wo 2014/028655 A 1[I I NPFV 00O 00 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

20 February 2014 (20.02.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/028655 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
GO6F 9/44 (2006.01) GO6F 17/21 (2006.01)
GO6F 9/455 (2006.01) GO6F 17/30 (2006.01)

International Application Number:
PCT/US2013/055001

International Filing Date:

14 August 2013 (14.08.2013)
Filing Language: English
Publication Language: English
Priority Data:
13/584,936 14 August 2012 (14.08.2012) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Inventors: CIRRINCIONE, Cory; c/o Microsoft Corpor-
ation, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). LEECE, Mark;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). HOPTON, Dominic; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: USER INTERFACE CONTROL FRAMEWORK FOR STAMPING OUT CONTROLS USING A DECLARATIVE
TEMPLATE

810

805

Ul controls

:" m——— '“E E" """""" : New

: H ControlFramework js i ! -

i ; : e Existing
' i —————————— i '

i 1y [i

i o e . i) i

i Binding js ! | Uljs H Base js i

i i

e qomme- :L'"T“":: ______ pmmme J

(57) Abstract: A user interface ("UI") control framework enables UI controls to be declaratively created inline with the HTML
markup without having to write boilerplate JavaScript that would usually be needed with conventional UI control models. The Ul
control framework is architected to sit on top of existing WinJS (Windows Library for JavaScript) functionality and encapsulates be -
haviors that are common across many control implementations so that a single instance of a Ul control template may be used to
stamp out multiple control instances. The UI control framework separates layout from the "code behind" in the backing controls so
that data binding can be implemented abstractly without explicit knowledge of the layout of the control and any of its child controls.
The markup provides "anchor points" that allow the code to have direct access to a child control. Custom expando HTML attributes
are utilized that place named properties on control instances.

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

USER INTERFACE CONTROL FRAMEWORK FOR STAMPING OUT
CONTROLS USING A DECLARATIVE TEMPLATE

BACKGROUND
[0001] The fifth revision of the HyperText Markup Language, named “HTMLS,” is
formally defined by an international standards body known as the World Wide Web
Consortium (“W3C”). HTMLS5 includes more than 100 specifications that relate to the
next generation of Web technologies. HTMLS describes a set of HTML, CSS (Cascading
Style Sheets), and JavaScript specifications configured to enable designers and developers
to build the next generation of web sites and applications. While such technologies
perform satisfactorily in many usage scenarios, opportunities still exist for enhanced and
richer web application development experiences to be implemented.
[0002] This Background is provided to introduce a brief context for the Summary and
Detailed Description that follow. This Background is not intended to be an aid in
determining the scope of the claimed subject matter nor be viewed as limiting the claimed
subject matter to implementations that solve any or all of the disadvantages or problems
presented above.

SUMMARY

[0003] A user interface (“UI”) control framework enables Ul controls to be
declaratively created inline with the HTML markup without having to write boilerplate
JavaScript that would usually be needed with conventional Ul control models. In one
particular illustrative embodiment, the UI control framework is architected to sit on top of
existing WinJS (Windows Library for JavaScript) functionality and encapsulates behaviors
that are common across many control implementations so that a single instance of a Ul
control template may be used to stamp out multiple control instances. The UI control
framework separates layout from the “code behind” in the backing controls so that data
binding can be implemented abstractly without explicit knowledge of the layout of the
control and any of its child controls. The markup provides “anchor points” that allow the
code to have direct access to a child control. Custom expando HTML attributes are
utilized that place named properties on control instances.
[0004] Advantageously, the loose coupling between the layout and backing controls
allows UI controls to be readily created by web application designers who tend to be
specialists in HTML and CSS but who may not be as conversant in JavaScript coding as

programmers/developers. The framework supports declarative creation of Ul controls

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

without the designer having to touch the backing control code. The framework and its

declarative templates are further inherently flexible so that designers can make large scale

changes to control layout so long as the anchor points remain named the same without

triggering a need to update code in the backing controls. Such flexibility provides

powerful tools for application designers to produce rich user experiences while also

reducing expenses associated with code maintenance.

[0005] This Summary is provided to introduce a selection of concepts in a simplified

form that are further described below in the Detailed Description. This Summary is not

intended to identify key features or essential features of the claimed subject matter, nor is

it intended to be used as an aid in determining the scope of the claimed subject matter.
DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 shows an illustrative computing environment in which the present Ul

control framework may be implemented;

[0007] FIG. 2 shows how a Ul control layout is tightly coupled to the underlying

“code behind” in a traditional Ul control model;

[0008] FIG. 3 shows an illustrative HTML code that invokes a Ul control that displays

music tracks and enables their purchase;

[0009] FIG. 4 shows an illustrative example of boilerplate JavaScript used to

implement the Ul control shown in FIG. 3;

[0010] FIG. 5 shows how a markup file that specifies Ul control layout is loosely

coupled and separated from the backing control in the present UI control framework;

[0011] FIG. 6 shows an illustrative example of how a declarative Ul control template

is used to “stamp out” multiple control instances;

[0012] FIG. 7 shows an illustrative arrangement for binding data to controls in a

layout in which the data is provided by a backing control;

[0013] FIG. 8 shows an illustrative architecture for an implementation of the present

UI control framework;

[0014] FIG. 9 shows creation of a namespace and functions supporting the present Ul

control framework under WinJS;

[0015] FIGs. 10-12 show an example of an illustrative usage of the present UI control

framework;

[0016] FIG. 13 shows a portion of an illustrative HTML DOM (Document Object

Model) tree;

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

[0017] FIGs. 14-17 show illustrative HTML fragments that include various expando
attributes associated with HTML elements; and
[0018] FIG. 18 is a simplified block diagram of an illustrative computer system such
as a personal computer or server with which the present UI control framework may be
implemented.
[0019] Like reference numerals describe like elements in the drawings.

DETAILED DESCRIPTION
[0020] FIG. 1 shows an illustrative computing environment 100 in which the present
UI control framework may be implemented. In the environment 100, a number of web
application users 105 employ respective computing devices 110 to access web-based
resources including a web application provider 115 over the Internet 120. The computing
devices 110 can comprise a variety of platforms having various features and
functionalities (where not all of such platforms are illustrated in FIG. 1) including, for
example, mobile phones, smart phones, personal computers (“PCs”), ultra-mobile PCs,
PDAs (personal digital assistants), e-mail appliances, digital media players, tablet
computers, handheld gaming platforms and gaming consoles, notebook and laptop
computers, Internet-connected televisions, set-top boxes, GPS (Global Positioning
System) and navigation devices, digital cameras, and devices having various combinations
of functionalities provided therein. It is emphasized, however, that the preceding list is
intended to be illustrative, and that the present arrangement can be expected to be utilized
on any of a variety of platforms that support HTMLS5 functionalities or a subset thereof.
[0021] While not a required functionality to implement the present UI control
framework, the computing devices 110 may often have some form of network connectivity
feature, either directly or through an intermediary device (e.g., an Internet-connected
personal computer), as well as a web browser or application or embedded features that
provide similar functionality which operates on the device and supports user interactivity
through a display and input device such as a touchscreen, keypad, pointing device, and the
like. As shown in FIG. 1, the computing devices 110 may access the Internet 120 and the
web application provider 115 using a mobile network 125, or through Internet Service
Providers (“ISPs”) 130, or using both in some cases.
[0022] A web application designer 135 works with the provider 115 to design next
generation web technologies including applications and websites that leverage the

capabilities of HTMLS5. A programmer 140 also works with the provider. In this

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

illustrative example, the designer is typically familiar with, and uses HTML and CSS and
does not necessarily have the same high level of expertise in coding as the programmer.
[0023] As shown in FIG. 2, traditional UI control development models often
implement a tight coupling between the UI control layout 205 that organizes and presents
the controls on the display for the user and the underlying code 210 (often termed “code
behind”) that is utilized to implement the controls using the business and/or presentation
logic of the web application. Such tight coupling means that the code needs to have
explicit knowledge of the layout of each Ul control and any child controls. In addition, any
dependencies owned by a child control needs to be explicitly managed by the parent.
[0024] With traditional development models, designers may need to touch code when
creating or modifying an application feature which can often be problematic given the
designer’s more limited code expertise. The tight coupling between code and layout can
also give rise to a need to generate relatively large amounts of boilerplate code for each Ul
control. FIGs. 3 and 4 provide an illustrative example of such boilerplate code in WinJS.
WinJS provides comprehensive functionalities to enable designers, programmers, and
developers to implement new controls designed for Metro style applications (“apps’)
using JavaScript. Presently, WinJS uses a simple but powerful contract between HTML
markup and JavaScript to define Ul controls. An illustrative fragment of HTML markup
for Ul controls that displays various music tracks that may be purchased by pushing
respective buttons is shown by reference numeral 305 in FIG. 3. The corresponding
JavaScript code is shown by reference numeral 405 in FIG. 4.

[0025] As shown in this example, even with a relatively simple control, there is a large
amount of boilerplate code where such code will typically need to be repeated for virtually
every UI control. This situation can lead to the programmer (e.g., programmer 140 in
FIGs. 1 and 2) needing to solve similar problems multiple times which can lead to coding
errors and inconsistencies, reduce the prevalence of common and shared coding patterns,
and ultimately result in higher application maintenance costs.

[0026] Unlike the tight coupling in traditional UI control models, the UI control layout
505 is loosely coupled to the code behind 510 in the present UI control framework, as
shown in FIG. 5. In particular, the loose coupling enables a markup file 515 which, for
example, may include HTML and CSS, to be separated from the backing control 520. Ul
controls store their layout in the markup file 515, including references to any child
controls, which is then used as a declarative template to “stamp out” the layout for

multiple controls. As shown in FIG. 6, the markup file 515 (i.e., the declarative template)

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

itself is single instanced, but the stamping out is performed on a per control instance. Each
layout 605 is mapped on a 1:1 basis to code in the backing control 610. Accordingly, the
present Ul control framework advantageously enables multiple UI controls to be defined
in a single template which eliminates the need for repetitive generation of boilerplate code
while enabling simple declarative layout of the controls through the markup.

[0027] Data for a UI control, such as a property or value, is not directly managed by a
control in the layout. Instead, the data is requested through declarative specification in the
layout to loosely source the data from the backing control. FIG. 7 shows an illustrative
example of such data binding in which a control layout 705 includes two child controls, as
indicated by reference numerals 715 and 720. Data for the child controls is bound from the
backing control 710 which offers up properties, as indicated by reference numerals 725
and 730. Significantly, the loose coupling allows the data offered up by the backing
control to be accomplished abstractly without explicit knowledge of the child controls.
[0028] FIG. 8 shows an illustrative architecture for one particular implementation of
the present Ul control framework which is built on the existing WinJS platform.
Additional information about WinJS may be found at http://msdn.microsoft.com/en-
us/library/windows/apps/br211377.aspx. In this particular example, the control framework
805 supports Ul controls 810 and builds upon three WinJS components as core building
blocks. The components include Base.js (as indicated by reference numeral 815) which is
the WinJS type library that provides type definition and supports an asynchronous
deferred invocation model using a WinJS promise object. The Binding.js component 820
is utilized to provide a declarative and imperative binding system for one-way, dynamic
property binding, and data templating. The Ul.js component 825 provides the basic control
model, an HTML fragment loader, and various Ul utility functions. It is emphasized that
the utilization of the WinJS platform and its particular building block components is
intended to be illustrative and that the present UI control framework is not limited to
WinJS platform implementations. The principles presented herein may be adapted for use
with a variety of programming paradigms (some of which may not utilize CSS and
JavaScript objects) depending on the requirements of a particular implementation.

[0029] A namespace and a default control class are defined in WinJS as shown in the
code segment 905 shown in FIG. 9. This class provides a set of functions that are arranged
to simplify control declaration, as well as encapsulate some of the optimizations, and
background management of fragments, templates, and the like. The new control class is

used instead of the WinlJS control definition function. However the defineUserControl

10

WO 2014/028655 PCT/US2013/055001

function provided conforms to the same WinJS control contract. The function passes many
of the parameters into WinJS.Class.define() from WinJS, along with passing the values to
the default control class.

[0030] The function parameters are shown in Table 1 below:

Parameter Description

Template The URI to the template for this control,
¢.g. File.html#data-winent-templateld

Constructor Constructor function, if needed for this
object
Members JavaScript object syntax for properties,

methods that are members of this control

ObservableMembers Properties on the object that we would like
to bind to from the control template, and

that will change during the lifetime of the

object
StaticMembers Passed through to the WinJ.Class.define
method
Return value The object that is created
Table 1

[0031] It is noted that it is possible to derive from an existing control. The common
usage in this case would be to employ a different template for the same control behavior.
Such usage is similar to the control implementation in Windows Presentation Foundation
(“WPF”).

[0032] A control base class implements the WinJS contract (e.g., setOptions,
setElement, and function(element, options) constructor function), while providing optional
customization for designers and programmers extending this class. The control base class

supports various functions as shown in Table 2 below:

10

WO 2014/028655 PCT/US2013/055001

Function Description

initialize Called after all WinJS level processing has
happened, and the fragment has been

loaded, and the template processed.

This method will be called in bottom up
order, that is to say the composed child
controls will have their initialize called

before their parent.

Note, initialize is only called after the

template for that control has been loaded.

Unload This allows a control to perform clean up
when the control is removed from the UL

Table 2

[0033] There may be occasions when a control author needs to perform work when the
author’s control is removed from the UI, for example to either free resources, or persist
state. To enable this, if a control is removed from the HTML DOM (Document Object
Model), then a method called ‘unload’ is called on the control instance. This allows the
author to do the work at the right time.

[0034] When a template is loaded, it is encapsulated so that the loading of the markup
and CSS that implement a Ul control is transparent to the control consumer (e.g., the
designer 135). To enable this transparency, the control definition will have a URI
(Uniform Resource Identifier) that represents both the file, and the identifier within that
file for the template. An illustrative example is: “SimpleControls.html#EditBox” as shown

in Table 3 below.

Part Description

SimpleControls.html The package-relative path to the HTML file

containing this template.

EditBox The template identifier within the HTML
file for this control.

Table 3

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

[0035] It could be possible to utilize the HTML id attribute to identify the specific
template, but there are some issues around uniqueness when merged with the parent
document. To resolve this, a custom HTML expando attribute ‘data-ent-templateid’ is
utilized which is set to a value unique within an HTML document. The combination of file
path and id may be used to identify the template globally.

[0036] Given the one-to-many relationship of control layout files to templates, the
loading of a specific file (fragment) into the DOM for access to the templates needs to be
transparent to the control consumer. WinJS has a rich and full featured fragment loading
mechanism which can be leveraged by the present UI control framework. This allows
fragments to be loaded into the document, and they reside in the document until explicitly
unloaded. Subsequent calls to load the same fragment will thus be completed immediately.
This implicit caching thus manages the fragments as they are loaded. In addition the
instantiated WinJS.Binding. Template instances are cached so they do not need be fetched
every time a control is rendered.

[0037] The CSS and scripts that are included in the source HTML file are merged,
without duplication into the parent document. WinJS provides the ability to “‘unload’ the
fragment, which will remove and unload the content. Templates will use the
WinJS.Binding. Template() function (which conforms to the control contract) in WinJS to
perform the actual template hydration for the control, and data binding. Thus, both
fragment loading, and template hydration will be handled seamlessly for the control
author.

[0038] FIGs. 10-12 show an example of an illustrative usage of the present UI control
framework. FIG. 10 shows a fragment of HTML code 1005 for a UI control template that
implements a Ul for enabling a user to purchase displayed music tracks via button pushes
in a similar manner to the example shown in FIGs. 3 and 4 and described in the
accompanying text. The corresponding JavaScript code 1105 is shown in FIG. 11. A
control consumer may simply declaratively instantiate the Ul control using the HTML
fragment 1205 shown in FIG. 12.

[0039] In addition to the core functionality of the UI control framework described
above, a number of custom HTML expando attributes may be utilized that provide for
additional control behaviors. One particular issue addressed by the attributes is that for a
given control’s DOM tree, it may need access to specific HTML elements — either directly
or through the control represented by that element. An illustrative DOM tree 1310 is

shown in FIG. 13 which represents a page of an application as a group of connected nodes

10

15

20

WO 2014/028655 PCT/US2013/055001

which include HTML elements, text elements, and attributes as indicated in the key 1315.
JavaScript can access the nodes through the tree to modify or delete their contents and
create new clements. The nodes in the DOM tree have a hierarchical relationship to each
other.

[0040] To address this access issue, a template is allowed to be authored where an
expando attribute named ‘data-ent-member’ is placed on certain elements. This attribute is
interpreted to place the instance of the element it is placed on as a member on the control
instance. If the element represents a control, then instead of the element, the control
instance is placed in that member. An example is shown in the HTML fragment 1405
shown in FIG. 14. In this example, the control that consumes this template would find that
it has two properties set — memberl, member2 — that enable easy access to those elements.

The properties are described in Table 4 below.

Name Description

Memberl This is the Span element directly. It can be
used to set content, add CSS styles, etc.

Member2 This 1s the DumbChildControl instance,
not the HTML div element. The control
can access the DumbChildControl instance
directly. If it requires the DOM element, it
can use the domElement property on the
DumbChildControl to get that value.
Table 4
[0041] Given the complexity of a typical DOM tree, and the goal to decouple the

layout (i.e., HTML, CSS) from the code implementation as much as possible, events are
attached declaratively rather than using code and implementing an event listener. While
the ‘data-ent-member’ attribute allows the constituent parts of the template to move and
maintain low impact on the code, it still requires calls to the event listener, defined
functions, etc. Additionally, the ‘this’ pointer points to the element raising the event not
the control itself. This typically means developers are using ‘var that’, or doing .bind(this)
throughout their code. To avoid developers having to concern themselves with such
formalities and write the event handlers just like any other function, the expando attribute

‘data-ent-event’ is utilized as shown in the HTML fragment 1505 in FIG. 15. In this

10

15

20

25

WO 2014/028655 PCT/US2013/055001

particular example shown in FIG. 15, the DOM events that will be attached to the HTML

elements are shown below in Table 5.

Element DOM Event Handler
Button Click handleClick
Button Mouscover handleMouseOver
Input Input handlelnput

Table S

[0042] All the handler methods will be found on the control instance and will have
their ‘this’ pointer set to the control instance. When called, they will pass the standard
parameters passed to any DOM Event handler.

[0043] An additional need is to abstract away certain operations in an application — for
example, playing a video, purchasing a track, etc. — to hide the complexity of the operation
from the control consumer. To resolve this, a concept called ‘actions’ is created. This
concept provides a simple contract for the states of invocation, enabled (e.g. has a valid
selection), and available (cannot ever happen based on machine configuration, or market
requirements).

[0044] While the present Ul control framework does not handle the actual invocation
of the functionality itself (as it is up to the control to determine the best interaction) the
infrastructure of getting an action, handling availability, and making it available to a
control is part of the control framework. Accordingly, the expando attribute ‘data-ent-
action’ is utilized as shown in the HTML fragment 1605 in FIG. 16. In this example, value
of the ‘data-ent-action’ attribute is used to look up the action in an internal service and
place the instance on to the actual control. The control can then assume that the action
property, if truthy, is a valid action and data bind, or otherwise manipulate it.

[0045] Animations are often utilized to produce a compelling set of experiences for
users. To enable a consistent, compelling experience, rather than simply elements
appearing on the screen as jarring visual flashes, an objective of the present UI control
framework is to have controls reveal themselves. Rather than have the controls manage
this individually on a case by case basis, the expando attributes of ‘data-ent-
showanimation’ and ‘data-ent-hideanimation’ may be used to declare CSS animations that
are played on a given element when it is respectively shown and/or hidden. It should be
noted that ‘shown’ takes into account the possibility that the element may believe itself to

be visible, but because of the visibility of parent elements may not actually be visible. This

10

10

15

WO 2014/028655 PCT/US2013/055001

means that these animations should only be played when the element actually becomes
visible, when taking into account the tree it resides in. Additionally, as well as having
these animations play automatically when being shown or hidden, there needs to be a way
to explicitly start them. Primarily this will revolve around functions intended as drop in
replacements for the known [remove|insertjappend] Child functions from the DOM. A full

set of functions and corresponding descriptions are shown in Table 6 below.

Function Description

showElement Shows the element subtree playing

animations for elements as appropriate.

hideElement Hides the element subtree, playing

animations for elements as appropriate.

appendChild Inserts the supplied subtree, in a hidden

state, and plays the show animation.

insertBefore Same as appendChild, but order is same as

document.insertBefore.

removeChild Plays the hide animation for the subtree, and
once the animation is complete removes the

element from the subtree.

replaceChild Removes an element subtree with the hide
animation, and inserts the new element
playing the show animation.

Table 6

[0046] An illustrative example of animation handling is shown in the HTML fragment
1705 in FIG. 17. In his example, there two show animations on two HTML elements.
When these elements become visible, they will invoke the animation applied to the
elements where the attributes are set, allowing the developer to avoid having to manage
animations playing themselves. Additionally, with this animation functionality, there is
programmatic control over the visibility. Specifically there is a ‘visibility’ boolean
property that will play the appropriate animation for being shown/hidden — being a
property, this allows for easy data binding to control visibility.

[0047] FIG. 18 is a simplified block diagram of an illustrative computer system 1800
such as a PC or web server or other server with which the present Ul control framework

may be implemented. Computer system 1800 includes a processor 1805, a system memory

11

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

1811, and a system bus 1814 that couples various system components including the
system memory 1811 to the processor 1805. The system bus 1814 may be any of several
types of bus structures including a memory bus or memory controller, a peripheral bus, or
a local bus using any of a variety of bus architectures.

[0048] The system memory 1811 includes read only memory (“ROM”) 1817 and
random access memory (“RAM”) 1821. A basic input/output system (“BIOS”) 1825,
containing the basic routines that help to transfer information between elements within the
computer system 1800, such as during start up, is stored in ROM 1817. The computer
system 1800 may further include a hard disk drive 1828 for reading from and writing to an
internally disposed hard disk (not shown), a magnetic disk drive 1830 for reading from or
writing to a removable magnetic disk 1833 (e.g., a floppy disk), and an optical disk drive
1838 for reading from or writing to a removable optical disc 1843 such as a CD (compact
disc), DVD (digital versatile disc), or other optical media. The hard disk drive 1828,
magnetic disk drive 1830, and optical disk drive 1838 are connected to the system bus
1814 by a hard disk drive interface 1846, a magnetic disk drive interface 1849, and an
optical drive interface 1852, respectively.

[0049] The drives and their associated computer-readable storage media provide non-
volatile storage of computer readable instructions, data structures, program modules, and
other data for the computer system 1800. Although this illustrative example shows a hard
disk, a removable magnetic disk 1833, and a removable optical disk 1843, other types of
computer-readable storage media which can store data that is accessible by a computer
such as magnetic cassettes, flash memory cards, digital video disks, data cartridges,
RAMSs, ROMs, and the like may also be used in some applications of the present Ul
control framework. In addition, as used herein, the term computer readable medium
includes one or more instances of a media type (e.g., one or more magnetic disks, one or
more CDs, etc.).

[0050] A number of program modules may be stored on the hard disk, magnetic disk
1833, optical disk 1843, ROM 1817, or RAM 1821, including an operating system 1855,
one or more application programs 1857, other program modules 1860, and program data
1863. A user may enter commands and information into the computer system 1800
through input devices such as a keyboard 1866 and pointing device 1868 such as a mouse,
or via voice using a natural user interface (“NUI”’)(not shown in FIG. 18).

[0051] Other input devices (not shown) may include a microphone, joystick, game

pad, satellite disk, scanner, or the like. These and other input devices are often connected

12

10

15

20

25

30

WO 2014/028655 PCT/US2013/055001

to the processor 1805 through a serial port interface 1871 that is coupled to the system bus
1814, but may be connected by other interfaces, such as a parallel port, game port, or
universal serial bus (“USB”). A monitor 1873 or other type of display device is also
connected to the system bus 1814 via an interface, such as a video adapter 1875.

[0052] In addition to the monitor 1873, personal computers typically include other
peripheral output devices (not shown), such as speakers and printers. The illustrative
example shown in FIG. 18 also includes a host adapter 1878, a Small Computer System
Interface (“SCSI”) bus 1883, and an external storage device 1876 connected to the SCSI
bus 1883.

[0053] The computer system 1800 is operable in a networked environment using
logical connections to one or more remote computers, such as a remote computer 1888.
The remote computer 1888 may be selected as another personal computer, a server, a
router, a network PC, a peer device, or other common network node, and typically
includes many or all of the elements described above relative to the computer system
1800, although only a single representative remote memory/storage device 1890 is shown
in FIG. 18.

[0054] The logical connections depicted in FIG. 18 include a local area network
(“LAN”) 1893 and a wide area network (“WAN”) 1895. Such networking environments
are often deployed, for example, in offices, enterprise-wide computer networks, intranets
and the Internet.

[0055] When used in a LAN networking environment, the computer system 1800 is
connected to the local area network 1893 through a network interface or adapter 1896.
When used in a WAN networking environment, the computer system 1800 typically
includes a broadband modem 1898, network gateway, or other means for establishing
communications over the wide area network 1895, such as the Internet. The broadband
modem 1898, which may be internal or external, is connected to the system bus 1814 via
the serial port interface 1871.

[0056] In a networked environment, program modules related to the computer system
1800, or portions thereof, may be stored in the remote memory storage device 1890. It is
noted that the network connections shown in FIG. 18 are illustrative and other means of
establishing a communications link between the computers may be used depending on the
specific requirements of a particular application.

[0057] Although the subject matter has been described in language specific to

structural features and/or methodological acts, it is to be understood that the subject matter

13

WO 2014/028655 PCT/US2013/055001

defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

14

WO 2014/028655 PCT/US2013/055001

CLAIMS

1. A method for implementing a user interface (“UI”’) control framework, the
method comprising the steps of:

generating a markup document comprising Cascading Style Sheet (“CSS”) and
Hypertext Markup Language (“HTML”) code, the document 1) including an inline
declarative definition of at least one Ul control and its layout and ii) being utilized as a
single instanced template;

stamping out multiple UI control instances using the template;

generating a backing control for each Ul control instance on a one-to-one basis;
and

utilizing an expando attribute associated with an HTML element in the
template, the attribute placing named properties on a control instance so that the backing

control may directly access any child Ul control in the layout.

2. The method of claim 1 in which the HTML is HTML revision 5 (“HTMLS5”)
and the CSS is CSS level 3 (“CSS3”).

3. The method of claim 1 in which the HTML element represents a UI control.
4. The method of claim 1 in which the backing control is implemented using
JavaScript.

5. The method of claim 1 in which the attributes enable anchor points to be

defined in the markup document.

6. The method of claim 5 in which a layout is revised while maintaining names of
the anchor points throughout the revision.

7. The method of claim 1 in which a backing control is mapped to a stamped out
layout on a one-to-one basis.

8. The method of claim 1 in which the layout is loosely coupled to business logic
underlying an application that implements the UI control.

9. The method of claim 1 which a backing control offers up data for binding to a
UI control or child control, the backing control providing the data abstractly without direct
knowledge of the child control.

10. The method of claim 1 in which the HTML code includes anchor points

specified using the expando attribute.

15

PCT/US2013/055001

WO 2014/028655

1/13

e
7 uoneoydde gapp

ssunueiboig

msubissg

el

| I K |

o SION

bogt

3ol

SIS0

@)@8

PCT/US2013/055001

WO 2014/028655

2/13

154

mmﬁsmm{mwﬂ MW%VGQ:

ovl

swueiBoig

¢ DIIA

G502
NOAE]
. > j04U0s 1N
pajdnoo ApubiL
G,
iii’
I
“,
N
AN
%,
A
kY
3
GEL
ipubisag

bgo1

WO 2014/028655 PCT/US2013/055001

3/13
305
<htmi>
<body>
<k~ ZuneUl.Marketpiace Track control fragment. E g. the control templaie.—>
<div id="Track”

data-win-control="WinJ8.Binding. Template™>
<gpan data-win-bind="innerText: frackNumber">

<gpan data-win-bind="innerText: artist">
<span data-win-control="Zunell Marketplace .PurchaseButton. Music”
data-win-options="{viewModesl: dataContext}"
data~win-bind="label PurchaseStateText, enabled:
canPurchase">
<button>OK</hution>
</div>
<fbody>
<fhimi>
%""""'-n--...,.,,,__

FIG. 3

405

WinJS Namespace . define("Microsoft. Samples”, {
Track: WinJ8.Class. define{WinJdS.Controls.Controi,
function (element, options) {

ihis.seiElement{element);
this.setOptions(options);
this.updatel.ayout(};

{

dataSource: [},

satElement: funclion {element) {
this. domElement = element;

WinJS . Utilities. removeAliChildren{this._domElement);

}a
updatelayout: function{) {
WinJS.Controls. Fragmentloader. addFragment(this._domElement, "Track.himi”,

function{el) {
WindS . Binding.processAli{el, dataSource);

;

FIG. 4

PCT/US2013/055001

WO 2014/028655

4/13

028

jouoo Bupjoeg

015 -

Rﬁgmﬁwﬁ mUOO:

s "OId

w0
W

{(SSO "MNLH
“Ba) dmuepw

GOG

g

paidnos Ajpseo

NOAR)
J0U03 N

bgo1

PCT/US2013/055001

WO 2014/028655

5/13

9 "Old

j0nu0s Bubpeg

ool 1NOAR) {040

LR 3

)

019

[OJIUO0 BUPBDBY ol 1NOABY JOLUOT

)

oL

sieidwa) peoueisul sibuig

JOHUOD BUDORE el INOAB] JOIJLUIOD

e e

)

500

)

‘509
SOOURISU JONUOD
aidiynwt ino dwes

(8890 “INLH
“Ba) dmuep

1%

PCT/US2013/055001

WO 2014/028655

6/13

0L ~

ZAuadoigeiep

L"OIA

Q2L -

L Ausdoideiep

jonuos Bupoeg

)

0Ls

024 -

ZAuadoideiep
“tonuos Bupjoeg
WG} punog viep

‘ZIoBUODPIYD

Gl ~

{ Ausdoideiep
“lonuos Bupjoeg
LI pUnog elep

LIOBUCTPIYD

NOAB] J0ALOD

)

04

PCT/US2013/055001

WO 2014/028655

7/13

Bugnsixyg

JIIN

G08

@,
O
[
o
28]
@,
o

8 "Old

siHUoMBLIBIJIOIUCD

SIOAILCD |

0i8

PCT/US2013/055001

WO 2014/028655

8/13

6 "OLd

{ uoneuswsiduy /7 (siequiepones
‘SIBQUIBINSIGEAISSQO

‘sisguisw

CIOIDNASUCD

{

‘9181duIs JUCHDUNY [JOHUODISSBULSD

3

;
N

({

JOULBP SSEID SIUIAA DHOMBLUIRIS
}AMVUSWIUIBLSIUT SN, JBUlBp e0BdSBWEN SPUIAA

)

s

PCT/US2013/055001

WO 2014/028655

9/13

‘4
{{
‘fdwis Buus (jege)
Ny unebeu
saiuadold sjaeaiasa J/
}
{
4
358 senjeA Aeidsip Bunnduioo ‘Asenb sjowas g go Bupon eyl 7
g "ucHEZHRIHU INOA wiopad DINCYS NOA SISUM SISy //
SOL L~ } (Jezipemiut uoouny (BZIERIUI
}
{
UDROMASUCD WISy //
} (suondo ‘Juswsie) usoun;
¢ UOTNGOISNNFULY SSEUDIN, ICIIUBISULSD SIOMBLLIRI T TUSLLUIELIBIUT SN [UCHNGOISNN
V¢ eseyoind sosidisyiBiy I IUSWIUIBLIBIUD SN, TUSIEJUIABULeD aoBdSaW BN S UIAA
g
<JUWy/>
<Apodg/>
<AP/>
<UCHING/>
<UBdS/>< |8GE] (X0 | IBUUL =pUIg-UiM-8120 uedss
G001~ <Budif>< unebeus s =puig-um-eiep Bl

<USHNG>
< 212iduis L BuIpuIg SrUIA, =I0AU0D-UIM-BIBD UOHINGDISNIA, =Pieleids]Hua-818D AID>
< JUswbel} |0HU0D UCINGDISNIN 9SBLYDIN A S0eidISBIN I TUSLIUIBLIBIUT S —i>
<ApoU>
<{Uiy>

AN E]

01 "Old

PCT/US2013/055001

WO 2014/028655

10/13

el "Old

388

spoupey [1

spou ainguay O | | ;

GLEL e spouuswed [}

LR

(AL |

SOCL ~

<{UHL/>
<ApOG/>
<AID/>< MHYWNgER (Nebew jORUODUIM = DUIG-UIM-BIED
MOUNGDISNN 888 YN aoBidISe I IUSWUIELISIUT QAL =ICIUOS-UIM-BIBD AlD>
<Apog>
<Y

PCT/US2013/055001

WO 2014/028655

11/13

ST DA

OO

<AID/>
</ nduisipuey ndul =1UeAs-1us-elep X8, =adA indui>
<UONNG/>
SW HHD
< JOAOBSNONBIPURY LIBADSSNOW DSHTISIPUBY DI, =1USAS-1US-BIED UOIING>
<, B1edia | BUIpUIE STUIAA, = I0IIUCO-UIM-RIBD
SHBAZUNAOUOD =piolejdwal-jus-B1ep AID>

4B K]

e S,

G0YL

<Aip/>
<Aip/>
<, JOHRUODIPHYDQWINGT SIOAU0TY 1S9 | JUSLWHELISIUT QN =|0/UOD-UIM-BIRD
LZISQUIBW, =18 GLUS - US-BIED AID>
<ueds/s«, L Isquisil, zjequisiu-jua-e1ep uedss
<, O1eduie | BUIDUIg STUIAA, = CIUCO-UIM-RIBD
S1RIAWS | UISI8qUIBINPUYISQUIBLLIGNSUNAAICIIUO T, = pidleidilel-lus-Bl1ep AID>

PCT/US2013/055001

WO 2014/028655

12/13

L1 D1
E e

GOLE ~

<AIp/>
<AIp/>
<AIp/>
onig
<, UOHBLIUYINOSPDIS, = UCIIBWIUESDIY-1US-BIED
LJUCHELIUYUBDIS, =UONBUHUBMOUS-JUS-BI1BD
XOGISUUL =SSEID AID>
<AID>
<, UONBUIUYINOS PR, =UOlIBLUIIBSDIY-IUS-BIED
LonBUUYUBpE], = UOHBUHUBMOYUS-TUS-B1BD
SKOHONG, =SS0 AlPR>

91 "Dl

G09E

<AIp/>
<, UCHDYIS0) SISHIUSDUCHIOY SUCHDY | 1USWLIBLIBIUT QI =UCHDE-1US-BIED
SAides o) youo, xel},=suondo-uim-eiep

SUIUCHOY SIOAUCT |11 IUBWIUIRUBIUT SN, =I0HUOD-UIM-BIED AID>

PCT/US2013/055001

WO 2014/028655

13/13

81 "Dl

p| JOVHOLSIANOWIN | | SWYHOONd s S s A s s g

d ERe X NOILYOITddy 2581 £E81 : 0981 5981 :

3

) B w : SNVHOO N viva m

0681 - gog1 / i ; MIHL WYNDOH “

° [R LA m : / SWYHOOMd | WILSAS ;

svet M ! NOILLYOITddY | ONILYSTdO | &

H] - v e i

P 1581 5817 e :

- Ll

5681 8691 ST WO O S I B :

. : IANC :

hod NV ol WICTOW s SANA OO IAIEA MSIa ASIQ QEvH - 828t m

: . SILINSVYA o :

] ¥

] L

Fo I M e YivG :

BesL oeatL o

: v WYHDONd [9Bl

: :

Ly - 4 41 ARG EVENTe SIWYNDOE :

N1 : IAUOMLS AN L0 RIS | pya wolldo] IS OULINDYIN USIC QNVH J<E1x ST pat RUEIR S

v : y e — =t — SWvebosd]

EECL BV w 1281 2681 6v81 9vgL NOLLY O ddy [~ T 4584
: gg

mmenmmnannny 118 NALSAE w w .w B ETE :

c i Lt L

; vioL ONLLYYIO 9681 §

3 ¥

FDIAZC : MALAVOY HILdVAY : m :

39veols |6 ENETERER Bl lsoH REGIT HOSTI00H ;

CYLTROS : 3 :

: €981 ;

:))) ;

: 8/81 5.8l 5091 :

— m

8 L

¥ 3

HOLINOW | kegemd L8l ~ ;

Ll 3

]

€181~ : :

508t

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055001
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F9/44 GO6F9/455 GO6F17/21 GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Adam Freeman: "Metro Revealed: Building 1-10
Windows 8 apps with HTML5 and JavaScript",
Apress - Paul Manning,
10 June 2012 (2012-06-10), pages 1-104,
XP055094449,
ISBN: 978-1-43-024488-2
Retrieved from the Internet:
URL:http://www.achs.org.au/media/3420/apre
ss-metro-revealed-freeman.pdf
[retrieved on 2013-12-19]
the whole document
A US 2012/102414 A1 (DEMANT HILMAR [DE] ET 1-10
AL) 26 April 2012 (2012-04-26)
paragraphs [0001] - [0005], [0016] -
[0036]
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

15 January 2014

Date of mailing of the international search report

24/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Breche, Philippe

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/055001

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Bret Stateham: "Metro Style Apps Control
Initialization in XAML/C# & HTML5/JS",
Bret Stateham's Blog,

21 June 2012 (2012-06-21), pages 1-5,
XP055094443,

Retrieved from the Internet:
URL:http://bretstateham.com/metro-style-ap
ps-control-initialization-in-htmljs-apps-v
s-xamlc-apps/#viewSource

[retrieved on 2013-12-19]

the whole document

Kishore Gaddam: "Part 3: Introduction to
WinRT, the new 'Windows Runtime' in
Windows 8",

CodeProject community,

10 February 2012 (2012-02-10), pages 1-11,
XP055096056,

Retrieved from the Internet:
URL:http://www.codeproject.com/Articles/32
8551/Part-3-Introduction-to-WinRT-the-new-
Windows-Runti?display=Print

[retrieved on 2014-01-13]

the whole document

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/055001
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012102414 Al 26-04-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

