2	Human Down syndrome-cell adhesion molecule DS-CAM2 WO9817795	1571	3e-01	27/104	11	1
145	I		2	Protein encoded by Prokaryotic essential gene WO200277183	679	3e-01	17/55	23	2
147	P	*	0	Human NS protein sequence SEQ ID NO:159 WO200206315	354	1e-01	14/41	23	3
149	I		1	Enterohaemoragic E.coli 0157:H7-specific protein JP2002355074	55	0.003	18/29	41	32

150	I	0	Human p53 modifying protein, SEQ ID 214 WO200299122	409	4e-02	13/42	11	3
153	I	1	Enterohaemorrhagic <i>E. coli</i> 0157:H7-specific protein: 949 JP2002355074	50	1e-19	46/50	92	92
155	I	0	Plasmodium falciparum chromosome 2 related protein WO200025728	1700	5e-02	14/34	11	0
159	P	*	0 Novel human diagnostic protein WO200175067	260	4e-02	25/56	46	9
160	I	*	1 Mouse PG1 protein sequence WO9932644	354	4e-02	14/37	14	3
161	I	2	Alloiococcus otitis antigenic protein SEQ ID NO:1640 WO03/48304	225	9e-02	16/46	15	7
165	I	0	<i>A. niger</i> metalloprotease polypeptide WO200268623	791	3e-01	29/110	24	3
167	I	0	Pinus radiata cell signalling involved protein SEQ ID:128 WO200042171	120	2e-01	19/54	35	15
170	I	1	Enterohaemorrhagic <i>E. coli</i> 0157:H7-specific protein :881 JP2002355074	53	2e-13	38/42	15	71
171	I	0	Enterohaemorrhagic <i>E. coli</i> 0157:H7-specific protein :615 JP2002355074	50	1e-21	48/50	96	96
176	P	*	0 Protein encoded by Prokaryotic essential gene WO200277183	239	3e-11	33/81	26	13
178	I	0	Human colon cancer antigen protein SEQ ID NO:7716 WO200122920	134	4e-02	11/20	8	8
179	I	3	Human GPCR protein SEQ ID NO:1630 EP1270724	523	0.014	23/115	16	4
181	I	0	Bovine herpesvirus 1 US3 protein sequence SEQ ID NO:9 WO03/12049	468	2e-02	17/56	7	3
183	I	1	Novel human diagnostic protein WO200175067	260	0.007	32/75	38	12
184	I	*	1 <i>N. gonorrhoeae</i> amino acid sequence SEQ ID 7826 WO200279243	508	4e-02	28/90	28	5
188	I	1	Lactococcus lactis protein ycdh FR2807446	486	3e-01	18/61	24	3
194	I	1	MecP2-Tat dMT fusion protein WO200285948	561	0.029	11/22	15	2
195	I	1	Protein encoded by Prokaryotic essential gene WO200277183	80	1e-17	44/80	47	55
197	I	1	<i>S. cinnamonensis</i> CapK homologue WO200168867	427	3e-18	91/350	21	21
198	I	4	Protein encoded by Prokaryotic essential gene WO200277183	219	4e-11	49/178	24	22
199	I	8	Protein of drug metabolising enzyme - 2804794CD1 WO200266654	445	2e-28	78/231	20	17
200	I	4	Synechocystis delta-6-desaturase polypeptide US2002108147	359	2e-19	84/347	23	23
202	I	0	Protein encoded by Prokaryotic essential gene WO200277183	615	4e-01	14/41	29	2
207	I	1	Protein encoded by Prokaryotic essential gene WO200277183	230	1e-14	41/54	65	17
208	I	1	Acinetobacter baumannii protein US6562958	358	2e-11	29/86	28	8
209	I	1	Acinetobacter baumannii protein US6562958	515	1e-06	29/124	21	5
210	I	*	2 Bacterial polypeptide US6605709	320	3e-27	55/105	45	17
211	I	1	<i>S. cerevisiae</i> apoptosis associated protein YOR010C WO200102550	730	8e-02	15/53	20	2
212	I	1	Protein encoded by Prokaryotic essential gene WO200277183	240	4e-19	50/56	64	20
225	P	*	0 Listeria monocytogenes protein WO200177335	100	2e-26	57/97	55	56
228	P	*	0 Drosophila melanogaster polypeptide SEQ ID NO 19890 WO200171042	460	5e-02	37/129	13	8
232	I	1	Photorhabdus luminescens protein sequence WO200294867	393	5e-13	93/377	19	23
233	O	*	0 Photorhabdus luminescens protein sequence WO200294867	205	2e-11	50/183	27	24
235	I	2	Photorhabdus luminescens protein sequence WO200294867	513	9e-02	22/58	7	4
236	O	*	0 Alloiococcus otitis antigenic protein SEQ ID NO:1664 WO03/48304	309	1e-02	15/30	7	4
237	I	1	38kd regression associated antigen US5242823	403	6e-02	33/129	20	8
238	I	1	Enterohaemorrhagic <i>E. coli</i> 0157:H7-specific protein: 1084 JP2002355074	131	1e-08	26/45	37	19
240	I	0	Human polypeptide SEQ ID NO 21835 WO200164835	81	2e-01	11/40	24	14
241	I	1	Aspergillus fumigatus essential gene protein WO200286090	367	0.005	32/116	25	8
277	I	1	Bacterial polypeptide US6605709	338	3e-01	20/64	11	5
279	I	0	<i>Escherichia coli</i> polypeptide SEQ ID NO 1320 WO200166572	367	0.017	45/217	12	12
280	I	1	Protein encoded by Prokaryotic essential gene WO200277183	266	2e-02	28/105	7	10
281	I	9	Streptococcus pneumoniae polypeptide SEQ ID NO 329 WO200283855	477	7e-07	34/118	7	7
283	I	11	Protein encoded by Prokaryotic essential gene WO200277183	431	6e-25	105/421	25	24
284	P	*	0 Novel human diagnostic protein WO200175067	285	7e-05	23/29	44	8
289	I	1	<i>H. pylori</i> selected interacting domain (SID) protein WO200266501	268	2e-01	17/65	20	6
290	I	0	Novel human diagnostic protein WO200175067	750	2e-01	16/23	32	2
306	I	1	<i>S. pneumoniae</i> antigenic protein SP092 US6573082	641	0.020	40/139	22	6
308	O	*	0 Listeria monocytogenes protein WO200177335	439	9e-02	16/53	17	3
309	I	3	Novel human diagnostic protein WO200175067	285	0.001	17/23	14	5
314	I	*	1 <i>N. gonorrhoeae</i> amino acid sequence SEQ ID 7826 WO200279243	508	8e-02	28/90	28	5

315	I	*	3	Novel human diagnostic protein WO200175067	261	2e-04	35/100	23	13
317	I	0	Bovine herpesvirus 1 US3 protein sequence SEQ ID NO:9 WO03/12049	468	5e-02	18/56	6	3	
322	I	1	M. truncatula squalene epoxidase WO03/93425	526	1e-01	15/48	11	2	
323	I	2	Human PECAM-1 protein SEQ ID NO: 73 WO200078808	738	4e-02	18/55	5	2	
325	I	1	<i>E.coli</i> proliferation associated protein sequence:300 WO200044906	138	2e-29	62/134	44	44	
326	P	*	0 Cucumber raffinose synthase JP11123080	784	1e-01	21/68	8	2	
327	P	*	0 Predicted partial sequence of clone CXC-AMN20 WO9634112	262	1e-05	70/286	20	26	
348	I	2	Human polypeptide SEQ ID NO 21123 WO200164835	73	5e-02	15/47	30	20	
352	I	1	Protein encoded by Prokaryotic essential gene WO200277183	279	4e-29	72/225	30	25	
354	I	2	Novel human enzyme polypeptide WO200155301	190	3e-13	40/61	26	21	
357	I	2	Protein encoded by Prokaryotic essential gene WO200277183	898	7e-26	82/252	16	9	
358	I	1	Protein encoded by Prokaryotic essential gene WO200277183	206	5e-28	57/124	43	27	
359	P	*	0 Drosophila melanogaster polypeptide SEQ ID NO 5868 WO200171042	1176	3e-01	19/75	23	1	
368	I	1	S. pneumoniae transport protein WO9826072	293	4e-02	23/82	11	7	
374	P	*	0 Novel human diagnostic protein WO200175067	701	0.012	24/82	27	3	
375	I	4	Bacterial polypeptide US6605709	184	0.001	36/168	23	19	
377	I	0	Rat Protein P26039, SEQ ID NO 11184 WO03/16475	2541	4e-02	22/67	20	0	
381	I	1	Photorhabdus luminescens protein sequence WO200294867	323	2e-01	30/88	12	9	
387	I	*	9 C glutamicum protein fragment SEQ ID NO: 4758 EP1108790	405	5e-08	79/354	19	19	
389	P	*	0 Enterohaemorrhagic <i>E.coli</i> 0157:H7-specific protein :1016 JP2002355074	108	3e-20	42/80	11	38	
390	O	*	0 Protein encoded by Prokaryotic essential gene WO200277183	230	6e-15	58/207	23	25	
391	I	1	Cephalosporin C acetyl esterase JP04144688	231	2e-18	67/218	24	29	
395	O	*	0 Protein encoded by Prokaryotic essential gene WO200277183	312	4e-02	26/101	17	8	
396	I	1	C glutamicum protein fragment SEQ ID NO: 5209 EP1108790	261	8e-02	15/30	6	5	
397	I	0	Acinetobacter sp. recombinase US2003087403	324	9e-03	20/50	39	6	
401	O	*	0 Streptococcus sobrinus glucosyltransferase-U WO03/75845	1554	9e-02	30/139	9	1	
402	I	1	Lactococcus lactis protein yjed FR2807446	543	3e-15	77/331	22	14	
403	I	1	Fukuyama-type congenital muscular dystrophy-causing prtn JP11313682	461	9e-06	42/167	10	9	
404	I	6	Protein encoded by Prokaryotic essential gene WO200277183	264	1e-16	60/237	23	22	
407	I	*	5 Photorhabdus luminescens protein sequence WO200294867	367	2e-23	86/345	24	23	
412	I	4	Photorhabdus luminescens protein sequence WO200294867	139	3e-24	50/121	31	35	
421	I	1	Lactococcus lactis protein yqbF FR2807446	320	0.093	27/78	22	8	
427	I	1	Streptococcus polypeptide SEQ ID NO 7746 WO200234771	139	2e-02	30/110	12	21	
441	O	*	0 Human ORFX protein sequence SEQ ID NO:18748 WO200192523	130	8e-02	14/42	10	10	
445	I	1	Novel human diagnostic protein WO200175067	717	3e-04	24/33	14	3	
446	I	4	Haemophilus influenzae essential gene WO200218601	165	7e-11	31/126	20	18	
449	I	1	Human polypeptide SEQ ID NO 21123 WO200164835	73	6e-02	21/65	15	28	
461	I	1	Bacterial polypeptide US6605709	376	1e-20	87/358	23	23	
466	I	3	Arabidopsis thaliana protein fragment SEQ ID NO: 49986 EP1033405	382	2e-02	18/54	9	4	
467	I	1	Listeria monocytogenes protein WO200177335	400	6e-19	90/309	20	22	
468	I	1	H. influenzae Orf25 polypeptide SEQ ID NO:49 WO03/55905	664	2e-08	62/287	10	9	
473	I	1	Listeria monocytogenes protein WO200177335	95	4e-17	44/48	53	46	
475	I	1	Human Protein P57723, SEQ ID NO 11321 WO03/16475	403	9e-02	18/36	18	4	
479	I	1	Novel human secreted/transmembrane prtn PRO1110 US2003215911	322	3e-01	13/42	20	4	
487	I	2	Human polypeptide SEQ ID NO 16040 WO200164835	94	2e-02	21/89	7	22	
488	I	0	Human polypeptide SEQ ID NO 18650 WO200164835	115	4e-01	15/32	26	13	
490	I	1	Protein encoded by Prokaryotic essential gene WO200277183	277	9e-02	20/78	4	7	
491	I	1	Protein encoded by Prokaryotic essential gene WO200277183	622	3e-01	14/39	2	2	
493	I	1	Bacterial polypeptide US6605709	168	3e-06	36/118	21	21	
541	I	4	Acinetobacter baumannii protein US6562958	146	2e-14	43/130	32	29	
547	I	1	Protein encoded by Prokaryotic essential gene WO200277183	1765	8e-02	22/64	14	1	
554	I	1	Human GPCR protein SEQ ID NO:1864 EP1270724	294	0.058	30/72	34	10	

561	I		1	S. pneumoniae transport protein WO9826072	293	4e-02	23/82	11	7
566	O	*	0	Enterohaemoragic <i>E.coli</i> 0157:H7-specific protein: 202 JP2002355074	48	4e-18	39/48	26	81
573	I		1	Propionibacterium acnes predicted ORF-encoded polypeptide WO03/33515	215	4e-10	52/191	23	24
574	O	*	0	Photorhabdus luminescens protein sequence WO200294867	157	2e-10	46/134	22	29
576	I		0	Alloioococcus otitis antigenic protein SEQ ID NO:5934 WO03/48304	262	9e-26	90/273	34	34
578	I		1	Streptococcus pneumoniae polypeptide SEQ ID NO 382 WO200283855	456	3e-02	17/35	12	3
585	O	*	0	Bifidobacterium longum NCC2705 ORF amino acid sequence SEQ ID NO:298 EP1227152	180	2e-01	14/42	12	7
586	O	*	0	Human secreted polypeptide US2003100051	266	1e-01	11/33	11	4
588	I		1	Novel human diagnostic protein WO200175067	1387	1e-01	22/83	16	1
595	I		1	Protein encoded by Prokaryotic essential gene WO200277183	345	3e-01	15/32	27	4

Columns:

- **PSORT:** predicted location by the PSORT algorithm. I = inner membrane; O = outer membrane; P = periplasm
- **LP:** a star indicates a lipoprotein
- 5 • **TMDs:** number of transmembrane domains
- **Top hit:** closest match in patent database
- **HitLen:** length of the closest match
- **e:** 'expected' value in BLAST analysis
- **Identities:** number of identical residues over length of alignment, and length of the alignment
- 10 • **%Query / %Target:** % sequence identity from perspective of ExPEC or database sequence

TABLE 7

Protein	gi#	SEQ ID	Annotation	PSort	TMD
upec-4519	26110866	489	Putative conserved protein	I	1
upec-3573	26109898	597	Antigen 43 precursor	I	1
upec-1196	26107513	120	F1C major fimbrial subunit	O	0
upec-2283	26108604	598	Outer membrane porin p	C	0
upec-2814	26109137	305	Long-chain fatty acid	O	0
upec-0179	26106493	22	Ferrichrome-iron receptor precursor	O	0
upec-1875	26108194	221	Type-1 fimbrial protein	I	1
upec-1873	26108192	219	Outer membrane usher	I	1
upec-3606	26109931	400	KpsD protein	P	0
upec-5079	26111428	565	PapA protein	O	0
upec-3510	26109835	371	PapA protein	O	0
upec-3541	26109866	599	IutA protein	C	0
upec-5065	26111414	555	Putative iron-regulated protein	I	1

Columns:

5 • PSORT: predicted location by the PSORT algorithm. I = inner membrane; O = outer membrane; P = periplasm; C = cytoplasm

- TMD: number of transmembrane domains
- %ID: percentage identical residues over length of alignment

REFERENCES (the contents of which are hereby incorporated by reference)

- [1] Russo & Johnson (2000) *J Infect Dis* 181:1753-1754.
- [2] Uehling *et al.* (1997) *J Urol* 157:2049-2052.
- [3] Tammen (1990) *Br J Urol* 65:6-9.
- [4] Langermann *et al.* (1997) *Science* 276:607-611.
- [5] WO03/074553.
- [6] WO01/66572.
- [7] Janke *et al.* (2001) *FEMS Microbiol Lett* 199:61-66.
- [8] WO2004/005535.
- [9] Dobrindt *et al.* (2002) *Infect Immun* 70:6365-6372.
- [10] US2003/0165870.
- [11] Welch *et al.* (2002) *Proc Natl Acad Sci USA* 99:17020-17024.
- [12] American Type Culture Collection: ATCC 700928.
- [13] *European Journal of Biochemistry* 2003; 1 Supplement 1 July: abstract P1.3-11.
- [14] Geysen *et al.* (1984) *PNAS USA* 81:3998-4002.
- [15] Carter (1994) *Methods Mol Biol* 36:207-223.

- [16] Jameson, BA *et al.* 1988, *CABIOS* 4(1):181-186.
- [17] Raddrizzani & Hammer (2000) *Brief Bioinform* 1(2):179-189.
- [18] De Lalla *et al.* (1999) *J. Immunol.* 163:1725-1729.
- [19] Brusic *et al.* (1998) *Bioinformatics* 14(2):121-130
- [20] Meister *et al.* (1995) *Vaccine* 13(6):581-591.
- [21] Roberts *et al.* (1996) *AIDS Res Hum Retroviruses* 12(7):593-610.
- [22] Maksyutov & Zagrebelnaya (1993) *Comput Appl Biosci* 9(3):291-297.
- [23] Feller & de la Cruz (1991) *Nature* 349(6311):720-721.
- [24] Hopp (1993) *Peptide Research* 6:183-190.
- [25] Welling *et al.* (1985) *FEBS Lett.* 188:215-218.
- [26] Davenport *et al.* (1995) *Immunogenetics* 42:392-397.
- [27] Bodanszky (1993) *Principles of Peptide Synthesis* (ISBN: 0387564314).
- [28] Fields *et al.* (1997) *Meth Enzymol* 289: *Solid-Phase Peptide Synthesis*. ISBN: 0121821900.
- [29] Chan & White (2000) *Fmoc Solid Phase Peptide Synthesis*. ISBN: 0199637245.
- [30] Kullmann (1987) *Enzymatic Peptide Synthesis*. ISBN: 0849368413.
- [31] Ibba (1996) *Biotechnol Genet Eng Rev* 13:197-216.
- [32] Breedveld (2000) *Lancet* 355(9205):735-740.
- [33] Gorman & Clark (1990) *Semin. Immunol.* 2:457-466.
- [34] Sambrook *et al.* (2001) *Molecular Cloning: A Laboratory Manual*, 3rd edition (Cold Spring Harbor Laboratory Press).
- [35] Ausubel *et al.* (eds) (2002) *Short protocols in molecular biology*, 5th edition (Current Protocols).
- [36] US patent 5,707,829
- [37] *Current Protocols in Molecular Biology* (F.M. Ausubel *et al.* eds., 1987) Supplement 30.
- [38] EP-B-0509612.
- [39] EP-B-0505012.
- [40] Johnson & Stell (2001) *J Clin Microbiol* 39:3712-3717.
- [41] Tang *et al.* (1997) *Clin. Chem.* 43:2021-2038.
- [42] PCT/IB2005/003494.
- [43] Bernadac *et al.* (1998) *J Bacteriol* 180(18):4872-4878.
- [44] EP-1441036.
- [45] Sorensen & Mortensen (2005) *Journal of Biotechnology* 115:113-128.
- [46] Meynil-Salles *et al.* (2005) *Applied and Environmental Microbiology* 71:2140-2144.
- [47] US2004/0209370.
- [48] WO00/68253.
- [49] WO97/04110.
- [50] Alper *et al.* (2005) *Proc. Natl. Acad. Sci. USA* 102:12678-12683.
- [51] WO 01/09350.
- [52] European patent 0624376.
- [53] *Vaccine Design...* (1995) eds. Powell & Newman. ISBN: 030644867X. Plenum.

- [54] WO00/23105.
- [55] WO90/14837.
- [56] Podda (2001) *Vaccine* 19:2673-2680.
- [57] Frey *et al.* (2003) *Vaccine* 21:4234-4237.
- [58] *Vaccine Adjuvants: Preparation Methods and Research Protocols* (Volume 42 of *Methods in Molecular Medicine* series). ISBN: 1-59259-083-7. Ed. O'Hagan.
- [59] US Patent 6,299,884.
- [60] US Patent 6,451,325.
- [61] Allison & Byars (1992) *Res Immunol* 143:519-525.
- [62] Hariharan *et al.* (1995) *Cancer Res* 55:3486-3489.
- [63] US patent 5,057,540.
- [64] WO96/33739.
- [65] EP-A-0109942.
- [66] WO96/11711.
- [67] WO00/07621.
- [68] Barr *et al.* (1998) *Advanced Drug Delivery Reviews* 32:247-271.
- [69] Sjolanderet *et al.* (1998) *Advanced Drug Delivery Reviews* 32:321-338.
- [70] Niikura *et al.* (2002) *Virology* 293:273-280.
- [71] Lenz *et al.* (2001) *J Immunol* 166:5346-5355.
- [72] Pinto *et al.* (2003) *J Infect Dis* 188:327-338.
- [73] Gerber *et al.* (2001) *Virology* 275:4752-4760.
- [74] WO03/024480
- [75] WO03/024481
- [76] Gluck *et al.* (2002) *Vaccine* 20:B10-B16.
- [77] EP-A-0689454.
- [78] Johnson *et al.* (1999) *Bioorg Med Chem Lett* 9:2273-2278.
- [79] Evans *et al.* (2003) *Expert Rev Vaccines* 2:219-229.
- [80] Merald *et al.* (2003) *Vaccine* 21:2485-2491.
- [81] Pajak *et al.* (2003) *Vaccine* 21:836-842.
- [82] Kandimalla *et al.* (2003) *Nucleic Acids Research* 31:2393-2400.
- [83] WO02/26757.
- [84] WO99/62923.
- [85] Krieg (2003) *Nature Medicine* 9:831-835.
- [86] McCluskie *et al.* (2002) *FEMS Immunology and Medical Microbiology* 32:179-185.
- [87] WO98/40100.
- [88] US patent 6,207,646.
- [89] US patent 6,239,116.
- [90] US patent 6,429,199.
- [91] Kandimalla *et al.* (2003) *Biochemical Society Transactions* 31 (part 3):654-658.

- [92] Blackwell *et al.* (2003) *J Immunol* 170:4061-4068.
- [93] Krieg (2002) *Trends Immunol* 23:64-65.
- [94] WO01/95935.
- [95] Kandimalla *et al.* (2003) *BBRC* 306:948-953.
- [96] Bhagat *et al.* (2003) *BBRC* 300:853-861.
- [97] WO03/035836.
- [98] WO95/17211.
- [99] WO98/42375.
- [100] Beignon *et al.* (2002) *Infect Immun* 70:3012-3019.
- [101] Pizza *et al.* (2001) *Vaccine* 19:2534-2541.
- [102] Pizza *et al.* (2000) *Int J Med Microbiol* 290:455-461.
- [103] Scharton-Kersten *et al.* (2000) *Infect Immun* 68:5306-5313.
- [104] Ryan *et al.* (1999) *Infect Immun* 67:6270-6280.
- [105] Partidos *et al.* (1999) *Immunol Lett* 67:209-216.
- [106] Peppoloni *et al.* (2003) *Expert Rev Vaccines* 2:285-293.
- [107] Pine *et al.* (2002) *J Control Release* 85:263-270.
- [108] Domenighini *et al.* (1995) *Mol Microbiol* 15:1165-1167.
- [109] WO03/011223.
- [110] WO99/40936.
- [111] WO99/44636.
- [112] Lillard JW *et al.*, (2003) *Blood* 101(3):807-814. Epub 2002 Sep 12.
- [113] Singh *et al.* (2001) *J Cont Release* 70:267-276.
- [114] WO99/27960.
- [115] US patent 6,090,406
- [116] US patent 5,916,588
- [117] EP-A-0626169.
- [118] WO99/52549.
- [119] WO01/21207.
- [120] WO01/21152.
- [121] Andrianov *et al.* (1998) *Biomaterials* 19:109-115.
- [122] Payne *et al.* (1998) *Adv Drug Delivery Review* 31:185-196.
- [123] US 4,680,338.
- [124] US 4,988,815.
- [125] WO92/15582.
- [126] Stanley (2002) *Clin Exp Dermatol* 27:571-577.
- [127] Wu *et al.* (2004) *Antiviral Res.* 64(2):79-83.
- [128] Vasilakos *et al.* (2000) *Cell Immunol.* 204(1):64-74.
- [129] US patents 4689338, 4929624, 5238944, 5266575, 5268376, 5346905, 5352784, 5389640, 5395937, 5482936, 5494916, 5525612, 6083505, 6440992, 6627640, 6656938, 6660735, 6660747,

6664260, 6664264, 6664265, 6667312, 6670372, 6677347, 6677348, 6677349, 6683088, 6703402, 6743920, 6800624, 6809203, 6888000 and 6924293.

[130] Jones (2003) *Curr Opin Investig Drugs* 4:214-218.

[131] WO04/60308

[132] WO04/64759.

[133] US 6,924,271.

[134] US2005/0070556.

[135] US 5,658,731.

[136] Wong *et al.* (2003) *J Clin Pharmacol* 43(7):735-42.

[137] US2005/0215517.

[138] WO02/072012.

[139] Signorelli & Hadden (2003) *Int Immunopharmacol* 3(8):1177-1186.

[140] WO2004/064715.

[141] Cooper (1995) *Pharm Biotechnol* 6:559-580.

[142] PCT/US2005/022769.

[143] WO2004/87153.

[144] US 6,605,617.

[145] WO02/18383.

[146] WO2004/018455.

[147] WO03/082272.

[148] US patent 5,011,828.

[149] US-6586409.

[150] WO99/11241.

[151] WO94/00153.

[152] WO98/57659.

[153] European patent applications 0835318, 0735898 and 0761231.

[154] WO03/009869.

[155] Glezen & Alpers (1999) *Clin. Infect. Dis.* 28:219-224.

[156] Johnson *et al.* (2001) *Infect Immun* 69:1306-1314.

[157] Johnson *et al.* (2001) *J Infect Dis* 183:897-906 (see also 183:1546).

[158] Johnson, Hopkins (1998) *Infection and Immunity* 66:6063-6064.

[159] Bahrani-Mougeot *et al.*; Molecular Microbiology (2002) 45(4), 1079-1093

[160] Johnson *et al.*, Infection and Immunity, (1998) 3059-3065

[161] Almeida & Alpar (1996) *J. Drug Targeting* 3:455-467.

[162] Agarwal & Mishra (1999) *Indian J Exp Biol* 37:6-16.

[163] Costantino *et al.* (1992) *Vaccine* 10:691-698.

[164] Costantino *et al.* (1999) *Vaccine* 17:1251-1263.

[165] International patent application WO03/007985.

[166] WO 99/24578.

- [167] WO 99/36544.
- [168] WO 99/57280.
- [169] WO 00/66791.
- [170] WO 01/64922.
- [171] WO 01/64920.
- [172] WO 03/020756.
- [173] WO 2004/032958.
- [174] WO 2004/048404.
- [175] Watson (2000) *Pediatr Infect Dis J* 19:331-332.
- [176] Rubin (2000) *Pediatr Clin North Am* 47:269-285.
- [177] Jedrzejas (2001) *Microbiol Mol Biol Rev* 65:187-207.
- [178] Bell (2000) *Pediatr Infect Dis J* 19:1187-1188.
- [179] Iwarson (1995) *APMIS* 103:321-326.
- [180] Gerlich *et al.* (1990) *Vaccine* 8 Suppl:S63-68 & 79-80.
- [181] Hsu *et al.* (1999) *Clin Liver Dis* 3:901-915.
- [182] Stratov *et al.* (2004) *Curr Drug Tgts* 5(1):71-88.
- [183] Plotkin *et al.* (eds) (2003) *Vaccines*, 4th edition (W.B. Saunders Company)
- [184] Del Guidice *et al.* (1998) *Molecular Aspects of Medicine* 19:1-70.
- [185] Gustafsson *et al.* (1996) *N. Engl. J. Med.* 334:349-355.
- [186] Rappuoli *et al.* (1991) *TIBTECH* 9:232-238.
- [187] Sutter *et al.* (2000) *Pediatr Clin North Am* 47:287-308.
- [188] Zimmerman & Spann (1999) *Am Fam Physician* 59:113-118, 125-126.
- [189] McMichael (2000) *Vaccine* 19 Suppl 1:S101-S107.
- [190] Schuchat (1999) *Lancet* 353(9146):51-56.
- [191] WO02/34771.
- [192] WO 99/54457.
- [193] WO 04/01846.
- [194] WO 04/041157.
- [195] WO 05/028618.
- [196] WO 99/24578.
- [197] WO 99/36544.
- [198] WO 99/57280.
- [199] WO 02/079243.
- [200] WO 02/02606.
- [201] Kalman *et al.* (1999) *Nature Genetics* 21:385-389.
- [202] Read *et al.* (2000) *Nucleic Acids Res* 28:1397-1406.
- [203] Shirai *et al.* (2000) *J. Infect. Dis.* 181(Suppl 3):S524-S527.
- [204] WO 99/27105.
- [205] WO 00/27994.

- [206] WO 00/37494.
- [207] WO2005/084306.
- [208] WO2005/002619.
- [209] Ross *et al.* (2001) *Vaccine* 19:4135-4142.
- [210] Dreesen (1997) *Vaccine* 15 Suppl:S2-S6.
- [211] *MMWR Morb Mortal Wkly Rep* 1998 Jan 16;47(1):12, 19.
- [212] Anderson (2000) *Vaccine* 19 Suppl 1:S59-S65.
- [213] Kahn (2000) *Curr Opin Pediatr* 12:257-262.
- [214] Crowe (1995) *Vaccine* 13:415-421.
- [215] Modlin *et al.* (2001) *J Toxicol Clin Toxicol* 39:85-100.
- [216] Demicheli *et al.* (1998) *Vaccine* 16:880-884.
- [217] Stepanov *et al.* (1996) *J Biotechnol* 44:155-160.
- [218] Dale (1999) *Infect Dis Clin North Am* 13:227-43, viii.
- [219] Ferretti *et al.* (2001) *PNAS USA* 98: 4658-4663.
- [220] Kuroda *et al.* (2001) *Lancet* 357(9264):1225-1240; see also pages 1218-1219.
- [221] WO 00/09699.
- [222] EP-A-0372501
- [223] EP-A-0378881
- [224] EP-A-0427347
- [225] WO93/17712
- [226] WO94/03208
- [227] WO98/58668
- [228] EP-A-0471177
- [229] EP-A-0594610.
- [230] WO00/56360
- [231] WO91/01146
- [232] WO00/61761
- [233] WO01/72337
- [234] Falugi *et al.* (2001) *Eur J Immunol* 31:3816-3824.
- [235] Baraldo *et al.* (2004) *Infect Immun.* 72:4884-4887
- [236] WO02/091998.
- [237] Kuo *et al.* (1995) *Infect Immun* 63:2706-2713.
- [238] *Research Disclosure*, 453077 (Jan 2002)
- [239] Donnelly *et al.* (1997) *Annu Rev Immunol* 15:617-648.
- [240] Strugnell *et al.* (1997) *Immunol Cell Biol* 75(4):364-369.
- [241] Cui (2005) *Adv Genet* 54:257-89.
- [242] Robinson & Torres (1997) *Seminars in Immunol* 9:271-283.
- [243] Brunham *et al.* (2000) *J Infect Dis* 181 Suppl 3:S538-S543.
- [244] Svanholm *et al.* (2000) *Scand J Immunol* 51(4):345-353.

- [245] *DNA Vaccination - Genetic Vaccination* (1998) eds. Koprowski *et al.* (ISBN 3540633928).
- [246] *Gene Vaccination : Theory and Practice* (1998) ed. Raz (ISBN 3540644288).
- [247] Findeis *et al.*, *Trends Biotechnol.* (1993) 11:202.
- [248] Chiou *et al.* (1994) *Gene Therapeutics: Methods And Applications Of Direct Gene Transfer*. ed. Wolff.
- [249] Wu *et al.*, *J. Biol. Chem.* (1988) 263:621.
- [250] Wu *et al.*, *J. Biol. Chem.* (1994) 269:542.
- [251] Zenke *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1990) 87:3655.
- [252] Wu *et al.*, *J. Biol. Chem.* (1991) 266:338.
- [253] Jolly, *Cancer Gene Therapy* (1994) 1:51.
- [254] Kimura, *Human Gene Therapy* (1994) 5:845.
- [255] Connelly, *Human Gene Therapy* (1995) 1:185.
- [256] Kaplitt, *Nature Genetics* (1994) 6:148.
- [257] WO 90/07936.
- [258] WO 94/03622.
- [259] WO 93/25698.
- [260] WO 93/25234.
- [261] US 5,219,740.
- [262] WO 93/11230.
- [263] WO 93/10218.
- [264] US 4,777,127.
- [265] GB 2,200,651.
- [266] EP-A-0 345 242.
- [267] WO 91/02805.
- [268] WO 94/12649.
- [269] WO 93/03769.
- [270] WO 93/19191.
- [271] WO 94/28938.
- [272] WO 95/11984.
- [273] WO 95/00655.
- [274] Curiel, *Hum. Gene Ther.* (1992) 3:147.
- [275] Wu, *J. Biol. Chem.* (1989) 264:16985.
- [276] US 5,814,482.
- [277] WO 95/07994.
- [278] WO 96/17072.
- [279] WO 95/30763.
- [280] WO 97/42338.
- [281] WO 90/11092.
- [282] US 5,580,859.

- [283] US 5,422,120.
- [284] WO 95/13796.
- [285] WO 94/23697.
- [286] WO 91/14445.
- [287] EP 0524968.
- [288] Philip, *Mol. Cell Biol.* (1994) 14:2411.
- [289] Woffendin, *Proc. Natl. Acad. Sci.* (1994) 91:11581.
- [290] US 5,206,152.
- [291] WO 92/11033.
- [292] US 5,149,655.
- [293] WO 92/11033.
- [294] Needleman& Wunsch (1970) *J. Mol. Biol.* 48, 443-453.
- [295] Rice *et al.* (2000) *Trends Genet* 16:276-277.
- [296] Gennaro (2000) *Remington: The Science and Practice of Pharmacy*. 20th edition, ISBN: 0683306472.
- [297] *Methods In Enzymology* (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)
- [298] *Handbook of Experimental Immunology*, Vols. I-IV (D.M. Weir and C.C. Blackwell, eds, 1986, Blackwell Scientific Publications)
- [299] Sambrook *et al.* (2001) *Molecular Cloning: A Laboratory Manual*, 3rd edition (Cold Spring Harbor Laboratory Press).
- [300] *Handbook of Surface and Colloidal Chemistry* (Birdi, K.S. ed., CRC Press, 1997)
- [301] Ausubel *et al.* (eds) (2002) *Short protocols in molecular biology*, 5th edition (Current Protocols).
- [302] *Molecular Biology Techniques: An Intensive Laboratory Course*, (Ream *et al.*, eds., 1998, Academic Press)
- [303] *PCR (Introduction to Biotechniques Series)*, 2nd ed. (Newton & Graham eds., 1997, Springer Verlag)
- [304] <http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=PubMed>
- [305] <http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=26111674>
- [306] <http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=26111641&itemID=33&view=gbwithparts>
- [307] Blattner *et al.* (1997) *Science* 277:1453-1474.
- [308] Murphy (1998) *J. Bacteriol* 180:2063-2071.

61292311099 FB Rice

2006216844 12 Oct 2012

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An isolated or recombinant polypeptide comprising an amino acid sequence selected from: (a) the an amino acid sequence set forth in SEQ ID NO: 577; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); and (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and comprising a fragment of at least 10 consecutive amino acids of an amino acid sequence of (a), wherein the isolated or recombinant polypeptide is a lipidated or glycosylated or phosphorylated or myristoylated polypeptide.
2. An isolated or recombinant polypeptide when used in medicine, wherein the polypeptide comprises an amino acid sequence selected from: (a) the an amino acid sequence set forth in SEQ ID NO: 577; (b) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a); (c) an amino acid sequence which is a fragment of at least 10 consecutive amino acids from an amino acid sequence of (a); and (d) an amino acid sequence having at least 80% sequence identity to an amino acid sequence of (a) and comprising a fragment of at least 10 consecutive amino acids of an amino acid sequence of (a).
3. The isolated or recombinant polypeptide when used in medicine according to claim 2, wherein the polypeptide is lipidated, glycosylated, phosphorylated or myristoylated.
4. The isolated or recombinant polypeptide according to claim 1 or the isolated or recombinant polypeptide when used in medicine according to claim 2 or 3, wherein the polypeptide is lipidated.
5. The isolated or recombinant polypeptide according to claim 1 or 4 or the isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 4, wherein said polypeptide comprises an amino acid sequence having at least 80% identity to SEQ ID NO: 577 or at least 10 consecutive amino acids of said amino acid sequence, and wherein any differences in said amino acid sequence relative to the sequence of SEQ ID NO: 577 are conservative amino acid substitutions or single amino acid deletions.
6. The isolated or recombinant polypeptide according to any one of claims 1 or 4 or 5 or the isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 5, wherein the percentage identity to SEQ ID NO: 577 is at least 90%.
7. The isolated or recombinant polypeptide according to any one of claims 1 or 4 to 6 or the isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 6, wherein the polypeptide comprises the sequence set forth in SEQ ID NO: 577 or at least 10 consecutive amino acids of said amino acid sequence.

61292311099 FB Rice

12 Oct 2012

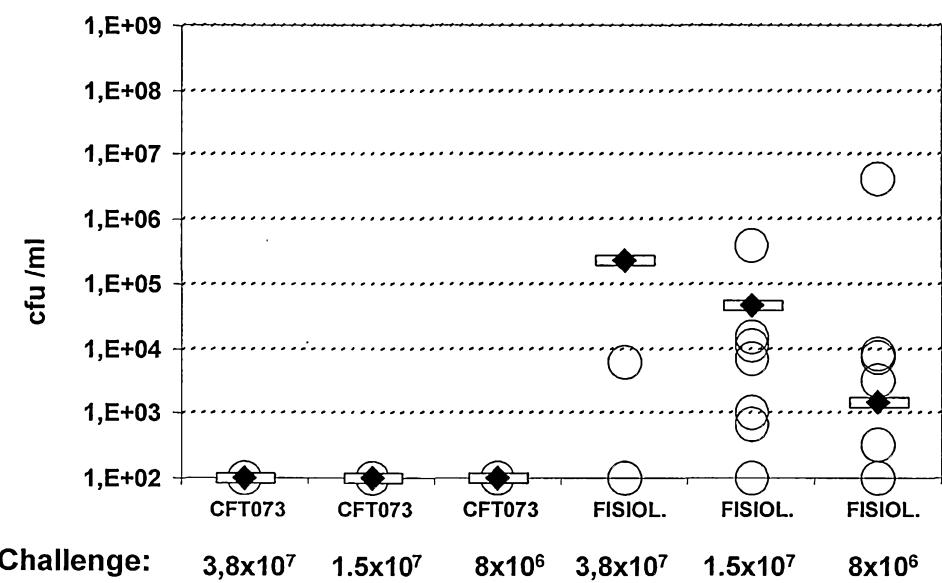
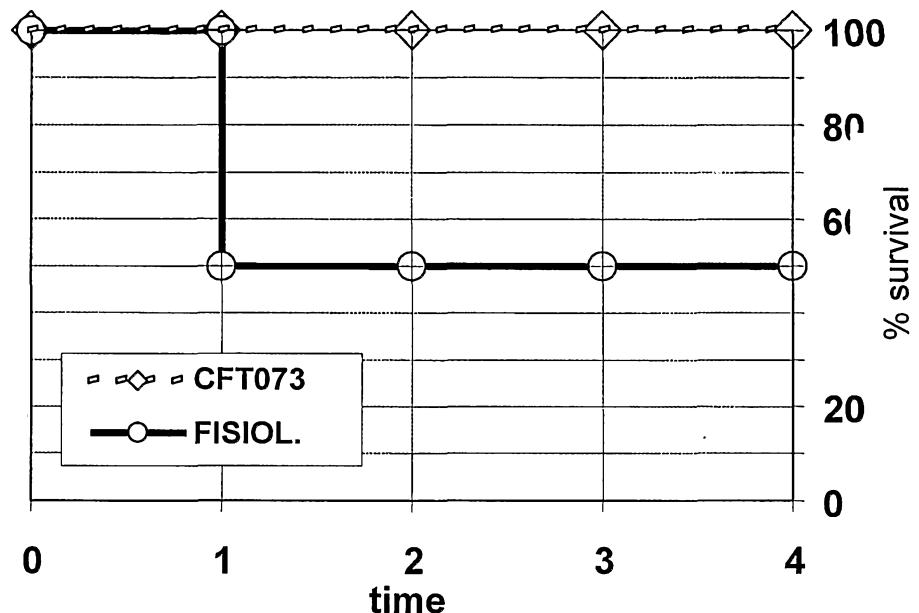
2006216844

8. The isolated or recombinant polypeptide according to any one of claims 1 or 4 to 7 or the isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 7, wherein the fragment comprises at least one B-cell epitope of a polypeptide comprising the sequence of SEQ ID NO: 577.
9. The isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 8, wherein said use in medicine comprises producing a pharmaceutical composition comprising said isolated or recombinant polypeptide in admixture with a pharmaceutically acceptable carrier.
10. The isolated or recombinant polypeptide when used in medicine according to claim 9, wherein said use in medicine comprises producing a pharmaceutical composition comprising said isolated or recombinant polypeptide in admixture with a pharmaceutically acceptable carrier and a vaccine adjuvant.
11. The isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 8, wherein said use in medicine comprises producing an immunogenic composition comprising one or more outer membrane vesicles (OMVs) expressing or overexpressing said isolated or recombinant polypeptide.
12. A pharmaceutical composition comprising the isolated or recombinant polypeptide according to any one of claims 1 or 4 to 8 in admixture with a pharmaceutically acceptable carrier.
13. The pharmaceutical composition according to claim 12, further comprising a vaccine adjuvant.
14. An immunogenic composition comprising one or more outer membrane vesicles (OMVs) expressing or overexpressing the isolated or recombinant polypeptide according to any one of claims 1 or 4 to 8.
15. Use of the isolated or recombinant polypeptide according to any one of claims 1 or 4 to 8 or the pharmaceutical composition according to claim 12 or 13 or the immunogenic composition according to claim 14 in medicine.
16. Use of the isolated or recombinant polypeptide according to any one of claims 1 or 4 to 8 or the immunogenic composition according to claim 14 in the manufacture of a medicament for raising an immune response in a patient.
17. The isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 11, wherein the use is in the preparation of a medicament for raising an immune response in a patient.

61292311099 FB Rice

2006216844 12 Oct 2012

18. A method of treating a patient, said method comprising administering to the patient a therapeutically effective amount of the polypeptide according to any one of claims 1 or 4 to 8 or the pharmaceutical composition according to claim 12 or 13 or the immunogenic composition according to claim 14.
19. The isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 10, wherein the use is in a method of treating a patient, said method comprising administering to the patient a therapeutically effective amount of the polypeptide or a pharmaceutical composition or outer membrane vesicle (OMV) comprising said polypeptide.
20. The use according to claim 15 or 16 or the isolated or recombinant polypeptide when used in medicine according to claim 17, wherein the immune response is protective against extraintestinal pathogenic *Escherichia coli* (ExPEC) infection.
21. The isolated or recombinant polypeptide when used in medicine according to claim 18 or the method according to claim 19, wherein the method is a method of immunizing a subject against extraintestinal pathogenic *Escherichia coli* (ExPEC) infection.
22. The isolated or recombinant polypeptide according to any one of claims 1 or 4 to 8 or the isolated or recombinant polypeptide when used in medicine according to any one of claims 2 to 11 or 17 or 19 to 21 or the pharmaceutical composition according to claim 12 or 13 or the immunogenic composition according to claim 14 or the use according to any one of claims 15 or 16 or 20 or the method according to claim 19 or 21 substantially as described herein with reference to the accompanying Examples and/or drawings.



DATED this TENTH day of OCTOBER 2012

Novartis Vaccines and Diagnostics S.r.l.

By patent attorneys for the applicant:

FB Rice

1/1

FIGURE 1