

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-524564
(P2004-524564A)

(43) 公表日 平成16年8月12日(2004.8.12)

(51) Int.Cl.⁷

G03F 7/26
G03F 7/033
G03F 7/038
G03F 7/039
H01L 21/027

F 1

G03F 7/26
G03F 7/033
G03F 7/038 601
G03F 7/039 601
H01L 21/30 502R

テーマコード(参考)

2H025
2H096

審査請求 未請求 予備審査請求 有 (全 99 頁)

(21) 出願番号 特願2002-568099 (P2002-568099)
(86) (22) 出願日 平成14年2月26日 (2002.2.26)
(85) 翻訳文提出日 平成15年8月22日 (2003.8.22)
(86) 國際出願番号 PCT/US2002/005609
(87) 國際公開番号 WO2002/069040
(87) 國際公開日 平成14年9月6日 (2002.9.6)
(31) 優先権主張番号 60/271,401
(32) 優先日 平成13年2月27日 (2001.2.27)
(33) 優先権主張国 米国(US)

(71) 出願人 596156668
ローム・アンド・ハース・エレクトロニクス・マテリアルズ、エル.エル.シー.
アメリカ合衆国01752マサチューセッツ州マルボロ フォレスト・ストリート455
455 Forest Street, Marlborough, MA 01752
U. S. A
(74) 代理人 100073139
弁理士 千田 稔
(74) 代理人 100101281
弁理士 辻永 和徳
(74) 代理人 100112586
弁理士 橋本 幸治

最終頁に続く

(54) 【発明の名称】新規ポリマー、ポリマー合成方法およびフォトレジスト組成物

(57) 【要約】

本発明は、新たなポリマーおよびそのようなポリマーを供給する方法およびポリマーを含むフォトレジストを含む。本発明の方法は、ポリマーを重合するために、反応混合物を供給することと、重合の間に1以上の重合化学物質を反応混合物に添加することとを含む。本発明のポリマーを含むフォトレジストは、著しく改良されたリソグラフィック特性を示すことができる。

【特許請求の範囲】**【請求項 1】**

フォトレジスト組成物を調製する方法であって、

a) 重合反応の実質的な期間にわたって、反応混合物に 1 以上の組み込まれる重合化学物質を添加することを含む重合反応により得られるポリマーを供給することと；

b) ポリマーを光活性成分と混合することと；

を含む方法。

【請求項 2】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して最も高い反応速度を有する組み込まれる重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 1 に記載の方法。

10

【請求項 3】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して 2 番目に高い反応速度を有する組み込まれる重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 1 または 2 に記載の方法。

20

【請求項 4】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して最も低い反応速度を有する組み込まれる重合化学物質が、重合反応開始時に反応混合物中に存在し、重合反応の実質的な期間にわたって反応混合物に添加されない、請求項 1 ~ 3 のいずれか一項に記載の方法。

【請求項 5】

マレイン酸無水物が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 1 ~ 4 のいずれか一項に記載の方法。

【請求項 6】

アクリレート化合物が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 1 ~ 5 のいずれか一項に記載の方法。

【請求項 7】

アクリレート化合物がフォト酸レイビルエスチルを含む、請求項 6 に記載の方法。

【請求項 8】

1 以上の重合化学物質を含む反応混合物が重合反応の開始時に最初に供給され、

30

1 以上の追加の重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、

請求項 1 ~ 7 のいずれか一項に記載の方法。

【請求項 9】

反応混合物が重合反応の開始時に、任意に置換された炭素脂環式化合物または任意に置換されたヘテロ脂環式化合物を含む、請求項 8 に記載の方法。

【請求項 10】

反応混合物が重合反応の開始時に、任意に置換されたノルボルネン化合物または任意に置換された酸素ヘテロ脂環式化合物を含む、請求項 8 に記載の方法。

【請求項 11】

各重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 1 ~ 3 または 5 ~ 7 の記載の方法。

40

【請求項 12】

重合反応がフリーラジカル媒介反応である、請求項 1 ~ 11 のいずれか一項記載の方法。

【請求項 13】

重合反応がアニオン、カチオンまたは金属触媒反応である、請求項 1 ~ 11 のいずれか一項記載の方法。

【請求項 14】

1 以上の重合化学物質が、無水物、ラクトン、フッ素化オレフィン、炭素脂環式化合物、ヘテロ脂環式化合物、またはアクリレートからなる群より選択される、請求項 1 ~ 13 の

50

いずれか一項記載の方法。

【請求項 1 5】

1 以上の重合化学物質が 2 - メチルアダマンタニルメタクリレート、2 - メチルアダマンタニルアクリレート、マレイン酸無水物、ノルボルネン、3 , 4 - ジヒドロピラン、またはテトラフルオロエチレンである、請求項 1 ~ 1 3 のいずれか一項記載の方法。

【請求項 1 6】

重合化学物質の各々が非芳香族化合物である、請求項 1 ~ 1 5 のいずれか一項記載の方法。

【請求項 1 7】

1 以上の重合化学物質が芳香族化合物である、請求項 1 ~ 1 5 のいずれか一項記載の方法 10

【請求項 1 8】

1 以上の重合化学物質が任意に置換されたフェニルまたは任意に置換されたナフチル部分を含む、請求項 1 ~ 1 5 のいずれか一項記載の方法。

【請求項 1 9】

1 以上の重合化学物質が重合反応の期間の少なくとも約 80 パーセントにわたって添加される、請求項 1 ~ 1 8 のいずれか一項記載の方法。

【請求項 2 0】

少なくとも 2 つの重合化学物質が重合反応の実質的な期間にわたって添加される、請求項 1 ~ 1 9 のいずれか一項記載の方法。 20

【請求項 2 1】

ラジカル開始剤化合物が重合反応の実質的な期間にわたって添加される、請求項 1 ~ 2 0 のいずれか一項記載の方法。

【請求項 2 2】

重合反応の実質的な期間にわたり反応混合物中の実質的に一定の開始剤濃度を維持するために、開始剤をある速度で添加する、請求項 2 1 に記載の方法。

【請求項 2 3】

反応容器が最初に 1 以上の重合化学物質によって充填され、充填された化学物質よりも高い反応速度を有する 1 以上の重合化学物質が重合反応の実質的な期間にわたり反応容器に添加される、請求項 1 ~ 2 2 のいずれか一項記載の方法。 30

【請求項 2 4】

フッ素化オレフィン、無水物またはラクトンが重合反応の実質的な期間にわたって添加される、請求項 1 ~ 2 3 のいずれか一項記載の方法。

【請求項 2 5】

アクリレート化合物およびマレイン酸無水物が重合反応の実質的な期間にわたって、任意に置換されたノルボルネン化合物を含む反応混合物に添加される、請求項 1 ~ 2 3 のいずれか一項記載の方法。

【請求項 2 6】

アクリレート化合物およびマレイン酸無水物が重合反応の実質的な期間にわたって、任意に置換されたノルボルネン化合物および任意に置換されたジヒドロピランを含む反応混合物に添加される、請求項 1 ~ 2 3 のいずれか一項記載の方法。 40

【請求項 2 7】

少なくとも 1 つの重合化学物質が重合反応の実質的な期間にわたって低下する速度で添加される、請求項 1 ~ 2 6 のいずれか一項記載の方法。

【請求項 2 8】

1 以上の重合化学物質が反応容器中に含有され、1 以上の重合化学物質が重合反応の実質的な期間にわたって反応容器に添加される、請求項 1 ~ 3 、 5 ~ 1 0 または 1 2 ~ 2 7 のいずれか一項記載の方法。

【請求項 2 9】

光活性成分が 1 以上のフォト酸発生剤化合物を含む、請求項 1 ~ 2 8 のいずれか一項記載 50

の方法。

【請求項 3 0】

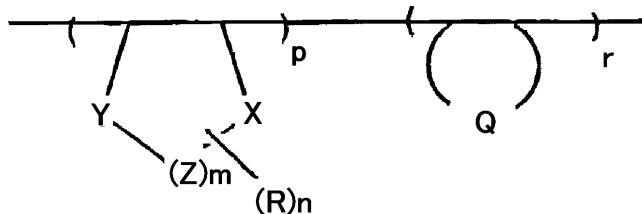
ポリマーが、第三級脂環式基を含むフォト酸レイビル反復単位を含む、請求項 1 ~ 2 9 のいずれか一項記載の方法。

【請求項 3 1】

ポリマーが重合されたフッ素化不飽和モノマーを含む、請求項 1 ~ 3 0 のいずれか一項記載の方法。

【請求項 3 2】

ポリマーが縮合ヘテロ脂環式基を含む、請求項 1 ~ 3 1 のいずれか一項記載の方法。


【請求項 3 3】

ポリマーが酸素環員を有する縮合ヘテロ脂環式基を含む、請求項 1 ~ 3 2 のいずれか一項記載の方法。

【請求項 3 4】

ポリマーが次の式：

【化 1】

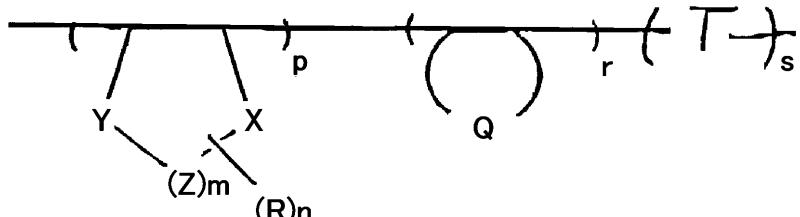
10

20

(式中、X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YまたはZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく；

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表し；

pおよびrはそれぞれの単位のモル分率であり、pおよびrの各々はゼロより大きい)


の構造を含む、請求項 1 ~ 3 3 のいずれか一項記載の方法。

30

【請求項 3 5】

ポリマーが次の式：

【化 2】

40

(式中、Tは任意に置換されたアクリレート基であり；

X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YまたはZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく；

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表し；

p、rおよびsはそれぞれの単位のモル分率であり、p、rおよびsの各々はゼロより大きい)

の構造を含む、請求項 1 ~ 3 3 のいずれか一項記載の方法。

【請求項 3 6】

50

Tがフォト酸レイビル部分を含む、請求項35に記載の方法。

【請求項37】

組成物が化学増幅ポジ型レジストである、請求項1～36のいずれか一項記載の方法。

【請求項38】

組成物がネガ型レジストである、請求項1～36のいずれか一項記載の方法。

【請求項39】

フォトレジスト組成物のコーティング層を基板上に塗布することと；フォトレジストコーティング層をパターン様活性放射線に露光させることと；レジストトレリーフ画像を提供するために、露光されたフォトレジストコーティング層を現像することとを含む、請求項1～38のいずれか一項記載の方法。

10

【請求項40】

フォトレジスト層が約300nm未満の波長を有する照射により露光される、請求項39に記載の方法。

【請求項41】

フォトレジスト層が約200nm未満の波長を有する照射により露光される、請求項39に記載の方法。

【請求項42】

フォトレジスト層が約193nmの波長を有する照射により露光される、請求項39に記載の方法。

【請求項43】

基板がマイクロ電子ウェハである、請求項39～42のいずれか一項記載の方法。

20

【請求項44】

光活性成分および、重合反応の実質的な期間にわたって1以上の重合化学物質を反応混合物に添加することによって得られるポリマーを含むフォトレジスト組成物。

【請求項45】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して最も高い反応速度を有する組み込まれる重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項44に記載のフォトレジスト組成物。

【請求項46】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して2番目に高い反応速度を有する組み込まれる重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項44または45に記載のフォトレジスト組成物。

30

【請求項47】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して最も低い反応速度を有する組み込まれる重合化学物質が、重合反応開始時に反応混合物中に存在し、重合反応の実質的な期間にわたって反応混合物に添加されない、請求項44～46のいずれか一項に記載のフォトレジスト組成物。

【請求項48】

マレイン酸無水物が重合反応の実質的な期間にわたって反応混合物に添加される、請求項44～47のいずれか一項に記載のフォトレジスト組成物。

40

【請求項49】

アクリレート化合物が重合反応の実質的な期間にわたって反応混合物に添加される、請求項44～47のいずれか一項に記載のフォトレジスト組成物。

【請求項50】

アクリレート化合物がフォト酸レイビルエステルを含む、請求項49に記載のフォトレジスト組成物。

【請求項51】

1以上の重合化学物質を含む反応混合物が重合反応の開始時に最初に供給され、1以上の追加の重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項44～50のいずれか一項に記載のフォトレジスト組成物。

50

【請求項 5 2】

反応混合物が重合反応の開始時に、任意に置換された炭素脂環式化合物または任意に置換されたヘテロ脂環式化合物を含む、請求項 5 1 に記載のフォトレジスト組成物。

【請求項 5 3】

反応混合物が重合反応の開始時に、任意に置換されたノルボルネン化合物または任意に置換された酸素ヘテロ脂環式化合物を含む、請求項 5 1 に記載のフォトレジスト組成物。

【請求項 5 4】

各重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 4 4 ~ 4 6 または 4 8 ~ 5 3 に記載のフォトレジスト組成物。

【請求項 5 5】

重合反応がフリーラジカル媒介反応である、請求項 4 4 ~ 5 4 のいずれか一項記載のフォトレジスト組成物。

【請求項 5 6】

重合反応がアニオン、カチオンまたは金属触媒反応である、請求項 4 4 ~ 5 5 のいずれか一項記載のフォトレジスト組成物。

【請求項 5 7】

1 以上の重合化学物質が、無水物、ラクトン、フッ素化オレフィン、炭素脂環式化合物、ヘテロ脂環式化合物、またはアクリレートからなる群より選択される、請求項 4 4 ~ 5 6 のいずれか一項記載のフォトレジスト組成物。

【請求項 5 8】

1 以上の重合化学物質が 2 - メチルアダマンタニルメタクリレート、2 - メチルアダマンタニルアクリレート、マレイン酸無水物、ノルボルネン、3 , 4 - ジヒドロピラン、またはテトラフルオロエチレンである、請求項 4 4 ~ 5 6 のいずれか一項記載のフォトレジスト組成物。

【請求項 5 9】

重合化学物質の各々が非芳香族化合物である、請求項 4 4 ~ 4 6 、4 8 ~ 5 3 または 5 5 ~ 5 8 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 0】

1 以上の重合化学物質が芳香族化合物である、請求項 4 4 ~ 5 8 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 1】

1 以上の重合化学物質が任意に置換されたフェニルまたは任意に置換されたナフチル部分を含む、請求項 4 4 ~ 5 8 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 2】

1 以上の重合化学物質が重合反応の期間の少なくとも約 80 パーセントにわたって添加される、請求項 4 4 ~ 6 1 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 3】

少なくとも 2 つの重合化学物質が重合反応の実質的な期間にわたって添加される、請求項 4 4 ~ 6 1 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 4】

ラジカル開始剤化合物が重合反応の実質的な期間にわたって添加される、請求項 4 4 ~ 6 2 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 5】

重合反応の実質的な期間にわたり反応混合物中の実質的に一定の開始剤濃度を維持するために、開始剤をある速度で添加する、請求項 6 4 に記載のフォトレジスト組成物。

【請求項 6 6】

反応容器が最初に 1 以上の重合化学物質によって充填され、充填された化学物質よりも高い反応速度を有する 1 以上の重合化学物質が重合反応の実質的な期間にわたり反応容器に添加される、請求項 4 4 ~ 6 5 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 7】

10

20

30

40

50

フッ素化オレフィン、無水物またはラクトンが重合反応の実質的な期間にわたって添加される、請求項 4 4 ~ 6 6 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 8】

アクリレート化合物およびマレイン酸無水物が重合反応の実質的な期間にわたって、任意に置換されたノルボルネン化合物を含む反応混合物に添加される、請求項 4 4 ~ 6 7 のいずれか一項記載のフォトレジスト組成物。

【請求項 6 9】

アクリレート化合物およびマレイン酸無水物が重合反応の実質的な期間にわたって、任意に置換されたノルボルネン化合物および任意に置換されたジヒドロピランを含む反応混合物に添加される、請求項 4 4 ~ 6 8 のいずれか一項記載のフォトレジスト組成物。

10

【請求項 7 0】

少なくとも 1 つの重合化学物質が重合反応の実質的な期間にわたって低下する速度で添加される、請求項 4 4 ~ 6 9 のいずれか一項記載のフォトレジスト組成物。

【請求項 7 1】

1 以上の重合化学物質が反応容器中に含有され、1 以上の重合化学物質が重合反応の実質的な期間にわたって反応容器に添加される、請求項 4 4 ~ 5 8 または 6 0 ~ 7 0 のいずれか一項記載のフォトレジスト組成物。

【請求項 7 2】

光活性成分が 1 以上のフォト酸発生剤化合物を含む、請求項 4 4 ~ 7 1 のいずれか一項記載のフォトレジスト組成物。

20

【請求項 7 3】

ポリマーが、第三級脂環式基を含むフォト酸レイビル反復単位を含む、請求項 4 4 ~ 7 2 のいずれか一項記載のフォトレジスト組成物。

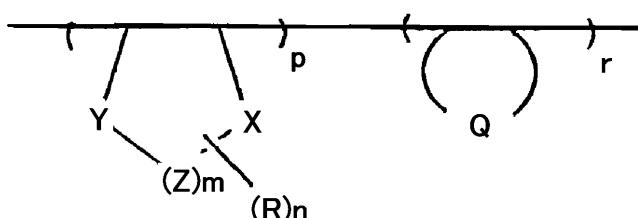
【請求項 7 4】

ポリマーが重合されたフッ素化不飽和モノマーを含む、請求項 4 4 ~ 7 3 のいずれか一項記載のフォトレジスト組成物。

【請求項 7 5】

ポリマーが縮合ヘテロ脂環式基を含む、請求項 4 4 ~ 7 4 のいずれか一項記載のフォトレジスト組成物。

30


【請求項 7 6】

ポリマーが酸素環員を有する縮合ヘテロ脂環式基を含む、請求項 4 4 ~ 7 5 のいずれか一項記載のフォトレジスト組成物。

【請求項 7 7】

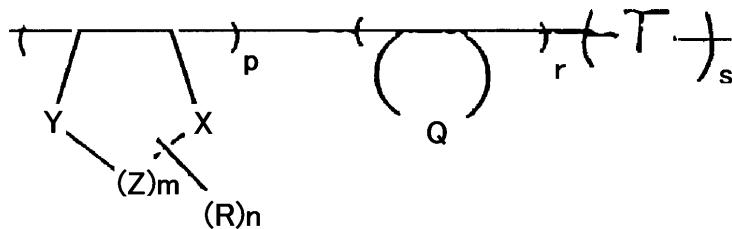
ポリマーが次の式：

【化 3】

40

(式中、X、Y および Z はそれぞれ独立に炭素、酸素または硫黄であり、X、Y または Z の少なくとも 1 つが酸素または硫黄であり、好ましくは X、Y および Z の 2 より多くが酸素または硫黄であることはなく；

Q は、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表し；


p および r はそれぞれの単位のモル分率であり、p および r の各々はゼロより大きい) の構造を含む、請求項 4 4 ~ 7 6 のいずれか一項記載のフォトレジスト組成物。

【請求項 7 8】

ポリマーが次の式：

50

【化4】

(式中、Tは任意に置換されたアクリレート基であり；

X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YまたはZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく； 10

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表し；

p、rおよびsはそれぞれの単位のモル分率であり、p、rおよびsの各々はゼロより大である)

の構造を含む、請求項44～76のいずれか一項記載のフォトレジスト組成物。

【請求項79】

Tがフォト酸レイビル部分を含む、請求項78に記載のフォトレジスト組成物。

【請求項80】

組成物が化学增幅ポジ型レジストである、請求項44～79のいずれか一項記載のフォトレジスト組成物。 20

【請求項81】

組成物がネガ型レジストである、請求項44～79のいずれか一項記載のフォトレジスト組成物。

【請求項82】

フォトレジストリーフ画像を形成する方法であって：

(a) 請求項44～81のいずれか一項記載のフォトレジストのコーティング層を基板上に塗布することと；

(b) レリーフ画像を得るために、フォトレジスト層を露光および現像することと； 30
を含む方法。

【請求項83】

フォトレジスト層が約300nm未満の波長を有する照射により露光される、請求項82に記載の方法。

【請求項84】

フォトレジスト層が約200nm未満の波長を有する照射により露光される、請求項82に記載の方法。

【請求項85】

フォトレジスト層が約193nmの波長を有する照射により露光される、請求項82に記載の方法。

【請求項86】

請求項44～81のいずれか一項に記載のフォトレジスト組成物の層が上にコーティングされたマイクロ電子ウェハ基板またはフラットパネルディスプレイ基板を含む製品。 40

【請求項87】

フォトレジスト組成物の調製のための方法であって：

重合反応の実質的な期間にわたって、反応混合物に1以上の組み込まれる重合化学物質を添加することにより得ることができるポリマーを供給することと；

ポリマーを光活性成分と混合することと；

を含む方法。

【請求項88】

重合反応の実質的な期間にわたって1以上の重合化学物質を反応混合物に添加することを 50

含む、ポリマーを生成する方法。

【請求項 8 9】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して最も高い反応速度を有する組み込まれる重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 8 8 に記載の方法。

【請求項 9 0】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して 2 番目に高い反応速度を有する組み込まれる重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 8 8 または 8 9 に記載の方法。

【請求項 9 1】

複数の組み込まれる重合化学物質が反応し、他の組み込まれる重合化学物質に対して最も低い反応速度を有する組み込まれる重合化学物質が、重合反応開始時に反応混合物中に存在し、重合反応の実質的な期間にわたって反応混合物に添加されない、請求項 8 8 ~ 9 0 のいずれか一項に記載の方法。

【請求項 9 2】

マレイン酸無水物が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 8 8 ~ 9 1 のいずれか一項に記載の方法。

【請求項 9 3】

アクリレート化合物が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 8 8 ~ 9 2 のいずれか一項に記載の方法。

【請求項 9 4】

アクリレート化合物がフォト酸レイビルエステルを含む、請求項 9 3 に記載の方法。

【請求項 9 5】

1 以上の重合化学物質を含む反応混合物が重合反応の開始時に最初に供給され、

1 以上の追加の重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、

請求項 8 8 ~ 9 4 のいずれか一項に記載の方法。

【請求項 9 6】

反応混合物が重合反応の開始時に、任意に置換された炭素脂環式化合物または任意に置換されたヘテロ脂環式化合物を含む、請求項 9 5 に記載の方法。

【請求項 9 7】

反応混合物が重合反応の開始時に、任意に置換されたノルボルネン化合物または任意に置換された酸素ヘテロ脂環式化合物を含む、請求項 9 5 に記載の方法。

【請求項 9 8】

各重合化学物質が重合反応の実質的な期間にわたって反応混合物に添加される、請求項 8 7 ~ 9 0 、 9 2 ~ 9 4 または 9 6 ~ 9 7 のいずれか一項記載の方法。

【請求項 9 9】

重合反応がフリーラジカル媒介反応である、請求項 8 8 ~ 9 8 のいずれか一項記載の方法。

【請求項 1 0 0】

重合反応がアニオン、カチオンまたは金属触媒反応である、請求項 8 8 ~ 9 8 のいずれか一項記載の方法。

【請求項 1 0 1】

1 以上の重合化学物質が、無水物、ラクトン、フッ素化オレフィン、炭素脂環式化合物、ヘテロ脂環式化合物、またはアクリレートからなる群より選択される、請求項 8 8 ~ 1 0 0 のいずれか一項記載の方法。

【請求項 1 0 2】

1 以上の重合化学物質が 2 - メチルアダマンタニルメタクリレート、2 - メチルアダマンタニルアクリレート、マレイン酸無水物、ノルボルネン、3 , 4 - ジヒドロピラン、またはテトラフルオロエチレンである、請求項 8 8 ~ 1 0 1 のいずれか一項記載の方法。

10

20

30

40

50

【請求項 103】

重合化学物質の各々が非芳香族化合物である、請求項 88～102 のいずれか一項記載の方法。

【請求項 104】

1 以上の重合化学物質が芳香族化合物である、請求項 88～102 のいずれか一項記載の方法。

【請求項 105】

1 以上の重合化学物質が任意に置換されたフェニルまたは任意に置換されたナフチル部分を含む、請求項 88～104 のいずれか一項記載の方法。

【請求項 106】

1 以上の重合化学物質が重合反応の期間の少なくとも約 80 パーセントにわたって添加される、請求項 88～105 のいずれか一項記載の方法。

【請求項 107】

少なくとも 2 つの重合化学物質が重合反応の実質的な期間にわたって添加される、請求項 88～106 のいずれか一項記載の方法。

【請求項 108】

ラジカル開始剤化合物が重合反応の実質的な期間にわたって添加される、請求項 88～107 のいずれか一項記載の方法。

【請求項 109】

重合反応の実質的な期間にわたり反応混合物中の実質的に一定の開始剤濃度を維持するために、開始剤をある速度で添加する、請求項 108 に記載の方法。

【請求項 110】

反応容器が最初に 1 以上の重合化学物質によって充填され、充填された化学物質よりも高い反応速度を有する 1 以上の重合化学物質が重合反応の実質的な期間にわたり反応容器に添加される、請求項 88～97 または 99～109 のいずれか一項記載の方法。

【請求項 111】

フッ素化オレフィン、無水物またはラクトンが重合反応の実質的な期間にわたって添加される、請求項 88～110 のいずれか一項記載の方法。

【請求項 112】

アクリレート化合物およびマレイン酸無水物が重合反応の実質的な期間にわたって、任意に置換されたノルボルネン化合物を含む反応混合物に添加される、請求項 88～111 のいずれか一項記載の方法。

【請求項 113】

アクリレート化合物およびマレイン酸無水物が重合反応の実質的な期間にわたって、任意に置換されたノルボルネン化合物および任意に置換されたジヒドロピランを含む反応混合物に添加される、請求項 88～111 のいずれか一項記載の方法。

【請求項 114】

少なくとも 1 つの重合化学物質が重合反応の実質的な期間にわたって低下する速度で添加される、請求項 88～113 のいずれか一項記載の方法。

【請求項 115】

1 以上の重合化学物質が反応容器中に含有され、1 以上の重合化学物質が重合反応の実質的な期間にわたって反応容器に添加される、請求項 88～113 のいずれか一項記載の方法。

【請求項 116】

ポリマーが、第三級脂環式基を含むフォト酸レイビル反復単位を含む、請求項 88～115 のいずれか一項記載の方法。

【請求項 117】

ポリマーが重合されたフッ素化不飽和モノマーを含む、請求項 88～116 のいずれか一項記載の方法。

【請求項 118】

10

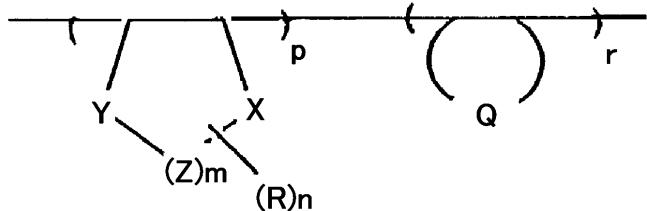
20

30

40

50

ポリマーが縮合ヘテロ脂環式基を含む、請求項 88～117 のいずれか一項記載の方法。


【請求項 119】

ポリマーが酸素環員を有する縮合ヘテロ脂環式基を含む、請求項 88～118 のいずれか一項記載の方法。

【請求項 120】

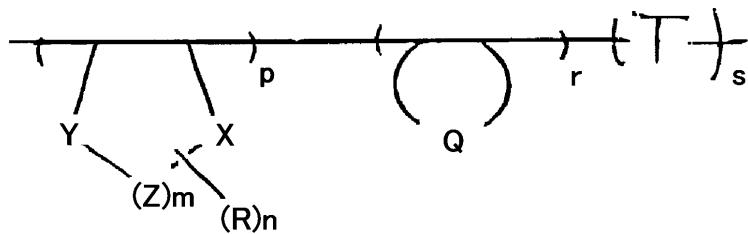
ポリマーが次の式：

【化 5】

10

(式中、X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YまたはZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく；

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表し；


pおよびrはそれぞれの単位のモル分率であり、pおよびrの各々はゼロより大きい)の構造を含む、請求項 88～119 のいずれか一項記載の方法。

20

【請求項 121】

ポリマーが次の式：

【化 6】

30

(式中、Tは任意に置換されたアクリレート基であり；

X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YまたはZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく；

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表し；

p、rおよびsはそれぞれの単位のモル分率であり、p、rおよびsの各々はゼロより大きい)の構造を含む、請求項 88～119 のいずれか一項記載の方法。

40

【請求項 122】

Tがフォト酸レイビル部分を含む、請求項 121 に記載の方法。

【請求項 123】

請求項 88～122 のいずれか一項記載の方法により得られるポリマー。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、参照により本明細書にその全体が組み込まれている、2001年2月27日に提出された米国仮出願第60/271,401の利益を請求する。

【0002】

本発明は、ポリマーを含むフォトレジストに改善されたリソグラフィー結果を顕著に示す

50

ことが出来る新規ポリマー、そのようなポリマーを供給する方法およびポリマーを含むフォトレジストに関する。本発明の合成方法は、ポリマー合成の間に発生する反応混合物への、1以上のポリマー前駆体の定期的な、または実質的に連続的な添加を含む。本発明の好ましいポリマーは、250 nm未満または200 nm未満、特に248 nm、193 nmおよび157 nmなどの短波長において描画されるフォトレジストでの使用に適している。

【背景技術】

【0003】

フォトレジストは、基板への画像の転写に使用される感光性フィルムである。フォトレジストのコーティング層は基板上に形成され、フォトレジスト層は次にフォトマスクを通じて活性化照射源に露光される。フォトマスクは活性化照射に対して不透明である区域と、活性化照射に対して透明である区域を持つ。活性化照射に対する露光は、フォトレジストコーティングの光誘起性化学変換を提供し、それによってフォトマスクのパターンをフォトレジスト被覆基板に変換する。露光の後、フォトレジストは現像されて、基板の選択的処理を可能にするレリーフ像を提供する。

【0004】

フォトレジストはポジ型でもネガ型でもよい。大半のネガ型フォトレジストでは、活性化照射に露光されるこれらのコーティング層部分は、フォトレジスト組成物の光活性化合物と重合化学物質との反応で重合または架橋する。結果として、露光されたコーティング部分は現像溶液において、未露光部分よりも溶解性が低くなる。ポジ型フォトレジストの場合、露光された部分は現像溶液中でより溶解性が高くなるが、露光されない区域は比較的、現像液に溶解しにくいままである。

【0005】

さらに最近では、化学增幅型レジストが、特にミクロン未満の画像の形成および他の高性能用途に、ますます利用されている。そのようなフォトレジストはネガ型でもポジ型でもよく、一般に光生成酸の単位あたり、多くの架橋事象（ネガ型レジストの場合）または脱保護反応（ポジ型レジストの場合）を含む。ポジ型化学增幅レジストの場合、フォトレジストバインダから垂れ下がったある「保護」基の開裂、またはフォトレジストバインダ主鎖を含むある基の開裂を誘起するために、あるカチオン性光開始剤を用いられている。例えば、米国特許第5,075,199号；第4,968,581号；4,883,740号；4,810,613号；ならびに4,491,628号およびカナダ特許出願第2,001,384号を参照すること。そのようなレジストのコーティング層の露光による保護基の開裂時に、例えばカルボキシルまたはイミドなどの極性官能基が形成されて、レジストコーティング層の露光ならびに未露光区域の異なる溶解度特性を生じさせる。R. D. Alleenら、Proceedings of SPIE, 2724: 334-343 (1996)；およびP. Trefonasら、Proceedings of the 11th International Conference on Photopolymer (Soc. Of Plastics Engineers), pp 44-58 (1997年10月6日)。

【0006】

約248 nm (KrFレーザーにより供給)または193 nm (ArF露光ツールにより供給)の波長などの、約250 nm以下、またはさらに約200 nm以下の露光照射を含む、短波長照射によって光描画可能なフォトレジストへの関心が高まっている。欧洲公開出願第915382A2号を参照のこと。ごく最近、157 nmでの描画が提案されている。Kunzら、SPIE Proceedings (Advances in Resist Technology), vol. 3678, pages 13-23 (1999)を参照。そのような短露光波長の使用は、より小さい形状の形成を可能にする。したがって、248 nmまたは193 nmで良好に解像された画像を生じるフォトレジストは、例えばさらに高い回路密度と向上したデバイス性能を提供するために、より小さい寸法の回路パターンに対する絶え間ない業界の要求に対応する、極めて小さい（例えば0.25

10

20

30

40

50

μm未満)形状の形成を可能にする。

【0007】

しかし、多くの現在のフォトレジストは一般に、比較的より高い波長における描画のため設計されており、G-ライン(436nm)およびI-ライン(365nm)などは一般に、200nm未満などの短波長での描画には不適である。248nmの露光で効力のあるようなより短波長レジストはまた、一般的に200nm未満の露光、例えば193nmおよび157nmでの描画には適していない。

【0008】

それゆえ新たなフォトレジスト組成物、特に、200nm未満の露光波長、特に193nmおよび157nmなどの短波長にて描画できるフォトレジスト組成物を有することが望ましい。そのようなフォトレジストに使用するための、新たな樹脂成分を有することも望ましい。

【0009】

【特許文献1】

米国特許第5,075,199号明細書

【特許文献2】

米国特許第4,968,581号明細書

【特許文献3】

米国特許第4,883,740号明細書

【特許文献4】

米国特許第4,810,613号明細書

【特許文献5】

米国特許第4,491,628号明細書

【特許文献6】

カナダ特許出願第2,001,384号明細書

【発明の開示】

【課題を解決するための手段】

【0010】

我々は今や、新規ポリマーおよび樹脂成分としてポリマーを含むフォトレジスト組成物を発見した。本発明のフォトレジスト組成物は、300nm未満または200nm未満波長を含む、短波長への露光時に高度に解像されたレリーフ画像を提供することができる。

【0011】

我々は、フォトレジスト成分として非常に有用であるポリマーの合成のための新たな方法も発見した。本発明の合成方法は、ポリマー合成の間の、1以上のポリマー前駆体(例えば不飽和モノマーまたはオリゴマー)および/または化学物質(例えば開始剤)の添加を含む。

【0012】

我々は驚くべきことに、1以上の重合化学物質のそのような長期間の添加または連続供給が、向上したポリマー均質性を供給する、例えばポリマーは、他の方法、例えばバッチ合成工程によって作成された比較ポリマーに対して、個々のポリマー鎖全体にわたって、およびポリマーの分子量分布にわたって、反復単位のさらに均一な分布を有することを発見した。

【0013】

我々はさらに、本発明の工程により得られたポリマーのフォトレジスト組成物における使用が、ライン縁の粗さの削減およびそうでなければ向上したレリーフ画像プロフィールを含め、著しく向上したリソグラフ特性をレジストに付与できることも発見した。

【0014】

本明細書で指すように、重合化学物質という用語は、ポリマー鎖に含有されるか、されないかにかかわらず、重合反応において活性である化合物を指す。それゆえ重合化学物質は重合反応の結果として形成されたポリマーに含有される、反応性モノマー、オリゴマーま

10

20

30

40

50

たは他のポリマー前駆体はもちろんのこと、重合反応においては活性であるが、形成されたポリマーには含まれない、フリーラジカル開始剤または連鎖移動剤などの化合物も含む。

【0015】

本明細書での「組み込まれる重合化学物質」への言及は、重合反応の結果として形成されたポリマーに含有される重合化学物質を指す。さらに詳細には本明細書での「組み込まれる重合化学物質」への言及は、フリーラジカル開始剤などの非含有化合物を除外し、共有結合を通じて形成されたポリマーの一部となる化学物質のみを含む。例えば、反応してポリマーを形成する不飽和またはそうでなければ反応性モノマーまたはオリゴマーは、組み込まれる重合化学物質に含まれる。

10

【0016】

少なくとも1つの含有された化学物質は、反応の実質的な期間にわたって反応混合物または容器に添加される。適切には、1つ、2つ、3つ、4つまたは5つの重合化学物質が、反応の実質的な期間にわたって反応混合物に添加され、さらに通常は1つ、2つまたは3つの重合化学物質が、反応の実質的な期間にわたって反応混合物に添加される。重合化学物質が反応合成の実質的部分にわたって添加されると、化学物質は反応時間の少なくとも約30、40、50、60、70、80、90または95パーセントにわたって反応混合物に添加されうることをいう。反応時間の期間は、1以上の組み込まれる重合化学物質の反応容器または混合物への添加の開始により始まり、反応混合物の実質的な冷却（例えば>20または30）または失活あるいは他の反応終了で終わるものとして定義される。

20

【0017】

好ましくは、反応の実質的な期間にわたって添加される組み込まれる重合化学物質は、反応の1以上の重合化学物質に対して、より速い反応速度を持つ。それゆえ例えば、形成ポリマーに含有される2つ、3つ、4つまたは5つの別個のモノマー、オリゴマーまたは他の重合化学物質（本明細書では「組み込まれる重合化学物質」と呼ばれる）が反応する場合、好ましくは少なくとも最も高速の1つまたは2つの化学物質が、反応の実質的な期間にわたって反応混合物に添加される。

30

【0018】

本明細書で指すように、複数の組み込まれる重合化学物質の反応速度は、例えばMarchのAdvanced Organic Chemistry, page 223 (Fourth Edition, John Wiley)で既知かつ述べられているように、特に連続的または定期的なスペクトル読取により、時間による特定の重合化学物質の濃度の変化を測定することによって決定される。複数の組み込まれる重合化学物質の反応速度を決定するための好ましいプロトコルは、次のとおりである：コポリマーを形成するための複数の組み込まれる重合化学物質を好ましくは1モルの濃度で、反応温度100または反応を誘起するのに必要な最低温度のどちらか低いほうにおける溶媒中の反応容器へ入れる。反応混合物サンプルは10分または定義した他の間隔で除去し、各重合化学物質の時間に対する消費について、¹H NMRによって評価する。例えば不飽和モノマーまたはオリゴマー重合化学物質では、各不飽和化学物質のオレフィンプロトンの消失を評価できる。次に各化学物質について、相対反応速度を決定することができる。

40

【0019】

通常、所与の反応の組み込まれる重合化学物質は、相対反応速度が少なくとも20パーセント、さらに通常は少なくとも約30、40、50、60、70、80、90、100、150または200パーセントの反応速度の相違などの、より大きな相違で異なる。それゆえ組み込まれる重合化学物質はただちに、特定の重合反応について「最も速い」、「二番目に速い」「最も遅い」などの反応速度を持つとして「ランク付け」できる。

【0020】

本発明の一般に好ましい重合方法は：i) 反応容器に本質的に溶媒のみ、または1以上の別個のモノマーまたは他のポリマー前駆体および開始剤などの1以上の重合化学物質（例

50

えばフリーラジカル開始剤、酸促進重合用の酸など、反応混合物を供給するため)とともに充填することと; i i) 1 以上の化学物質、例えばモノマー、別のポリマー前駆体および/または追加の開始剤を、反応の期間の実質的部分にわたって反応混合物に添加すること; を含む。

【0021】

本発明のポリマーはホモポリマーでもよく、または一般的にさらに好ましくは、2、3、4または5以上の別個の反復単位を含む高次ポリマーである、すなわち好ましくはコポリマー、ターポリマー、テトラポリマーおよびペントポリマーである。本明細書で別途示されていない限り、コポリマーという用語はターポリマー、テトラポリマーおよびペントポリマーなどの高次ポリマーを含む。

10

【0022】

ポリマーは:

1) マレイン酸無水物を含む無水物またはハロゲン化オレフィン、特にテトラフルオロエチレン(TFE)などのフッ素化オレフィンなどの、電子欠損化学物質または1以上の電子求引性基を有する化学物質と;

2) 比較的電子が豊富な化学物質(ビニル基の1、2または3個の炭素内に電子求引基を含まないオレフィンモノマーなど)、例えば不飽和脂環式基(例えば環内または環外炭素-炭素二重結合); またはノルボルネン、シクロヘキセン、ビニルアダマンチルなどの3~約20個の炭素、さらに通常は4~約20個の炭素を適切に有する非環式アルキル基; または重合環式エーテル(例えばポリマー主鎖に縮合したテトラヒドロフラン基)または環式チオエーテル、例えば1~約12個の炭素原子を持つアルコキシなどを提供するよう、不飽和ビニルヘテロ脂環式基またはヘテロ非環式基(特に酸素または硫黄ヘテロ脂環式基またはヘテロ脂環式基)と;

20

任意に、および多くの場合好ましくは3) アクリレート(メタクリレートなどの置換アクリレートを含む)、特に、t-ブチルアクリレート、t-ブチルメタクリレート、アダマンチルアクリレート、アダマンチルメタクリレートなどの、フォト酸レイビル基を有するアクリレートと;

からなる群より選択される化学物質の重合により生成される反復単位を適切に含みうる。

【0023】

本発明の合成方法において、反応容器は適切に化学物質2)(すなわち電子が豊富な化学物質)によって適切に充填され、反応の期間にわたって電子欠損化学物質1)が反応溶液に添加される。フリーラジカル開始剤も反応の期間にわたって添加されるか、反応開始時に最初の反応混合物に直接添加されうる。

30

【0024】

本発明の方法は、各種の他の設備によって実施できる。例えば反応の期間にわたって、反応混合物に複数の化学物質を添加するために、独立型添加装置(例えば供給ライン)を使用してもよい。例えば、開始剤は1つの供給ラインを経由して添加され、アクリレートなどの不飽和モノマーも第二の供給ラインを経由して添加される。

【0025】

適切には、反応容器に含まれる重合化学物質は、ジオキサン、DMF、クロロホルムなどの適切な溶媒中に存在する。1以上の添加された化学物質もそのような反応溶媒に混合することができる。

40

【0026】

上述のように、好ましくは、反応合成の実質的な部分にわたって、1以上の重合化学物質が反応混合物に添加される。適切には、1以上の添加された重合化学物質は総反応時間の少なくとも約50、60、70、80、90または95パーセントにわたって、すなわち反応の実質的な期間にわたって、反応混合物に供給される。理解されるように、反応時間は、反応混合物が(例えば水、エタノール、または他のアルコールなどによって)失活したとき、あるいはそうでなければ、生成されたポリマーが単離されたときか、反応混合物の温度が実質的に例えば室温または0に下げられたときに終了する。

50

【0027】

1以上のポリマー化学物質の反応混合物への添加速度は、反応の期間にわたって実質的に一定であるか、さらになお均質なポリマーを生成するために、添加速度は反応の期間にわたって変化してもよい。例えば開始剤は、ポリマー合成の実質的な期間にわたり、反応混合物中の実質的に一定の開始剤濃度を維持する速度にて添加できる。そのような開始剤の一定濃度は、ポリマーの均質性をさらに提供できる。

【0028】

不飽和モノマーまたはオリゴマーは、重合反応の現在の状態と一致させるために、可变速度で添加してもよい。例えばアクリレートなどの不飽和モノマーは、ポリマー反応の期間にわたって、実質的に線形に低下する速度で添加しても良い。好ましくはアクリレートなどの不飽和モノマーは、重合反応の期間にわたって、モノマー濃度の割合が実質的に一定であるように、例えば反応混合物中の他の重合化学物質の濃度に対する、連続供給重合化学物質の割合が実質的に一定であるように、低下する速度で添加してもよい。

10

【0029】

さらに反応の実質的な期間にわたって添加される化学物質重合は、添加時間にわたって実質的に連続的に添加される。例えば化学物質重合の添加は、全添加時間の間、約1、2、3、4、5、10、15、20、25、30または45分を超えて停止しない。さらに好ましくは重合化学物質の添加化学物質の添加は、全添加時間の約5、10、15または20分を超えて停止しない。

20

【0030】

本発明のポリマー合成は適切には、約50以上、または約60、70、80または90以上、しかし約140または120未満の、上昇した温度にて実施される。反応は適切には還流下で実施できる。

【0031】

本発明のポリマーは好ましくは、193nmのような200nm未満の波長にて描画されるフォトレジストに利用され、それゆえ好ましくはどのフェニルまたは他の芳香族基も実質的に含まない。例えば好ましいポリマーは約5モルパーセント未満の芳香族基、さらに好ましくは約1~2モルパーセント未満の芳香族基、さらに好ましくは約0.1、0.02、0.04および0.08モルパーセント未満の芳香族基およびさらになお好ましくは約0.01モルパーセント未満の芳香族基を含む。特に193nmでの描画に好ましいポリマーは芳香族基を全く含まない。芳香族基は200nm未満の照射を高度に吸収可能であり、それゆえそのような短波長照射、特に193nmで描画されるフォトレジストで使用されるポリマーには望ましくない。

30

【0032】

本発明のポリマーは、248nmなどのより長い波長で描画されるレジストにも適切に利用される。そのようなポリマーは適切には、例えばビニルフェノール、アセトキシスチレン(フェノール単位を供給するために重合後にアセトキシ基が非ブロック化可能な場合)、スチレン、-メチルスチレン、ビニルナフタレンなどのビニル芳香族基の重合によって供給されるような芳香族基を含む。

40

【0033】

本発明は、各ラインが本質的に垂直側壁をおよび約0.40ミクロン以下のライン幅、および約0.25、0.20または0.16ミクロン以下の幅さえ持つ、ラインのパターンなどの高解像リリーフ画像を形成するための方法を含む、リリーフ描画を形成するための方法も提供する。本発明はさらに、上に本発明のポリマー、フォトレジストまたはレジストリーフ画像をコーティングしたマイクロ電子ウェハ基板、オプトエレクトロニック基板、または液晶ディスプレイまたは他のフラットパネル表示基板などの、基板を含む製品を提供する。

【0034】

本発明は、本発明の方法により入手可能なまたは入手されるポリマーも含む。

【0035】

50

本発明の他の態様は以下で開示する。

【発明を実施するための最良の形態】

【0036】

上述のように、本発明の合成方法は、ポリマー合成の実質的な期間にわたる、1以上のポリマー前駆体（例えば不飽和モノマーまたはオリゴマーなどの重合化学物質）および／または他の重合化学物質（例えば開始剤）の添加を含む。

【0037】

好ましい態様において、本発明はa)重合反応の実質的な期間にわたって、反応混合物に1以上の組み込まれる重合化学物質を添加することを含む重合反応により、ポリマーを供給することと；次にb)ポリマーを光活性成分と混合することと、を一般に含むフォトレジスト組成物を調製する方法を含む。ポリマーは重合反応後に、および光活性成分および適切ならば溶媒、塩基性添加物などの他のレジスト成分、およびネガ型レジストの場合は架橋剤との混合前に、適切に単離および洗浄、乾燥などを施される。

【0038】

本明細書で指すように、反応の実質的な期間にわたって1以上の組み込まれる重合化学物質が添加される「反応混合物」という用語は、溶媒および／または1以上の他の重合化学物質を予備充填できる（すなわち1以上の組み込まれる重合化学物質の添加開始前に）反応容器はもちろんのこと、1以上の組み込まれる重合化学物質の添加開始時には完全に空である反応容器も含む。すなわち「反応混合物」は、単に溶媒を含む、または最初に完全にまたは実質的に空であり、反応の期間にわたって化学物質が添加される反応容器を含む。

【0039】

長期にわたる添加は、各種の他の設備により構成できる。例えば示したように、反応容器に、反応の開始時に1以上の重合化学物質を充填して、反応の実質的な期間にわたって、1以上の重合化学物質を充填された反応容器に添加してもよい。あるいは、反応をどの化学物質によっても充填せずに、反応の実質的な期間にわたって各重合化学物質を添加してもよい。そのような場合、反応容器は通常、最初に溶媒を充填される。

【0040】

本発明の合成工程において、各種の重合化学物質を利用できる。例えば好ましい重合化学物質は、マレイン酸無水物などの無水物；ラクトン；テトラフルオロエチレンなどのフッ素化オレフィン；任意に置換されたノルボルネンまたは他の環式オレフィンなどの炭素脂環式基；任意に置換されたジヒドロピランなどのヘテロ脂環式基；あるいは2-メチルアダマンタニルメタクリレートまたは2-メチルアダマンタニルアクリレートなどのアクリレートを含む。本明細書で使用されるように、アクリレートという用語は、メタクリレートなどの置換アクリレートを含む。

【0041】

本発明の方法は、電子欠損化学物質、例えば特にマレイン酸無水物などの無水物；テトラフルオロエチレンなどのフッ素化オレフィンの反復単位を、任意に置換されたノルボルネン、任意に置換されたスチレンなどの比較的電子の豊富な化学物質の反復単位とともに含むポリマーを生成するのに特に有用である。

【0042】

したがって本発明の好ましいポリマーは、i)無水物またはフッ素化オレフィンの重合により供給されるような電子求引基を有する反復単位およびii)脂環式基の反復単位（炭素脂環式基（すなわち基はすべての炭素の環員を持つ）および／またはヘテロ環（すなわち環員として1以上のN、OまたはS原子を、好ましくは環員として1または2個の酸素または硫黄原子を持つ）を含む）、好ましくはそこで脂環式基がポリマー主鎖に縮合されている、すなわち脂環式基がポリマー主鎖を構成する少なくとも2つの炭素環員を有する。好ましい縮合炭素脂環式基は、任意に置換されたノルボルネン基などの環式オレフィン（環内二重結合）化合物の重合によって供給される。

【0043】

10

20

30

40

50

さらに酸素ヘテロ脂環式基は好ましくは、任意に置換されたノルボルネン基などの重合炭素脂環式化合物とともにポリマー中に存在する。

【0044】

本明細書で指すように、「炭素脂環式基」という用語は、非芳香族基の各環員が炭素であることを意味する。炭素脂環式基は環が芳香族性でないという条件で、1以上の環内炭素-炭素二重結合を有することができる。

【0045】

本明細書で指すように、「ヘテロ環基」という用語は、非芳香族環基の少なくとも1つの環員が炭素以外、たとえばN、OまたはS、通常は1または2個の炭素または硫黄原子であることを意味する。ヘテロ脂環式基は、環が芳香族性でないという条件で、1以上の環内炭素-炭素二重結合を有することができる。酸素ヘテロ環基は、基が少なくとも1つの、通常はただ1つの酸素環原子を有することを意味する。

10

【0046】

好ましい脂環式ポリマー単位炭素脂環式基またはヘテロ脂環式基は、例えば、好ましくは1～約10個の炭素原子を有するエーテルなどのヘテロアルキル基(アルコキシ)、好ましくは1～約10個の炭素原子を有するアルキルチオ、1～約10個の炭素原子を有するアルキルスルフィニル、好ましくは1～約10個の炭素原子を有するアルキルスルホニル；C₁～₂₀アルキルを含む、任意に置換されたアルキル基；2～約20個の炭素を有するエステルを含むエステル；などによって置換されうる。

20

【0047】

本発明の方法の長時間添加において、単一の重合化学物質を反応の実質的な期間にわたって添加するか、2以上の重合化学物質を反応の実質的な期間にわたって添加することができる。

【0048】

向上した均質性を持つポリマーの形成を容易にするために、組み込まれる重合化学物質すべてに対して最高の反応速度を有する組み込まれる重合化学物質が、重合反応の実質的な期間にわたって添加される。

30

【0049】

次に反応容器は反応の開始時に、比較的低い反応速度を有する1以上の組み込まれる重合化学物質が最初に充填され、反応の実質的な期間にわたって、これらの充填化合物により高速に反応する含有化学物質が添加される。

30

【0050】

したがって1)生成ポリマーにフォト酸基を供給するようなアクリレート化合物(例えばt-ブチルアクリレート；t-ブチルメタクリレート；アダマンチルアクリレートなど)；2)マレイン酸無水物などの無水物；および3)任意に置換されたノルボルネンなどの不飽和炭素脂環式化合物または任意に置換されたジヒドロピランなどの不飽和ヘテロ脂環式化合物を反応させる1つの好ましい系において、アクリレートおよび無水物は比較的高い反応速度を持ち、これらの化合物のどちらかまたは両方は重合反応の実質的な期間にわたって不飽和炭素脂環式化合物および/または不飽和ヘテロ環化合物に適切に添加され、脂環式化合物は反応の開始時に反応容器に充填されうる。

40

【0051】

重合反応の実質的な期間にわたって適切に添加される、他のより高速に反応する組み込まれる重合化学物質は、テトラフルオロエチレンなどのフッ素化エチレン、およびラクトンを含む。本発明の多くの好ましい系において、最高反応速度の化学物質はアクリレートとなり、そのようなアクリレート化学物質は好ましくは重合反応の実質的な期間にわたって添加されるべきである。

【0052】

フォトレジスト組成物での使用の場合、本発明のポリマーはフォト酸レイビル部分を含む1以上の単位も含む。フォト酸レイビル基は、重合ビニル脂環式エーテル、ビニル脂環式チオエーテルまたは炭素脂環式基の置換基などの、1以上の上述の単位の置換基でありう

50

る。フォト酸レイビル部分は、さらなるポリマー単位として、例えば重合アルキルアクリレートまたはアルキルメタクリレート、特にメチルアダマンチルアクリレートまたはメチルアダマンチルメタクリレートなどの脂環式部分を有するアクリレートとして存在することもある。好ましい脂環式フォト酸レイビル部分は、2以上の縮合または架橋環を持つ第三級エステル脂環式炭化水素基である。好ましい第三級エステル基は、任意に置換されたアダマンチル、特に上述のメチルアダマンチル；任意に置換されたフェンシル基、特にエチルフェンシル；任意に置換されたピナニル；および任意に置換されたトリシクロデカニル、特に、例えば8-エチル-8-トリシクロデカニルアクリレートおよび8-エチル-8-トリシクロデカニルメタクリレートの重合によって供給されるような、8-エチル-8-トリシクロデカニルなどのアルキル置換トリシクロデカニルを含む。追加の二環、三環および他の多環部分を含めて、追加の脂環式エステル基も適切である。

10

【0053】

上述したように、本発明のポリマーは、好ましくはポリマー主鎖に縮合されるヘテロ脂環式基または炭素脂環式基を好ましくは含む。縮合ヘテロ脂環式単位は好ましくは、1以上の酸素および/または硫黄原子を含む。上で示したように、本明細書で環式基がポリマー主鎖に縮合されるとは、環状基の2つの環員、通常は環式基の2つの隣接する炭素基もポリマー主鎖の一部であることを意味する。そのような縮合環は、環内二重結合を持つ環式モノマーを重合することにより供給できる。

20

【0054】

好ましい酸素環ポリマー単位は、硫黄などの他のヘテロ原子を含まない（すなわち酸素および炭素環員のみ）。通常、酸素環単位は1または2個の酸素環原子を含み、1以上の環置換基を有することができる。

20

【0055】

本発明の好ましいポリマーは、ポリマーの総単位に基づいて少なくとも約2～5モルパーセントの縮合ヘテロ脂環式単位、さらに好ましくはポリマーの総単位に基づいて約5～50モルパーセントの縮合ヘテロ脂環式単位；さらになお好ましくはポリマーの総単位に基づいて約5または10～約40または50パーセントの縮合ヘテロ脂環式単位を含むであろう。

20

【0056】

本発明の好ましいポリマーは、ポリマーの総単位に基づいて少なくとも約2～5モルパーセントの炭素脂環式単位；さらに好ましくはポリマーの総単位に基づいて約5～50モルパーセントの縮合炭素脂環式単位；さらになお好ましくは好ましくはポリマーの総単位に基づいて約5または10～約25または30パーセントの縮合炭素脂環式単位を含んでもよい。

30

【0057】

ヘテロ脂環式単位、炭素脂環式単位およびマレイン酸無水物単位で構成される本発明のポリマー（すなわちヘテロ脂環式基；炭素脂環式基；マレイン酸無水物ターポリマー）において、好ましくはヘテロ脂環式単位は、総ポリマー単位に基づいて約5～約10、20、30、40、50、60、70または80モルパーセントの量で存在し、炭素脂環式単位（任意に置換されたノルボルネンなど）は総ポリマー単位に基づいて約5～約10、20、30、40、50、60、70または80モルパーセントの量で存在し、およびマレイン酸無水物単位は総ポリマー単位に基づいて約5～約20、30、40、または50モルパーセントの量で存在し；およびさらに好ましくはヘテロ脂環式単位は、総ポリマー単位に基づいて約5～約10、20、30、40、50、または60モルパーセントの量で存在し、炭素脂環式単位は総ポリマー単位に基づいて約5～約10、20、30、40、50、または60モルパーセントの量で存在し、およびマレイン酸無水物単位は総ポリマー単位に基づいて約5～約10、15、20、25、30、40、または50モルパーセントの量で存在するであろう。そのようなターポリマーにおいて、適切にはヘテロ脂環式単位または炭素脂環式単位のいずれかまたは両方は、フォト酸レイビルエステル置換基などの、フォト酸レイビル置換基を含むであろう。

40

50

【0058】

上述のように、本発明のポリマーは好ましくは、フォト酸レイビル基を含む1以上の反復単位を含む。フォト酸レイビル基は例えば、ヘテロ脂環式基または炭素脂環式基環員の置換基でもよい。あるいは、一般的に好ましくは、フォト酸レイビル部分は、ヘテロ脂環式基を含む反復単位とは別個のポリマー反復単位である。好ましくはその別個の単位は、フォト酸レイビルエステル基を含むアクリレートまたはメタクリレートでもよい。フォト酸レイビル基は例えば、ビニルエーテルとポリマー反復単位のヒドロキシ置換基との反応により供給される多くのような、アセタール基でもよい。

【0059】

好ましいフォト酸レイビル基はエステル基、特に、第三級脂環式炭化水素エステル部分を含むエステルである。好ましい第3級脂環式炭化水素エステル部分は、アダマンチル、エチルフェンシルまたはトリシクロデカニル部分などの多環基である。本明細書での「第三級脂環式エステル基」への言及または他の同様の用語は、第三級脂環式炭素がエステル酸素、すなわち- $C(=O)O-TR'$ (式中、Tは脂環式基R'の第三級環炭素である)に共有結合されることを示す。少なくとも多くの場合において、好ましくは脂環式部分の第三級環炭素は、以下に示す特に好ましいポリマーによって例示されるようなエステル酸素に共有結合される。しかし、典型的には、脂環式基が環外第三級炭素の置換基の1つである場合、エステル酸素に結合された第三級炭素は脂環式基に対して環外にあることも可能である。典型的には、エステル酸素に結合された第三級炭素は、脂環式基自体、および/または1~約12の炭素、さらに通常は1~約8の炭素、さらになお通常には1、2、3または4の炭素を有する1、2または3のアルキル基によって置換される。脂環式基はまた、好ましくは芳香族置換を含まない。脂環式基は適切には単環、または多環、特に二環または三環基でありうる。

【0060】

本発明のポリマーのフォト酸レイビルエステル基の好ましい脂環式部分 (例えば- $C(=O)O-TR'$ の基TR') はかなり大きな体積を持つ。そのようなかさ高い脂環式基は、本発明のコポリマーに使用されると、向上した解像度を提供できる。

【0061】

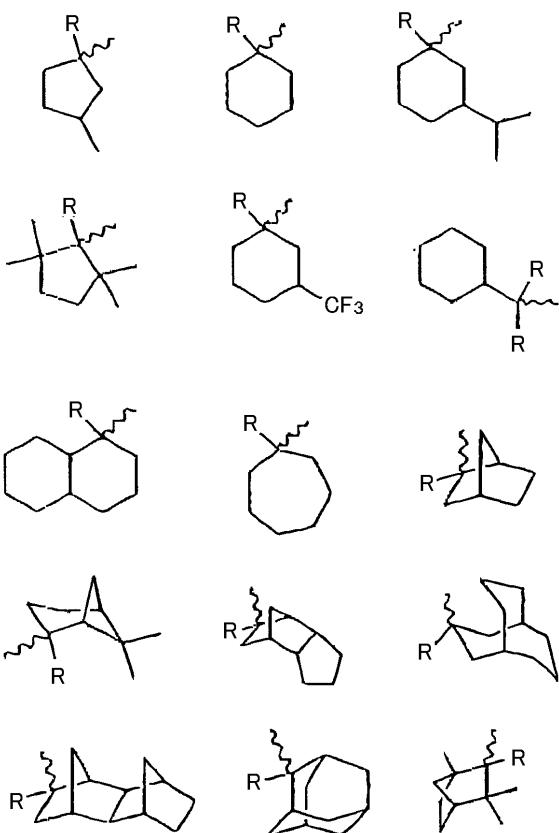
さらに詳細には、フォト酸レイビルエステル基の好ましい脂環式基は、少なくとも約125または130³の分子容、さらに好ましくは少なくとも約135、140、150、155、160、165、170、175、180、185、190、195、または200³の分子容を持つ。約220または250³より大きい脂環式基は、少なくとも一部の用途ではより好ましくないことがある。本明細書における分子容への言及は、最適化された化学結合長および角度を提供する、標準コンピュータモデル化によって決定された容積サイズを指す。本明細書で示す分子容を決定するための好ましいコンピュータプログラムは、Triposより入手可能なAlchemy 2000である。コンピュータベースの分子サイズの決定のさらなる議論については、Tomotera, Polymers for Advanced Technologies, volume 4, pp. 277-287を参照すること。

【0062】

フォト酸レイビル単位の特に好ましい第三級脂環式基は以下を含み、式中、波線はエステル基のカルボキシル酸素への結合を示し、Rは適切には任意に置換されたアルキル、特にメチル、エチルなどのC₁~₈アルキルである。

【0063】

【化1】


10

20

30

30

40

10

20

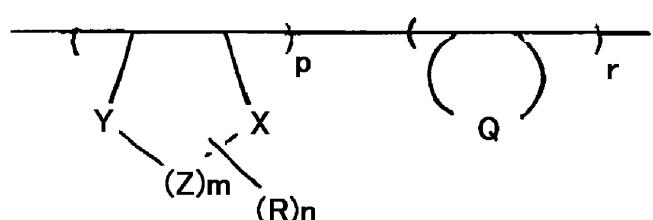
30

40

【0064】

本発明のポリマーはまた、脂環式部分を含まないフォト酸レイビル基を含んでもよい。例えば、本発明のポリマーは、フォト酸レイビルアルキルエステルなどのフォト酸レイビルエステル単位を含むことがある。一般に、フォト酸レイビルエステルのカルボキシル酸素（すなわち、次：-C(=O)Oのような、下線を付けたカルボキシル酸素）は、第四級炭素に共有結合される。t-ブチルおよび-C(CH₃)₂CH(CH₃)₂などの分岐フォト酸レイビルエステルは一般に好ましい。

【0065】


本発明のポリマーは、シアノ単位、ラクトン単位または無水物単位などの追加の単位を含んでもよい。例えばアクリロニトリルまたはメタクリロニトリルは、ペンダントシアノ基を提供するために重合され、マレイン酸無水物は縮合無水物単位を提供するために重合されることがある。

【0066】

本発明の工程により合成される好ましいポリマーは、次の式の構造を含むポリマーを含む：

【0067】

【化2】

50

【0068】

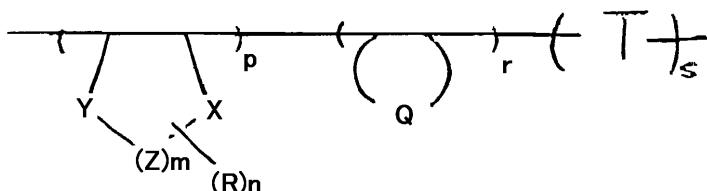
式中、X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YおよびZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく；

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表す（すなわち2つのQ環員がポリマー主鎖の隣接炭素である）；脂環式基は適切には約5～約18個の炭素原子を有し、適切には単環（例えばシクロペンチル、シクロヘキシルまたはシクロヘプチル）であり、またはさらに好ましくはQは多環であり、例えば2、3、4またはそれ以上の架橋、縮合またはそうでなければ結合した環を含み、置換Q基の好ましい置換基は、フォト酸エステルなどのフォト酸レイビル部分を含む；

各Rは、シアノ；好ましくは1～約10個の炭素を有する、任意に置換されたアルキル；好ましくは1～約10個の炭素を有する、任意に置換されたアルカノイル；好ましくは1～約10個の炭素を有する、任意に置換されたアルコキシ；好ましくは1～約10個の炭素を有する、任意に置換されたアルキルチオ；好ましくは1～約10個の炭素を有する、任意に置換されたアルキルスルフィニル；好ましくは1～約10個の炭素を有する、任意に置換されたアルキルスルホニル；（フォト酸と実質的に非反応性であるエステルを含め、COOR'（式中、R'がHまたはC₁～₈アルキルである）などの基を含む）好ましくは1～約10個の炭素を有する、任意に置換されたカルボキシ；例えばtert-ブチルエステルなどのフォト酸レイビルエステルなどのフォト酸レイビル基；などの同じかまたは異なる非水素置換基であり；

mは1（縮合五員環を供給するため）、2（縮合六員環を供給するため）、3（縮合七員環を供給するため）、または4（縮合八員環を供給するため）であり；

nは0（すなわちR環置換基なし）、1（すなわち1個のR環置換基）から環員の価数により許容される最大可能値までの整数であり、好ましくはnは0、1、2、3、4または5であり、およびさらに好ましくはnは0、1、2または3であり；


pは、ポリマー中の総単位に基づく縮合酸素環単位のモル分率であり；rはポリマー中の総単位に基づく縮合炭素脂環式単位のモル分率であり、pおよびrは各々0より大きい。

【0069】

本発明の工程により合成される好ましいポリマーは、次の式の構造を含むポリマーも含む：

【0070】

【化3】

【0071】

式中、Tは重合された、任意に置換されたアクリレート基であり、好ましくは、例えば重合されたt-ブチルアクリレート、t-ブチルメタクリレート、メチルアダマンチルアクリレート、またはメチルアダマンチルメタクリレートなどのフォト酸レイビルであり；X、YおよびZはそれぞれ独立に炭素、酸素または硫黄であり、X、YおよびZの少なくとも1つが酸素または硫黄であり、好ましくはX、YおよびZの2よりも多くが酸素または硫黄であることはなく；

Qは、ポリマー主鎖に縮合された任意に置換された炭素脂環式基を表す（すなわち2つのQ環員がポリマー主鎖の隣接炭素である）；脂環式基は適切には約5～約18個の炭素原子を有し、適切には単環（例えばシクロペンチル、シクロヘキシルまたはシクロヘプチル）であり、またはさらに好ましくはQは多環であり、例えば2、3、4またはそれ以上の架橋、縮合またはそうでなければ結合した環を含み、置換Q基の好ましい置換基は、フォト酸エステルなどのフォト酸レイビル部分を含む；

10

20

20

30

40

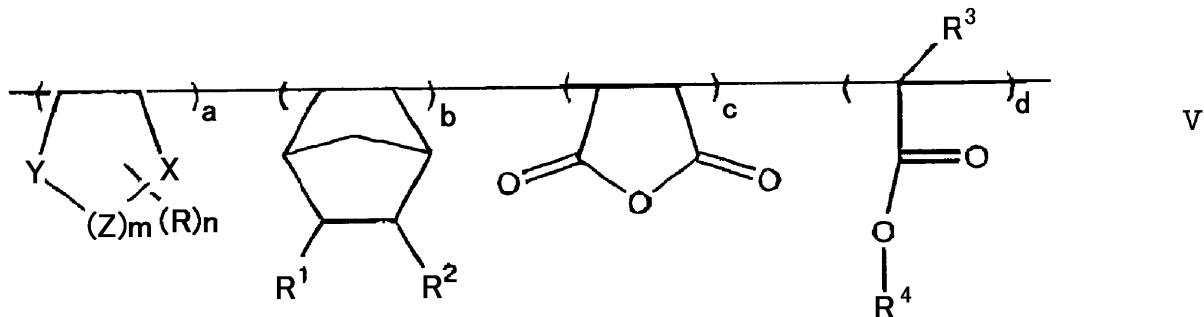
50

) であり、またはさらに好ましくは Q は多環であり、例えば 2、3、4 またはそれ以上の架橋、縮合またはそうでなければ結合した環を含み、置換 Q 基の好ましい置換基は、フォト酸エステルなどのフォト酸レイビル部分を含む；

各 R は、シアノ；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキル；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルカノイル；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルコキシ；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルチオ；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルスルフィニル；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルスルホニル；(フォト酸と実質的に非反応性であるエステルを含め、COOR' (式中、R' が H または C₁ ~ 8 アルキルである) などの基を含む) 好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたカルボキシ；例えば tert-ブチルエステルなどのフォト酸レイビルエステルなどのフォト酸レイビル基；などの同じかまたは異なる非水素置換基であり；

m は 1 (縮合五員環を供給するため)、2 (縮合六員環を供給するため)、3 (縮合七員環を供給するため)、または 4 (縮合八員環を供給するため) であり；

n は 0 (すなわち R 環置換基なし)、1 (すなわち 1 個の R 環置換基) から環員の価数により許容される最大可能値までの整数であり、好ましくは n は 0、1、2、3、4 または 5 であり、およびさらに好ましくは n は 0、1、2 または 3 であり；


p、r および s は、それぞれの単位のモル分率であり、p、r および s は各々 0 より大きい。

【0072】

本発明の工程により合成される好ましいポリマーは、次の式 V の構造を含むポリマーを含む：

【0073】

【化4】

【0074】

式中、X、Y および Z はそれぞれ独立に炭素、酸素または硫黄であり、X、Y および Z の少なくとも 1 つが酸素または硫黄であり、好ましくは X、Y および Z の 2 よりも多くの酸素または硫黄であることはなく；

各 R は、シアノ；ニトロ；ハロゲン；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキル；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルカノイル；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルコキシ；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルチオ；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルスルフィニル；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルスルホニル；(フォト酸と実質的に非反応性であるエステルを含め、COOR' (式中、R' が H または C₁ ~ 8 アルキルである) などの基を含む) 好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキルカルボキシ；例えば tert-ブチルエステルなどのフォト酸レイビルエステルなどのフォト酸レイビル基；などの同じかまたは異なる非水素置換基であり；

R¹ および R² はそれぞれ、シアノ；ニトロ；ハロゲン (F、Cl、Br または I)；好ましくは 1 ~ 約 10 個の炭素を有する、任意に置換されたアルキル；好ましくは 1 ~ 約 1

10

20

30

40

50

0個の炭素を有する、任意に置換されたアルカノイル；好ましくは1～約10個の炭素を有する、任意に置換されたアルコキシ；好ましくは1～約10個の炭素を有する、任意に置換されたアルキルチオ；好ましくは1～約10個の炭素を有する、任意に置換されたアルキルスルフィニル；好ましくは1～約10個の炭素を有する、任意に置換されたアルキルスルホニル；(フォト酸と実質的に非反応性であるエステルを含め、COOR' (式中、R'がHまたはC₁～₈アルキルである)などの基を含む)好ましくは1～約10個の炭素を有する、任意に置換されたアルキルカルボキシ；例えばtert-ブチルエステルなどのフォト酸レイビルエステルなどのフォト酸レイビル基；イタコン酸無水物などの無水物；ラクトン；などの同じかまたは異なる非水素置換基であり；

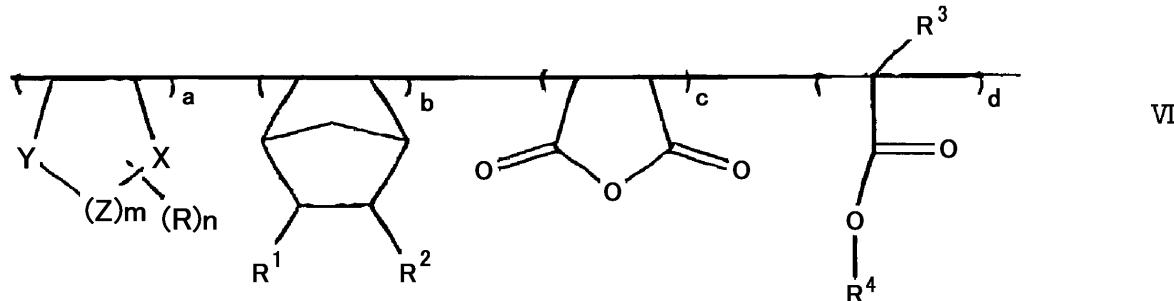
またはR¹およびR²は一緒にになって、表示したノルボルニル環に縮合された1以上の環を形成し；

mは1(縮合五員環を供給するため)、2(縮合六員環を供給するため)、3(縮合七員環を供給するため)、または4(縮合八員環を供給するため)であり；

nは0(すなわちR環置換基なし)、1(すなわち1個のR環置換基)から環員の価数により許容される最大可能値までの整数であり、好ましくはnは0、1、2、3、4または5であり、およびさらに好ましくはnは0、1、2または3であり；

R³は水素またはアルキル、特にメチルなどのC₁～₆アルキルであり；

R⁴は上述の第三級脂環式基、または分岐非環式の、任意に置換されたアルキル基などの、表示したエステルフォト酸レイビルを示す基であり、エステルカルボキシル基が第四級(すなわち非水素置換)炭素原子に直接結合されており；


a、b、cおよびdは0より大きく、それぞれのポリマー単位のモル分率である。

【0075】

本発明の好ましいポリマーは次の式VIのポリマーも含む：

【0076】

【化5】

【0077】

式中、X、Y、Z、R、R¹、R²、mおよびnはそれぞれ、上の式Vで定義されたのと同じであり；

R³は水素またはアルキル、特に水素またはメチルなどのC₁～₆アルキルであり；

R⁴は上述の第三級脂環式基、または分岐非環式の、任意に置換されたアルキル基などの、表示したエステルフォト酸レイビルを示す基であり、エステルカルボキシル基が第四級(すなわち非水素置換)炭素原子に直接結合されており；

a、b、cおよびdは0より大きく、それぞれのポリマー単位のモル分率である。

【0078】

上の式VおよびVIそれぞれにおいて、好ましくは「a」(ヘテロ脂環式単位のモル分率)は総ポリマー単位に基づいて約2～50モルパーセントであり；さらに好ましくは「a」は総ポリマー単位に基づいて約2～約40モルパーセントであり；およびさらにお好ましくは「a」は総ポリマー単位に基づいて約2～約30モルパーセントである。

【0079】

上の式VおよびVIそれぞれにおいて、好ましくは「b」(ノルボルネン単位のモル分率)は総ポリマー単位に基づいて約2～約40モルパーセントであり；およびさらにお好ましくは「b」は総ポリマー単位に基づいて約2～約30モルパーセントである。

) は総ポリマー単位に基づいて約 2 ~ 25 モルパーセントであり ; さらに好ましくは「 b 」は総ポリマー単位に基づいて約 2 ~ 約 20 モルパーセントであり ; およびさらになお好ましくは「 b 」は総ポリマー単位に基づいて約 2 ~ 約 15 または 20 モルパーセントである。

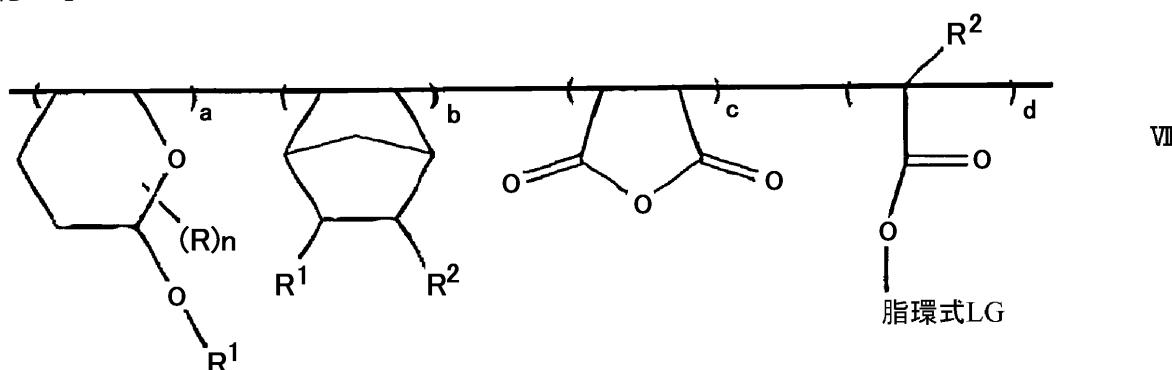
【 0080 】

上の式 V および V I それぞれにおいて、好ましくは「 c 」(無水物単位のモル分率) は総ポリマー単位に基づいて約 0 (すなわち無水物単位なし) ~ 50 モルパーセントであり ; さらに好ましくは「 c 」は総ポリマー単位に基づいて約 2 ~ 約 40 モルパーセントである。

【 0081 】

上の式 V および V I それぞれにおいて、好ましくは「 d 」(フォト酸レイビルエステル単位のモル分率) は総ポリマー単位に基づいて約 2 ~ 70 モルパーセントであり ; さらに好ましくは「 d 」は総ポリマー単位に基づいて約 5 または 10 ~ 約 70 モルパーセントであり ; およびさらになお好ましくは「 b 」は総ポリマー単位に基づいて約 5 または 10 ~ 約 50 モルパーセントである。

【 0082 】


上述のように、本発明のポリマーは好ましくは短波長、特に 193 nm および 157 nm などの 200 nm 未満にて描画されるフォトレジストで利用される。ポリマーは 248 nm などのより高い波長で描画されるフォトレジストでも利用可能である。そのようなより高い波長の用途では、ポリマーは適切には芳香族単位、例えば重合スチレンまたはハイドロスチレン単位を含む。

【 0083 】

本発明の特に好ましいポリマーは、次の式 V I I を含む :

【 0084 】

【 化 6 】

【 0085 】

上の式 V I I において、「脂環式 LG 」は、上の式 V および V I で脂環式置換基 R⁴ に定義されたのと同じであり、好ましくはメチルアダマンチル、8-エチル-8-トリシクロデカニル、エチルフェンシルなどである ; R¹ は C₁ ~ 8 アルキル、好ましくは C₁ ~ 4 アルキル、またはフォト酸レイビル基を形成する部分であり ; R² は適切には水素またはメチル、エチル、プロピルなどの C₁ ~ 8 アルキルであり ; R¹ および R² は上の式 I A で R¹ および R² それぞれについて定義されたのと同じであり ; a 、 b 、 c および d は総ポリマー単位に基づいた、ポリマー内の規定された単位のモルパーセントである。好ましくは a (酸素脂環式単位のモルパーセント) は 1 ~ 約 5 、 10 、 20 、 30 、 40 、 50 または 60 モルパーセントであり ; b (任意に置換されたノルボルネン単位のモルパーセント) は 1 ~ 約 5 、 10 、 20 、 30 、 40 、 50 または 60 モルパーセントであり ; c (マレイン酸無水物単位のモルパーセント) は 1 ~ 約 5 、 10 、 20 、 30 、 40 または 50 モルパーセントである。単位 d (アクリレートフォト酸レイビル単位) はヘテロ脂環式基またはノルボルネン単位が光不安定性単位を持つ場合は、存在しない (d = 0) ことがあり、または d は適切には、総ポリマー単位に基づいて約 2 ~ 10 、 20 、 30 、

10

20

30

40

50

40または50モルパーセントである。

【0086】

上述のように、上の式の基を含めて、各種のポリマー部分は任意に置換されることがある。「置換された」置換基は、1以上の有効な位置、通常は1つ、2つまたは3つの位置において、例えばハロゲン（特にF、ClまたはBr）；シアノ；C₁~8アルキル；C₁~8アルコキシ；C₁~8アルキルチオ；C₁~8アルキルスルホニル；C₂~8アルケニル；C₂~8アルキニル；ヒドロキシル；ニトロ；例えばアシルなどのC₁~6アルカノイルなどのアルカノイルなどの、1以上の適切な基によって置換される。

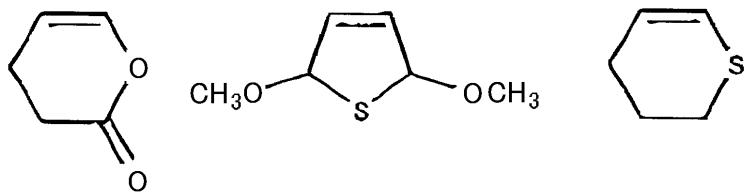
【0087】

好みしいアルカノイル基は、上の式で規定されたものを含め、式-C(=O)R'（式中、R'は水素またはC₁~8アルキルである）の基などの、1以上のケト基を含む。適切なラクトン基は、上の式で規定されたものを含め、アルファ-ブチロラクトン基などを含む。

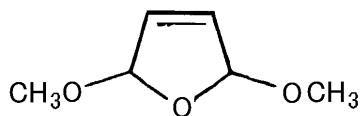
【0088】

本発明の合成において、フリーラジカル添加として実施される場合、一般に上述したように、反応温度は使用される特定の化学物質の反応性および反応溶媒の沸点（溶媒が使用される場合）によって変化するが、好みしくは反応は不活性雰囲気（例えばN₂またはアルゴン）下および約70以上高温にて実施される。適切な反応溶媒は例えばテトラヒドロフラン、ジオキサン、エチルラクテート、DMFなどを含む。どの特定の系の適切な反応温度も、本開示に基づいて当業者によって経験的にただちに決定できる。各種のフリーラジカル開始剤が使用できる。例えば、アゾ-ビス-2,4-ジメチルペンタノニトリルなどのアゾ化合物が利用できる。過酸化物、過エステル、過酸および過硫酸塩も利用できる。連鎖移動剤またはラジカルフラックスまたは濃度を制御するための他の薬剤も、反応で使用されることがある。

【0089】


本発明を提供するために反応させることができた他のモノマーは、当業者によって識別することができる。例えば、フォト酸レイビル単位を提供するために、適切なモノマーは例えば、エステル基のカルボキシ炭素の適切な基置換（例えば第三級脂環式基、t-ブチルなど）を含むメタクリレートまたはアクリレートを含む。マレイン酸無水物は、好みしくは縮合無水物ポリマー単位を提供するのに好みしい化学物質である。イタコン酸無水物はまた、イタコン酸無水物が重合の前のクロロホルムによる抽出などにより生成した場合に、無水物ポリマー単位を提供するのに好みしい化学物質である。アルファ-ブチロラクトンなどのビニルラクトンも好みしい化学物質である。他の適切かつ好みしい反応性モノマーおよび他の化学物質は上で示されている。

【0090】


本発明のポリマーを提供するために重合させることができるいくつかの適切なビニル（環内二重結合）ヘテロ環モノマーは以下を含む：

【0091】

【化7】

10

【0092】

好ましくは本発明のポリマーは、約800または1,000～約100,000、さらに好ましくは約2,000～約30,000、さらなお好ましくは約2,000～15,000または20,000の重量平均分子量(M_w)を持ち、約3以下の分子量分布(M_w/M_n)、さらに好ましくは約2以下の分子量分布、なおさらに好ましくは約1.5以下または1.2または1以下の分子量分布を有する。本発明の合成方法は、そのように低い(狭い)分子量分布を提供できる。本発明のポリマーの分子量(M_w または M_n)は、ゲル透過クロマトグラフィーにより適切に決定される。

【0093】

化学增幅ポジ作用フォトレジスト組成物に使用される発明のポリマーは、望みどおりのレジストレリーフ画像の形成を可能にするために、十分な量の光生成酸不安定性エステル基を含む必要がある。例えばそのような酸不安定性エステル基の適切な量は、ポリマーの総単位の少なくとも1モルパーセント、さらに好ましくは約2～50モルパーセント、さらになお通常は総ポリマー単位の約3～30または40モルパーセントである。好ましいポリマー例については、以下の実施例を参照すること。

【0094】

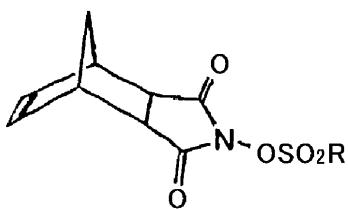
上述のように、本発明のポリマーはフォトレジスト組成物、特に化学增幅ポジ型レジストにおいて、樹脂バインダ成分として非常に有用である。本発明のフォトレジストは一般に、光活性成分および上述のポリマーを含む樹脂バインダ成分を含む。

【0095】

樹脂バインダ成分は、水性アルカリ性現像液によって現像可能なレジストのコーティング層を与えるのに十分な量で使用する必要がある。

【0096】

本発明のレジスト組成物は、活性化照射への露光時にレジストのコーティング層に潜像を生成するのに十分な量で適切に利用されるフォト酸発生剤(すなわち「PAG」)も含む。193 nmおよび248 nm描画の描画に好ましいPAGは、以下の式の化合物などのイミドスルホネートを含む：


【0097】

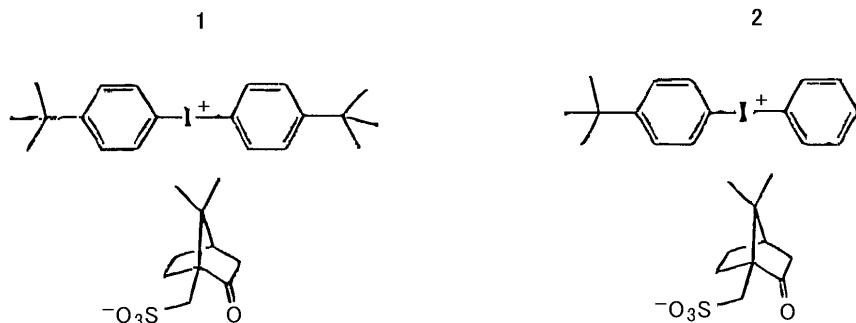
【化8】

20

30

40

【0098】


式中、Rはカンフル、アダマンタン、アルキル（例えばC₁~C₂アルキル）およびパーエフルオロ（C₁~C₂アルキル）、特にパーエフルオロオクタンスルホネート、パーエフルオロノナンスルホネートなどのパーエフルオロアルキルである。）。特に好ましいPAGはN-[（パーエフルオロオクタンスルホニル）オキシ]-5-ノルボルネン-2,3-ジカルボキシイミドである。10

【0099】

スルホネート化合物、特にスルホネート塩も適切なPAGである。193nmおよび248nm描画用の2つの適切な薬剤は以下のPAG1および2である：24

【0100】

【化9】

【0101】

そのようなスルホネート化合物は、上のPAG1の合成を詳説している欧洲特許出願第96118111.2号（公開番号0783136）に開示されているように調製できる。30

【0102】

上に示したカンフルスルホネート基以外のアニオンによって錯化された、上の2つのヨードニウム化合物も適している。特に好ましいアニオンは、式RSO₃⁻（式中、Rはアダマンタン、アルキル（例えばC₁~C₂アルキル）およびパーエフルオロ（C₁~C₂アルキル）、特にパーエフルオロオクタンスルホネート、パーエフルオロブタンスルホネートなどのパーエフルオロアルキルである。）のアニオンを含む。

【0103】

他の既知のPAGも本発明のレジストに利用できる。特に193nm描画では、より高い透明度を提供するために、一般に、上述のイミドスルホネートなどの、芳香族基を含まないPAGが好ましい。40

【0104】

本発明のレジストの好ましい任意の添加剤は、現像されたレジストレリーフ画像の解像度を向上させることができる添加塩基、特に水酸化テトラブチルアンモニウム（TBAH）、または乳酸テトラブチルアンモニウムである。193nmで描画されるレジストの場合、好ましい添加塩基は、ジアザビシクロウンデカンまたはジアザビシクロノネンなどのヒンダードアミンである。添加塩基は、例えば全固体に対して約0.03~5重量パーセントなどの、比較的少量で使用される。

【0105】

本発明のフォトレジストは他の任意の物質も含みうる。例えば、他の任意の添加剤はスト50

リエーション防止剤、可塑剤、加速剤などを含む。そのような任意の添加物は通常、比較的高い濃度で、例えばレジストの乾燥成分の総重量の約5～30重量パーセントの量で存在しうる充填剤および染料を除いて、フォトレジスト組成物中にわずかな濃度で存在する。

【0106】

本発明のネガ型フォトレジストは通常、架橋成分、好ましくは異なるレジスト成分を含む。メラミン、例えばCymelメラミン樹脂などのアミンベースの架橋剤が好ましいことが多い。

【0107】

本発明のレジストは、当業者によって容易に調製できる。例えば本発明のフォトレジスト組成物は、フォトレジストの成分を例えばエチルラクテート、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル；プロピレングリコールモノメチルエーテルアセテートおよび3-エトキシエチルプロピオネートなどの適切な溶媒に溶解させることによって調製できる。通常、組成物の固体含有率は、フォトレジスト組成物の総重量の約5～約35重量パーセントの間で変化する。樹脂バインダおよび光活性成分は、フィルムコーティング層および高品質の潜像およびレリーフ画像の形成を供給するために十分な量で存在する必要がある。レジスト成分の好ましい量の例については、以下の実施例を参照すること。

【0108】

本発明の組成物は、一般に既知の手順にしたがって使用される。本発明の液体コーティング組成物は、スピニング、浸漬、ローラーコーティングまたは他の従来のコーティング技術によって基板に塗布される。スピントーニングの場合、コーティング溶液の固体含有率は、利用される具体的なスピントーニング装置、溶液の粘度、スピントーニング装置の速度およびスピニングに与えられた時間量に基づいて所望のフィルム厚が供給されるように調整することができる

【0109】

本発明のレジスト組成物は、フォトレジストによるコーティングを含む工程で従来使用される基板に適切に塗布される。例えば組成物は、マイクロプロセッサおよび他の集積回路部品の生産のための、シリコンウェハまたは二酸化シリコンでコーティングされたシリコンウェハ上に塗布できる。アルミニウム-酸化アルミニウム、ヒ化ガリウム、セラミック、水晶、銅、ガラス基板なども適切に利用される。本発明のレジストも、反射防止層、特に有機反射防止層の上に塗布してもよい。

【0110】

表面へのフォトレジストのコーティングの後、好ましくはフォトレジストコーティングがべたつかなくなるまで溶媒を除去するために、加熱により乾燥させる。その後、従来の方法でマスクを通じて描画される。露光は、レジストコーティング層にパターン化画像を生成するために、フォトレジストシステムの光活性成分を効果的に活性化するのに十分であり、さらに詳細には露光エネルギーは通常、露光ツールおよびフォトレジスト組成物の成分に依存して、約1～100mJ/cm²の範囲である。

【0111】

上述のように、本発明のレジスト組成物のコーティング層は好ましくは、短い露光波長、特に300nm未満および200nm未満の露光波長によって光活性化される。上述のように、193nmは特に好ましい露光波長である。157nmも好ましい露光波長である。157nm露光では、レジストは適切には、フルオロオレフィン、例えばテトラフルオロエチレンの重合により供給されるようなフッ素置換を含む本発明のポリマーを含む。しかし、本発明のレジスト組成物はより高い波長においても適切に描画できる。例えば、本発明の樹脂は、必要ならば適切なPAGおよび増感剤を用いて調合され、例えば248nmまたは365nmなどのより高い波長で描画することができる。

【0112】

露光の後に、組成物のフィルム層は好ましくは約70～約160の範囲の温度でベー

10

20

30

40

50

クする。その後、フィルムを現像する。露光されたレジストフィルムは、極性現像液、好ましくはテトラアルキル水酸化アンモニウム溶液などの第四級水酸化アンモニウム溶液；エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、またはメチルジエチルアミンなどのアミン溶液、好ましくは0.26N水酸化テトラメチルアンモニウム；ジエタノールアミンまたはトリエタノールアミンなどのアルコールアミン；ピロール、ピリジンなどの環式アミンなどの、水性ベース現像液を利用して現像することによってポジ型に作用する。一般に現像は当業界で容認される手段にしたがう。

【0113】

基板上へのフォトレジストコーティングの現像の後、現像された基板は、例えば当業界で既知の手順に従って、レジストが除去された基板区域に化学的にエッチングまたはめっきすることによって、レジストが除去されたこれらの区域に選択的に処理することができる。マイクロ電子基板の製造、例えば二酸化シリコンウェハの製造の場合、適切なエッチャントは、ガスエッチャント、例えばプラズマ流として適用されるC₁₂またはC_F₄/C_H_F₃エッチャントなどの塩素またはフッ素ベースエッチャントなどのハロゲンプラズマエッチャントを含む。そのような処理の後、レジストは、既知のストリップ手順を使用して、処理済基板から除去される。

【0114】

本明細書で挙げたすべての文書は、参照により本明細書に組み込まれている。以下の限定しない実施例は、本発明の例示である。

【実施例】

【0115】

実施例1：ポリマーの合成

オーバーヘッドスターラー、還流凝縮器、窒素ライン、および2本の供給ラインを含む4つ首上部を供えた、予熱された(85)2Lのジャケット付き反応器に、マレイン酸無水物(49.26g、0.502mol)、ノルボルネン(15.77g、0.167mol)および3,4-ジヒドロ-ピラン(28.17g、0.335mol)をジオキサン中の50%(重量/重量)溶液として添加した。次に開始剤である、ジメチル-2,2'-アゾジイソブチラート7.71g(全モノマーの2mol%)の初期充填をこの混合物に加えた。開始剤のこの初期充填の直後に、開始剤(ジメチル-2,2'-アゾジイソブチラート)および2-メチルアダマンタニルメタクリラートのジオキサン中の50%(重量/重量)溶液を、反応の期間にわたって異なる供給ラインを通じて制御された速度にて反応物に添加した。全モノマー濃度に対して開始剤2mol%の一定濃度を維持するような速度で、開始剤を添加した。ジオキサン中の2-メチルアダマンタニルメタクリレートの溶液を、高い4.6g/分から低い0.5g/分までの線形勾配を用いて、156.81g(0.670mol)が添加されるまで添加した。2-メチルアダマンタニルメタクリレート充填が完了した後(約2時間)、両方の供給を停止させ、反応を85にて15分間継続させ、その後室温まで急速に冷却した。次に反応混合物をジオキサンによって33%(重量/重量)まで希釈し、その体積の10倍のイソプロピルアルコール中で沈殿させて、濾過し、イソプロピルアルコールによって洗浄し、真空乾燥器内で40にて一晩乾燥させた。収率=80%。

【0116】

実施例2：フォトレジスト調製およびリソグラフ処理。

本発明のフォトレジストは、以下の成分をレジスト組成物の総重量に基づいて重量パーセントとして表された量で混合することによって調製する：

【0117】

【表1】

10

20

30

40

レジスト成分	量(総固体に基づく重量%)
樹脂バインダ	28.2
フォト酸発生剤	0.52
塩基性添加剤	0.03
界面活性剤	0.03

【0118】

樹脂バインダは上の実施例2のポリマーである。フォト酸発生剤は、トリフェニルスルホニウムトリフレートである。塩基性添加剤はトリイソプロパノールアミンである。界面活性剤はS il w e t (D o w C h e m i c a l)である。これらのレジスト成分は、2-ヘプタノンの溶媒中にて16重量%固形分で調合された。 10

【0119】

調合したレジスト組成物は、H M D S 蒸気処理4インチシリコンウェハ上にスピンドルコートされ、真空ホットプレートによって130 °Cにて60秒間ソフトベークされる。レジストコーティング層はフォトマスクを通じて、I S Iマイクロステッパーを用いて193 nmで露光され、次に露光されたコーティング層は約130 °Cにて露光後ベーク(P E B)される。コート済ウェハは次に、描画されたレジスト層を現像し、レリーフ画像を与えるために、アルカリ性水性現像液(0.26 N水性水酸化テトラメチルアンモニウム溶液)によって処理する。 20

【0120】

実施例3：比較重合

4つのモノマーを2つの別個の方法で重合した：1) 本発明の連続添加(「制御添加法」)；および2) 反応の開始時にすべてのモノマーが反応容器に同時に添加される、バッチ添加(「バッチ合成法」)。4つのモノマーはメチルアダマンタニルメタクリレート；マレイン酸無水物；ノルボルネン(15.77 g, 0.167 mol)；および3,4-ジヒドロ-ピラン(28.17 g, 0.335 mol)であった。 30

【0121】

バッチ合成法は次のように実施した。2-メチルアダマンタニルメタクリレート(156.81 g, 0.670 mol)、マレイン酸無水物(49.26 g, 0.502 mol)、ノルボルネン(15.77 g, 0.167 mol)；および3,4-ジヒドロ-ピラン(28.17 g, 0.335 mol)およびジメチル-2,2'-アゾジイソブチラート(7.71 g、全モノマーの2 mol %)の、ジオキサン250 g中の混合物を、還流凝縮器および窒素バージを装備した丸底フラスコに入れた。次にフラスコを予熱した85 °Cの油浴に入れた。この反応混合物をこの温度で窒素下にて24時間攪拌した。反応混合物を室温に冷却した後、溶液をジオキサン250 gで希釈した。ポリマーをイソプロピルアルコール5.0 L中での沈殿によって単離し、次に濾過して、追加のイソプロピルアルコール1.0 Lによって洗浄した。最後にポリマーを真空乾燥器中で40 °Cにて一晩乾燥した、収率=76.3%。 40

【0122】

制御添加法は実施例1で述べたように実施した。

【0123】

結果

バッチ合成法では、重合中のマレイン酸無水物が3,4-ジヒドロ-2-H-ピランよりもはるかに高速で反応することが、赤外IR分光法によって決定されたように、マレイン酸無水物が3,4-ジヒドロ-2-H-ピランよりもはるかに高速で反応することを結果として生じた。バッチ合成法におけるこのモノマー消費速度の相違は主に、ビニルエーテルと比べてマレイン酸無水物とのメタクリレートの反応性がより大きいことによる。

【0124】

これに対して、制御添加法反応では、2-メチルアダマンタニルメタクリレートおよび開始剤の、マレイン酸無水物、ノルボルネンおよび3,4-ジヒドロ-2-H-ピランを含む重合溶液への添加速度は制御され、結果として、マレイン酸無水物とビニルエーテルの転化速度は、赤外分光法により決定されたように非常に近接している。

【0125】

分子量分布の組成的均質性の向上により、バッチ合成法によって調製された同様のポリマーと比較して、リソグラフィック性能の向上がもたらされた。

【0126】

実施例4：本発明のさらなるポリマー合成

ビーカー内で混合され、固体が溶解するまで攪拌されたジヒドロピラン50.70グラム 10、ノルボルネン28.38グラムおよびテトラヒドロフラン92.97グラムを含む、第一の溶液（以下「第一溶液」と呼ぶ）を調製した。

【0127】

テトラヒドロフラン中の50重量パーセントのフリーラジカル開始剤v601である第二の溶液（以下「第二溶液」と呼ぶ）を調製した。

【0128】

マレイン酸無水物93.09グラム、メチルアダマンチルアクリレート296.37グラムおよびテトラヒドロフラン389グラムを含む第三の溶液（以下「第三溶液」と呼ぶ）を調製した。

【0129】

第一溶液、第二溶液および第三溶液それぞれを、反応容器に接続された別の添加容器に充填した。それらの各添加容器は溶液を反応容器に移すための自動添加ポンプを装備していた。

【0130】

反応容器は熱源、攪拌パドルおよび水凝縮器を装備し、窒素流下で包囲されていた。

【0131】

次に反応容器への第一溶液の添加を開始した。反応容器中の溶液が70 に達した時点で、第二溶液の添加を開始した。

【0132】

第二溶液13.88グラムを添加した後、第三溶液の添加を開始した。第二および第三溶液は次の速度で次の210分間にわたって添加した：第二溶液：1分あたり溶液0.09グラム；第三溶液：1分あたり溶液3.57グラム。反応混合物は添加の間、80 に維持した。

【0133】

添加の210分後、添加を終了し、反応混合物をさらに30分間攪拌した。次に反応混合物を室温まで冷却した。生じたポリマーは、反応混合物を10:1v/vイソプロパノール：テトラヒドロフラン溶液へ添加することによる沈殿によって単離した。沈殿ポリマーは次にテトラヒドロフラン中で再溶解させて、次に10:1v/vイソプロパノール：テトラヒドロフラン溶液に添加して再度沈殿させた。沈殿ポリマーを単離、風乾し、次に40 にて真空乾燥した。

【0134】

実施例5-8：本発明のポリマーの調製で有用なモノマーの合成。

【0135】

実施例5：E t T C Dメタクリレートモノマー合成

8-エチル-8-トリシクロデカニルメタクリレート（E t T C Dメタクリレート）は、以下の表に示す化学物質およびその量を用いて以下のように調製した。

【0136】

【表2】

物質	使用量(g)	使用量(ml)	モル	供給源
TCD	150.22		1.00	TCI
塩化エチルマグネシウム(25%)	390.85	~379.5	~1.10	ACROS
塩化メタクリロイル	120.22	~112.4	~1.15	Aldrich
テトラヒドロフラン	480	540		Aldrich

【0137】

すべての反応ガラス器具は、乾燥器で100℃にて一晩乾燥させた。ガラス器具を組み立て、窒素流下で冷却した。反応は窒素雰囲気下で実施した。 10

【0138】

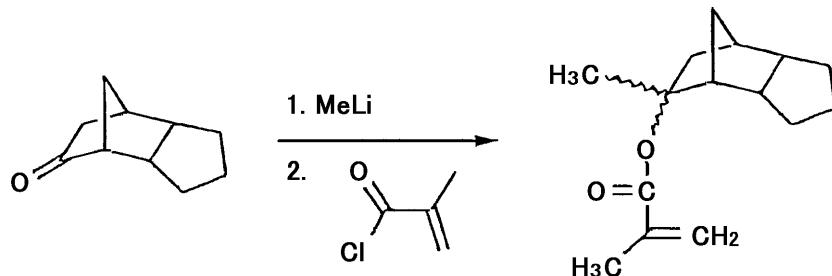
ガス入口、温度計、オーバヘッドスターーラー、およびゴム隔壁を装備した2Lの3N-RBフラスコに、テトラヒドロフラン中の塩化エチルマグネシウム25重量%溶液400g(透明、琥珀色溶液)を、窒素圧を用いてダブルチップ針を通じて入れた。ドライアイス/イソプロパノール浴を用いて、混合物を-25~-30℃に冷却した。塩化エチルマグネシウム溶液を冷却する間、トリクロロデカン(TCD)153.6gをテトラヒドロフラン480gに溶解させた。ガス入口、ガラスストッパおよびゴム隔壁を装備した1Lの3N-RBフラスコに、TCD153.6gを添加した。無水の、禁止剤を含まないテトラヒドラフランを、窒素圧を用いてダブルチップ針を通じて1Lのフラスコに移した。塩化エチルマグネシウムが-25~-30℃であるときに、TCD/THF溶液を2時間にわたって、塩化エチルマグネシウムを含む2Lの3N-RBフラスコに窒素圧を用いてダブルチップ針を通じて移した。冷浴を取り外し、反応混合物を2時間攪拌した。2時間攪拌した後、ドライアイス/イソプロパノール浴を用いて、混合物を再度-25~-30℃に冷却した。次に塩化メタクリロイル(120.22g)を、125mLの均圧滴下漏斗を用いて、1時間にわたって滴下した。反応物を一晩攪拌して室温にさせた。透明琥珀色反応溶液から白色沈殿が生じた。すべての塩が溶解し(~500mL)、2つの別個の層が見えるまで、水(DI)を加えた。層を分離し、有機(上)層をDI水2×400mLで洗浄し、次に硫酸マグネシウム上で乾燥させた。THFを除去すると、橙色油258gが残った。橙色油をヘキサン400gに溶解させた後、ヘキサンによって予備調整されていたシリカゲルプラグ400gを通過させた。すべての生成物が除去されるまで、シリカを洗浄した(TLCプレートでスポット濾過、短UV下で照射)。ヘキサンを除去すると透明無色油202.8gが残った。理論収量:248.4g; 収率81.6% 30

【0139】

実施例6: ノルボルネンバレロラクトンの合成

無水THF150mL中のバレロラクトン(50.1g)の溶液を-78℃(ドライアイス/アセトン)にて三つ首底フラスコに入れた。それに無水THF250mL中のLDA(250mL、2M)の溶液を滴下して加えた。反応混合物をこの温度で4時間攪拌した。次にパラホルムアルデヒド(36.94g、過剰)の熱分解物を反応混合物中にバブリングさせた。パラホルムアルデヒドがすべて分解した後、反応混合物を同じ浴で攪拌し、一晩攪拌した。次に回転ポンプで溶媒を除去し、残留物にCH₂Cl₂500mLを加え、NaHCO₃(水溶液、飽和)および水で数回(3×500mL)洗浄した。合わせた有機溶媒をMgSO₄上で乾燥させ、回転ポンプで溶媒を除去した。所望の生成物は真空中で蒸留した(135~140/8mmHg)。 40

【0140】


メチレン-バレロアセトンをジクロロメタンに溶解し、熱分解したばかりのシクロペンタジエンを添加した。反応混合物を室温にて3時間攪拌した後、40℃まで加熱し、40℃にて一晩保持した。反応混合物を次にゆっくり室温まで冷却した。塩化メチレンを減圧下で除去すると、油が残った。粗製油を減圧下で蒸留して、純生成物を得た。

【0141】

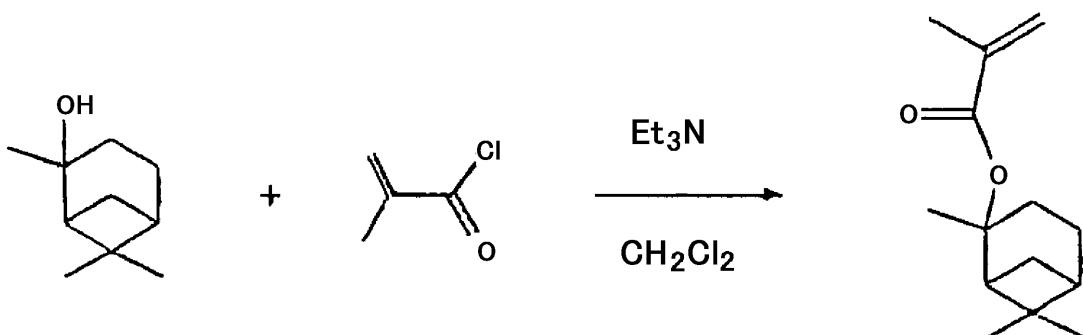
実施例 7 : 8 - メチルトリシクロデカニルメタクリレートの合成 :

【0142】

【化10】

10

【0143】


ヘキサン 100 ml 中の 1.4 M メチルリチウム (エチルエーテル中) 125 ml の溶液を、氷水浴中の三つ首丸底フラスコ内に静かに注いだ。そこにヘキサン中のトリシクロ [5.2.1.0] デカン - 8 - オン 24.00 g の溶液を滴下して添加した。添加の後、反応混合物を 0 °C にて 4 時間攪拌した。次にヘキサン 100 ml 中の塩化メタクロイル 16 ml の溶液を 0 °C にて滴下して添加した。添加の後、反応混合物を同じ浴で一晩 (16 時間) 攪拌した。白色塩を濾過した後、有機層を水で 3 回 (3 × 300 ml) 洗浄した。次に、洗浄した有機層を無水 MgSO₄ 上で乾燥させた。有機溶媒を回転ポンプで除去して、粗製表題モノマー (23.5 g) を得た。モノマーをフラッシュカラムクロマトグラフィーで精製した (純度 > 98%、ヘキサンを用いたシリカゲル)。¹H NMR : δ = 6.05 (1H)、5.50 (1H)、1.95 (3H)、1.65 (3H)、2.25 - 0.85 (14H)。

【0144】

実施例 8 : ピナニルメタクリレートの合成

【0145】

【化11】

30

シス-ピナン-2-オール

ピナニルメタクリレート(PinMA)

40

【0146】

【表3】

使用した物質

	使用量	モル	供給源
シス-ピナン-2-オール	15.43 g	0.10	Fluka
Et ₃ N	12.14 g	0.12	Aldrich、使用前に蒸留
塩化メタクリロイル	13.07 g	0.125	Aldrich、使用前に蒸留
CH ₂ Cl ₂	230 mL		Aldrich、乾燥および蒸留

10

【0147】

手順：

すべての反応用ガラス器具および針は乾燥させ、使用前に乾燥 N₂ でフラッシュし、窒素雰囲気下で反応を実施した。

1) 添加漏斗および磁気スターラーを備えた 500 mL の三つ首丸底フラスコに、シス-ピナン-2-オール 15.43 g および乾燥 CH₂Cl₂ 200 mL を加えた (CaH₂ 上で一晩攪拌した後、蒸留して、活性化モルキュラーシーブ上で保管)。生じた無色溶液を氷水浴で冷却した。

2) 冷却した CH₂Cl₂ 溶液に、添加漏斗を通じて 10 分間にわたってトリエチルアミン (12.14 g) を添加した。添加後、生じた溶液をドライアイス / アセトン浴 (-67) で保持した。

3) 塩化メタクリロイル (13.07 g) の CH₂Cl₂ (30 mL) 溶液を 20 分間にわたって滴下して添加した。生じた有機懸濁液を室温まで加温し、2 時間攪拌した。

4) 塩化物塩を濾過した。濾液を飽和 Na₂CO₃ 溶液 (2 × 200 mL) で、次に DI 水 (3 × 200 mL) で洗浄し、無水 MgSO₄ 上で乾燥させた。

5) やや黄色の CH₂Cl₂ 溶液を回転蒸発器 (浴温度は 35 以下に維持) で濃縮して、透明でやや黄色の液体生成物を得た。収率 = 79%。生成物は NMR により純粋であることが判定された。

【0148】

20

30

発明の上述の説明は単にその例示であり、以下の請求項で述べるように、本発明の精神および範囲より逸脱せずに変更および改良が行えることが理解されるであろう。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

(10) International Publication Number
WO 02/069040 A1

(51) International Patent Classification: G03F 7/004. (81) Designated States (national): AE, AG, AI, AM, AT, AU, C08G 8/00, C08F 2/00 AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/US02/05609

(22) International Filing Date: 26 February 2002 (26.02.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/271,401 27 February 2001 (27.02.2001) US

(71) Applicant: SHIPLEY COMPANY, LLC [US/US]; 455 Forest Street, Marlborough, MA 01752 (US).

(72) Inventors: BARCLAY, George, G.; 1566 Main Street, Jefferson, MA 01522 (US); CAPORALE, Stefan, J.; 36 Chestnut Street Apt.4, Worcester, MA 01609 (US); KAVANAGH, Robert, J.; 85 Putnam Avenue, Cambridge, MA 02139 (US); PUGLIANO, Nicholas; 21 Danielle Drive, Grafton, MA 01519 (US).

(74) Agents: CORLESS, Peter, F. et al.; Edwards & Angell, LLP, P.O. Box 9169, Boston, MA 02209 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BI, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SI, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/069040 A1

(54) Title: NOVEL POLYMERS, PROCESSES FOR POLYMER SYNTHESIS AND PHOTORESIST COMPOSITIONS

(57) Abstract: The invention includes new polymers and methods for providing such polymers and photoresists that comprises the polymers. Methods of the invention include those that comprise providing a reaction mixture and adding over the course of a polymerization reaction one or more polymerization reagents to the reaction mixture to provide the polymer. Photoresists containing a polymer of the invention can exhibit significantly improved lithographic properties.

WO 02/069040

PCT/US02/05609

NOVEL POLYMERS, PROCESSES FOR POLYMER SYNTHESIS AND PHOTORESIST COMPOSITIONS

The present application claims the benefit of U.S. provisional application 60/271,401, filed February 27, 2001, which is incorporated by reference herein in its entirety.

5 BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to new polymers that can exhibit significantly improved lithographic results to a photoresist comprising the polymer, processes for producing such polymers and photoresists that contain the polymers. Synthetic 10 methods of the invention include regular or substantially continuous addition of one or more polymer precursors to a reaction mixture occurs over the course of the polymer synthesis. Preferred polymers of the invention are suitable for use in photoresists imaged at short wavelengths such as sub-250 nm or sub-200 nm, particularly 248 nm, 193 nm and 157 nm.

15

2. Background

Photoresists are photosensitive films used for transfer of images to a substrate. A coating layer of a photoresist is formed on a substrate and the photoresist layer is then exposed through a photomask to a source of activating radiation. The photomask 20 has areas that are opaque to activating radiation and other areas that are transparent to activating radiation. Exposure to activating radiation provides a photoinduced chemical transformation of the photoresist coating to thereby transfer the pattern of the photomask to the photoresist-coated substrate. Following exposure, the photoresist is developed to provide a relief image that permits selective processing of 25 a substrate.

A photoresist can be either positive-acting or negative-acting. For most negative-acting photoresists, those coating layer portions that are exposed to

activating radiation polymerize or crosslink in a reaction between a photoactive compound and polymerizable reagents of the photoresist composition. Consequently, the exposed coating portions are rendered less soluble in a developer solution than unexposed portions. For a positive-acting photoresist, exposed portions are rendered 5 more soluble in a developer solution while areas not exposed remain comparatively less developer soluble.

More recently, chemically-amplified-type resists have been increasingly employed, particularly for formation of sub-micron images and other high 10 performance applications. Such photoresists may be negative-acting or positive-acting and generally include many crosslinking events (in the case of a negative-acting resist) or deprotection reactions (in the case of a positive-acting resist) per unit of photogenerated acid. In the case of positive chemically-amplified resists, certain cationic photoinitiators have been used to induce cleavage of certain "blocking" 15 groups pendant from a photoresist binder, or cleavage of certain groups that comprise a photoresist binder backbone. See, for example, U.S. Patents Nos. 5,075,199; 4,968,581; 4,883,740; 4,810,613; and 4,491,628, and Canadian Patent Application 2,001,384. Upon cleavage of the blocking group through exposure of a coating layer of such a resist, a polar functional group is formed, e.g., carboxyl or imide, which 20 results in different solubility characteristics in exposed and unexposed areas of the resist coating layer. See also R.D. Allen et al., Proceedings of SPIE, 2724:334-343 (1996); and P. Trefonas et al. Proceedings of the 11th International Conference on Photopolymers (Soc. Of Plastics Engineers), pp 44-58 (Oct. 6, 1997).

25 Interest also has increased in photoresists that can be photoimaged with short wavelength radiation, including exposure radiation of about 250 nm or less, or even about 200 nm or less, such as wavelengths of about 248 nm (provided by KrF laser) or 193 nm (provided by an ArF exposure tool). See European Published Application EP915382A2. Quite recently, imaging at 157 nm has been proposed. See Kunz et al., 30 SPIE Proceedings, (Advances in Resist Technology), vol. 3678, pages 13-23 (1999). Use of such short exposure wavelengths can enable formation of smaller features.

Accordingly, a photoresist that yields well-resolved images upon 248 nm, 193 nm or 157 nm exposure could enable formation of extremely small (e.g. sub-0.25 μ m) features that respond to constant industry demands for smaller dimension circuit patterns, e.g. to provide greater circuit density and enhanced device performance.

5

However, many current photoresists are generally designed for imaging at relatively higher wavelengths, such as G-line (436 nm) and I-line (365 nm) are generally unsuitable for imaging at short wavelengths such as sub-200nm. Even shorter wavelength resists, such as those effective at 248 nm exposures, also are 10 generally unsuitable for sub-200 nm exposures, such as 193 nm and 157 nm imaging.

It thus would be desirable to have new photoresist compositions, particularly resist compositions that can be imaged at short wavelengths such as sub-200 nm exposure wavelengths, particularly 193 nm and 157 nm. It also would be desirable to 15 have new resin components for use in such photoresists.

SUMMARY OF THE INVENTION

We have now found novel polymers and photoresist compositions that comprise the polymers as a resin component. The photoresist compositions of the 20 invention can provide highly resolved relief images upon exposure to short wavelengths, including sub-300 nm and sub-200 nm wavelengths.

We also have found new methods for synthesis of polymers that are highly useful as a photoresist resin component. Synthetic methods of the invention include 25 addition of one or more polymer precursors (e.g. unsaturated monomer or oligomer) and/or other reagents (e.g. initiator) over the course of the polymer synthesis.

We have surprisingly found that such an extended addition or continuous feed of one or more polymerization reagents can provide improved polymer homogeneity, 30 e.g. the polymer will have more uniform distribution of repeat units throughout individual polymer chains and across the molecular weight distribution of the polymer

relative to a comparable polymer made by other methods, e.g. a batch synthesis process.

We have further found that use of a polymer obtained by a process of the
5 invention in a photoresist composition can impart significantly improved lithographic properties to the resist, including reduced line edge roughness and otherwise enhanced relief image profiles.

As referred to herein, the term polymerization reagent refers to compounds
10 that are active in the polymerization reaction, whether or not those compounds are incorporated into the polymer chain. Thus, polymerization reagents are inclusive of reactive monomers, oligomers or other polymer precursors that are incorporated into the formed polymer as a result of the polymerization reaction, as well as compounds such as a free radical initiator or chain transfer agent that is active in the
15 polymerization reaction, but is not typically incorporated into the formed polymer.

References herein to "incorporated polymerization reagent" refer to polymerization reagents that are incorporated into the formed polymer as a result of the polymerization reaction. More particularly, references herein to "incorporated
20 polymerization reagent" exclude non-incorporated compounds such as a free radical initiator and includes only those reagents that through covalent linkage become part of the formed polymer. For example, unsaturated or otherwise reactive monomers or oligomers that react to form the polymer are incorporated polymerization reagents.

25 At least one incorporated reagent will be added to a reaction mixture or vessel over the substantial course of the reaction. Suitably, one, two, three, four or five polymerization reagents are added to a reaction mixture over the course of the reaction, more typically one, two or three polymerization reagents are added over the course of the reaction. By stating that a polymerization reagent is added over a
30 substantial portion of the reaction synthesis, the reagent may be added to a reaction mixture over at least about 30, 40, 50, 60, 70, 80, 90 or 95 percent of the reaction

time. The duration of reaction time is defined as commencing with the start of addition of one or more incorporated polymerization reagents to a reaction vessel or mixture and ending with substantial cooling (e.g. > 20°C or 30°C) or quenching of the reaction mixture or other reaction termination.

5

Preferably, an incorporated polymerization reagent being added over the substantial course of the reaction will have a faster reaction rate relative to one or more polymerization reagents of the reaction. Thus, for example, if two, three, four, or five distinct reactive monomers, oligomers or other polymerization reagents that 10 are incorporated into the formed polymer (referred to herein as an "incorporated polymerization reagent") are reacted, preferably at least the fastest one or two reagents are added to a reaction mixture over the substantial course of the reaction.

As referred to herein, the relative reaction rates of multiple incorporated 15 polymerization reagents are determined by measuring the change in concentration of a particular polymerization reagent with time, particularly by continuous or periodic spectral readings, as are known and described e.g. in March, *Advanced Organic Chemistry*, page 223 (Fourth Edition, John Wiley). A preferred protocol for determining reaction rates of multiple incorporated polymerization reagents is the 20 following: the multiple incorporated polymerization reagents that are to form the copolymer are placed in a reaction vessel in solvent preferably at a 1 molar concentration and reaction temperature 100°C or the minimum temperature required to induce reaction, whichever temperature is lower. Reaction mixture samples are removed at 10 minute or other defined interval and assessed by ¹H NMR for 25 consumption of each of the polymerization reagents over time. For example, for unsaturated monomer or oligomer polymerization reagents, disappearance of olefinic protons of each unsaturated reagent can be assessed. Relative reaction rates then can be determined for each reagent.

30 Typically, the incorporated polymerization reagents of a given reaction will differ in relative reaction rates by at least about 20 percent, more typically a greater

difference such as at least about a 30, 40, 50, 60, 70, 80, 90, 100, 150 or 200 percent difference in reaction rates. Thus, the incorporated polymerization reagents can be readily "ranked" as having the "fastest", "second fastest", "slowest", etc. reaction rate for the particular polymerization reaction.

5

Generally preferred synthetic methods of the invention may include: i) charging a reaction vessel with just essentially solvent or also with one or more polymerization reagents such as one or more distinct monomers or other polymer precursors and initiator (e.g. free radical initiator, acid for acid-promoted 10 polymerization, and the like, to provide a reaction mixture); ii) addition of one or more reagents, e.g., a monomer, another polymer precursor and/or additional initiator, to the reaction mixture over a substantial portion of the course of the reaction.

Polymers of the invention may be homopolymers or, generally more 15 preferably, are higher order polymers that contain 2, 3, 4 or 5 or more distinct repeat units, i.e. preferred are copolymers, terpolymers, tetrapolymers and pentapolymers. Unless otherwise indicated herein, the term copolymer is inclusive of higher order polymers such as terpolymers, tetrapolymers and pentapolymers.

20 Polymers may suitably comprise repeat units produced by polymerization of reagents selected from the group of:

- 1) an electron deficient reagent or a reagent with one or more electron-withdrawing groups such as an anhydride including maleic anhydride or a halogenated olefin, particularly a fluorinated olefin such as tetrafluoroethylene (TFE)
- 25 and the like;
- 2) a comparatively electron rich reagent (such as olefinic monomers not including an electron withdrawing group within one, two or three carbons of a vinyl group), e.g. an unsaturated alicyclic (e.g. endo- or exocyclic carbon-carbon double bond); or acyclic alkyl group suitably having from 3 to about 20 carbons, more
- 30 typically 4 to about 20 carbons such as norbornene, cyclohexene, vinyl adamantyl and the like; or an unsaturated vinyl heteroalicyclic or heteroacyclic (particularly oxygen

or sulfur heteroalicyclic and heteroalicyclic) such as to provide a polymerized cyclic ether (e.g. a tetrahydrofuran group fused to a polymer backbone) or cyclic thioether, alkoxy e.g. having 1 to about 12 carbon atoms, and the like;

5 optionally and often preferably 3) an acrylate (which includes substituted acrylates such as methacrylates), particularly acrylates that have a photoacid-labile group such as t-butyl acrylate, t-butyl methacrylate, adamantyl acrylate, adamantyl methacrylate, and the like.

In the synthetic methods of the invention, a reaction vessel may be suitably charged with reagent 2) (i.e. electron rich reagent), and an electron deficient reagent 1) is added to reaction vessel over the course of the reaction. A free radical initiator also may be added over the course of the reaction, or may be added as directly to the initial reaction mixture at the start of the reaction.

10 Methods of the invention may be conducted by a variety of other arrangements. For instance, separate addition apparatus (e.g. feed lines) may be used to add multiple reagents to a reaction mixture over the course of a reaction. For example, initiator may be added via one feed line and an unsaturated monomer such as an acrylate may be added via a second feed line.

15 Suitably, the polymerization reagent(s) contained in the reaction vessel are present in a suitable solvent such as e.g. dioxane, DMF, chloroform, and the like. The one or more added reagents also may be admixed in such reaction solvents.

20 As discussed, preferably, one or more polymerization reagents are added to a reaction mixture over a substantial portion of the reaction synthesis. Suitably, the one or more added polymerization reagents are feed to a reaction mixture over at least about 50, 60, 70, 80, 90 or 95 percent of the total reaction time, i.e. over the substantial course of the reaction. As should be understood, reaction time may end

25 30 when the reaction mixture is quenched (e.g. with water, ethanol or other alcohol, etc.,)

or the formed polymer is otherwise isolated, or temperature of the reaction mixture is substantially reduced, e.g. to room temperature or 0°C.

The rate of addition of one or more polymerization reagents to a reaction mixture can be substantially constant over the course of a reaction or the addition rate can vary over the course of the reaction to produce even more homogenous polymer. For instance, initiator can be added at a rate to maintain a substantially constant initiator concentration in the reaction mixture over a substantial course of the polymer synthesis. Such a constant concentration of initiator can further provide polymer homogeneity.

An unsaturated monomer or oligomer may be added at varying rates to correspond to the current state of the polymerization reaction. For instance, an unsaturated monomer such as an acrylate may be added at a substantially linearly decreasing rate over the course of the polymerization reaction. Preferably an unsaturated monomer such as an acrylate may be added at a decreasing rate such that over the course of the polymerization reaction the ratio of monomer concentrations is substantially constant, e.g. the ratio of the continuous feed polymerization reagent to the concentration of the other polymerization reagents in the reaction mixture is substantially constant.

Additionally, a polymerization reagent that is added over the substantial course of a reaction preferably will be added substantially continuously over the addition time, e.g. suitably addition of the reagent polymerization will not be terminated for more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30 or 45 minutes during the entire addition time. More preferably, addition of the polymerization reagent addition of the reagent will not be terminated for more than about 5, 10, 15, or 20 minutes during the entire addition time.

Polymer syntheses of the invention may be suitably run at elevated temperatures, e.g. above about 50°C, or above about 60, 70, 80 or 90°C, but less than about 140°C or 120°C. The reaction suitably can be run at reflux.

5 Polymers of the invention may be preferably employed in photoresists imaged at sub-200 nm wavelengths such as 193 nm, and thus preferably will be substantially free of any phenyl or other aromatic groups. For example, preferred polymers contain less than about 5 mole percent aromatic groups, more preferably less than about 1 or 2 mole percent aromatic groups, more preferably less than about 0.1, 0.02, 0.04 and

10 0.08 mole percent aromatic groups and still more preferably less than about 0.01 mole percent aromatic groups. Particularly preferred polymers for 193 nm imaging are completely free of aromatic groups. Aromatic groups can be highly absorbing of sub-200 nm radiation and thus are undesirable for polymers used in photoresists imaged with such short wavelength radiation, particularly 193 nm.

15 Polymers of the invention also may be suitably utilized in resists imaged at higher wavelengths, such as 248 nm. Such polymers suitably will contain aromatic groups such as provided by polymerization of a vinyl aromatic group, e.g. a vinylphenol, acetoxystyrene (where the acetoxy group can be de-blocked after

20 polymerization to provide phenolic units), styrene, α -methylstyrene, vinyl naphthalene and the like.

The invention also provides methods for forming relief images, including methods for forming a highly resolved relief image such as a pattern of lines where

25 each line has essentially vertical sidewalls and a line width of about 0.40 microns or less, and even a width of about 0.25, 0.20 or 0.16 microns or less. The invention further provides articles of manufacture comprising substrates such as a microelectronic wafer substrate, optoelectronic substrate or liquid crystal display or other flat panel display substrate having coated thereon a polymer, photoresist or

30 resist relief image of the invention.

WO 02/069040

PCT/US02/05609

- 10 -

The invention also includes polymers obtainable or obtained by a method of the invention.

Other aspects of the invention are disclosed infra.

5

DETAILED DESCRIPTION OF THE INVENTION

As discussed above, synthetic methods of the invention include addition of one or more polymer precursors (e.g. polymerization reagents such as unsaturated monomer or oligomer) and/or other polymerization reagents (e.g. initiator) over the 10 substantial course of the polymer synthesis.

In preferred aspects, the invention includes methods for preparing photoresist compositions which in general comprise a) providing a polymer by a polymerization reaction that comprises adding over the substantial course of the polymerization 15 reaction one or more incorporated polymerization reagents to a reaction mixture; and then b) admixing the polymer with a photoactive component. The polymer may be suitably isolated and washed, dried, etc. after the polymerization reaction and prior to admixture with the photoactive component and as may be suitable other resist components such as solvent, basic additive, etc. and, in the case of a negative resist, a 20 crosslinker.

As referred to herein, the term "reaction mixture" to which the one or more incorporated polymerization reagents are added over the substantial course of the reaction is inclusive of a reaction vessel which may be pre-charged (i.e. before the 25 start of the addition of the one or more incorporated polymerization reagents) with solvent and/or one or more other polymerization reagents, as well as a reaction vessel that may be completely empty at start of the addition of the one or more incorporated polymerization reagents, i.e. "reaction mixture" is inclusive of a reaction vessel that just includes solvent or that is initially completely or essentially empty and to which 30 reagents are added over the course of the reaction.

The extended additions can be configured in a variety of alternative arrangements. For instance, as indicated, a reaction vessel may be charged with one or more polymerization reagents at the start of a reaction, and one or more polymerization reagents added to the charged reaction vessel over a substantial course 5 of the reaction. Alternatively, a reaction may not be charged with any reagents, but rather each of the polymerization reagents may be added over a substantial course of the reaction. In such instance, the reaction vessel typically will be initially charged with solvent.

10 A variety of polymerization reagents may be employed in a synthetic process of the invention. For example, preferred polymerization reagents include an anhydride such as maleic anhydride; a lactone; a fluorinated olefin such as tetrafluoroethylene; a carbon alicyclic group such as an optionally substituted norbornene or other cyclic olefin; a heteroalicyclic such as an optionally substituted 15 dihydropyran; or an acrylate such as 2-methyladamantanyl methacrylate or 2-methyladamantanyl acrylate. As used herein, the term acrylate is inclusive of substituted acrylates such as methacrylates.

Methods of the invention are particularly useful for producing polymers that 20 contain repeat units of electron-deficient reagents, e.g. an anhydride particularly maleic anhydride; a fluorinated-olefin such as tetrafluoroethylene and the like, together with repeat units of comparatively electron rich reagents such as optionally substituted norbornene, optionally substituted styrene and the like.

25 Thus, preferred polymers of the invention may contain i) repeat units with electron-withdrawing groups such as provided by polymerization of an anhydride or a fluorinated olefin and ii) repeat units of alicyclic groups (including carbon alicyclics i.e. the group has all carbon ring members and/or heteroalicyclic i.e. having one or more N, O or S atoms as ring members, preferably 1 or 2 oxygen or sulfur atoms as 30 ring members) preferably where the alicyclic group is fused to the polymer backbone, e.g. the alicyclic ring has at least two carbon ring members that comprise the polymer

backbone. Preferred fused carbon alicyclic groups are provided by polymerization of cyclic olefin (endocyclic double bond) compounds such as optionally substituted norbornene groups.

5 Additionally, an oxygen heteroalicyclic group preferably will be present in a polymer together with polymerized carbon alicyclic compounds such as optionally substituted norbornene.

As referred to herein, the term "carbon alicyclic group" means each ring
10 10 member of the non-aromatic group is carbon. The carbon alicyclic group can have one or more endocyclic carbon-carbon double bonds, provided the ring is not aromatic.

As referred to herein, the term "heteroalicyclic group" means at least one ring
15 15 member of the non-aromatic cyclic group is other than carbon, e.g. N, O or S, typically one or two oxygen or sulfur atoms. The heteroalicyclic group can have one or more endocyclic carbon-carbon double bonds, provided the ring is not aromatic. An oxygen heteroalicyclic group means that the group has at least one, and typically only one, oxygen ring atoms.

20 Preferred alicyclic polymer units carbon alicyclic or heteroalicyclic) may be substituted, e.g. by heteroalkyl groups such as ethers (alkoxy) preferably having 1 to about 10 carbon atoms, alkylthio preferably having 1 to about 10 carbon atoms, alkylsulfinyl preferably 1 to about 10 carbon atoms, alkylsulfonyl preferably having 1
25 25 to about 10 carbon atoms; optionally substituted alkyl groups including C₁₋₂₀ alkyl; esters including esters having from 2 to about 20 carbons; and the like.

In the extended additions of methods of the invention, a single polymerization
reagent may be added over the substantial course of the reaction, or two or more
30 30 polymerization reagents may be added over the substantial course of the reaction.

To facilitate formation of polymers having enhanced homogeneity, incorporated polymerization reagent(s) that have the fastest reaction rates relative to all of the incorporated polymerization reagents are added over the substantial course of the polymerization reaction.

5

In turn, a reaction vessel may be initially charged at the start of the reaction with one or more incorporated polymerization reagents that have comparatively slower reaction rates and the faster-reacting incorporated reagent added to those charged compounds over the substantial course of the reaction.

10

Thus, in one preferred system of reacting 1) an acrylate compound such as may provide a photoacid-labile group to the formed polymer (e.g. t-butyl acrylate; t-butyl methacrylate; adamantylacrylate, etc.); 2) an anhydride such as maleic anhydride; and 3) unsaturated carbon alicyclic compound such as optionally substituted norbornene or an unsaturated heteroalicyclic compound such as an optionally substituted dihydropyran, the acrylate and anhydride have comparatively faster reaction rates and either or both of those compounds are suitably added over the substantial course of a polymerization reaction to an unsaturated carbon alicyclic compound and/or an unsaturated heteroalicyclic compound, which alicyclic compounds may be charged in a reaction vessel at the start of the reaction.

Other faster reacting incorporated polymerization reagents that are suitably added over the substantial course of the polymerization reaction include fluorinated olefins such as tetrafluoroethylene, and lactones. In many preferred systems of the invention, the reagent with the fastest reaction rate will be an acrylate, and such acrylate reagent preferably should be added over the substantial course of the polymerization reaction.

For use in photoresist compositions, polymers of the invention also will contain one or more units that comprise photoacid-labile moieties. The photoacid-labile group may be a substituent of one or more of the above-mentioned units, such

as a substituent of a polymerized vinyl alicyclic ether, vinyl alicyclic thioether or carbon alicyclic group. The photoacid labile moiety also may be present as an additional polymer unit, e.g. as a polymerized alkyl acrylate or alkylmethacrylate, particularly an acrylate having an alicyclic moiety such as methyladamantyl acrylate or methyladamantyl methacrylate. Preferred alicyclic photoacid-labile moieties are 5 tertiary ester alicyclic hydrocarbon groups that have two or more fused or bridged rings. Preferred tertiary ester groups include optionally substituted adamantyl, particularly methyl adamantyl as mentioned above; optionally substituted fencyl groups, particularly ethyl fencyl; optionally substituted pinnanyl; and optionally substituted tricyclo decanyl, particularly an alkyl-substituted tricyclo decanyl such as 10 8-ethyl-8-tricyclodecanyl e.g. as provided by polymerization of 8-ethyl-8-tricyclodecanyl acrylate and 8-ethyl-8-tricyclodecanyl methacrylate. Additional alicyclic ester groups also will be suitable, including additional bicyclic, tricyclic and other polycyclic moieties.

15 As mentioned, polymers of the invention preferably contain a heteroalicyclic or carbon alicyclic ring that is preferably fused to a polymer backbone. A fused heteroalicyclic ring unit preferably contains one or more oxygen and/or sulfur atoms. As indicated above, by stating herein that a cyclic group is fused to a polymer 20 backbone, it is meant that two ring members of the cyclic group, typically two adjacent carbon atoms of the cyclic group, are also part of the polymer backbone. Such a fused ring can be provided by polymerizing a cyclic monomer that has an endocyclic double bond.

25 Preferred oxygen ring polymer units will be free of other hetero atoms such as sulfur (i.e. only oxygen and carbon ring members). Typically, the oxygen ring unit will contain one or two oxygen ring atoms and may have one or more ring substituents.

30 Preferred polymers of the invention may contain at least about 2 to 5 mole percent of fused heteroalicyclic units based on total units of the polymer; more

preferably from about 5 to 50 mole percent of fused heteroalicyclic units based on total units of the polymer; still more preferably from about 5 or 10 to about 40 or 50 percent of fused heteroalicyclic units based on total units of the polymer.

5 Preferred polymers of the invention may contain at least about 2 to 5 mole percent of carbon alicyclic units based on total units of the polymer; more preferably from about 5 to 50 mole percent of fused carbon alicyclic units based on total units of the polymer; still more preferably from about 5 or 10 to about 25 or 30 percent of fused carbon alicyclic units based on total units of the polymer.

10 In polymers of the invention that consist of heteroalicyclic units, carbon alicyclic units and maleic anhydride units (i.e. heteroalicyclic:carbon alicyclic:maleic anhydride terpolymers), preferably the heteroalicyclic units will be present in an amount of from about 5 to about 10, 20, 30, 40, 50, 60, 70 or 80 mole percent based on total polymer units, the carbon alicyclic units (such as optionally substituted norbornene) will be present in an amount of from about 5 to about 10, 20, 30, 40, 50, 60, 70 or 80 mole percent based on total polymer units, and the maleic anhydride units will be present from about 5 to about 20, 30, 40 or 50 mole percent based on total polymer units; and more preferably the heteroalicyclic units will be present in an amount of from about 5 to about 10, 20, 30, 40, 50 or 60 mole percent based on total polymer units, the carbon alicyclic units will be present in an amount of from about 5 to about 10, 20, 30, 40, 50 or 60 mole percent based on total polymer units, and the maleic anhydride units will be present from about 5 to about 10, 15, 20, 25, 30, 40, or 50 mole percent based on total polymer units. In such terpolymers, suitably either or

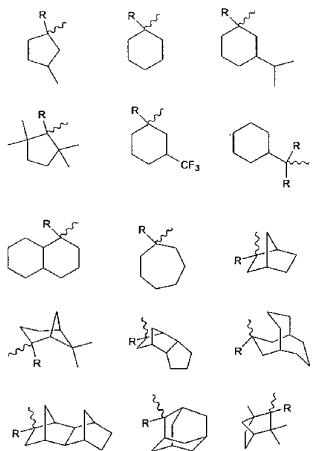
15 20 25

both the heteroalicyclic or carbon alicyclic units will contain a photoacid labile substituents such as a photoacid-labile ester substituent.

As discussed above, polymers of the invention preferably comprise contain one or more repeat units that comprise a photoacid-labile group. The photoacid-labile group may be e.g. a substituent of a heteroalicyclic or carbon alicyclic ring member.

30 Alternatively, and generally preferred, the photoacid-labile moiety will be a polymer

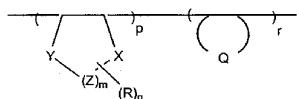
repeat unit distinct from repeat units containing a heteroalicyclic group. Preferably, that distinct unit may be a an acrylate or methacrylate that comprises a photoacid-labile ester group. The photoacid-labile group also may be e.g. an acetal group such as many be provided by reaction of a vinyl ether with a hydroxy substituent of a 5 polymer repeat unit.


Preferred photoacid-labile groups are ester groups, particularly esters that contain a tertiary alicyclic hydrocarbon ester moiety. Preferred tertiary alicyclic hydrocarbon ester moieties are polycyclic groups such adamantyl, ethylfencyl or a 10 tricyclo decanyl moiety. References herein to a "tertiary alicyclic ester group" or other similar term indicate that a tertiary alicyclic ring carbon is covalently linked to the ester oxygen, i.e. $-\text{C}(=\text{O})\text{O}-\text{TR}'$ where T is a tertiary ring carbon of alicyclic group R'. In at least many cases, preferably a tertiary ring carbon of the alicyclic moiety will be covalently linked to the ester oxygen, such as exemplified by the 15 15 below-depicted specifically preferred polymers. However, the tertiary carbon linked to the ester oxygen also can be exocyclic to the alicyclic ring, typically where the alicyclic ring is one of the substituents of the exocyclic tertiary carbon. Typically, the tertiary carbon linked to the ester oxygen will be substituted by the alicyclic ring itself, and/or one, two or three alkyl groups having 1 to about 12 carbons, more 20 typically 1 to about 8 carbons, even more typically 1, 2, 3 or 4 carbons. The alicyclic group also preferably will not contain aromatic substitution. The alicyclic groups may be suitably monocyclic, or polycyclic, particularly bicyclic or tricyclic groups.

Preferred alicyclic moieties (e.g. group TR' of $-\text{C}(=\text{O})\text{O}-\text{TR}'$) of photoacid 25 labile ester groups of polymers of the invention have rather large volume. It has been found that such bulky alicyclic groups can provide enhanced resolution when used in copolymers of the invention.

More particularly, preferred alicyclic groups of photoacid labile ester groups 30 will have a molecular volume of at least about 125 or about 130 \AA^3 , more preferably a molecular volume of at least about 135, 140, 150, 155, 160, 165, 170, 175, 180, 185,

190, 195, or 200 Å³. Alicyclic groups larger than about 220 or 250 Å³ may be less preferred, in at least some applications. References herein to molecular volumes designate volumetric size as determined by standard computer modeling, which provides optimized chemical bond lengths and angles. A preferred computer program 5 for determining molecular volume as referred to herein is Alchemy 2000, available from Tripos. For a further discussion of computer-based determination of molecular size, see T Omote et al, *Polymers for Advanced Technologies*, volume 4, pp. 277-287.


Particularly preferred tertiary alicyclic groups of photoacid-labile units include 10 the following, where the wavy line depicts a bond to the carboxyl oxygen of the ester group, and R is suitably optionally substituted alkyl, particularly C₁₋₈ alkyl such as methyl, ethyl, etc.

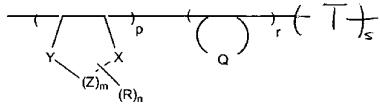
Polymers of the invention also may contain photoacid-labile groups that do not contain an alicyclic moiety. For example, polymers of the invention may contain photoacid-labile ester units, such as a photoacid-labile alkyl ester. Generally, the carboxyl oxygen (i.e. the carboxyl oxygen as underlined as follows: $\text{-C}(\text{=O})\underline{\text{Q}}$) of the 5 photoacid-labile ester will be covalently linked to the quaternary carbon. Branched photoacid-labile esters are generally preferred such as t-butyl and $\text{-C}(\text{CH}_3)_2\text{CH}(\text{CH}_3)_2$.

Polymers of the invention also may contain additional units such as cyano 10 units, lactone units or anhydride units. For example, acrylonitrile or methacrylonitrile may be polymerized to provide pendant cyano groups, or maleic anhydride may be polymerized to provide a fused anhydride unit.

Preferred polymers that may be synthesized by process of the invention 15 include those that comprise a structure of the following formula:

wherein X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

20 Q represents an optionally substituted carbon alicyclic ring fused to the polymer backbone (i.e. two Q ring members being adjacent carbons of the polymer backbone); the alicyclic ring suitably having from about 5 to about 18 carbon atoms and is suitably a single ring (e.g. cyclopentyl, cyclohexyl or cycloheptyl), or more preferably Q is polycyclic e.g. and contain 2, 3, 4 or more bridged, fused or otherwise 25 linked rings, and preferred substituents of a substituted Q group include photoacid-labile moieties such as a photoacid-labile ester;


each R is the same or different non-hydrogen substituent such as cyano; optionally substituted alkyl preferably having 1 to about 10 carbon atoms; optionally substituted alkanoyl preferably having 1 to about 10 carbon atoms; optionally substituted alkoxy preferably having 1 to about 10 carbon atoms; optionally substituted alkylthio preferably having 1 to about 10 carbon atoms; optionally substituted alkylsulfinyl preferably 1 to about 10 carbon atoms; optionally substituted alkylsulfonyl preferably having 1 to about 10 carbon atoms; optionally substituted carboxy preferably have 1 to about 10 carbon atoms (which includes groups such as -COOR' where R' is H or C₁-alkyl, including esters that are substantially non-reactive with photoacid); a photoacid-labile group such as a photoacid-labile ester e.g. a tert-butyl ester and the like; etc.

5 m is 1 (to provide a fused five-membered ring), 2 (to provide a fused six-membered ring), 3 (to provide a fused seven-membered ring), or 4 (to provide a fused eight-membered ring);

10 15 n is an integer of from 0 (i.e. no R ring substituents), 1 (i.e. a single R ring substituent) to the maximum possible value permitted by the valences of the ring members, and preferably n is 0, 1, 2, 3, 4 or 5, and more preferably n is 0, 1, 2 or 3;

15 p is the mole fraction of the fused oxygen ring units based on total units in the polymer; and r is the mole fraction of the fused carbon alicyclic ring units based on 20 total units in the polymer, and p and r are each greater than zero.

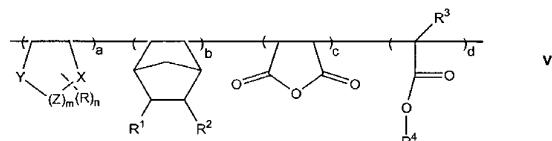
Preferred polymers that may be synthesized by process of the invention also include those that comprise a structure of the following formula:

wherein T is a polymerized optionally substituted acrylate group and is preferably photoacid-labile e.g. a polymerized t-butylacrylate, t-butylmethacrylate, methyladamantylacrylate, or methyladamantylmethacrylate;

X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic ring fused to the polymer backbone (i.e. two Q ring members being adjacent carbons of the polymer backbone); the alicyclic ring suitably having from about 5 to about 18 carbon atoms and is suitably a single ring (e.g. cyclopentyl, cyclohexyl or cycloheptyl), or more preferably Q is polycyclic e.g. and contain 2, 3, 4 or more bridged, fused or otherwise linked rings, and preferred substituents of a substituted Q group include photoacid-labile moieties such as a photoacid-labile ester;

each R is the same or different non-hydrogen substituent such as cyano;


15 optionally substituted alkyl preferably having 1 to about 10 carbon atoms; optionally substituted alkanoyl preferably having 1 to about 10 carbon atoms; optionally substituted alkoxy preferably having 1 to about 10 carbon atoms; optionally substituted alkylthio preferably having 1 to about 10 carbon atoms; optionally substituted alkylsulfinyl preferably 1 to about 10 carbon atoms; optionally substituted alkylsulfonyl preferably having 1 to about 10 carbon atoms; optionally substituted carboxy preferably have 1 to about 10 carbon atoms (which includes groups such as -COOR' where R' is H or C₁₋₈alkyl, including esters that are substantially non-reactive with photoacid); a photoacid-labile group such as a photoacid-labile ester e.g. a tert-butyl ester and the like; etc.

25 m is 1 (to provide a fused five-membered ring), 2 (to provide a fused six-membered ring), 3 (to provide a fused seven-membered ring), or 4 (to provide a fused eight-membered ring);
n is an integer of from 0 (i.e. no R ring substituents), 1 (i.e. a single R ring substituent) to the maximum possible value permitted by the valences of the ring

30 members, and preferably n is 0, 1, 2, 3, 4 or 5, and more preferably n is 0, 1, 2 or 3;

p, r and s are the mole fractions of the respective units and each of p, r and s each is greater than zero.

Preferred polymers that may be synthesized by process of the invention also 5 include those that comprise a structure of the following Formula V:

wherein X, Y, and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y and Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

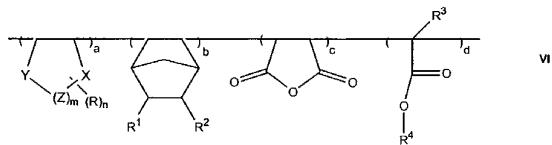
- each R is the same or different non-hydrogen substituent such as cyano; nitro;
- 10 halogen; optionally substituted alkyl preferably having 1 to about 10 carbon atoms; optionally substituted alkanoyl preferably having 1 to about 10 carbon atoms; optionally substituted alkoxy preferably having 1 to about 10 carbon atoms; optionally substituted alkylthio preferably having 1 to about 10 carbon atoms; optionally substituted alkylsulfinyl preferably having 1 to about 10 carbon atoms;
- 15 optionally substituted alkylsulfonyl preferably having 1 to about 10 carbon atoms; optionally substituted alkylcarboxy preferably having 1 to about 10 carbon atoms (which includes groups such as -COOR' where R is H or C₁₋₈alkyl, including esters that are substantially non-reactive with photoacid); a photoacid-labile group such as a photoacid-labile ester e.g. tert-butyl ester and the like; etc.;
- 20 R¹ and R² are each the same or different non-hydrogen substituent such as cyano; nitro; halogen (F, Cl, Br or I); optionally substituted alkyl preferably having 1 to about 10 carbon atoms; optionally substituted alkanoyl preferably having 1 to about 10 carbon atoms; optionally substituted alkoxy preferably having 1 to about 10 carbon atoms; optionally substituted alkylthio preferably having 1 to about 10 carbon atoms;
- 25 optionally substituted alkylsulfinyl preferably having 1 to about 10 carbon atoms; optionally substituted alkylsulfonyl preferably having 1 to about 10 carbon atoms;

- 22 -

optionally substituted alkylcarboxy preferably having 1 to about 10 carbon atoms (which includes groups such as $-COOR'$ where R is H or C_{1-8} alkyl, including esters that are substantially non-reactive with photoacid); a photoacid-labile group such as a photoacid-labile ester e.g. tert-butyl ester and the like; an anhydride such as itaconic anhydride; a lacone; etc.;

5 or R^1 and R^2 may be taken together to form one or more rings fused to the depicted norbornyl ring;

m is 1 (to provide a fused five-membered ring), 2 (to provide a fused six-membered ring), 3 (to provide a fused seven-membered ring), or 4 (to provide a fused 10 eight-membered ring);


n is an integer of from 0 (i.e. no R ring substituents), 1 (i.e. a single R substituent) to the maximum possible value permitted by the valences of the ring members, and preferably n is 0, 1, 2, 3, 4, or 5, and more preferably n is 0, 1, 2 or 3;

15 R^3 is hydrogen or alkyl, particularly C_{1-6} alkyl such as methyl;

R^4 is a group that renders the depicted ester photoacid-labile, such as a tertiary alicyclic group as discussed above, or a branched non-cyclic optionally substituted alkyl group, with the ester carboxyl group being directly bonded to a quaternary (i.e. no hydrogen substituents) carbon atom; and

20 a , b , c , and d are each greater than zero and are mole fractions of the respective polymer units.

Preferred polymers of the invention also include those of the following Formula VI:

wherein X, Y, Z, R, R¹, R², m and n are each the same as defined in Formula V above;

R³ is hydrogen or alkyl, particularly hydrogen or C₁₋₆ alkyl such as methyl;

5 R⁴ is a group that renders the depicted ester photoacid-labile, such as a tertiary alicyclic group as discussed above, or a branched non-cyclic optionally substituted alkyl group, with the ester carboxyl group being directly bonded to a quaternary (i.e. no hydrogen substituents) carbon atom; and

a, b, c, and d are each greater than zero and are mole fractions of the respective polymer units.

10

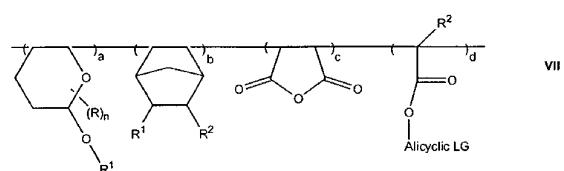
In each of above Formulae V and VI, preferably "a" (mole fraction of heteroalicyclic units) is from about 2 to 50 mole percent based on total polymer units; more preferably "a" is from about 2 to about 40 mole percent based on total polymer units; and still more preferably "a" is from about 2 to about 30 mole percent based on 15 total polymer units.

20

In each of above Formulae V and VI, preferably "b" (mole fraction of norbornene units) is from about 2 to 25 mole percent based on total polymer units; more preferably "b" is from about 2 to about 20 mole percent based on total polymer units; and still more preferably "b" is from about 2 to about 15 or 20 mole percent based on total polymer units.

25

In each of above Formulae V and VI, preferably "c" (mole fraction of anhydride units) is from about 0 (i.e. no anhydride units) to 50 mole percent based on total polymer units; more preferably "c" is from about 2 to about 40 mole percent based on total polymer units.


30

In each of above Formulae V and VI, preferably "d" (mole fraction of photoacid-labile ester unit) is from about 2 to 70 mole percent based on total polymer units; more preferably "d" is from about 5 or 10 to about 70 mole percent based on

total polymer units; still more preferably "d" is from about 5 or 10 to about 50 mole percent based on total polymer units.

As discussed above, polymers of the invention are preferably employed in 5 photoresists imaged at short wavelengths, particularly sub-200 nm such as 193 nm and 157 nm. Polymers also can be employed in photoresists imaged at higher wavelengths such as 248 nm. For such higher wavelength applications, the polymer may suitably contain aromatic units, e.g. polymerized styrene or hydrostyrene units.

10 Specifically preferred polymers of the invention include those of the following Formula VII:

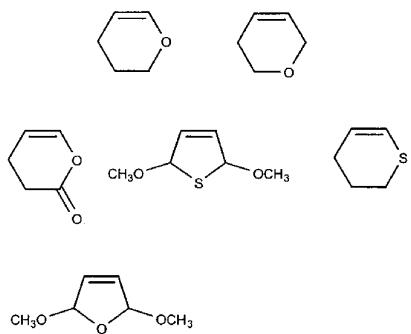
In Formula VII above, "Alicyclic LG" is the same as defined for alicyclic substituent R⁴ in Formulae V and VI above and is preferably methyladamantyl, 8-15 ethyl-8-tricyclodecanyl, ethylfencyl and the like; R¹ is C₁₋₈ alkyl, preferably C₁₋₄ alkyl, or a moiety that forms a photoacid-labile group; R² is suitably hydrogen or C₁₋₈ alkyl, such as methyl, ethyl, propyl and the like; R¹ and R² are the same as defined for R¹ and R² respectively in Formula IA above; and a, b, c and d are mole 20 percents of the specified units in the polymer based on total polymer units. Preferably a (mole percent of oxygen alicyclic units) is from 1 to about 5, 10, 20, 30, 40, 50 or 60 mole percent; b (mole percent of optionally substituted norbornene units) is from 1 to about 5, 10, 20, 30, 40, 50 or 60 mole percent; c (mole percent of maleic anhydride units) is from 1 to about 5, 10, 20, 30, 40, or 50 mole percent. Units d (acrylate photoacid-labile units) may be not be present (i.e. d is zero) where the heteroalicyclic

or norbornene units contain a photoacid-labile units, or d may be suitably present at from about 2 to 10, 20, 30, 40 or 50 mole percent based on total polymer units.

As discussed, various polymer moieties may be optionally substituted, 5 including groups of the above formulae. A "substituted" substituent may be substituted at one or more available positions, typically 1, 2, or 3 positions by one or more suitable groups such as e.g. halogen (particularly F, Cl or Br); cyano; C₁₋₈ alkyl; C₁₋₈ alkoxy; C₁₋₈ alkylthio; C₁₋₈ alkylsulfonyl; C₂₋₈ alkenyl; C₂₋₈ alkynyl; hydroxyl; nitro; alkanoyl such as a C₁₋₆ alkanoyl e.g. acyl and the like; etc.

10

Preferred alkanoyl groups, including as specified in the above formulae, will have one or more keto groups, such as groups of the formula -C(=O)R" where R" is hydrogen or C₁₋₈ alkyl. Suitable lactone groups, including as specified in the above formulae, include alpha-butyrolactone groups and the like.


15

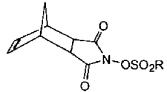
In the synthesis of the invention, if conducted as a free radical addition, preferably the reaction is conducted under an inert atmosphere (e.g., N₂ or argon) and at elevated temperatures such as about 70°C or greater, although reaction temperatures may vary depending on the reactivity of the particular reagents employed and the 20 boiling point of the reaction solvent (if a solvent is employed) as generally discussed above. Suitable reaction solvents include e.g. tetrahydrofuran, dioxane, ethyl lactate, DMF and the like. Suitable reaction temperatures for any particular system can be readily determined empirically by those skilled in the art based on the present disclosure. A variety of free radical initiators may be employed. For example, azo 25 compounds may be employed such as azo-bis-2,4-dimethylpentanenitrile. Peroxides, peresters, peracids and persulfates also could be employed. A chain transfer agent or other agent to control radical flux or concentration also may be used in the reaction.

Other monomers that can be reacted to provide a polymer of the invention can 30 be identified by those skilled in the art. For example, to provide photoacid-labile units, suitable monomers include e.g. methacrylate or acrylate that contains the

appropriate group substitution (e.g. tertiary alicyclic, t-butyl, etc.) on the carboxy oxygen of the ester group. Maleic anhydride is a preferred reagent to provide fused anhydride polymer units. Itaconic anhydride also is a preferred reagent to provide anhydride polymer units, preferably where the itaconic anhydride has purified such as 5 by extraction with chloroform prior to polymerization. Vinyl lactones are also preferred reagents, such as alpha-butyrolactone. Other suitable and preferred reactive monomers and other reagents have been identified above.

Some suitable vinyl (endocyclic double bond) heteroalicyclic monomers that 10 can be polymerized to provide polymers of the invention include the following:

Preferably a polymer of the invention will have a weight average molecular weight (Mw) of about 800 or 1,000 to about 100,000, more preferably about 2,000 to about 30,000, still more preferably from about 2,000 to 15,000 or 20,000, with a 15 molecular weight distribution (Mw/Mn) of about 3 or less, more preferably a molecular weight distribution of about 2 or less, even more preferably a molecular weight distribution of 1.5 or less or even 1.2 or 1 or less. The synthetic methods of the invention can provide such low (narrow) molecular weight distributions.


Molecular weights (either M_w or M_n) of the polymers of the invention are suitably determined by gel permeation chromatography.

5 Polymers of the invention used in a chemically-amplified positive photoresist composition should contain a sufficient amount of photogenerated acid labile ester groups to enable formation of resist relief images as desired. For instance, suitable amount of such acid labile ester groups will be at least 1 mole percent of total units of the polymer, more preferably about 2 to 50 mole percent, still more typically about 3 to 30 or 40 mole percent of total polymer units. See the examples which follow for 10 exemplary preferred polymers.

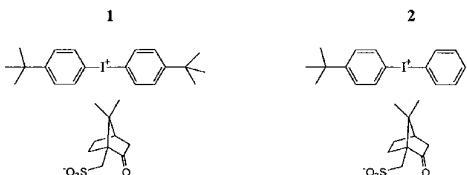
As discussed above, the polymers of the invention are highly useful as a resin binder component in photoresist compositions, particularly chemically-amplified positive resists. Photoresists of the invention in general comprise a photoactive 15 component and a resin binder component that comprises a polymer as described above.

The resin binder component should be used in an amount sufficient to render a coating layer of the resist developable with an aqueous alkaline developer.

20 The resist compositions of the invention also comprise a photoacid generator (i.e. "PAG") that is suitably employed in an amount sufficient to generate a latent image in a coating layer of the resist upon exposure to activating radiation. Preferred PAGs for imaging at 193 nm and 248 nm imaging include imidosulfonates such as 25 compounds of the following formula:

wherein R is camphor, adamantane, alkyl (e.g. C_{1-12} alkyl) and perfluoroalkyl such as perfluoro(C_{1-12} alkyl), particularly perfluoroctanesulfonate, perfluorononanesulfonate

WO 02/069040


PCT/US02/05609

- 28 -

and the like. A specifically preferred PAG is N-[(perfluorooctanesulfonyl)oxy]-5-norbornene-2,3-dicarboximide.

Sulfonate compounds are also suitable PAGs, particularly sulfonate salts.

5 Two suitable agents for 193 nm and 248 nm imaging are the following PAGS 1 and 2:

10 Such sulfonate compounds can be prepared as disclosed in European Patent Application 96118111.2 (publication number 0783136), which details the synthesis of above PAG 1.

Also suitable are the above two iodonium compounds complexed with anions

15 other than the above-depicted camphorsulfonate groups. In particular, preferred anions include those of the formula RSO_3^- where R is adamantane, alkyl (e.g. C_{1-12} alkyl) and perfluoroalkyl such as perfluoro (C_{1-12} alkyl), particularly perfluorooctanesulfonate, perfluorobutanesulfonate and the like.

20 Other known PAGS also may be employed in the resists of the invention. Particularly for 193 nm imaging, generally preferred are PAGS that do not contain aromatic groups, such as the above-mentioned imidosulfonates, in order to provide enhanced transparency.

25 A preferred optional additive of the invention is an added base, particularly tetrabutylammonium hydroxide (TBAH), or tetrabutylammonium lactate, which can enhance resolution of a developed resist relief image. For resists imaged at 193 nm, a preferred added base is a hindered amine such as diazabicyclo undecene

or diazabicyclononene. The added base is suitably used in relatively small amounts, e.g. about 0.03 to 5 percent by weight relative to the total solids.

Photoresists of the invention also may contain other optional materials. For 5 example, other optional additives include anti-striation agents, plasticizers, speed enhancers, etc. Such optional additives typically will be present in minor concentrations in a photoresist composition except for fillers and dyes which may be present in relatively large concentrations, e.g., in amounts of from about 5 to 30 percent by weight of the total weight of a resist's dry components.

10

Negative-acting photoresists of the invention typically will contain a crosslinking component, preferably as a separate resist component. Amine-based crosslinkers often will be preferred such as a melamine, e.g. the Cymel melamine resins.

15

The resists of the invention can be readily prepared by those skilled in the art. For example, a photoresist composition of the invention can be prepared by dissolving the components of the photoresist in a suitable solvent such as, for example, ethyl lactate, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, 20 propylene glycol monomethyl ether; propylene glycol monomethyl ether acetate and 3-ethoxyethyl propionate. Typically, the solids content of the composition varies between about 5 and 35 percent by weight of the total weight of the photoresist composition. The resin binder and photoactive components should be present in amounts sufficient to provide a film coating layer and formation of good quality latent 25 and relief images. See the examples which follow for exemplary preferred amounts of resist components.

The compositions of the invention are used in accordance with generally known procedures. The liquid coating compositions of the invention are applied to a 30 substrate such as by spinning, dipping, roller coating or other conventional coating technique. When spin coating, the solids content of the coating solution can be

adjusted to provide a desired film thickness based upon the specific spinning equipment utilized, the viscosity of the solution, the speed of the spinner and the amount of time allowed for spinning.

5 The resist compositions of the invention are suitably applied to substrates conventionally used in processes involving coating with photoresists. For example, the composition may be applied over silicon wafers or silicon wafers coated with silicon dioxide for the production of microprocessors and other integrated circuit components. Aluminum-aluminum oxide, gallium arsenide, ceramic, quartz, copper, 10 glass substrates and the like are also suitably employed. Resists of the invention also may be applied over an antireflective layer, particularly an organic antireflective layer.

Following coating of the photoresist onto a surface, it is dried by heating to 15 remove the solvent until preferably the photoresist coating is tack free. Thereafter, it is imaged through a mask in conventional manner. The exposure is sufficient to effectively activate the photoactive component of the photoresist system to produce a patterned image in the resist coating layer and, more specifically, the exposure energy typically ranges from about 1 to 100 mJ/cm², dependent upon the exposure tool and 20 the components of the photoresist composition.

As discussed above, coating layers of the resist compositions of the invention are preferably photoactivated by a short exposure wavelength, particularly a sub-300 and sub-200 nm exposure wavelength. As discussed above, 193 nm is a particularly 25 preferred exposure wavelength. 157 nm also is a preferred exposure wavelength. For 157 nm exposure, a resist may suitably contain a polymer of the invention that contains fluorine substitution, such as may be provided by polymerization of a fluoroolefin, e.g. tetrafluoroethylene. However, the resist compositions of the invention also may be suitably imaged at higher wavelengths. For example, a resin of the 30 invention can be formulated with an appropriate PAG and sensitizer if needed and imaged at higher wavelengths e.g. 248 nm or 365 nm.

Following exposure, the film layer of the composition is preferably baked at temperatures ranging from about 70°C to about 160°C. Thereafter, the film is developed. The exposed resist film is rendered positive working by employing a 5 polar developer, preferably an aqueous based developer such as quaternary ammonium hydroxide solutions such as a tetra-alkyl ammonium hydroxide solution; various amine solutions preferably a 0.26 N tetramethylammonium hydroxide, such as ethyl amine, n-propyl amine, diethyl amine, di-n-propyl amine, triethyl amine, or methyl diethyl amine; alcohol amines such as diethanol amine or triethanol amine; 10 cyclic amines such as pyrrole, pyridine, etc. In general, development is in accordance with procedures recognized in the art.

Following development of the photoresist coating over the substrate, the developed substrate may be selectively processed on those areas bared of resist, for 15 example by chemically etching or plating substrate areas bared of resist in accordance with procedures known in the art. For the manufacture of microelectronic substrates, e.g., the manufacture of silicon dioxide wafers, suitable etchants include a gas etchant, e.g., a halogen plasma etchant such as a chlorine or fluorine-based etchant such a Cl₂ or CF₄/CHF₃ etchant applied as a plasma stream. After such processing, resist may be 20 removed from the processed substrate using known stripping procedures.

All documents mentioned herein are incorporated herein by reference. The following non-limiting examples are illustrative of the invention.

25 Example 1: Polymer synthesis

To a preheated (85°C) 2L jacketed reactor with a 4 neck top containing an overhead stirrer, a reflux condenser, nitrogen line, and 2 feed lines, maleic anhydride (49.26g, 0.502 mol), norbornene (15.77g, 0.167 mol) and 3,4-dihydro-pyran (28.17g, 0.335 mol) were added as 50% (wt/wt) solutions in dioxane. An initial charge of 30 7.71g (2 mol% of total monomers) of the initiator, dimethyl-2,2'-azodiisobutyrate, was then added to this mixture. Immediately after this initial charge of initiator, 50%

(wt/wt) solutions of the initiator (dimethyl-2,2'-azodiisobutyrate) and 2-methyladamantanyl methacrylate in dioxane were added to the reaction at controlled rates through separate feed lines over the course of the reaction. The initiator was added at such a rate to maintain a constant level of 2 mol% initiator relative to total monomer concentration. The solution of 2-methyladamantanyl methacrylate in dioxane was added using a linear gradient, from a high of 4.6g/minute to a low of 0.5g/minute, until 156.81g (0.670 mol) was added. After the 2-methyladamantanyl methacrylate charge was complete (approximately 2 hours) both feeds were stopped, the reaction allowed to continue at 85°C for 15 minutes and then cooled rapidly to 10 room temperature. The reaction mixture is then diluted to 33% (wt/wt) with dioxane, precipitated into 10 times its volume of isopropyl alcohol, filtered, washed with isopropyl alcohol, and dried over night at 40°C in the vacuum oven. Yield = 80%.

Example 2: Photoresist preparation and lithographic processing.

15 A photoresist of the invention is prepared by mixing the following components with amount expressed as weight percents based on total weight of the resist composition:

<u>Resist components</u>	<u>Amount (wt. % based on total solids)</u>
Resin binder	28.2
20 Photoacid generator	0.52
Basic additive	0.03
Surfactant	0.03

25 The resin binder is the polymer of Example 2 above. The photoacid generator is triphenylsulfonium triflate. The basic additive is triisopropanol amine. The surfactant is Silwet (Dow Chemical). Those resist components were formulated at 16 wt. % solids in a solvent of 2-heptatone.

30 The formulated resist composition is spin coated onto HMDS vapor primed 4 inch silicon wafers and softbaked via a vacuum hotplate at 130°C for 60 seconds. The

resist coating layer is exposed through a photomask at 193 nm using an ISI microstepper, and then the exposed coating layers are post-exposure baked (PEB) at about 130°C. The coated wafers are then treated with alkaline aqueous developer (0.26N aqueous tetramethylammonium hydroxide solution to develop the imaged 5 resist layer and provide a relief image.

Example 3: Comparative polymerization.

Four monomers were polymerized by two distinct methods: 1) a continuous addition of the invention ("Controlled Addition Method"); and 2) a batch addition 10 where all monomers are added simultaneously to the reaction vessel at the commencement of the reaction ("Batch Synthesis Method). The four monomers were methyladamantanyl methacrylate; maleic anhydride; norbornene (15.77g, 0.167 mol); and 3,4-dihydro-pyran (28.17g, 0.335 mol), and

15 The Batch Synthesis Method was conducted as follows. A mixture of 2-methyladamantanyl methacrylate (156.81g, 0.670 mol), maleic anhydride (49.26g, 0.502 mol), norbornene (15.77g, 0.167 mol), 3,4-dihydro-pyran (28.17g, 0.335 mol), and dimethyl-2,2'-azodiisobutyrate (7.71g, 2 mol% of total monomers) in 250 g of dioxane was placed in a round-bottomed flask fitted with a reflux condenser and 20 nitrogen purge. The flask was then placed in a pre-heated 85°C oil bath. This reaction mixture was stirred at this temperature for 24 hours, under nitrogen. After cooling the reaction mixture to room temperature, the solution was diluted with 250g of dioxane. The polymer was isolated by precipitation into 5.0 L of isopropyl alcohol, then filtered off and washed with an additional 1.0 L of isopropyl alcohol. Finally, the 25 polymer was dried in a vacuum oven at 40°C for overnight, yield =76.3%.

The Controlled Addition Method was conducted as described in Example 1.

Results

The Batch Synthesis Method resulted in maleic anhydride reacting at a much faster rate than the 3,4-dihydro-2-H-pyran as determined by infrared IR spectroscopy during the polymerization, the maleic anhydride reacting at a much faster rate than the 3,4-dihydro-2-H-pyran. It is believed that this difference in monomer consumption rate in the Batch Synthesis Method is primarily due to the greater reactivity of the methacrylate with the maleic anhydride compared to the vinyl ether.

In contrast, in the Controlled Addition Method reaction, the rate of addition of 10 the 2-methyladamantanyl methacrylate and initiator into the polymerization solution containing the maleic anhydride, norbornene and 3,4-dihydro-2-H-pyran were controlled, and as a result the conversion rates of the maleic anhydride and vinyl ether are much closer, as determined by infrared spectroscopy.

15 This improvement in compositional uniformity across molecular weight distribution resulted in improved lithographic performance compared to similar polymers prepared by Batch Synthesis Method.

Example 4: Further polymer synthesis of the invention.

20 A first solution (referred to below as the "First Solution") was prepared that contained 50.70 grams of dihydropyran, 28.38 grams norbornene and 92.97 grams of tetrahydrofuran admixed in a beaker and stirred to dissolve solids.

25 A second solution (referred to below as the "Second Solution") was prepared that was a 50 weight percent of the free radical initiator v601 in tetrahydrofuran.

A third solution (referred to below as the "Third Solution") was prepared that contained 93.09 grams of maleic anhydride, 296.37 grams of methyladamantyl acrylate and 389 grams of tetrahydrofuran.

- 35 -

Each of the First Solution, Second Solution and Third Solution were charged into separate addition vessels in connection to a reaction vessel. Each of those addition vessels was outfitted with an automated addition pump for transfer of the solution to the reaction vessel.

5

The reaction vessel was fitted with a heat source, stir paddle and water condenser and blanketed under nitrogen flow.

Addition of the First Solution to the reaction vessel was then commenced. At 10 the point the solution in the reaction vessel reached 70°C, addition of the Second Solution was commenced.

15 After 13.88 grams of the Second Solution was added, addition of the Third solution was commenced. The Second and Third Solutions were added at the following rates for the next 210 minutes: Second Solution: 0.09 grams of solution per minute; Third Solution: 3.57 grams of solution per minute. The reaction mixture was maintained at 80°C during the additions.

20 After 210 minutes of addition, the additions were terminated and the reaction mixture stirred for a further 30 minutes. The reaction mixture was then cooled to room temperature. The resulting polymer was isolated by precipitation through addition of the reaction mixture to a 10:1 v/v isopropanol:tetrahydrofuran solution. The precipitated polymer was then redissolved into tetrahydrofuran, and then precipitated again by addition to a 10:1 v/v isopropanol:tetrahydrofuran solution. The 25 precipitated polymer was isolated, air dried and then vacuum dried at 40°C.

Examples 5-8: Syntheses of monomers useful in preparation of polymers of the invention.

Example 5: EtTCD Methacrylate monomer synthesis

8-ethyl-8-tricyclodecanyl methacrylate (EtTCD methacrylate) was prepared as following using the reagents and amounts thereof as specified in the following table.

5

Material	Amt (g)	Amt (ml)	Moles	Source
TCD	150.22		1.00	TCI
Ethylmagnesiumchloride(25%)	390.85	~379.5	~1.10	ACROS
Methacryloyl chloride	120.22	~112.4	~1.15	Aldrich
Tetrahydrofuran	480	540		Aldrich

All reaction glassware was dried in the oven overnight at 100°C. The glassware was set up and cooled under a stream of nitrogen. The reaction was carried out under a blanket of nitrogen.

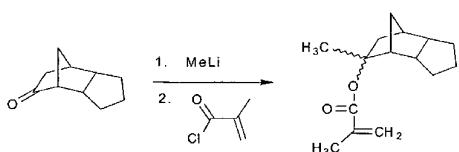
10

To a 2L 3N-RB flask fitted with a gas inlet, thermometer, overhead stirrer and a rubber septum was added 400g of ethylmagnesium chloride, 25 wt% solution in tetrahydrofuran (clear, amber solution) via a double tipped needle using nitrogen pressure. The mixture was cooled to -25 to -30°C using a dry ice/isopropanol bath.

15 While the ethylmagnesium chloride solution was cooling the 153.6g of tricyclodecane (TCD) was dissolved in 480g of tetrahydrofuran. To a 1L 3N-RB flask equipped with a gas inlet, glass stopper and a rubber septum was added the 153.6g of TCD. The anhydrous, inhibitor free tetrahydrofuran was transferred to the 1L flask via a double tipped needle using nitrogen pressure. When the ethylmagnesium chloride was at -25

20 to -30°C, the TCD/THF solution was transferred over a 2hr period to the 2L 3N-RB flask containing the ethylmagnesium chloride via a double tipped needle using nitrogen pressure. The cooling bath was removed and the reaction mixture was stirred for 2 hr. After stirring for 2 hr the mixture was again cooled to -25 to -30°C using a dry ice/isopropanol bath. The methacryloyl chloride (120.22g) was then added

25 dropwise over a 1 hour period using a 125ml pressure equalizing dropping funnel. The reaction was allowed to come to room temperature with overnight stirring. A white precipitate developed from the clear amber colored reaction solution. Water

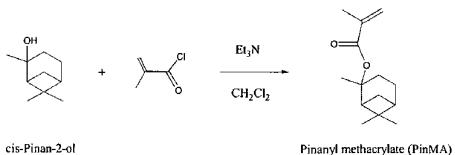

(DI) was added until all of the salts had dissolved (~500ml) and two distinct layer were seen. The layers were separated and the organic (upper) layer was washed with 2x400ml DI water then dried over magnesium sulfate. The THF was removed leaving 258g of an orange oil. The orange oil was dissolved in 400g of hexane then passed 5 through a 400g silica gel plug which had been pre-conditioned with hexane. The silica was washed with hexane until all of the product was removed (spot filtrate on a TLC plate and illuminate under short UV). The hexane was removed leaving 202.8g of an clear, colorless oil. Theoretical yield: 248.4g; yield: 81.6%

10 Example 6: Synthesis of Norbornene Valerolactone

A solution of valerolactone (50.1 g) in 150 mL of anhydrous THF was placed in a three-neck-bottomed flask at -78°C (Dry Ice/acetone). To it, solution of LDA (250 mL, 2M) in 250 mL anhydrous THF was added dropwise. The reaction mixture was stirred at this temperature for 4 hours. Then, the thermal cracking of 15 paraformaldehyde (36.94 g, excess) was bubbled into the reaction mixture. After the paraformaldehyde was all cracked, the reaction mixture was stirred at the same bath and stirred for overnight. Then, the solvent was removed by rotary pump and the residue was added 500 mL CH₂Cl₂ and washed with NaHCO₃ (aq, sat.) and water several times (3 x 500mL). The combination organic solvent was dried over MgSO₄ 20 and the solvent was removed by rotary pump. The desired product was distilled under vacuum (135-140°C/8mmHg)

The methylene-valerolactone was dissolved in dichloromethane and freshly cracked cyclopentadiene was added. The reaction mixture was stirred at room 25 temperature for 3 hours, then heated to 40°C, and held at 40°C overnight. The reaction mixture was then slowly cooled to room temperature. The methylene chloride was removed under reduced pressure, leaving an oil. The crude oil was then distilled under reduced pressure to afford pure product.

Example 7: Synthesis of 8-methyltricyclodecanyl methacrylate:



A solution of 125 ml of 1.4 M methyl lithium (in ethyl ether) in 100 ml of

5 hexane was decanted into a three neck round-bottom flask at an ice-water bath. To it, a solution of 24.00 g of tricyclo[5.2.1.0]decan-8-one in hexane was added dropwise. After addition, the reaction mixture was stirred for 4 hours at 0°C. Then, a solution of 16 ml of methacryloyl chloride in 100 ml of hexane was added dropwise at 0°C. After addition, the reaction mixture was stirred at the same bath for overnight (16 hours).

10 After filtering the white salts, the organic layer was washed with water three times (3 x 300 ml). Then, the washed organic layer was dried over anhydrous MgSO_4 . The organic solvent was removed by a rotary pump to give the crude title monomer (23.5 g). The monomer was purified by a flash column chromatography (purity >98%, silica gel with hexane). ^1H NMR: 6.05 (1H), 5.50 (1H), 1.95 (3H), 1.65 (3H), 2.25-15 0.85 (14H).

Example 8: Synthesis of pinanyl methacrylate

Materials used:

	Amount Charged	Moles	Source
cis-Pinan-2-ol	15.43 g	0.10	Fluka
Et ₃ N	12.14 g	0.12	Aldrich, distilled before use
Methacryloyl chloride	13.07 g	0.125	Aldrich, distilled before use
CH ₂ Cl ₂	230 mL		Aldrich, dried and distilled

5 Procedure:

All reaction glassware and needles were dried and flushed with dry N₂ before use and the reaction was carried out under nitrogen atmosphere.

- 1) Into a 500 mL 3-neck round-bottom-flask equipped with an addition funnel and a magnetic stirrer were added 15.43 g of cis-pinane-2-ol and 200 mL of dry CH₂Cl₂
- 10 10 (Stirred over CaH₂ overnight, then distilled and stored over activated molecular sieves). The resulting colorless solution was cooled with an ice-water bath.
- 2) Triethylamine (12.14 g) was added through the addition funnel to the cooled CH₂Cl₂ solution over 10 min. After added, the resulting solution was kept in a dry-ice/acetone bath (-67 °C).
- 15 3) A CH₂Cl₂ (30 mL) solution of methacryloyl chloride (13.07 g) was added dropwise over 20 min. The resulting orangish suspension was allowed to warm to room temperature and stirred for 2 h.
- 4) The chloride salts were filtered off. The filtrate was washed with saturated Na₂CO₃ solution (2 x 200 mL), then DI water (3 x 200 mL), and dried over
- 20 20 anhydrous MgSO₄.
- 5) The slightly yellow CH₂Cl₂ solution was concentrated on a rotary evaporator (bath temperature kept below 35°) to yield a clear slightly yellow liquid product. Yield = 79%. The product was judged pure by NMR.

WO 02/069040

PCT/US02/05609

- 40 -

The foregoing description of the invention is merely illustrative thereof, and it is understood that variations and modification can be made without departing from the spirit or scope of the invention as set forth in the following claims.

What is claimed is:

1. A method for preparing a photoresist composition, comprising:
 - a) providing a polymer by a polymerization reaction that comprises adding over the substantial course of the polymerization reaction one or more incorporated polymerization reagents to a reaction mixture; and
 - b) admixing the polymer with a photoactive component.
2. The method of claim 1 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the fastest reaction rate relative to the other incorporated polymerization reagents is added to the reaction mixture over the substantial course of the polymerization reaction.
3. The method of claim 1 or 2 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the second fastest reaction rate relative to the other incorporated polymerization reagents is added to the reaction mixture over the substantial course of the polymerization reaction.
4. The method of any one of claims 1 through 3 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the slowest fastest reaction rate relative to the other incorporated polymerization reagents is present in the reaction mixture at the start of the polymerization reaction and is not added to the reaction mixture over the substantial course of the polymerization reaction.
5. The method of any one of claims 1 through 4 wherein maleic anhydride is added to the reaction mixture over the substantial course of the polymerization reaction.

6. The method of any one of claims 1 through 5 wherein an acrylate compound is added to the reaction mixture over the substantial course of the polymerization reaction.

7. The method of claim 6 wherein the acrylate compound comprises a photocatalyzed ester.

8. The method of any one or claims 1 through 7 wherein a reaction mixture that contains one or more polymerization reagents is initially provided at the start of the polymerization reaction, and

one or more additional polymerization reagents are added to the reaction mixture over the substantial course of the polymerization reaction.

9. The method of claim 8 wherein the reaction mixtures comprises an optionally substituted carbon alicyclic compound or an optionally substituted heterocyclic compound at the start of the polymerization reaction.

10. The method of claim 8 wherein the reaction mixtures comprises an optionally substituted norbornene compound or an optionally substituted oxygen heterocyclic compound at the start of the polymerization reaction.

11. The method of claim 1-3 or 5-7 wherein each polymerization reagent is added to a reaction mixture over the substantial course of the polymerization reaction.

12. The method of any one of claims 1 through 11 wherein the polymerization reaction is a free radical mediated reaction.

13. The method of any one of claims 1 through 11 wherein the polymerization reaction is an anionic, cationic or metal catalyzed reaction.

14. The method of any one of claims 1 through 13 wherein one or more of the polymerization reagents is selected from the group consisting of an anhydride, a lactone, a fluorinated olefin, a carbon alicyclic compound, a heteroalicyclic compound, or an acrylate.

15. The method of any one of claims 1 through 13 wherein one or more of the polymerization reagents is 2-methyladamantanyl methacrylate, 2-methyladamantanyl acrylate, maleic anhydride, norbornene, 3,4-dihydropyran, or tetrafluoroethylene.

16. The method of any one of claims 1 through 15 wherein each of the polymerization reagents is a non-aromatic compound.

17. The method of any one of claims 1 through 15 wherein one or more of the polymerization reagents is an aromatic compound.

18. The method of any one of claims 1 through 15 wherein one or more of the polymerization reagents comprises an optionally substituted phenyl or optionally substituted naphthyl moiety.

19. The method of any one of claims 1 through 18 wherein one or more polymerization reagents are added over at least about 80 percent of the duration of the polymerization reaction.

20. The method of any one of claims 1 though 19 wherein at least two polymerization reagents are added over the substantial course of the polymerization reaction.

21. The method of any one of claims 1 through 20 wherein a radical initiator compound is added over the substantial course of the polymerization reaction.

22. The method of claim 21 wherein the initiator is added at a rate to maintain a substantially constant concentration of initiator within the reaction mixture over the substantial course of the polymerization reaction.

23. The method of any one of claims 1 through 22 wherein a reaction vessel is initially charged with one or more polymerization reagents, and one or more polymerization reagents having a faster reaction rate than the charged reagents are added to the reaction vessel over the substantial course of the polymerization reaction.

24. The method of any one of claims 1 through 23 wherein a fluorinated olefin, an anhydride or a lactone is added over the substantial course of the polymerization reaction.

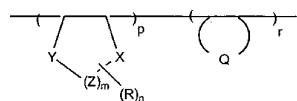
25. The method of any one of claims 1 through 23 wherein an acrylate compound and maleic anhydride are added over the substantial course of a reaction to a reaction mixture comprising an optionally substituted norbornene compound.

26. The method of any one of claims 1 through 23 wherein an acrylate compound and maleic anhydride are added over the substantial course of a reaction to a reaction mixture comprising an optionally substituted norbornene compound and an optionally substituted dihydropyran.

27. The method of any one of claims 1 through 26 wherein at least one of the polymerization reagents is added at a rate decreasing over the substantial course of the polymerization reaction.

28. The method of any one of claims 1-3, 5-10 or 12-27 wherein the one or more polymerization reagents are contained in a reaction vessel and one or more polymerization reagents are added to the reaction vessel over the substantial course of the polymerization reaction.

29. The method of any one of claims 1 through 28 wherein the photoactive component comprises one or more photoacid generator compounds.

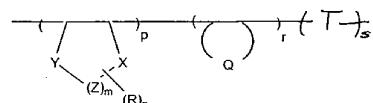

30. The method of any one of claims 1 through 29 wherein the polymer comprises photoacid labile repeat units that contain a tertiary alicyclic group.

31. The method of any one of claims 1 through 30 wherein the polymer comprises a polymerized fluorinated unsaturated monomer.

32. The method of any one of claims 1 through 31 wherein the polymer comprises a fused heteroalicyclic.

33. The method of any one of claims 1 through 32 wherein the polymer comprises a fused heteroalicyclic group having an oxygen ring member.

34. The method of any one of claims 1 through 33 wherein the polymer comprises a structure of the following formula:


wherein X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic group fused to the polymer backbone;

- 46 -

p and r are the mole fractions of the respective units and each of p and r is greater than zero.

35. The method of any one of claims 1 through 33 wherein the polymer comprises a structure of the following formula:

wherein T is an optionally substituted acrylate group;

X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic group fused to the polymer backbone;

p, r and s are the mole fractions of the respective units and each of p, r and s is greater than zero.

36. The method of claim 35 wherein T comprises a photoacid-labile moiety.

37. The method of any one of claims 1 through 36 wherein the composition is a chemically-amplified positive-acting resist.

38. The method of any one of claims 1 through 36 wherein the composition is a negative-acting resist.

39. The method of any one of claims 1 through 38 further comprising applying a coating layer of the photoresist composition on a substrate; exposing the

photoresist coating layer to patterned activating radiation; and developing the exposed photoresist coating layer to provide a resist relief image.

40. The method of claim 39 wherein the photoresist layer is exposed with radiation having a wavelength of less than about 300 nm.

41. The method of claim 39 wherein the photoresist layer is exposed with radiation having a wavelength of less than about 200 nm.

42. The method of claim 39 wherein the photoresist layer is exposed with radiation having a wavelength of about 193 nm.

43. The method of any one of claims 39 through 42 wherein the substrate is a microelectronic wafer.

44. A photoresist composition comprising a photoactive component and a polymer obtainable by adding over the substantial course of a polymerization reaction one or more polymerization reagents to a reaction mixture.

45. A photoresist composition of claim 44 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the fastest reaction rate relative to the other incorporated polymerization reagents is added to the reaction mixture over the substantial course of the polymerization reaction.

46. A photoresist composition of claim 44 or 45 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the second fastest reaction rate relative to the other incorporated polymerization reagents is added to the reaction mixture over the substantial course of the polymerization reaction.

47. A photoresist composition of any one of claims 44 through 46 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the slowest fastest reaction rate relative to the other incorporated polymerization reagents is present in the reaction mixture at the start of the polymerization reaction and is not added to the reaction mixture over the substantial course of the polymerization reaction.

48. A photoresist composition of any one of claims 44 through 47 wherein maleic anhydride is added to the reaction mixture over the substantial course of the polymerization reaction.

49. A photoresist composition of any one of claims 44 through 47 wherein an acrylate compound is added to the reaction mixture over the substantial course of the polymerization reaction.

50. A photoresist composition of claim 49 wherein the acrylate compound comprises a photoacid-labile ester.

51. A photoresist composition of any one or claims 44 through 50 wherein a reaction mixture that contains one or more polymerization reagents is initially provided at the start of the polymerization reaction, and one or more additional polymerization reagents are added to the reaction mixture over the substantial course of the polymerization reaction.

52. A photoresist composition of claim 51 wherein the reaction mixtures comprises an optionally substituted carbon alicyclic compound or an optionally substituted heteroalicyclic compound at the start of the polymerization reaction.

53. A photoresist composition of claim 51 wherein the reaction mixtures comprises an optionally substituted norbornene compound or an optionally substituted oxygen heteroalicyclic compound at the start of the polymerization reaction.

54. A photoresist composition of claim 44-46 or 48-53 wherein each polymerization reagent is added to a reaction mixture over the substantial course of the polymerization reaction.

55. A photoresist composition of any one of claims 44 through 54 wherein the polymerization reaction is a free radical mediated reaction.

56. A photoresist composition of any one of claims 44 through 55 wherein the polymerization reaction is an anionic, cationic or metal catalyzed reaction.

57. A photoresist composition of any one of claims 44 through 56 wherein one or more of the polymerization reagents is selected from the group consisting of an anhydride, a lactone, a fluorinated olefin, a carbon alicyclic compound, a heteroalicyclic compound, or an acrylate.

58. A photoresist composition of any one of claims 44 through 56 wherein one or more of the polymerization reagents is 2-methyladamantanyl methacrylate, 2-methyladamantanyl acrylate, maleic anhydride, norbornene, 3,4-dihydropyran, or tetrafluoroethylene.

59. A photoresist composition of any one of claims 44-46, 48-53 or 55-58 wherein each of the polymerization reagents is a non-aromatic compound.

60. A photoresist composition of any one of claims 44 through 58 wherein one or more of the polymerization reagents is an aromatic compound.

61. A photoresist composition of any one of claims 44 through 58 wherein one or more of the polymerization reagents comprises an optionally substituted phenyl or optionally substituted naphthyl moiety.

62. A photoresist composition of any one of claims 44 through 61 wherein one or more polymerization reagents are added over at least about 80 percent of the duration of the polymerization reaction.

63. A photoresist composition of any one of claims 44 though 61 wherein at least two polymerization reagents are added over the substantial course of the polymerization reaction.

64. A photoresist composition of any one of claims 44 through 62 wherein a radical initiator compound is added over the substantial course of the polymerization reaction.

65. A photoresist composition of claim 64 wherein the initiator is added at a rate to maintain a substantially constant concentration of initiator within the reaction mixture over the substantial course of the polymerization reaction.

66. A photoresist composition of any one of claims 44 through 65 wherein a reaction vessel is initially charged with one or more polymerization reagents, and one or more polymerization reagents having a faster reaction rate than the charged reagents are added to the reaction vessel over the substantial course of the polymerization reaction.

67. A photoresist composition of any one of claims 44 through 66 wherein a fluorinated olefin, an anhydride or a lactone is added over the substantial course of the polymerization reaction.

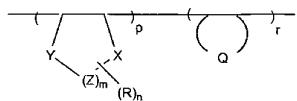
68. A photoresist composition of any one of claims 44 through 67 wherein an acrylate compound and maleic anhydride are added over the substantial course of a reaction to a reaction mixture comprising an optionally substituted norbornene compound.

69. A photoresist composition of any one of claims 44 through 68 wherein an acrylate compound and maleic anhydride are added over the substantial course of a reaction to a reaction mixture comprising an optionally substituted norbornene compound and an optionally substituted dihydropyran.

70. A photoresist composition of any one of claims 44 through 69 wherein at least one of the polymerization reagents is added at a rate decreasing over the substantial course of the polymerization reaction.

71. A photoresist composition of any one of claims 44-58 or 60-70 wherein the one or more polymerization reagents are contained in a reaction vessel and one or more polymerization reagents are added to the reaction vessel over the substantial course of the polymerization reaction.

72. A photoresist composition of any one of claims 44 through 71 wherein the photoactive component comprises one or more photoacid generator compounds.

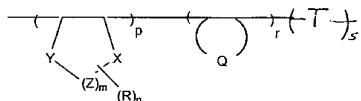

73. A photoresist composition of any one of claims 44 through 72 wherein the polymer comprises photoacid labile repeat units that contain a tertiary alicyclic group.

74. A photoresist composition of any one of claims 44 through 73 wherein the polymer comprises a polymerized fluorinated unsaturated monomer.

75. A photoresist composition of any one of claims 44 through 74 wherein the polymer comprises a fused heteroalicyclic.

76. A photoresist composition of any one of claims 44 through 75 wherein the polymer comprises a fused heteroalicyclic group having an oxygen ring member.

77. A photoresist composition of any one of claims 44 through 76 wherein the polymer comprises a structure of the following formula:



wherein X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic group fused to the polymer backbone;

p and r are the mole fractions of the respective units and each of p and r is greater than zero.

78. The photoresist composition of any one of claims 44 through 76 wherein the polymer comprises a structure of the following formula:

wherein T is an optionally substituted acrylate group;

X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic group fused to the polymer backbone;

p, r and s are the mole fractions of the respective units and each of p, r and s is greater than zero.

79. A photoresist composition of claim 78 wherein T comprises a photoacid-labile moiety.

80. A photoresist composition of any one of claims 44 through 79 wherein the composition is a chemically-amplified positive-acting resist.

81. A photoresist composition of any one of claims 44 through 79 wherein the composition is a negative-acting resist.

82. A method of forming a photoresist relief image, comprising:

- (a) applying a coating layer of a photoresist of any one of claims 44 through 81 on a substrate; and
- (b) exposing and developing the photoresist layer to yield a relief image.

83. The method of claim 82 wherein the photoresist layer is exposed with radiation having a wavelength of less than about 300 nm.

84. The method of claim 82 wherein the photoresist layer is exposed with radiation having a wavelength of less than about 200 nm.

85. The method of claim 82 wherein the photoresist layer is exposed with radiation having a wavelength of about 193 nm.

86. An article of manufacture comprising a microelectronic wafer substrate or flat panel display substrate having coated thereon a layer of the photoresist composition of any one of claims 44 through 81.

87. A method for preparation of a photoresist composition comprising:

WO 02/069040

PCT/US02/05609

- 54 -

providing a polymer obtainable by adding over the substantial course of a polymerization reaction one or more polymerization reagents to a reaction mixture; and admixing the polymer with a photoactive component.

88. A method for producing a polymer comprising adding over the substantial course of a polymerization reaction one or more polymerization reagents to a reaction mixture.

89. The method of claim 88 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the fastest reaction rate relative to the other incorporated polymerization reagents is added to the reaction mixture over the substantial course of the polymerization reaction.

90. The method of claim 88 or 89 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the second fastest reaction rate relative to the other incorporated polymerization reagents is added to the reaction mixture over the substantial course of the polymerization reaction.

91. The method of any one of claims 88 through 90 wherein multiple incorporated polymerization reagents are reacted, and the incorporated polymerization reagent with the slowest fastest reaction rate relative to the other incorporated polymerization reagents is present in the reaction mixture at the start of the polymerization reaction and is not added to the reaction mixture over the substantial course of the polymerization reaction.

92. The method of any one of claims 88 through 91 wherein maleic anhydride is added to the reaction mixture over the substantial course of the polymerization reaction.

93. The method of any one of claims 88 through 92 wherein an acrylate compound is added to the reaction mixture over the substantial course of the polymerization reaction.

94. The method of claim 93 wherein the acrylate compound comprises a photoacid-labile ester.

95. The method of any one or claims 88 through 94 wherein a reaction mixture that contains one or more polymerization reagents is initially provided at the start of the polymerization reaction, and

one or more additional polymerization reagents are added to the reaction mixture over the substantial course of the polymerization reaction.

96. The method of claim 95 wherein the reaction mixtures comprises an optionally substituted carbon alicyclic compound or an optionally substituted heteroalicyclic compound at the start of the polymerization reaction.

97. The method of claim 95 wherein the reaction mixtures comprises an optionally substituted norbornene compound or an optionally substituted oxygen heteroalicyclic compound at the start of the polymerization reaction.

98. The method of any one of claims 87-90, 92-94 or 96-97 wherein each polymerization reagent is added to a reaction mixture over the substantial course of the polymerization reaction.

99. The method of any one of claims 88 through 98 wherein the polymerization reaction is a free radical mediated reaction.

100. The method of any one of claims 88 through 98 wherein the polymerization reaction is an anionic, cationic or metal catalyzed reaction.

101. The method of any one of claims 88 through 100 wherein one or more of the polymerization reagents is selected from the group consisting of an anhydride, a lactone, a fluorinated olefin, a carbon alicyclic compound, a heteroalicyclic compound, or an acrylate.

102. The method of any one of claims 88 through 101 wherein one or more of the polymerization reagents is 2-methyladamantanyl methacrylate, 2-methyladamantanyl acrylate, maleic anhydride, norbornene, 3,4-dihydropyran, or tetrafluoroethylene.

103. The method of any one of claims 88 through 102 wherein each of the polymerization reagents is a non-aromatic compound.

104. The method of any one of claims 88 through 102 wherein one or more of the polymerization reagents is an aromatic compound.

105. The method of any one of claims 88 through 104 wherein one or more of the polymerization reagents comprises an optionally substituted phenyl or optionally substituted naphthyl moiety.

106. The method of any one of claims 88 through 105 wherein one or more polymerization reagents are added over at least about 80 percent of the duration of the polymerization reaction.

107. The method of any one of claims 88 through 106 wherein at least two polymerization reagents are added over the substantial course of the polymerization reaction.

108. The method of any one of claims 88 through 107 wherein a radical initiator compound is added over the substantial course of the polymerization reaction.

109. The method of claim 108 wherein the initiator is added at a rate to maintain a substantially constant concentration of initiator within the reaction mixture over the substantial course of the polymerization reaction.

110. The method of any one of claims 88-97 or 99-109 wherein a reaction vessel is initially charged with one or more polymerization reagents, and one or more polymerization reagents having a faster reaction rate than the charged reagents are added to the reaction vessel over the substantial course of the polymerization reaction.

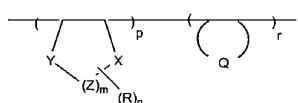
111. The method of any one of claims 88 through 110 wherein a fluorinated olefin, an anhydride or a lactone is added over the substantial course of the polymerization reaction.

112. The method of any one of claims 88 through 111 wherein an acrylate compound and maleic anhydride are added over the substantial course of a reaction to a reaction mixture comprising an optionally substituted norbornene compound.

113. The method of any one of claims 88 through 111 wherein an acrylate compound and maleic anhydride are added over the substantial course of a reaction to a reaction mixture comprising an optionally substituted norbornene compound and an optionally substituted dihydropyran.

114. The method of any one of claims 88 through 113 wherein at least one of the polymerization reagents is added at a rate decreasing over the substantial course of the polymerization reaction.

115. The method of any one of claims 88 through 113 wherein the one or more polymerization reagents are contained in a reaction vessel and one or more polymerization reagents are added to the reaction vessel over the substantial course of the polymerization reaction.

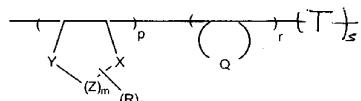

116. The method of any one of claims 88 through 115 wherein the polymer comprises photoacid labile repeat units that contain a tertiary alicyclic group.

117. The method of any one of claims 88 through 116 wherein the polymer comprises a polymerized fluorinated unsaturated monomer.

118. The method of any one of claims 88 through 117 wherein the polymer comprises a fused heteroalicyclic.

119. The method of any one of claims 88 through 118 wherein the polymer comprises a fused heteroalicyclic group having an oxygen ring member.

120. The method of any one of claims 88 through 119 wherein the polymer comprises a structure of the following formula:



wherein X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic group fused to the polymer backbone;

p and r are the mole fractions of the respective units and each of p and r is greater than zero.

121. The methodcomposition of any one of claims 88 through 119 wherein the polymer comprises a structure of the following formula:

wherein T is an optionally substituted acrylate group;

X, Y and Z are each independently carbon, oxygen or sulfur, with at least one of X, Y or Z being oxygen or sulfur, and preferably no more than two of X, Y and Z being oxygen or sulfur;

Q represents an optionally substituted carbon alicyclic group fused to the polymer backbone;

p, r and s are the mole fractions of the respective units and each of p, r and s is greater than zero.

122. The method of claim 121 wherein T comprises a photoacid-labile moiety.

123. A polymer obtained by a method of any one of claims 88 through 122.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/US02/05609												
A. CLASSIFICATION OF SUBJECT MATTER IPC(7) G01F 7/004; C08C 85/00; C08F 2/00 US CL : 430/270.1; 526/72, 78 According to International Patent Classification (IPC) or to both national classification and IPC														
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S. : 430/270.1, 281.1; 526/72, 78														
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched														
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.														
C. DOCUMENTS CONSIDERED TO BE RELEVANT <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Category*</th> <th style="text-align: left; padding: 2px;">Citation of document, with indication, where appropriate, of the relevant passages</th> <th style="text-align: left; padding: 2px;">Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td style="padding: 2px;">X</td> <td style="padding: 2px;">US 4,384,037 A (HOSAKA et al) 17 May 1983, col. 5, lines 12-50, col.4, lines 51-64, Figure 1, example 8.</td> <td style="padding: 2px; text-align: center;">1,2,44,45,87-89</td> </tr> <tr> <td style="padding: 2px;">Y</td> <td></td> <td style="padding: 2px; text-align: center;">3,46</td> </tr> <tr> <td style="padding: 2px;">X</td> <td style="padding: 2px;">US 6,028,123 (Hirayama et al) 22 February 2000, col. 11, lines 55-67, synthesis example 1.</td> <td style="padding: 2px; text-align: center;">88</td> </tr> </tbody> </table>			Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	X	US 4,384,037 A (HOSAKA et al) 17 May 1983, col. 5, lines 12-50, col.4, lines 51-64, Figure 1, example 8.	1,2,44,45,87-89	Y		3,46	X	US 6,028,123 (Hirayama et al) 22 February 2000, col. 11, lines 55-67, synthesis example 1.	88
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.												
X	US 4,384,037 A (HOSAKA et al) 17 May 1983, col. 5, lines 12-50, col.4, lines 51-64, Figure 1, example 8.	1,2,44,45,87-89												
Y		3,46												
X	US 6,028,123 (Hirayama et al) 22 February 2000, col. 11, lines 55-67, synthesis example 1.	88												
<input type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.														
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document published on or after the international filing date "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed <table style="margin-left: 20px; border-collapse: collapse;"> <tr> <td style="border-right: 1px solid black; padding-right: 5px;">"I"*</td> <td>later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td> </tr> <tr> <td style="border-right: 1px solid black; padding-right: 5px;">"X"</td> <td>document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td> </tr> <tr> <td style="border-right: 1px solid black; padding-right: 5px;">"Y"</td> <td>document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td> </tr> <tr> <td style="border-right: 1px solid black; padding-right: 5px;">"R"</td> <td>document member of the same patent family</td> </tr> </table>			"I"*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention	"X"	document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone	"Y"	document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art	"R"	document member of the same patent family				
"I"*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention													
"X"	document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone													
"Y"	document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art													
"R"	document member of the same patent family													
Date of the actual completion of the international search 24 JUNE 2002	Date of mailing of the international search report 17 JUL 2002													
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3930	Authorized officer ROSEMARY ASHTON Telephone No. 705-305-3742													

Form PCT/ISA/210 (second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US02/06609

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(9)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos. 4-43, 97-86, 91-129 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT	
International application No. PCT/US02/06609	
B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used): USPAT, JPO, EPO, DERWENT search terms: continuous addition, (adding or added or add) near2 continuously, fastest near2 monomer, (photoresist or resist composition) and ((adding or added or add) near2 continuously) or continuous addition	

Form PCT/ISA/210 (extra sheet) (July 1998)★

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P,L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZM,ZW

(72)発明者 バークレー, ジョージ・ジー

アメリカ合衆国マサチューセッツ州01522, ジェファーソン, メイン・ストリート・1566

(72)発明者 カボレール, ステファン・ジー

アメリカ合衆国マサチューセッツ州01609, ウォーセスター, チェスナット・ストリート・36, アパートメント・4

(72)発明者 カバナー, ロバート・ジー

アメリカ合衆国マサチューセッツ州02139, ケンブリッジ, パトナム・アベニュー・85

(72)発明者 パグリアーノ, ニコラス

アメリカ合衆国マサチューセッツ州01519, グラフトン, ダニエル・ドライブ・21

F ターム(参考) 2H025 AA01 AA02 AA04 AB16 AC04 AC08 AD01 AD03 BE00 BE10

BG00 BJ10 CB08 CB10 CB14 CB16 CB41

2H096 AA25 BA05 BA06 BA11 EA03 EA05 LA30