ASSOCIATION OF CALPAIN INHIBITORS AND REACTIVE OXYGEN SPECIES TRAPPING AGENTS

Inventors: Pierre-Etienne Chabrier de Lassauinie, Paris (FR); Bernadette Pignol, Paris (FR); Serge Auvin, Mauchamps (FR)

Correspondence Address:
Charles A. Muserlian
c/o Hedman and Costigan
1185 Avenue of the Americas
New York, NY 10036 (US)

Assignee: SOCIETE DE CONSEILS DE RECHERCHE ET D’APPLICATIONS SCIENTIFIQUES (S.C.R.A.S.)

Appl. No.: 11/809,599
Filed: Jun. 1, 2007

Related U.S. Application Data
Division of application No. 10/415,638, filed on Apr. 30, 2003, now Pat. No. 7,244,711, filed as 371 of international application No. PCT/FR01/33558, filed on Nov. 15, 2001.

Foreign Application Priority Data
Nov. 15, 2000 (FR)................................. 00/14690

Publication Classification
Int. Cl. A61K 38/06 (2006.01)
A61P 25/00 (2006.01)

U.S. Cl. .. 514/18

ABSTRACT
A pharmaceutical composition comprising, as active ingredient, at least one calpain inhibitor substance and at least one reactive oxygen species trapping substance, and optionally a pharmaceutically acceptable support.
ASSOCIATION OF CALPAIN INHIBITORS AND REACTIVE OXYGEN SPECIES TRAPPING AGENTS

[0001] The present invention relates to a pharmaceutical composition comprising, as active ingredient, at least one substance which inhibits calpains and at least one substance which traps the reactive oxygen species (ROS), and optionally a pharmaceutically acceptable support. The invention also relates to a product comprising at least one substance which inhibits calpains and at least one substance which traps reactive oxygen species, selectively or non-selectively, as a combination product, in separated form, of these active ingredients.

[0002] Given the potential role of calpains and of ROS’s in physiopathology, a composition according to the invention can produce beneficial or favourable effects in the treatment of pathologies where these enzymes and/or these radicular species are involved, and in particular:

[0003] inflammatory and immunological diseases such as for example rheumatoid arthritis, pancreatitis, multiple sclerosis, inflammations of the gastrointestinal system (ulcerative or non-ulcerative colitis, Crohn’s disease),

[0004] cardiovascular and cerebrovascular diseases including for example arterial hypertension, septic shock, cardiac or cerebral infarctions of ischemic or hemorrhagic origin, ischemias as well as disorders linked to platelet aggregation,

[0005] disorders of the central or peripheral nervous system such as for example neurodegenerative diseases where there can in particular be mentioned cerebral or spinal cord trauma, sub-arachnoid hemorrhage, epilepsy, ageing, senile dementia including Alzheimer’s disease, Huntington’s chorea, Parkinson’s disease, peripheral neuropathies,

[0006] osteoporosis,

[0007] muscular dystrophies, cachexia,

[0008] proliferative diseases such as for example atherosclerosis or recurrence of stenosis,

[0009] loss of hearing

[0010] cataracts,

[0011] organ transplants,

[0012] auto-immune and viral diseases such as for example lupus, AIDS, parasitic and viral infections, diabetes and its complications, multiple sclerosis,

[0013] cancer,

[0014] all pathologies characterized by an excessive production of ROS’s and/or activation of calpains.

[0016] A subject of the present invention is therefore a pharmaceutical composition comprising, as active ingredient, at least one substance which inhibits calpains and at least one substance which traps reactive oxygen species, and optionally a pharmaceutically acceptable support. In the present application, the expression “at least one substance which inhibits calpains and at least one substance which traps reactive oxygen species” signifies the combination of at least two different entities, one a calpain inhibitor and the other free radical traps.

[0017] A more particular subject of the invention is a pharmaceutical composition comprising, as active ingredient, a substance which inhibits calpains and a substance which traps reactive oxygen species, and optionally a pharmaceutically acceptable support.

[0018] By the term reactive oxygen species trap, it should be understood any chemical or enzymatic substance capable of opposing or of trapping the or one of the reactive oxygen species such as O_2^-, OH, RO$_2^-$, RO., O$_2$N$^-$, NO, NO$^+$, or H$_2$O$_2$ (Halliwell B., Gutteridge J M C., Free radicals in biology and medicine, 2nd ed., Oxford, Clarendon Press, 1989). These substances can be natural or synthetic and have antioxidant properties. (Santunveck and Kerepka, Antioxidants—Potential chemotherapeutic agents Drugs Future 13, 975-996, 1988; Jackson et al, Antioxidants: abiological defense mechanism for the prevention of atherosclerosis, Med. Res. Reviews 13, 161-182 (1993); Auntoa, Characterization of drugs as antioxidant prophylactics, Free Rad. Biol. Med. 20, 675-705 (1996)). The antioxidant activity of a chemical substance can be determined by standard pharmaceutical tests such as those illustrated in the experimental part of the present Application. Such an antioxidant substance can thus display, on lipidic peroxidation (cf test in the experimental part), an IC$_{50}$ of less than 100 μM and preferably less than 10 μM.

[0019] Calpains are proteolytic cysteolic enzymes which belong to the protease cysteine family. Activation of calpains is strictly dependent on calcium (Suzuki et al. Calpain: Novel family members, activation, and physiological function (1995) Biol. Chem. Hoppe-Seyler, 376, 523-529). Under normal physiological conditions, these enzymes are not activated or slightly activated. On the contrary, the excessive rise in intracellular calcium which is observed in certain physiopathological phenomena induces strong activation of the calpains. This activation leads to selective cleavage and consequently to the loss of function of cytoskeletal proteins, membrane receptor or transcription factors leading to cell death and tissue degradation. Activation of the calpains appears to play a major and deleterious role in several pathologies such as for example neurodegenerative diseases, cerebral ischemia or muscular dystrophies, which could optionally correct inhibitors of these enzymes (Wank K et al. Calpain inhibition: an overview of its therapeutic...
potential (1994) Trends in Pharmacological Sciences 15, 412-419). The inhibitory activity of a chemical substance vis-à-vis the calpains can be determined by standard pharmaceutical tests such as those illustrated in the experimental part of the present Application. Such a substance which inhibits calpains can thus have, as regards the inhibition of calpain (cf. test in the experimental part of the present Application), an IC₅₀ less than 10 μM.

[0020] A subject of the invention is also a product comprising at least one substance which inhibits calpains and at least one substance which traps reactive oxygen species as a combination product, in separated form, for simultaneous or sequential use in the treatment of pathologies in which calpains and reactive oxygen species are involved, pathologies such as inflammatory and immunological diseases, cardiovascular and cerebrovascular diseases, disorders of the central nervous system, osteoporosis, muscular dystrophies, cachexia, loss of hearing, proliferative diseases, cataracts, organ transplants, auto-immune and viral diseases, cancer and all pathologies characterized by increased production of ROS's and/or activation of calpains, and preferably, disorders of the central or peripheral nervous system, muscular dystrophies, cachexia, loss of hearing and cataracts.

[0021] In a pharmaceutical composition or a product according to the invention, the calpain inhibitor and the reactive oxygen species trap can be administered simultaneously or sequentially, by the same administration route or by different routes. Preferably, the administration routes are oral, parenteral or topical.

[0022] The reactive oxygen species traps can be chosen for example from ascorbic acid, ethoxyquin, N-acetyl-cysteine, carotene derivatives namely α-, β-, γ- or δ-carotene and more particularly β-carotene (Hao Chen et al, Free Radical Biology and Medicine 18 (5), 949-953 (1995)), 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylic acid, ubiquinones such as the Q10 coenzyme (S. Tereao et al., J. Org. Chem., 44, 868 (1979)) or captodative compounds (H. G. Viehe et al., Acc. Res., 18, 148-154 (1985), incorporated by way of reference in the present Application). The reactive oxygen species traps can also be chosen for example from nitrones, phenolic compounds, indole derivatives, indolines, imidazoles, phenothiazines, phenoxazines, phenazines, diphenylamines or carbazoles, or also from enzymes capable of neutralizing the or one of the reactive oxygen species such as superoxide dismutases, catalases or glutathion peroxi-
dases and their mimetics.

[0023] As examples of reactive oxygen species trap nitrones, there can be mentioned the compounds as defined in Patent Applications WO 96/15110, WO 88/05044 and U.S. Pat. No. 5,310,916 (incorporated in the present Application by way of reference) but also tempol and N-tert-butyl-α-phenyl-nitroine.

[0024] Among the examples of phenolic compounds which trap reactive oxygen species, there can be mentioned probucol, NDGA, tocopherol derivatives namely α-, β-, γ-, e-, τ- or δ-tocopherol, or phenolic flavonoids (R. A. et al., Phytochemistry, 27(4), 969-978 (1988), incorporated in the present Application by way of reference). The phenolic compounds which trap reactive oxygen species can also be chosen from the compounds of general formula Iₐ or IIₐ.

[0025] Among the examples of phenolic compounds which trap reactive oxygen species, there can be mentioned probucol, NDGA, tocopherol derivatives namely α-, β-, γ-, e-, τ- or δ-tocopherol, or phenolic flavonoids (R. A. et al., Phytochemistry, 27(4), 969-978 (1988), incorporated in the present Application by way of reference). The phenolic compounds which trap reactive oxygen species can also be chosen from the compounds of general formula Iₐ or IIₐ.

[0026] in which R'₁ represents one or more substituents chosen from the hydrogen atom, the hydroxy, halo, carboxy, lower alkyl, lower alkoxy, lower alkyl or alkoxy carbonyl radicals, the alkyl, alkoxy and alkyl carbonyl radicals being optionally substituted by a hydroxy, halo, carboxy or amino radical; and R'₂ represents one or more substituents chosen from the hydrogen atom or the optionally substituted lower alkyl, lower alkoxy, hydroxy, halo, amino or carboxy radicals. Preferably, the compounds of general formula Iₐ or IIₐ are 3-5-di-tert-buty1-4-hydroxybenzoic acid, 2,3,6-triethyl-2-hexoxy-phenol, 2,6-di-tert-buty1-4-methoxy-phenol, 2,6-di-tert-buty1-4-methyl-phenol, trolox, n-propyl gal-
late, engenol, caffice acid, sinapinic acid, gallic acid and propofol.

[0027] The reactive oxygen species trapping indole derivatives can be compounds as defined in Application No. WO 96/26941. They can also be compounds of general formula IIIₐ.

[0028] in which R'₃ represents one or more substituents chosen from the hydrogen atom, the hydroxy, halo, lower alkyl or lower alkoxy radicals; R'₄ represents one or more substituents chosen from the hydrogen atom, the halo, hydroxy, amino, carboxy or alkyl carbonyl aminoalkyl radicals. Preferably, the compounds of formula IIIₐ are melatonin, 5-hydroxy-tryptamine, 5-hydroxy-indole-2-carboxylic acid.

[0029] Among the reactive oxygen species trapping imidazole derivatives, there can be mentioned 5-amino-indoline and N-alkyl-indolines and more particularly N-methyl-indoline.

[0030] Among the reactive oxygen species trapping imidazoles, there can be mentioned imidazole itself or cimetidine.
Among the reactive oxygen species inhibitors there can also be mentioned the compounds of formula IV_A or V_A in which R_{10}, R_{11}, R_{12}, R_{13}, R_{14}, R_{15} represent, independently, a hydrogen atom, an alkyl, alkoxy, cyano, halo, hydroxy, nitro or \(-NR_{13}^1R_{13}^{12}\) radical,

IV_A

R_{10} \quad R_{11} \quad R_{12} \\
R_{13} \quad R_{14} \quad R_{15}

V_A

R_{16} \quad R_{17} \quad R_{18} \\
R_{19} \quad R_{20} \quad R_{21}

[0032] in which R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, R_{7}, R_{8}, R_{9} represent, independently, a hydrogen atom, an alkyl, alkoxy, cyano, halo, hydroxy, nitro or \(-NR_{13}^1R_{13}^{12}\) radical,

[0033] R_{11} and R_{12} represent, independently, a hydrogen atom, an alkyl radical or a \(-COR_{13}^1\) group or R_{11} and R_{12} form together with the nitrogen atom to which they are attached an optionally substituted heterocycle,

[0034] R_{13} represents a hydrogen atom, an alkyl, alkoxy or \(-NR_{13}^1R_{13}^{15}\) radical,

[0035] R_{14} and R_{15} represent, independently, a hydrogen atom or an alkyl radical, or R_{14} and R_{15} form together with the nitrogen atom to which they are attached an optionally substituted heterocycle,

[0036] R_{10} represents a hydrogen atom, an alkyl radical or a \(-COR_{13}^1\) group,

[0037] R_{16} represents a hydrogen atom, an alkyl, alkoxy or \(-NR_{13}^1R_{13}^{15}\) radical,

[0038] R_{17} and R_{18} represent, independently, a hydrogen atom or an alkyl radical, or R_{17} and R_{18} form together with the nitrogen atom to which they are attached an optionally substituted heterocycle,

[0039] W represents a bond, O or S or also an \(-N(R_{13})_2\) radical, in which R_{13} represents a hydrogen atom or an alkyl radical.

[0040] As examples of carboxazoles, there can be mentioned carvedilol or the compounds of formula IV_A, and more particularly 4-hydroxy carbazole. As other examples of compounds of formula IV_A, there can also be mentioned phenothiazines and more particularly 2-methoxyphenothiazine, phenoxazines and phenazines. As examples of compounds of formula V_A, there can be mentioned diphenylamines such as 4-hydroxy diphenylamine 4-amino diphenylamine or 4-methoxy-N-(4-methoxyphenyl)iline.

[0041] As a more particular subject of the invention is a composition or product as defined above, in which the calpain inhibitor is 3-(4-iodophenyl)-2-mercapto-2-propenoic acid (PD150606).

[0042] A more particular subject of the invention is a composition or product as defined above, in which the calpain inhibitor corresponds to formula I_A in which \(T: \text{NH} \rightleftharpoons \text{CH(R_{13})_2} \text{CO} \rightleftharpoons \text{NH} \rightleftharpoons \text{CH(R_{13})_2} \text{CO} \rightleftharpoons Y \) (I_A)

[0043] in which \(R_{1}, R_{6}, R_{3}, \text{and } R_{4} \text{ represent, independently, the hydrogen atom or a lower alkyl radical optionally substituted by one or more substituents chosen from: hydroxy, lower alkoxy, mercapto, lower alkythio, carboxy, aminocarbonyl, (lower alkyl)aminocarbonyl, di(lower alkyl)aminocarbonyl, amino, guanidino, optionally substituted aryl or optionally substituted heteroaryl,}

[0044] the substituent(s) of the aryl and heteroaryl radicals being chosen from: halo, hydroxy, lower alkyl or lower alkoxy;

[0045] \(Y \) represents the hydrogen atom or a \(-C(O)-R_{6}\) or \(-C(O)-O-R_{6}\) radical in which \(R_{6} \)

[0046] \(R_{1}, R_{3}, \text{and } R_{4} \text{ represent, independently, the hydrogen atom, a lower alkyl, lower alkoxy, lower arylalkyl, lower heteroarylalkyl, cycloalkyl-alkyl, heterocycloalkyl radical, these radicals being able to be substituted by one or more identical or different substituents chosen from: halo, hydroxy, trifluoromethyl, lower alkyl, lower alkoxy, amino, (lower alkyl)amino, di(lower alkyl)amino, aryloxy, arylalkoxy;

[0047] \(R_{1}, R_{3}, \text{and } R_{4} \) represent, independently, the hydrogen atom, a lower alkyl or a lower aryalkyl radical,

[0049] \(R_{1}, R_{3}, \text{and } R_{4} \) represent, independently, the hydrogen atom, a lower alkyl, lower alkoxy, lower arylalkyl, lower heteroarylalkyl, cycloalkyl-alkyl, heterocycloalkyl radical, these radicals being able to be substituted by one or more identical or different substituents chosen from: halo, hydroxy, trifluoromethyl, lower alkyl, lower alkoxy, amino, (lower alkyl)amino, di(lower alkyl)amino, aryloxy, arylalkoxy;

[0050] \(n \) represents 0 or 1;

[0051] \(T \) represents a radical of formula \(-C(O)-R_{1}, \text{or } -C(O)-R_{3}\) in which \(R_{1}, R_{3} \) represents a lower alkyl or lower arylalkyl radical;

[0052] \(R_{1}, R_{3}, \text{and } R_{4} \) represent, independently, the lower alkylalkyl radical,

[0053] \(R_{1}, R_{3}, \text{and } R_{4} \) represent, independently, the lower alkylalkyl, aryloxy lower alkyl or a heteroaryl radical.

[0054] In the definitions indicated above, the expression halo represents the fluoro, chloro, bromo or iodo radical, preferably chloro, fluoro or bromo. By alkyl, unless otherwise specified, or lower alkyl, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms such as, for example, the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, pentyl, neopentyl, isopentyl, hexyl, isohexyl radicals. The alkoxy radicals, unless otherwise specified, or lower alkoxy can correspond to the alkyl radicals indicated above such as for example methoxy, ethoxy, propoxy or isopropoxy radicals but also linear, secondary or tertiary butoxy. The term lower alkythio preferably designates the radicals in which the alkyl radical is as defined above such as for example methylthio, ethylthio.

[0055] By aryl, unless otherwise specified, or lower aryl, is meant a linear or branched aralkyl radical containing 2 to 6 carbon atoms and having at least one unsaturation (one or more double bond). For example, there can be mentioned the vinyl, aryl, propenyl, isopropenyl, pentenyl, butenyl, hexaeny, propenyl and butadieny groups. The term cycloalkyl preferably designates the cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl rings.
The expression aryl represents an aromatic radical, constituted by a condensed ring or rings, such as for example the phenyl or naphthyl radical. The term arylalkyloxy preferably designates the radicals in which the aryl radical is as defined above such as for example the phenoxypy radical. The expression heteroaryl designates an aromatic radical, constituted by a condensed ring or rings, with at least one ring containing one or more identical or different heteroatoms chosen from sulphur, nitrogen or oxygen. As an example of a heteroaryl radical, there can be mentioned the thienyl, furyl, pyrrolyl, imidazoyl, pyrazolyl, isothiazolyl, thiazolyl, isoxazolyl, oxazolyl, pyridyl, pyrazinyl, pyrimidyl, quinolinyl, benzothienyl, benzo furyl and indolyl radicals.

The term heterocycloalkyl preferably represents a saturated mono or bicyclic heterocycle, comprising 1 to 5 heteroatoms chosen from O, S, N. For example, there can be mentioned: tetrahydrofuran, tetrahydrodropyran, oxetane, tetrahydrothiophene, tetrahydrothiopyran, thiete, pyrrolidine, piperidine, azetidine, 1,3-dioxane, 1,3-dioxolane, 1,3-dithioline, 1,3-dithiane, 1,3-oxathiolane, 1,3-oxazolidine, 1,3-imidazolidine or 1,3-thiazolidine.

The term arylalkyl (or aralkyl) designates a radical in which the aryl and alkyl radicals respectively are as defined above such as for example benzyl, phenethyl or napthethylmethyl. The aralkyloxycarbonyl, (alkyl)aminocarbonyl and (dialkyl)aminocarbonyl radicals designate the radicals in which the alkyl and alkoxy radicals respectively have the meanings indicated previously. The terms alkylcarbonylaminoalkyl, arylcarboxyalkyl, arylalkoxy, heteroaryl alkyl, cycloalkylalkyl designate the radicals in which the alkyl, aryl, heteroaryl and cycloalkyl radicals are as defined above.

In the case of the radicals of formula —NR'R' where R' and R" form together with the nitrogen atom to which they are attached an optionally substituted heterocycle, the heterocyclic radical is preferably saturated and comprises 4 to 7 members and 1 to 3 heteroatoms including the nitrogen atoms already present, the additional heteroatoms being chosen independently from the group constituted by the O, N and S atoms. Said heterocycle can, for example, be azetidine, pyrrolidine, piperidine, piperezine, morpholine or thiomorpholine ring. Said heterocycle can be substituted by one or more identical or different substituents chosen from an alkyl, alkoxy, aryl, aralkyl, hydroxy or halo radical.

According to the definition of the variable groups, a compound of formula Ia as defined above, can have one or more asymmetrical carbons. The invention relates to the compounds of formula Ia as defined above, compounds which can be found in racemic, enantiomeric or diastereoisomeric form.

Preferentially, a subject of the invention is a composition or product as defined above, characterized in that the calpain inhibitor corresponds to the formula (Ia)

\[
\text{Ia} = \text{R}_1 \text{NH} - \text{CH}(-\text{R}_2) - \text{CO} - \text{NH} - \text{CH}(-\text{R}_3) - \text{CO} - \text{Y}.
\]

as defined above and in which

R, R and R represent, independently, an alkyl radical optionally substituted by one or more substituents chosen from: hydroxy, mercapto, lower alkylthio, carboxy, aminocarbonyl, amino, guanidine, or optionally substituted phenyl, indole or imidazole,

Y represents the hydrogen atom or an —C(O)-R or —C(O)O—R' radical in which

R and R' represent a lower alkyl or benzyl radical;

R, R', R, and R" represent, independently, the hydrogen atom, a lower alkyl, lower aralkyl, lower heteroarylalkyl, cycloalkylalkyl radical, these radicals being able to be substituted by one or more identical or different substituents chosen from: halo, hydroxy, trifluoromethyl, lower alkyl, lower alkoxy, amino, (lower alkyl)amino, di(lower alkyl)amino, arloxy, alrylalkoxy;

n represents 0 or 1;

T represents a radical of formula —C(O)O—R, or —C(O)O—R, in which

R represents a lower alkyl, benzyl, phenethyl radical;

R and R represent a lower alkyl, lower aralkyl, lower arlyoxyalkyl or a heteroaryl radical.

Quite preferably, a subject of the invention is a composition or a product as defined above, characterized in that the calpain inhibitor corresponds to formula (Ia)

\[
\text{Ia} = \text{T} - \text{NH} - \text{CH}(-\text{R}_1) - \text{C(O)} - \text{NH} - \text{CH}(-\text{R}_2) - \text{C(O)} - \text{Y}.
\]

as defined above and in which

R and R represent, independently, an alkyl radical optionally substituted by a phenyl radical, itself optionally substituted by halo, hydroxy;

Y represents the hydrogen atom;

T represents a radical of formula —C(O)O—R, in which R represents a lower alkyl or benzyl radical, and n=0.

A more particular subject of the invention is also a composition or a product as defined above, characterized in that the reactive oxygen species trap is chosen from ascorbic acid, ethoxyquin, N-acetylcysteine, β-carotene, 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylic acid, the Q10 coenzyme, captodative compounds, nitrones, polyhelic acid, indole derivatives, indolines, imidazoles, phenothiazines, phenazines, diphenylamines or carba-zoles.

Preferentially, a subject of the invention is a composition or a product as defined above, in which the reactive oxygen species trap is chosen from ascorbic acid, ethoxyquin, tempol, N-tert-butyli-o-phenyl-nitrite, N-acetyl-cysteine, β-carotene, 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylic acid, the Q10 coenzyme, captodative compounds, probucol, NDGA, α-β-γ-ε-τ- or 8-tocopherol, 3,5-di-tert-buty-4-hydroxybenzoic acid, 2,3,6-trimethyl-2-benzyl phosphoryl, 2,6-di-tert-buty-4-methoxyphenol, 2,6-di-tert-buty-4-methoxyphenol, trolox, n-propyl gallate, euugenol, caffeic acid, sinapinic acid, gallic acid,
propofol, melatonin, 5-hydroxy-tryptamine, 5-hydroxy-indole-2-carboxylic acid, 5-amino-indoline, N-methyl-indoline, imidazole, cimetidine, 4-hydroxy-carbazole, carbocellol, 2-methoxy-10H-phenothiazine, 4-hydroxyphe-
nylamine, 4-amidinophenylamine, 4-methoxy-N-(4-meth-
 oxyphenyl)aniline or 9-[2-(4-morpholino)ethyl]-2,4-di-1-
 pyrrolidinyl-9H-pyrimido[4,5-b]indole.

[0080] A more particular subject of the invention is a com-
 position or a product as defined above, characterized in
that the reactive oxygen species trap is chosen from pheno-
ic compounds, phenothiazines and diphenylamines. Prefer-
ably, the reactive oxygen species trap is chosen from the
phenolic compounds of formula Iₐ as defined above, the
phenothiazines of formula IVₐ as defined above and the
diphenylamines of formula Vₐ as defined above.

[0081] Also more particularly, a subject of the invention is a
composition or a product as defined above and in which:

[0082] the reactive oxygen species trap is chosen from:
3,5-di-tet-butyl-4-hydroxybenzoic acid (BHT),
2-methoxy-10H-phenothiazine and 4-hydroxydiphen-
ylamine; and

[0083] the compound which inhibits calpains is chosen from:
benzyl (1S)-1-[(1S)-1-formyl-3-methylbutyl]
amino)carbonyl]-3-methylbutylcarbamate (or
Z-Leu-Leu-H), benzyl (1S)-1-[(1-benzyl-2-oxoethyl)amino]
carbonyl]-3-methylbutylcarbamate (or Z-Leu-Phe-H),
the benzyl ester of [1-[[1-formylpentyl]amino]carbo-
yl]-3-methylbutyl]carbamic acid (calpeptin) and
3-(4-iodophenyl)-2-mercapto-2-propenoic acid (PD
150606).

[0084] Finally, a subject of the invention is the use of a
substance which inhibits calpains and a substance which
traps reactive oxygen species, for the preparation of a
medicament intended to treat disorders of the central or
peripheral nervous system, muscular dystrophies, cachexia,
loss of hearing and cutanates. Preferably, the substance
which inhibits calpains is 3-(4-iodophenyl)-2-mercapto-2-
propenoic acid (PD 150606) or corresponds to formula Iₐ as
defined above. Also preferably, the reactive oxygen spec-
ses trap is chosen from the phenolic compounds, phenothiazines
and diphenylamines, and more particularly the reactive
xygen species trap is chosen from the phenolic com-
ounds of formula Iₐ as defined above, the phenothiazines of
formula IVₐ as defined above and the diphenylamines of
formula Vₐ as defined above.

[0085] The compounds which inhibit calpains and reactive
xygen species traps are commercial or can be prepared by
the methods known to a person skilled in the art (or by
analogy to the latter) (J. Med. Chem., vol. 37, 2918-2929
(1994); TIPS, vol. 11, 139-142 (1990); TIBS, vol. 16,
(1993)).

[0086] All the technical and scientific terms used in the
present text have the meaning known to a person skilled in
the art. Moreover, all the patents (or patent applications)
as well as the other bibliographical references are incorporated
by way of reference.

[0087] Experimental Part

[0088] The following examples are presented in order
to illustrate the above procedures and should in no case be
considered as a limit to the scope of the invention.

[0089] Let A be the reactive oxygen species trap and B the
calpain inhibitor

EXAMPLE 1

[0090] Compound AB, combination of compound A: 3,5-di-
tet-butyl-4-hydroxybenzoic acid (BHT), an antioxidant
which traps free oxygen radicals, and compound B:
Z-Leu-Leu-H, a calpain inhibitor.

EXAMPLE 2

[0091] Compound AB, a combination of compound A:
2-methoxy-10H-phenothiazine, an antioxidant which traps
free oxygen radicals, and compound B: Z-Leu-Phe-H, a
calpain inhibitor.

EXAMPLE 3

[0092] Compound AB, a combination of compound A:
3,5-di-tet-butyl-4-hydroxybenzoic acid (BHT), an antioxi-
dant which traps free oxygen radicals, and compound B:
calpeptin, a calpain inhibitor.

EXAMPLE 4

[0093] Compound AB, a combination of compound A:
3,5-di-tet-butyl-4-hydroxybenzoic acid (BHT), an antioxi-
dant which traps free oxygen radicals, and compound B:
3-(4-iodophenyl)-2-mercapto-2-propenoic acid (PD
150606), a calpain inhibitor.

EXAMPLE 5

[0094] Compound AB, a combination of compound A:
4-hydroxydiphenylamine, an antioxidant which traps free
oxidation radicals, and compound B: 3-(4-iodophenyl)-2-
mercapto-2-propenoic acid (PD 150606), a calpain inhibitor.

EXAMPLE 6

[0095] Compound AB, a combination of compound A:
4-hydroxydiphenylamine, an antioxidant which traps free
oxidation radicals, and compound B: Z-Leu-Leu-H, a calpain
inhibitor.

EXAMPLE 7

[0096] Compound AB, a combination of compound A:
2-methoxy-10H-phenothiazine, an antioxidant which traps
free oxygen radicals, and compound B: calpeptin, a calpain
inhibitor.

[0097] Pharmacological Study

[0098] The compounds of the invention were subjected to
some biological tests in vitro, in order to prove their activity
in blocking calpain and trapping free radicals. Their activity
was evaluated on enzymatic tests and on a model of protec-
tion from cell death. In this model, cell death by necrosis
is induced by maitotoxin (J Neurochem 1999, 72 (5):
1853-1863, Mc Ginnis et al). Maitotoxine is a marine toxin
which activates the calcium channels (Biochem. Pharmacol
1990;39:1635-1639, Gusovsky et al). There results a 10-20
fold increase in intracellular calcium in rat glial cells C6
treatment of SHSY5Y human neuroblastomas with maito-
toxin induces activation of the calpain’s activity via an
increase in intracellular calcium (Archives of Biochemistry
and Biophysics, 331 (2): 208-214, Wang et al). The calpains are cytosolic protease cysteines which absolutely require calcium in order to be activated. Two isoforms of calpain are distributed ubiquitously in the tissues: calpain I or "µ" and calpain II or "µ" which respectively require a μM or mM concentration of calcium in order to be activated.

[0099] In the in situ model of necrosis induced by maitotoxin, stimulation of the calpain and production of reactive oxygen species occur. The partial protective effect on the necrosis of a calpain inhibitor or reactive oxygen species trap is demonstrated. The effects of the association were compared with those produced by treatment with the calpain inhibitor or reactive oxygen species trap alone. The association of a calpain inhibitor and an reactive oxygen species trap shows a significant protective effect on the necrosis induced by maitotoxin compared to the effect of the calpain inhibitor or reactive oxygen species trap taken separately and at the doses used. This proves the synergy between the calpain inhibitor and the reactive oxygen species trap.

[0100] 1) Study of the Effects on Human Calpain I

[0101] The test consists of measuring the activity of the enzyme (enzyme purified from human erythrocytes) which is incubated in a buffer in the presence of a peptide substrate coupled with a fluorochrome (amino-methylcoumarin, AMC) and calcium. The enzyme activated by the calcium, proteolyses the substrate and releases the AMC fragment. The AMC released fluoresces at 460 nm under excitation at 380 nm. The activity of the enzyme is therefore proportional to the quantity of fluorescence i.e. of free AMC fragment. The fluorescence (380/460 nm) is measured using a multiwell fluorometer (Victor 2, Wallac).

[0102] Assay is carried out in 96-well microplates with transparent bottoms and black walls in which 10 μl per well of substance to be tested in DMSO 10%, 45 μl of reaction mixture containing the human calpain 1 at 2.2 μM (Calbiochem, ref: 208713), the Sce Leu Tyr-AMC substrate (Bachem, ref: 1-355) at 1.1 mM in a buffer (Tris·HCl 110 mM; NaCl 110 mM; EDTA 2.2 mM; EGTA 2.2 mM; mercaptoethanol 1.1 mM) are distributed. The reaction is initiated by adding 45 μl of CaCl2 22mM. To determine the background noise, control wells without calcium are added to the plate (10 μL DMSO 10%+45 μL of buffer with the enzyme and the substrate 445 μL H2O). In order to determine the total activity of the enzyme control wells containing no product are added to the plate (10 μL DMSO 10%+45 μL of buffer with the enzyme and the substrate +45 μL of CaCl2 22mM). Each concentration of the products (0.1 mM to 10 μM) is tested in duplicate. The plates are shaken and incubation takes place for one hour at 25°C. In darkness. The fluorescence is read at 380/460 nm using the Victor.

[0103] The results are expressed as IC50 values and are summarized in Table 1 below.

[0104] 2) In Situ Effect on Calpain Activity in Human Neuroblastos (SHSY5Y) and in Rat Glial Cells (C6)

[0105] Human neuroblastos SHSY5Y and rat glial cells C6 are seeded at a rate of 50,000 and 25,000 cells respectively per well on 96-well plates in DMEM 10% FBS. The next day, the cells which have adhered are washed 3 times in DMEM medium without serum and 40 mM Hepes. 100 microlitres of product B is placed in the wells. After incubation for 1 hour at 37°C, under an atmosphere of 5% CO2, 10 μl containing the fluorescent substrate of calpain (Suc-Leu-Tyr-AMC) and maitotoxin (Sigma, ref: M-9159), in order to obtain a final concentration in the well of 100 μM and of 1 nM respectively are added.

[0106] In order to determine the total activity of the cell enzyme, wells containing no product are added to the plate (100 μL DMSO 100% plus 10 μL of MTX and substrate). The background noise is determined by adding control wells with no MTX. Each concentration of the products (0.3 μM to 200 μM for the SHSY5Y’s and 0.01 μM to 100 μM for the C6’s) is tested in triplicate. The plates are shaken, the fluorescence is read at 380/460 nm using the Victor at T zero. Incubation takes place for four hours for the SHSY5Y and 1 hour 30 minutes for the C6 cells at 30°C in darkness.

[0107] The results are expressed as IC50 values and summarized in Table 1 below.

Table 1

<table>
<thead>
<tr>
<th>Enzymatic inhibition activity of compounds A and B</th>
<th>Inhibition of human calpain 1 IC50 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (n=6)</td>
</tr>
<tr>
<td></td>
<td>B (n=3)</td>
</tr>
<tr>
<td>LEUPEPTIN EXAMPLE 1</td>
<td>73</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>13370 ± 2390</td>
</tr>
<tr>
<td>1790 ± 340</td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 2</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>2200 ± 290</td>
</tr>
<tr>
<td>EXAMPLE 3</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2.8</td>
</tr>
<tr>
<td>B</td>
<td>5144</td>
</tr>
<tr>
<td>EXAMPLE 4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5144</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>EXAMPLE 7</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2.8</td>
</tr>
</tbody>
</table>

[0108] (leupeptin as well as Examples 3 to 7 were only tested on the inhibition of a cellular human calapin I).

[0109] 3) In Vitro Effect on Lipidic Lipoperoxidation

[0110] The test consists of inducing lipidic peroxidation by Fenton reactions in the presence of iron and ascorbate. The degree of lipidic peroxidation is determined by the concentration of malonaldehyde (MDA). The MDA produced by the lipidic peroxidation of unsaturated fatty acids is a good indicator of lipidic peroxidation (Esterbauer et al, 1990; Meth. Enzymol. 186: 407421). For this colorimetric test, the condensation of a molecule of MDA with two molecules of chromogenic reagent R (N-methyl-2-phenylin-
dole) produces a stable chromophore the maximum absorbance wavelength of which is equal to 586 nM.

[0111] The membranes are prepared from the cortices of male Sprague Dawley rats weighing 200 to 250 g. The animals are sacrificed by decapitation and the brains are immediately removed and rinsed in cold Tris HCl 20 mM pH 7.4. The cortices, after dissection and removal of the white matter, are then ground with the Thomas potter, in Tris HCl buffer 20 mM pH 7.4 at 4°C. The homogenate obtained is centrifuged at low speed in order to eliminate the large debris (515 g for 15 minutes at 4°C). The supernatant is then distributed into polycarbonate centrifugation tubes and centrifuged at 51500 g for 25 min at 4°C. The membrane pellets are kept at -80°C.

[0112] On the day of the experiment, the frozen membranes are resuspended at a concentration of 0.5 equivalent grams of cortex per 5 ml of Tris HCl buffer 20 mM pH 7.4 and homogenized using a combitip. In 96-well “deepwell” 1 ml polystyrene plates with a conical base, 5 µl per well of the product to be tested or of solvent is mixed with 40 µl of rat cerebral cortex homogenate by centrifugation (800 rpm). The plates are covered with a self-adhesive aluminum sheet and incubated at 37°C for 15 minutes under agitation. The lipidic peroxidation reaction is initiated by Fenton reaction by the addition of 5 µl per well of the peroxidation mixture containing 1 mM EDTA, 4 mM ascorbic acid and 1 mM FeCl₃, in order to form the MDA. The plates are briefly centrifuged (800 rpm) and covered with a self-adhesive aluminum sheet. After incubation for 30 minutes at 37°C under agitation, 160 µl of a developing mixture containing 3 volumes of the chromogenic reagent R and one volume of methanol is added per well. After agitation for 10 seconds, 40 µl of 37% HCl is added per well. Development of the MDA which has formed is obtained after incubation of the membranes for 45 minutes at 45°C.

[0113] The membranes and the supernatants are separated by filtration under vacuum on a 96-well plate with a multiscreen filtering base NA (Millipore, ref: MANANY 50). The absorbance of the supernatants recovered in the 96-well plates is read using a photometer.

[0114] The results are expressed as IC₅₀ values and are summarized in Table 2 below.

[0115] 4) In Situ Effect on the Isoprostane Level (8isoPGF2α)

[0116] 8-isoPGF2α is a part of a family of compounds the first synthesis stage of which (peroxidation of arachidonic acid) is carried out in a non-enzymatic manner in the presence of free radicals (Morrow and coll, 1990). Measurement of the 8-iso PGF2α level is considered as a reliable marker of the oxidation stress.

[0117] The rat glial cells C6 were seeded at 25 000 cells per well in 96-well plates in DMEM 10% FBS. The next day, 100 µl of product A was placed in the wells. After incubation for 1 hour at 37°C under an atmosphere of 5% CO₂, 10 µl containing maitotoxin is added in order to obtain a final concentration in the well of 1 nM. After incubation for 3 hours, the supernatants are removed and frozen at -20°C. The 8-isoPGF2α level is measured using a specific EIA dosage kit (Cayman chemical, ref: 516351).

[0118] The results are expressed as IC₅₀ (µM) values and are summarized in Table 2 below.

<table>
<thead>
<tr>
<th>EXAMPLE 1</th>
<th>A</th>
<th>3.7</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE 2</td>
<td>A</td>
<td>0.19</td>
<td>0.4</td>
</tr>
<tr>
<td>EXAMPLE 3</td>
<td>A</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 4</td>
<td>A</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 5</td>
<td>A</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 6</td>
<td>A</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>EXAMPLE 7</td>
<td>A</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>

[0119] (leupeptin as well as Examples 3 to 7 were only tested on the inhibition of acellular human calpain I).

[0120] 5) In Vitro Effect on Necrosis Induced by Maito-
toxin

[0121] Human neuroblastomas SHSY5Y and rat glial cells C6 are seeded at 25 000 cells per well in 96-well plates in DMEM 10% FBS for 24 hours. The L6 rat myoblasts are seeded at 1000 cells per well in DMEM 10% FBS on 96-well microplates coated beforehand with gelatin 0.5% PBS. After culture for 3 days the medium is removed and replaced with a differentiation medium (DMEM+10 µg/ml of insulin+100 µg/ml of transferrin). 50 µl of product A plus 50 µl of solvent or 50 µl of product B are placed in the wells. After incubation for 1 hour at 37°C under an atmosphere of 5% CO₂, 10 µl of maito toxin is added in order to obtain a final concentration of 0.1 nM to 1 nM (according to the cell type). After incubation for 3 hours at 37°C under an atmosphere of 5% CO₂, the cell viability is determined by adding 10 µl of tetrazolium salts (wst-1, Roche, ref: 1644807). The tetrazolium salts are cleaved into formazan molecules by mitochondrial dehydrogenases. The quantity of formazan formed is directly correlated to the number of metabolically active cells in the culture. Measurement of the absorbance of the formazan is carried out using a multiwell photometer at a wavelength of 420 nm against a reference wavelength of 620 nm. The results are expressed as a percentage protection against necrosis induced by 0.1 nM maito toxin and are summarized in Tables 4 and 5 below.

[0122] The theoretical effect was obtained by multiplying the percentage of dead cells in the presence of product A by the percentage of dead cells in the presence of product B
The percentage protection against cell death induced by MTX being the percentage of cells kept alive in the presence of the product or products.

TABLE 3

<table>
<thead>
<tr>
<th>Dead Fraction obtained after combining compounds A and B</th>
<th>Dead Fraction obtained by each of compounds A and B</th>
<th>Interaction of compounds A and B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF (A + B) <</td>
<td>(DF A) × (DF B)</td>
<td>synergy</td>
</tr>
<tr>
<td>DF (A + B) =</td>
<td>(DF A) × (DF B)</td>
<td>additivity</td>
</tr>
<tr>
<td>DF (A + B) ></td>
<td>(DF A) × (DF B)</td>
<td>antagonist</td>
</tr>
</tbody>
</table>

In the light of the previous results, the combination of Example 1 with product A and product B at a rate of 100 µM of each of the products is carried out on human neuroblastomas (SHSY5Y; Table 5A) and on glial cells with 25 µM of product A and 50 µM of product B (C6; Table 5B) on a larger number of cases.

TABLE 5A

<table>
<thead>
<tr>
<th>Products Protection from necrosis induced by MTX on SHSY5Y at 100 µM (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE 1</td>
</tr>
<tr>
<td>A 19.48 ± 5.20%</td>
</tr>
<tr>
<td>B 12.87 ± 3.72%</td>
</tr>
<tr>
<td>AB observed 40.35 ± 6.21% */A, **B, greater than theoretical AB theoretical 28.69 ± 6.73%</td>
</tr>
</tbody>
</table>

The results of Table 5A, Example 1 show that the Z-Leu-Leu-H calpain inhibitor, used at a concentration of 100 µM, is not active to effectively protect human neuroblastomas (SHSY5Y) from necrosis induced by maitoxin. Similarly, 3,5-di-tert-butyl-4-hydroxybenzoic acid used as a reactive oxygen species trap at a dose of 100 µM is weakly active (less than 20%). On the other hand, the association of the two compounds offers significant protection compared with the two compounds tested separately. This effect is synergistic, as the percentage protection obtained by com-

TABLE 4A

<table>
<thead>
<tr>
<th>Protection from necrosis induced by MTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>100 µM</td>
</tr>
<tr>
<td>12.5 µM</td>
</tr>
<tr>
<td>25 µM</td>
</tr>
<tr>
<td>50 µM</td>
</tr>
<tr>
<td>100 µM</td>
</tr>
<tr>
<td>compound A (100 µM)</td>
</tr>
<tr>
<td>compound B</td>
</tr>
<tr>
<td>compound A + compound B</td>
</tr>
<tr>
<td>Effect observed</td>
</tr>
<tr>
<td>compound A + compound B</td>
</tr>
</tbody>
</table>

TABLE 4B

<table>
<thead>
<tr>
<th>Protection from necrosis induced by MTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>100 µM</td>
</tr>
<tr>
<td>12.5 µM</td>
</tr>
<tr>
<td>25 µM</td>
</tr>
<tr>
<td>50 µM</td>
</tr>
<tr>
<td>100 µM</td>
</tr>
<tr>
<td>compound B (100 µM)</td>
</tr>
<tr>
<td>compound A</td>
</tr>
<tr>
<td>compound A + compound B</td>
</tr>
<tr>
<td>Effect observed</td>
</tr>
<tr>
<td>compound A + compound B</td>
</tr>
</tbody>
</table>
bining the two compounds is greater than the calculated theoretical effect (Tables 3 and 5A, Example 1).

TABLE 5B

<table>
<thead>
<tr>
<th>Products</th>
<th>Protection from necrosis induced by MTX on C6 (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE 1</td>
<td></td>
</tr>
<tr>
<td>B [50 µM]</td>
<td>9.63%</td>
</tr>
<tr>
<td>A [25 µM]</td>
<td>21.23%</td>
</tr>
<tr>
<td>A [50 µM] B [25 µM] observed</td>
<td>43.95%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>28.59%</td>
</tr>
<tr>
<td>EXAMPLE 2</td>
<td></td>
</tr>
<tr>
<td>A [50 µM]</td>
<td>6.56 ± 1.6%</td>
</tr>
<tr>
<td>B [50 µM]</td>
<td>12.05 ± 2.82%</td>
</tr>
<tr>
<td>A [50 µM] B [50 µM] observed</td>
<td>33.06 ± 7.99%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>17.77 ± 3.68%</td>
</tr>
<tr>
<td>EXAMPLE 3</td>
<td></td>
</tr>
<tr>
<td>B [100 µM]</td>
<td>0.84%</td>
</tr>
<tr>
<td>A [50 µM]</td>
<td>12.51%</td>
</tr>
<tr>
<td>A [100 µM] B [50 µM] observed</td>
<td>37.77%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>13.25%</td>
</tr>
<tr>
<td>EXAMPLE 4</td>
<td></td>
</tr>
<tr>
<td>B [100 µM]</td>
<td>0.36%</td>
</tr>
<tr>
<td>A [100 µM]</td>
<td>30.84%</td>
</tr>
<tr>
<td>A [100 µM] B [100 µM] observed</td>
<td>60.90%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>31.09%</td>
</tr>
<tr>
<td>B [100 µM]</td>
<td>2.75%</td>
</tr>
<tr>
<td>A [25 µM]</td>
<td>16.17%</td>
</tr>
<tr>
<td>A [25 µM] B [100 µM] observed</td>
<td>27.15%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>18.47%</td>
</tr>
<tr>
<td>EXAMPLE 5</td>
<td></td>
</tr>
<tr>
<td>B [25 µM]</td>
<td>0.69%</td>
</tr>
<tr>
<td>A [100 µM]</td>
<td>17.90%</td>
</tr>
<tr>
<td>A [25 µM] B [100 µM] observed</td>
<td>20.73%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>18.47%</td>
</tr>
<tr>
<td>EXAMPLE 6</td>
<td></td>
</tr>
<tr>
<td>B [50 µM]</td>
<td>4.91%</td>
</tr>
<tr>
<td>A [100 µM]</td>
<td>9.43%</td>
</tr>
<tr>
<td>A [50 µM] B [100 µM] observed</td>
<td>31.21%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>13.88%</td>
</tr>
<tr>
<td>EXAMPLE 7</td>
<td></td>
</tr>
<tr>
<td>B [50 µM]</td>
<td>13.03%</td>
</tr>
<tr>
<td>A [100 µM]</td>
<td>10.45%</td>
</tr>
<tr>
<td>A [50 µM] B [100 µM] observed</td>
<td>62.09%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>22.12%</td>
</tr>
</tbody>
</table>

(*) n = 1 for Examples 1 and 3 to 7 and n = 3 for Example 2)

[0128] As with Table 5A, the results of Table 5B, Example 1 show that the Z-Leu-Leu-H calpain inhibitor, used a concentration of 50 µM, is not active to effectively protect rat glial cells (C6) from necrosis induced by maitotoxin. Similarly, 3-5-di-tert-butyl-4-hydroxybenzoic acid used as a reactive oxygen species trap at a dose of 25 µM is weakly active (of the order of 20%). On the other hand, the association of the two compounds offers protection compared with the two compounds tested separately (43%). This effect is synergistic, as the percentage protection obtained by the association of the two compounds is greater than the calculated theoretical effect (Tables 3 and 5B, Example 1).

[0129] The synergistic effect of an anti-ROS and an anti-calpain on the protection from necrosis induced by MTX was verified on glial cells with another antioxidant and another calpain inhibitor (Example 2, Table 5B).

[0130] Similarly, 2-methoxy-10H-phenothiazine, an antioxidant which traps reactive oxygen species, and Z-Leu-Phe-H, a calpain inhibitor, are inactive at a dose of 50 µM in protecting the rat glial cells (C6) from necrosis induced by maitotoxin. On the other hand, the association of 2-methoxy-10H-phenothiazine with Z-Leu-Phe-H (Table 5, Example 2) shows highly significant protection compared with the two compounds tested separately as well as the theoretical association. This effect is significantly synergistic, as the percentage protection obtained by association of the two compounds is significantly greater than the calculated theoretical effect (Tables 3 and 5B).

[0131] The synergistic effect of other antioxidants and other calpain inhibitors was also tested on glial cells (Examples 3 to 7; Table 5B). Example 7 was reproduced on another cell line in particular rat skeletal muscle cells (myoblasts differentiated to myotubes; Table 5C). In these examples, products A and B offer little protection by themselves via a vis cell necrosis induced by maitotoxin, on the other hand, the combination of the two compounds offers protection compared with the two compounds tested separately. These effects are synergistic, as the percentage protection obtained by association of the two compounds is greater than the calculated theoretical effect (Tables 3, 5B, Example 3 to 7 and 5C Example 7).

TABLE 5C

<table>
<thead>
<tr>
<th>Products</th>
<th>Protection from necrosis induced by MTX on L6 Myoblasts (rat skeletal muscle cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE 7</td>
<td></td>
</tr>
<tr>
<td>B [100 µM]</td>
<td>0.69%</td>
</tr>
<tr>
<td>A [100 µM]</td>
<td>10.94%</td>
</tr>
<tr>
<td>A [100 µM] B [100 µM] observed</td>
<td>25.05%</td>
</tr>
<tr>
<td>AB theoretical</td>
<td>15.48%</td>
</tr>
</tbody>
</table>

1. A pharmaceutical composition comprising, as active ingredient, at least one calpain inhibitor substance and at least one reactive oxygen species trapping substance, and optionally a pharmaceutically acceptable support.

2. A composition of claim 1, comprising, as active ingredient, a calpain inhibitor substance and a reactive oxygen species trapping substance, and optionally a pharmaceutically acceptable support.

3. A composition of claim 1 wherein the calpain inhibitor has the formula

\[
\text{T-NH-CH(R_1)-C(O)-NH-CH(R_2)-C(O)-H-CH(R_3)-C(O)}_m-Y
\]

wherein

\[R_1, R_2 \text{ and } R_3 \text{ are, independently, selected from the group consisting of hydrogen or lower alkyl optionally substituted by at least one member selected from the group consisting of hydroxy, lower alkxy, mercapto, lower alkylthio, carboxy, aminocarboxyl, (lower alkyl)aminocarboxyl, di(lower alkyl)aminocarboxyl, amino, guanidino and optionally substituted aryl or optionally substituted heteroaryl, with the substituents of aryl and heteroaryl being selected from the group consisting of halo, hydroxy, lower alkyl and lower alkxy;]
Y is selected from the group consisting of hydrogen, —C(O)-Ry and —C(O)—O—R'y wherein

Ry is lower alkyl or —N(Ry)(Ry);
R'y is selected from the group consisting of hydrogen, lower alkyl and lower arylalkyl;

Ry, and Ry are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, lower arylalkyl, lower heteroarylalkyl, cyanoalkyl-alkyl, heterocycloalkyl, all optionally substituted by at least one member of the group consisting of halo, hydroxy, trifluoromethyl, lower alkyl, lower alkoxy, amino, (lower alkyl)amino, di(lower alkyl)amino, arylxoy and arylalkoxy;

n is 0 or 1;

T is selected from the group consisting of —C(O)—O-Rt or —C(O)-Rt wherein

Rt is lower alkyl or lower arylalkyl;

Rt is selected from the group consisting of lower alkyl, lower arylalkyl, arylxoy lower alkyl and heteroaryl.

4. A composition of claim 1 wherein the calpain inhibitor has the formula

\[
T: \text{NH} - \text{CH(R_y)} - \text{C(O)} - \text{NH} - \text{CH(R_y)} - \text{C(O)} \\
[\text{NH} - \text{CH(R_y)} - \text{C(O)}]_n - Y
\]

wherein

R_y and R_y are, independently, alkyl optionally substituted by phenyl optionally substituted by halo or hydroxy;

Y is hydrogen;

T is —(O)—O-Rt; wherein Rt is lower alkyl or benzyl and n=0.

5. A composition of claim 1 wherein the calpain inhibitor corresponds to formula

\[
T: \text{NH} - \text{CH(R_y)} - \text{C(O)} - \text{NH} - \text{CH(R_y)} - \text{C(O)} \\
[\text{NH} - \text{CH(R_y)} - \text{C(O)}]_n - Y
\]

wherein

R_y and R_y are, independently, alkyl optionally substituted by phenyl optionally substituted by halo or hydroxy;

Y is hydrogen;

T is —(O)—O-Rt; wherein Rt is lower alkyl or benzyl and n=0.

6. A composition of claim 1 wherein the calpain inhibitor is 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

7. A composition of claim 1 wherein the reactive oxygen species trap is selected from the group consisting of ascorbic acid, ethoxyquin, N-acetyl-cysteine, β-carotene, 2,2,5,5-tetramethyl-1-pyrroline-1-oxyl-3-carboxylic acid, the Q10 coenzyme, captoative compounds, nitrones, phenolic compounds, indole derivatives, indolines, imidazoles, phenothia-zines, phenoxazines, phenazines, diphenylamines and carbazoles.

8. A composition of claim 1 wherein the reactive oxygen species trap is selected from the group consisting of ascorbic acid, ethoxyquin, tempol, N-tert-buty1-α-phenyl-nitrite, N-acetyl-cysteine, β-carotene, 2,2,5,5-tetramethyl-1-pyrroline-1-oxyl-3-carboxylic acid, the Q10 coenzyme, captoative compounds, probucol, NDGA, α-, β-, γ-, ε-, τ- or δ-tocopherol, 3,5-di-tert-butyl-4-hydrobenzoic acid, 2,3,6-trimethyl-2-hexyloxyphenol, 2,6-di-tert-butyl-4-methoxyphenol, 2,6-di-tert-butyl-4-methylphenol, trolox, n-propyl gallate, eugenol, caffeic acid, sinapic acid, gallic acid, propofol, melatonin, 5-hydroxy-tryptamine, 5-hydroxy-indole-2-carboxylic acid, 5-amino-indoline, N-methyl-indoline, imidazole, cimetidine, 4-hydroxy-carbazole, carvedilol, 2-methoxy-1H-phenothiazine, 4-hydroxydiphenylamine, 4-amino-4-diphenylamine, 4-methoxy-N-(4-methoxyphenyl) aniline and 9-[(2-(4-morpholinyl)ethyl]2,4-di-1-pyrrolidinyl-9H-pyrimidino [4,5-b]indole.

9. A composition of claim 1 wherein the reactive oxygen species trap is selected from the group consisting of phenolic compounds, phenothiazines and diphenylamines.

10. A composition of claim 1 wherein the reactive oxygen species trap is selected from the group consisting of 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHT), 2-methoxy-1H-phenothiazine or 4-hydroxydiphenylamine; and

the compound which inhibits calpains is selected from the group consisting of benzyl (1S)-1-[[[1(1S)-1 formyl-3-methylbutyl]amino] carbonyl]3-methylbutylcarbamate, benzyl (1S)-1-[[[1-benzyl-2-oxoethyl]amino]carbonyl]-3-methylbutylcarbamate, benzyl ester of [1-[1-(formylpentyl)amino]carbonyl]-3-methylbutylcarbamate (calpeptin) and 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

11. A product comprising at least one substance which inhibits calpains and at least one reactive oxygen species trapping substance as a combination product, in separated form, for simultaneous or sequential use in the treatment of pathologies in which calpains and the reactive oxygen species are involved, pathologies characterized by an excessive production of ROS’s and/or an activation of calpains.

12. (canceled)

13. A product of claim 11 wherein the calpain inhibitor has the formula

\[
T: \text{NH} - \text{CH(R_y)} - \text{C(O)} - \text{NH} - \text{CH(R_y)} - \text{C(O)} \\
[\text{NH} - \text{CH(R_y)} - \text{C(O)}]_n - Y
\]

(II)
wherein

R₁, R₂, and R₃ are, independently, hydrogen or lower alkyl optionally substituted by at least one member selected from the group consisting of hydroxy, lower alkoxyl, lower alkyloxy, mercapto, lower alkythio, carboxyl, aminocarboxyl, (lower alkyl)aminocarbonyl, di(lower alkyl)aminocarbonyl, amino, guanidino, optionally substituted aryl or optionally substituted heteroaryl, with the substituents aryl and heteroaryl being at least one member selected from the group consisting of halo, hydroxy, lower alkyl and lower alkoxy;

Y is selected from the group consisting of hydroxy, —C(O)-O-R'y, and —C(O)—O—R'y wherein

R'y is lower alkyl or —N(R'y₁)(R'y₂);

R'y is hydrogen, lower alkyl and lower arylalkyl;

R₁ and R₂ are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, lower arylalkyl, lower heteroarylalkyl, cycloalkylalkyl and heterocycloalkyl, all optionally substituted by at least one member selected from the group consisting of halo, hydroxy, trifluoromethyl, lower alkoxy, amino, (lower alkyl)amino, di(lower alkyl)amino, aryloxy or arylalkoxy;

n is 0 or 1;

T is selected from the group consisting of hydrogen, —C(O)—O—Rt₁ or —C(O)—O—Rt₂ wherein

Rt₁ is lower alkyl or lower arylalkyl;

Rt₂ is selected from the group consisting of lower alkyl, lower arylalkyl, arylloxy lower alkyl and heteroaryl.

14. A product of claim 11 wherein the calpain inhibitor has the formula

\[\text{T-CH(R₂)-C(O)-O-CH(R₃)-C(O)-N-[N-CH(R₂)-C(O)]} \]

wherein

R₂ and R₃ are, independently, alkyl optionally substituted by at least one member selected from the group consisting of hydroxy, mercapto, lower alkythio, carboxyl, aminocarboxyl, amino, guanidino and optionally substituted phenyl, indole or imidazole,

the phenyl, indole and imidazole being optionally substituted with a member selected from the group consisting of halo, hydroxy, lower alkyl and lower alkoxy;

Y is selected from the group consisting of hydroxy, —C(O)-O-R'y and —C(O)—O—R'y wherein

R'y is lower alkyl or benzyl;

R’y is hydrogen and R₂₂ is, independently selected from the group consisting of hydroxy, lower alkyl, lower alkoxy, lower arylalkyl, lower heteroarylalkyl, cycloalkylalkyl and heterocycloalkyl, all optionally substituted by at least one member selected from the group consisting of halo, hydroxy, trifluoromethyl, lower alkoxy, amino, (lower alkyl)amino, di(lower alkyl)amino, aryloxy or arylalkoxy;

n is 0 or 1;

T is selected from the group consisting of lower alkyl, benzyl and phenethyl;

Rt₂ is selected from the group consisting of lower alkyl, lower arylalkyl, aryloxy lower alkyl and a heteroaryl.

15. A product of claim 11 wherein the calpain inhibitor has the formula

\[\text{T-CH(R₂)-C(O)-O-CH(R₃)-C(O)-N-[N-CH(R₂)-C(O)]} \]

wherein

R₂ and R₃ are, independently, alkyl optionally substituted by phenyl optionally substituted by halo or hydroxy;

Y is hydrogen;

T is —C(O)—O—Rt₁ wherein Rt₁ is lower alkyl or benzyl, and n=0.

16. A product of claim 11 wherein the calpain inhibitor is 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

17. A product of claim 11 wherein the calpain inhibitor is 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

18. A product of claim 11 wherein the calpain inhibitor is 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

19. A product of claim 11 wherein the calpain inhibitor is 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

20. A product of claim 11 wherein the calpain inhibitor is 3-(4-iodophenyl)-2-mercaptop-2-propenoic acid.

21-27. (canceled)

28. A method of treating a disorder of the central nervous system in a warm-blooded animal comprising administering to warm-blooded animals in need thereof an effective amount of a composition of claim 13.

* * * * *