发明名称
装配式混凝土柱-钢梁耗能型节点连接装置

摘要
本发明公开了一种装配式混凝土柱-钢梁耗能型节点连接装置，由梁柱螺栓连接部件和摩擦耗能装置组成，包括预制混凝土柱、预埋钢梁、中间钢梁和组合连接钢扣件。预埋钢梁和中间钢梁的横截面为H型，预埋钢梁和中间钢梁的腹板通过腹板焊板连接；预埋钢梁和中间钢梁的翼缘通过连接盖板连接。利用组合钢件内阻的摩擦片，通过摩擦耗能机制耗散地震能量。与现有技术相比，本发明中的连接装置能减少对建筑的不利影响；通过塑性铰外移实现强柱弱梁的抗震屈服机制；耗能装置能改善装配式结构耗能，减轻主要结构构件的损伤；连接部位及钢梁可方便维修更换和拆除再利用；同时，本发明采用全预制的工业化生产，现场全螺栓安装，具有很高的工程实用性。
1. 一种装配式混凝土柱-钢梁耗能型节点连接装置，其特征在于：包括预埋混凝土柱（1）、预埋入预制混凝土柱（1）并外伸出预制混凝土柱（1）柱面的预埋钢梁（4）和连接预埋钢梁（4）的中间钢梁（3），所述预埋钢梁（4）和中间钢梁（3）的横截面均为H型，预埋钢梁（4）和中间钢梁（3）的腹板通过腹板盖板（8）连接，预埋钢梁（4）和中间钢梁（3）的翼缘通过连接盖板连接。

2. 根据权利要求1所述的装配式混凝土柱-钢梁耗能型节点连接装置，其特征在于：所述连接盖板包括长圆孔连接盖板（7）和圆孔连接盖板（6），长圆孔连接盖板（7）上设有长圆孔（11），圆孔连接盖板（6）上设有圆形孔（12）；所述长圆孔连接盖板（7）与预埋钢梁（4）和中间钢梁（3）之间设有摩擦片（9）。

3. 根据权利要求1所述的装配式混凝土柱-钢梁耗能型节点连接装置，其特征在于：所述腹板盖板（8）的外侧放置有腹板附加盖板（10），腹板附加盖板（10）与腹板盖板（8）之间设有腹板摩擦片（14）。

4. 根据权利要求1所述的装配式混凝土柱-钢梁耗能型节点连接装置，其特征在于：所述腹板盖板（8）上设有圆形孔（12）和长圆形孔（11）；腹板盖板（8）通过螺栓与圆形孔（12）的配合与预埋钢梁（4）连接；腹板盖板（8）通过螺栓与上部的圆形孔（12）、下部的长圆形孔（11）配合与中间钢梁（3）连接。

5. 根据权利要求2所述的装配式混凝土柱-钢梁耗能型节点连接装置，其特征在于：所述长圆孔连接盖板（7）通过螺栓与长圆形孔（11）的配合分别与预埋钢梁（4）和中间钢梁（3）连接。
装配式混凝土柱 - 钢梁耗能型节点连接装置

技术领域

[0001] 本发明涉及一种全预制成型装配式混凝土柱，具体涉及一种装配式混凝土柱 - 钢梁耗能型节点连接装置。

背景技术

[0002] 对于预制成型装配式混凝土柱结构，节点和连接往往成为整个结构体系中最薄弱的环节。由于节点连接部位在框架中起着传递、分配内力和保证结构整体性的重要作用，其破坏将可能导致整个框架丧失承载力，造成结构倒塌。我国大部分地区处于地震多发区，装配式结构节点连接可靠性差，难以满足地震作用下的性能要求，加之节点区的震后修复难度较大，节点和连接因而成为制约装配式结构地震区使用的瓶颈。新一代的预制成型结构体系的发展中，针对梁柱新型节点和连接方式的研发具有非常重要的意义。

[0003] 在传统的现浇和装配式框架中，结构主要通过自身的塑性变形进行耗能，震害和破坏后修复和后续使用带来困难，已经越来越不能适应人们对结构抗震性能的新要求。近年来，以采用被动耗能阻尼器为代表的减震技术得到了很大发展。对于装配式结构体系，已有的研发集中在节点上，与全预制装配式工艺相关的连接装置研发不足，开发损伤可控的连接，以此为基础形成高精度门槛的非弹性反应结构体系，已成为一条提高节点和结构体系抗震性能的重要途径。为此，亟需开发一种新型耗能装配式节点，使其具有以下特点：

1. 使用半刚性节点，这种节点在正常使用条件下是刚性的，而在罕遇地震作用下，能按照可靠的滞回特性转动，一旦罕遇地震停止，节点又表现为刚性行为。

2. 遭受地震冲击时，不会因为结构变形而出现梁端增长，对楼板产生不利的拉裂作用。在很多个混凝土柱和预制混凝土柱中，梁端增长将产生不利影响，可能拉裂楼板，甚至可能由于增加了对柱的抗震效果，从而降低结构的抗震性能。

3. 放置阻尼装置的空间需求是阻尼器应用需重点关注的问题，需尽量减少阻尼装置对建筑使用功能的影响。

4. 在大地震作用下损伤较小，能提供中、大震后的可修复功能。

5. 钢结构节点的最新研究成果表明，采用塑性铰外移的方法，能提高节点延性，从而避免在强震作用下下柱接头发生脆性破坏。

发明内容

[0009] 发明目的：为了克服现有技术中存在的不足，本发明提出一种装配式混凝土柱 - 钢梁耗能型节点连接装置，正常使用时是刚性的，通过在连接部位设置的耗能装置使得结构具有良好的耗能能力，能提供中、大震后的可修复功能，从而保证结构的整体稳定性和降低灾后修复的代价，广泛应用于地震区的装配式框架结构之中。

[0010] 技术方案：为解决上述技术问题，本发明的一种装配式混凝土柱 - 钢梁耗能型节点连接装置，包括预制成型混凝土柱、预埋入预制混凝土柱并外伸出预制成型柱柱面的预埋钢梁和连接预埋钢梁的中间钢梁，所述预埋钢梁和中间钢梁的截面均为 H 型，预埋钢梁
和中间钢梁的腹板通过腹板盖板连接，预埋钢梁和中间钢梁的翼缘通过连接盖板连接。

0011 所述连接盖板包括连接长圆孔和圆孔连接盖板，长圆孔连接盖板上设有长圆形孔，长圆孔连接盖板上设有圆形孔；所述长圆孔连接盖板预埋钢梁和中间钢梁之间设有摩擦片，腹板盖板的外侧放置有腹板附加盖板，腹板附加盖板与腹板盖板之间设有腹板摩擦。

0012 所述腹板盖板上设有圆形孔和长圆形孔，腹板盖板通过螺栓与圆形孔的配合与预埋钢梁连接，腹板盖板通过螺栓与上部的圆形孔、下部的长圆形孔的配合与中间钢梁连接；所述连接盖板上设有长圆形孔或圆形孔，连接盖板通过螺栓和长圆形孔或圆形孔的配合分别与预埋钢梁和中间钢梁连接。

0013 在本发明中，混凝土柱在工厂进行预制，其中预埋一段外伸出柱面的预埋钢梁。梁柱采用扭接的钢筋接头，工厂预制的混凝土柱和预埋钢梁，经现场吊装就位后，采用摩擦型高强螺栓，连接盖板和摩擦片将节点区预埋钢梁与中间钢梁连接，预制混凝土柱与之间采用套筒浆锚技术连接形成整体框架结构。

0014 上述预埋钢梁和中间钢梁在腹板和翼缘表面之间放入黄铜或铝这类材料的摩擦板，通过摩擦型高强螺栓的预应力，提供垂直于摩擦面的正压力，在正常使用时，连接表为刚性的，在强震作用下形成滑移铰，通过摩擦耗散地震能量。

0015 上述预埋混凝土柱连接部位通过下翼缘处和腹板底部螺栓的滑移来产生以上翼缘为转动中心的相对转动，从而降低了对楼板的拉裂不利影响。

0016 上述预埋钢梁在远离柱面处采用摩擦型高强螺栓，连接盖板进行连接，通过在连接盖板上合理的布置螺栓，将塑性铰（滑移铰）控制在连接部位，从而不仅使得塑性铰远离了柱面，有效地降低了节点核心区所受的剪力，为节点区域减少或取消箍筋创造条件，而且能够改善塑性铰区的扭转转力和抗剪性能，提高塑性铰区的延性和耗能能力，最终实现整体框架结构限制铰的屈服耗能机制。

0017 鉴于混凝土框架在我国的应用广泛，而框架节点的震害非常普通并且加固修复的难度较大，同时，建筑标准化、工业化是当前产业化的发展趋势，因此本发明具有积极的社会意义和科学意义。

0018 有益效果：与现有技术相比，本发明克服了传统装配式混凝土和钢梁贯通型混凝土柱节点的不足，重点解决钢梁贯通型节点连接构造复杂和耗能的问题，通过损伤可控的节点连接部位产生的转动滑移，提供延性的能量耗散，能满足强节点、强固区节点抗震原则，提高结构的损伤门槛，使主要结构构件无损伤或损伤很小。本发明能够获得如下优异的性能：

0019 （1）采用黄铜、铝片等材料的摩擦片形成的被动耗能装置，在经过大变形的多次循环后仍能提供稳定的非弹性抗力；在弹性阶段后期，结构仍保证足够大的抗侧刚度，使P-△效应最小；外部作用变小时，结构又能恢复足够的刚度。

0020 （2）通过设置多层剪切摩擦面来缩短连接长度，减少螺栓数目，避免螺栓剪切现象。当翼缘板断裂时，邻近翼缘水平线上的腹板螺栓能为梁弯矩引起的轴向作用提供水平传力路径，在高转动需求下仍能保持合理抗弯能力；

0021 （3）通过设置下翼缘多层滑移的连接装置，不仅减少了耗能装置对建筑使用功能的影响，而且由于转动中心向上翼缘移动，避免了常见的对混凝土楼板的拉裂损伤；
说明书

[0022] （4）塑性铰从柱面外移，从而减少对节点核心区的损伤，容易实现强柱弱梁的梁铰屈服机制。
[0023] （5）钢梁和混凝土柱经工厂预制后，现场采用无焊接的全螺栓连接，现场施工作业少，有利于降低人力成本、加快施工进度和保证质量，使制作安装低损伤连接的费用与传统连接接近。
[0024] （6）在中、大震作用下，震损集中在耗能部件和连接部位，主体梁柱构件可以在设计的位移水准下几乎没有损伤，能够避免整体节点失效，连接部位及钢梁可方便维修更换和拆卸再利用。

附图说明

[0025] 图 1 为采用本发明装置后的框架梁柱节点连接立面示意图；
[0026] 图 2 为本发明中实施例 1 的转动变形示意图；
[0027] 图 3 为本发明中实施例 2 的立面示意图；
[0028] 图 4 为本发明中实施例 3 的立面示意图；
[0029] 图 5 为采用本发明装置后的框架结构立面示意图；
[0030] 图中：1 预制混凝土柱；2 贝尔维尔垫圈；3 中间钢梁；4 预埋钢梁；5 高强螺栓；6 圆形孔连接盖板；7 长圆形孔连接盖板；8 腹板盖板；9 摩擦片；10 腹板附加盖板；11 长圆形孔；12 圆形孔；13 高强摩擦型螺栓；14 腹板摩擦片。

具体实施方式

[0031] 下面结合附图对本发明作进一步的说明。
[0032] 如图 1 至 5 所示，本发明的装配式混凝土柱—钢梁耗能型节点连接装置，包括预置混凝土柱 1、预埋入预制混凝土柱 1 并由外伸出预置混凝土柱 1 柱面的预埋钢梁 4 和连接预埋钢梁 4 的中间钢梁 3，所述预埋钢梁 4 和中间钢梁 3 的横截面均为日型，预埋钢梁 4 和中间钢梁 3 的腹板通过腹板盖板 8 连接，预埋钢梁 4 和中间钢梁 3 的翼缘通过连接盖板连接。
[0033] 其中，连接盖板包括长圆形孔连接盖板 7 和圆孔连接盖板 6，长圆形孔连接盖板 7 上设有长圆形孔 11，圆孔连接盖板 6 上设有圆形孔 12；长圆形孔连接盖板 7 与预埋钢梁 4 和中间钢梁 3 之间设有摩擦片 9，腹板盖板 8 的外侧放置有腹板附加盖板 10，腹板盖板 8 与腹板附加盖板 10 之间设有腹板摩擦片 14，腹板盖板 8 上设有圆形孔 12 和长圆形孔 11，腹板盖板 8 通过螺栓和圆形孔 12 的配合与预埋钢梁 4 连接，腹板盖板 8 通过螺栓和上部的圆形孔 12、下部的长圆形孔 11 的配合与中间钢梁 3 连接，连接盖板上设有长圆形孔 11 或圆形孔 12，连接盖板通过螺栓与长圆形孔 11 或圆形孔 12 的配合分别与预埋钢梁 4 和中间钢梁 3 连接。连接盖板包括圆孔连接盖板 6 和长圆形孔连接盖板 7，螺栓包括高强螺栓 5 和高强摩擦型螺栓 13。
[0034] 具体来说，本发明的装配式混凝土柱—钢梁耗能型节点连接装置由梁梁螺栓连接部件和摩擦耗能装置两部分组成。如图 1 所示，包括预置混凝土柱 1、中间钢梁 3、外伸的预埋钢梁 4、高强螺栓 5、圆孔连接盖板 6、长圆形孔连接盖板 7、腹板盖板 8、摩擦片 9、腹板附加盖板 10、高强摩擦型螺栓 13、腹板摩擦片 14，其中高强螺栓 5 和高强摩擦型螺栓 13 上均设有贝尔维尔垫圈 2。
[0035] 预埋钢梁 4 预埋在预制混凝土柱 1 内并伸出预制混凝土柱 1 的柱面,在预埋钢梁 4 和中间钢梁 3 之间留有空隙,中间钢梁 3 和预埋钢梁 4 端头的上边放置圆孔插连接盖板 6 ; 中间钢梁 3 和预埋钢梁 4 的腹板两侧或一侧放置腹板盖板 8 ,腹板盖板 8 的外侧放置腹板附加盖板 10 ;长圆孔连接盖板 7 分别放置在中间钢梁 3 和预埋钢梁 4 下翼缘的上下边。中间钢梁 3 和预埋钢梁 4 的上翼缘和腹板均开设圆形孔 12 ,在预埋钢梁 4 连接的上翼缘和腹板均开设圆孔 11 ;在预埋钢梁 4 连接的下翼缘处开设长圆孔 11 。

[0036] 本发明的装配式混凝土柱 - 钢梁耗能型节点连接装置,通过以下步骤制备而成:先在预制工厂制作预埋混凝土柱 1 和中间钢梁 3 ,在工厂预埋混凝土柱 1 将预埋钢梁 4 与柱混凝土一次浇筑完成,每根预制混凝土柱 1 的纵向钢筋从柱顶伸出、柱底预留浆锚套筒。预制柱运到施工现场后,采用浆锚方式完成上下柱的连接,即吊装预埋混凝土柱 1 使下柱伸出的纵筋对准插入其浆锚套筒,待柱的垂直度校正后对浆锚套筒进行灌浆。

[0037] 各梁柱连接部位以组合件构成摩擦耗能装置,耗能部件包括中间钢梁 3 、预埋钢梁 4 的下翼缘板,长圆孔连接盖板 7 、腹板附加盖板 10 和摩擦片 9 、腹板摩擦片 14 ,摩擦型高强螺栓 13 及配套的弹簧垫圈。其中长圆孔连接盖板 7 共四块,分别设置在中间钢梁 3 和预埋钢梁 4 下翼缘的上、下边;腹板附加盖板 10 共两块,对称设置在钢梁腹板两侧;四块摩擦片 9 设置在中间钢梁 3 、预埋钢梁 4 的下翼缘和长圆孔连接盖板 7 之间,附在长圆孔连接盖板 7 的内侧;两块腹板摩擦片 14 与腹板附加盖板 10 的平面尺寸相同,设置在腹板盖板 8 和腹板附加盖板 10 之间,附在腹板附加盖板 10 的内侧;摩擦型高强螺栓 13 在现场将包括中间钢梁 3 与预埋钢梁 4 在内的各部件固定在一起。通过摩擦型高强螺栓 13 上的预应力,提供垂直于摩擦面的正压力,当梁柱连接部位在强震作用下产生相对位移时,摩擦片 9 、腹板摩擦片 14 和钢梁下翼缘及腹板盖板 8 的接触面将通过摩擦耗散地震能量。

[0038] 固制的梁柱通过高强螺栓 5 和高强摩擦型螺栓 13 完成装配连接后,即形成整体混合框架结构。

[0039] 根据摩擦耗能装置设置方式的不同,本发明的装配式混凝土柱 - 钢梁耗能型节点连接装置可分为三种不同实施情况。

[0040] 实施例 1 :

[0041] 本实施例为非对称摩擦连接方式,如图 1 所示的连接形式,摩擦片 9 只设置在下翼缘处,腹板摩擦片 14 设置在靠近下翼缘的腹板处,摩擦片 9 、腹板摩擦片 14 分别位于长圆孔连接盖板 7 和腹板附加盖板 10 的内侧。节点在正常使用时表现为刚性行为,强震下梁柱连接部位通过下翼缘处和腹板底部高强摩擦型螺栓 13 的滑移来产生以上翼缘为转动中心的相对转动,如图 2 所示,从而可以降低对楼板的影响。摩擦片 9 和钢梁下翼缘及腹板盖板 8 的接触面发生滑移时,通过摩擦耗散地震能量,形成滑移铰。通过设置梁端间隙,开设长圆孔 11 满足节点对转动能力的要求。

[0042] 实施例 2 :

[0043] 本实施例为对称摩擦连接方式。如图 3 所示,在上下翼缘对称设置长圆孔连接盖板 7 、长圆孔连接盖板 7 与上下翼缘之间分别设置摩擦片 9 ,摩擦片 9 位于长圆孔连接盖板 7 的内侧,连接盖板的螺栓孔均为长圆孔 11 ,腹板盖板 8 与预埋钢梁 4 连接的螺栓孔开为
圆形孔 12，腹板盖板与中间钢梁 3 连接的螺栓孔开为长圆形孔 11。

[0044] 实施例 3：

[0045] 本实施例为无摩擦片连接方式。如图 4 所示，在下翼缘对称设置圆孔连接盖板 6，但圆孔连接盖板 6 与翼缘之间不设摩擦片，腹板处也不设腹板附加盖板 10 和腹板摩擦片 14。翼缘和腹板上均开设圆形孔 12，采用高强螺栓 5 连接，形成接近刚性的连接。

[0046] 综上所述，本发明的装配式混凝土柱 - 钢梁耗能型节点连接装置，主要由梁梁螺栓连接部件和摩擦耗能装置两部分组成。本发明旨在发展与全预制装配式工艺配套的连接装置，减少对楼板的不利影响，提高装配式结构的耗能能力。预制混凝土柱 1 由工厂进行预制，节点采用梁贯通式，将柱面伸出的预埋钢梁 4 与中间钢梁 3 在翼缘和腹板处通过连接盖板和高强螺栓进行连接，在下翼缘和靠近下翼缘的腹板附加盖板 10 处分别设置摩擦片 9 和腹板摩擦片 14。梁柱连接部位通过下翼缘处和腹板底部螺栓的滑移来产生以上翼缘为转动中心的相对转动，从而降低对楼板受力及使用上的影响。摩擦片 9 和钢梁下翼缘及腹板摩擦片 14 和腹板盖板 8 的接触面发生滑移时形成滑移铰，通过摩擦耗能机制耗散地震能量。

与现有技术相比，本发明中，节点在正常使用时表现为刚性行为，摩擦耗能装置提供良好的耗能能力；塑性铰外移容易实现强柱弱梁的梁铰屈服机制，震损集中在耗能元件和连接部位，能减轻梁柱等主要构件的损伤，连接部位及钢梁可方便维修更换和拆卸再利用。本发明的装配式混凝土柱 - 钢梁耗能型节点连接装置采用全预制的工业化标准生产，现场全螺栓安装，施工可操作性强，节点构造简单，具有很强的工程实用性。

[0047] 以上所述仅是本发明的优选实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本发明原理的前提下，还可以做出若干改进和润饰，这些改进和润饰也应视为本发明的保护范围。