
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCI)

(11) International Publication Number:

(43) International Publication Date:

WO 00/28421

18 May 2000 (18.05.00)

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION 
International Bureau

(51) International Patent Classification 1 :

G06F 12/06, 9/00 Al

(21) International Application Number: PCT/US99/24639

(22) International Filing Date: 21 October 1999 (21.10.99)

(30) Priority Data:
60/107,167 5 November 1998 (05.11.98) US
09/405,500 23 September 1999 (23.09.99) US

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North First
Street, San Jose, CA 95131 (US).

(72) Inventors: JACOBS, Dean, B.; 1747 Madera Street, Berkeley,
CA 94707 (US). LANGEN, Anno, R.; 2220-d Sacramento 
Street, Berkeley, CA 94702 (US).

(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Dubb Meyer and 
Lovejoy LLP, Suite 400, Four Embarcadero Center, San 
Francisco, CA 94111-4156 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, 
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI, 
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, 
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, 
MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, 
SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, 
ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, 
SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, 
MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, 
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), 
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, 
MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the 
claims and to be republished in the event of the receipt of 
amendments.

(54) Title: CLUSTERED ENTERPRISE JAVA™ IN A SECURE DISTRIBUTED PROCESSING SYSTEM 

(57) Abstract
380

A clustered enterprise Java distributed processing system is \
provided. The distributed processing system includes a first and a second 
computer coupled to a communication medium. The first computer 
includes a Java virtual machine (JVM) and kernel software layer for 
transferring messages, including a remote Java virtual machine (RJVM). 
The second computer includes a JVM and a kernel software layer 
having a RJVM. Messages are passed from a RJVM to the JVM in one 
computer to the JVM and RJVM in the second computer. Messages 
may be forwarded through an intermediate server or rerouted after a 
network reconfiguration. Each computer includes a Smart stub having 
a replica handler, including a load balancing software component and 
a failover software component. Each computer includes a duplicated 
service naming tree for storing a pool of Smart stubs at a node. The 
computers may be programmed in a stateless, stateless factory, or a 
stateful programming model. The clustered enterprise Java distributed 
processing system allows for enhanced scalability and fault tolerance.

ENTERPRISE JAVA BEAN
3S8

REMOTE METHOD INVOCATION 
357

REMOTE JAVA 
VIRTUAL MACHINE 

356

KERNAL 355

JAVA VIRTUAL MACHINE
354

TRANSMISSION CONTROL 
PROTOCOL 353

INTERNET PROTOCOL
352

OPERATING 
SYSTEM 310

COMMUNICATION MEDIUM DRIVER
351



FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania ES Spain LS Lesotho SI Slovenia
AM Armenia FI Finland LT Lithuania SK Slovakia
AT Austria FR France LU Luxembourg SN Senegal
AU Australia GA Gabon LV Latvia sz Swaziland
AZ Azerbaijan GB United Kingdom MC Monaco TD Chad
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajikistan
BE Belgium GN Guinea MK The former Yugoslav TM Turkmenistan
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey
BG Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
BJ Benin IE Ireland MN Mongolia UA Ukraine
BR Brazil IL Israel MR Mauritania UG Uganda
BY Belarus IS Iceland MW Malawi US United States of America
CA Canada IT Italy MX Mexico UZ Uzbekistan
CF Central African Republic JP Japan NE Niger VN Viet Nam
CG Congo KE Kenya NL Netherlands YU Yugoslavia
CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbabwe
CI Cdte d’Ivoire KP Democratic People’s NZ New Zealand
CM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
cu Cuba KZ Kazakstan RO Romania
cz Czech Republic LC Saint Lucia RU Russian Federation
DE Germany LI Liechtenstein SD Sudan
DK Denmark LK Sri Lanka SE Sweden
EE Estonia LR Liberia SG Singapore



WO 00/28421 PCT/US99/24639

5

10

15

20

25

1

CLUSTERED ENTERPRISE JAVA™ IN A SECURE DISTRIBUTED 
PROCESSING SYSTEM

Field of the Invention

The present invention relates to distributed processing systems 

and, in particular, computer software in distributed processing 

systems.

Cross Reference to Related Applications

This application claims the benefit of U.S. Provisional 

Application No. 60/107,167, filed November 5, 1998.

The following copending U.S. patent applications are assigned 

to the assignee of the present application, and their disclosures are 

incorporated herein by reference:

(A) Ser. No. Not Yet Known [Attorney Docket No. BEAS 1027] 

filed Not Yet Known by Dean B. Jacobs and Anno R. Langen, and 

originally entitled, "CLUSTERED ENTERPRISE JAVA™ HAVING A 

MESSAGE PASSING KERNEL IN A DISTRIBUTED PROCESSING 

SYSTEM";

(B) Ser. No. Not Yet Known [Attorney Docket No. BEAS1029] 

filed Not Yet Known by Dean B. Jacobs and Eric M. Halpern, and 

entitled, "A SMART STUB OR ENTERPRISE JAVA™ BEAN IN A 

DISTRIBUTED PROCESSING SYSTEM"; and

(C) Ser. No. Not Yet Known [Attorney Docket No. BEAS1030] 

filed Not Yet Known by Dean B. Jacobs and Eric M. Halpern, and 

originally entitled, "A DUPLICATED NAMING SERVICE IN A 

DISTRIBUTED PROCESSING SYSTEM",



WO 00/28421 PCT/US99/24639

5

10

15

20

25

2

Background of the Invention

There are several types of distributed processing systems. 

Generally, a distributed processing system includes a plurality of 

processing devices, such as two computers coupled to a 

communication medium. Communication mediums may include wired 

mediums, wireless mediums, or combinations thereof, such as an 

Ethernet local area network or a cellular network. In a distributed 

processing system, at least one processing device may transfer 

information on the communication medium to another processing 

device.

Client/server architecture 110 illustrated in Fig. 1a is one type 

of distributed processing system. Client/server architecture 110 

includes at least two processing devices, illustrated as client 105 and 

application server 103. Additional clients may also be coupled to 

communication medium 104, such as client 108.

Typically, server 103 hosts business logic and/or coordinates 

transactions in providing a service to another processing device, such 

as client 103 and/or client 108. Application server 103 is typically 

programmed with software for providing a service. The software 

may be programmed using a variety of programming models, such as 

Enterprise Java™ Bean ("EJB") 100b as illustrated in Figs. 1a-b. The 

service may include, for example, retrieving and transferring data 

from a database, providing an image and/or calculating an equation. 

For example, server 103 may retrieve data from database 101a in 

persistent storage 101 over communication medium 102 in response 

to a request from client 105. Application server 103 then may 

transfer the requested data over communication medium 104 to 

client 105.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

3

A client is a processing device which utilizes a service from a 

server and may request the service. Often a user 106 interacts with 

client 106 and may cause client 105 to request service over a 

communication medium 104 from application server 103. A client 

often handles direct interactions with end users, such as accepting 

requests and displaying results.

A variety of different types of software may be used to 

program application server 103 and/or client 105. One programming 

language is the Java™ programming language. Java™ application 

object code is loaded into a Java™ virtual machine ("JVM"). A JVM 

is a program loaded onto a processing device which emulates a 

particular machine or processing device. More information on the 

Java™ programming language may be obtained at 

http://www.javasoft.com, which is incorporated by reference herein.

Fig. 1b illustrates several Java™ Enterprise Application 

Programming Interfaces ("APIs") 100 that allow Java™ application 

code to remain independent from underlying transaction systems, 

data-bases and network infrastructure. Java™ Enterprise APIs 100 

include, for example, remote method invocation ("RMI") 100a, EJBs 

100b, and Java™ Naming and Directory Interface (JNDI) 100c.

RMI 100a is a distributed programming model often used in 

peer-to-peer architecture described below. In particular, a set of 

classes and interfaces enables one Java™ object to call the public 

method of another Java™ object running on a different JVM.

An instance of EJB 100b is typically used in a client/server 

architecture described above. An instance of EJB 100b is a software 

component or a reusable pre-built piece of encapsulated application 

code that can be combined with other components. Typically, an 

instance of EJB 100b contains business logic. An EJB 100b instance

http://www.javasoft.com


WO 00/28421 PCT/US99/24639

5

10

15

20

25

4 

stored on server 103 typically manages persistence, transactions, 

concurrency, threading, and security.

JNDI 100c provides directory and naming functions to Java™ 

software applications.

Client/server architecture 110 has many disadvantages. First, 

architecture 110 does not scale well because server 103 has to 

handle many connections. In other words, the number of clients 

which may be added to server 103 is limited. In addition, adding 

twice as many processing devices (clients) does not necessarily 

provide you with twice as much performance. Second, it is difficult 

to maintain application code on clients 105 and 108. Third, 

architecture 110 is susceptible to system failures or a single point of 

failure. If server 101 fails and a backup is not available, client 105 

will not be able to obtain the service.

Fig. 1c illustrates a multi-tier architecture 160. Clients 151, 

152 manage direct interactions with end users, accepting requests 

and display results. Application server 153 hosts the application 

code, coordinates communications, synchronizations, and 

transactions. Database server 154 and portable storage device 155 

provides durable transactional management of the data.

Multi-tier architecture 160 has similar client/server architecture 

110 disadvantages described above.

Fig. 2 illustrates peer-to-peer architecture 214. Processing 

devices 216, 217 and 218 are coupled to communication medium 

213. Processing devices 216, 217, and 218 include network 

software 210a, 210b, and 210c for communicating over medium 

213. Typically, each processing device in a peer-to-peer architecture 

has similar processing capabilities and applications. Examples of 

peer-to-peer program models include Common Object Request Broker



WO 00/28421 PCT/US99/24639

5

10

15

20

25

5

Architecture ("CORBA") and Distributed Object Component Model

("DCOM") architecture.

In a platform specific distributed processing system, each 

processing device may run the same operating system. This allows 

the use of proprietary hardware, such as shared disks, multi-tailed 

disks, and high speed interconnects, for communicating between 

processing devices. Examples of platform-specific distributed 

processing systems include IBM® Corporation's S/390® Parallel 

Sysplex®, Compaq's Tandem Division Himalaya servers, Compaq's 

Digital Equipment Corporation™ (DEC™) Division OpenVMS™ Cluster 

software, and Microsoft® Corporation Windows NT® cluster services 

(Wolfpack).

Fig. 2b illustrates a transaction processing (TP) architecture 

220. In particular, TP architecture 220 illustrates a BEA® Systems, 

Inc. TUXEDO® architecture. TP monitor 224 is coupled to processing 

devices ATM 221, PC 222, and TP monitor 223 by communication 

medium 280, 281, and 282, respectively. ATM 221 may be an 

automated teller machine, PC 222 may be a personal computer, and 

TP monitor 223 may be another transaction processor monitor. TP 

monitor 224 is coupled to back-end servers 225, 226, and 227 by 

communication mediums 283, 284, and 285. Server 225 is coupled 

to persistent storage device 287, storing database 289, by 

communication medium 286. TP monitor 224 includes a workflow 

controller 224a for routing service requests from processing devices, 

such as ATM 221, PC 222, or TP monitor 223, to various servers 

such as server 225, 226 and 227. Work flow controller 224a 

enables (1) workload balancing between servers, (2) limited 

scalability or allowing for additional servers and/or clients, (3) fault 

tolerance of redundant backend servers (or a service request may be



WO 00/28421 PCT/US99/24639

5

10

15

20

25

6

sent by a workflow controller to a server which has not failed), and

(4) session concentration to limit the number of simultaneous 

connections to back-end servers. Examples of other transaction 

processing architectures include IBM® Corporation's CICS® , 

Compaq's Tandem Division Pathway/Ford/TS, Compaq's DEC™ 

ACMS, and Transarc Corporation's Encina.

TP architecture 220 also has many disadvantages. First, a 

failure of a single processing device or TP monitor 224 may render 

the network inoperable. Second, the scalability or number of 

processing devices (both servers and clients) coupled to TP monitor 

224 may be limited by TP monitor 224 hardware and software. 

Third, flexibility in routing a client request to a server is limited. For 

example, if communication medium 280 is inoperable, but 

communication medium 290 becomes available, ATM 221 typically 

may not request service directly from server 225 over communication 

medium 290 and must access TP monitor 224. Fourth, a client 

typically does not know the state of a back-end server or other 

processing device. Fifth, no industry standard software or APIs are 

used for load balancing. And sixth, a client typically may not select a 

particular server even if the client has relevant information which 

would enable efficient service.

Therefore, it is desirable to provide a distributed processing 

system and, in particular, distributed processing system software that 

has the advantages of the prior art distributed processing systems 

without the inherent disadvantages. The software should allow for 

industry standard APIs which are typically used in either client/server, 

multi-tier, or peer-to-peer distributed processing systems. The 

software should support a variety of computer programming models. 

Further, the software should enable (1) enhanced fault tolerance,



WO 00/28421 PCT/US99/24639

5

10

15

20

25

7

(2) efficient scalability, (3) effective load balancing, and (4) session 

concentration control. The improved computer software should allow 

for rerouting or network reconfiguration. Also, the computer 

software should allow for the determination of the state of a 

processing device.

SUMMARY OF THE INVENTION

An improved distributed processing system is provided and, in 

particular, computer software for a distributed processing system is 

provided. The computer software improves the fault tolerance of the 

distributed processing system as well as enables efficient scalability. 

The computer software allows for efficient load balancing and 

session concentration. The computer software supports rerouting or 

reconfiguration of a computer network. The computer software 

supports a variety of computer programming models and allows for 

the use of industry standard APIs that are used in both client/server 

and peer-to-peer distributed processing architectures. The computer 

software enables a determination of the state of a server or other 

processing device. The computer software also supports message 

forwarding under a variety of circumstances, including a security 

model.

According to one aspect of the present invention, a distributed 

processing system comprises a communication medium coupled to a 

first processing device and a second processing device. The first 

processing device includes a first software program emulating a 

processing device ("JVM1") including a first kernel software layer 

having a data structure ("RJVM1"). The second processing device 

includes a first software program emulating a processing device 

("JVM2") including a first kernel software layer having a data



WO 00/28421 PCT/US99/24639

5

10

15

20

25

8

structure ("RJVM2"). A message from the first processing device is 

transferred to the second processing device through the first kernel 

software layer and the first software program in the first processing 

device to the first kernel software layer and the first software 

program in the second processing device.

According to another aspect of the present invention, the first 

software program in the first processing device is a Java™ virtual 

machine ("JVM") and the data structure in the first processing device 

is a remote Java™ virtual machine ("RJVM"). Similarly, the first 

software program in the second processing device is a JVM and the 

data structure in the second processing device is a RJVM. The 

RJVM in the second processing device corresponds to the JVM in the 

first processing device.

According to another aspect of the present invention, the 

RJVM in the first processing device includes a socket manager 

software component, a thread manager software component, a 

message routing software component, a message compression 

software component, and/or a peer-gone detection software 

component.

According to another aspect of the present invention, the first 

processing device communicates with the second processing device 

using a protocol selected from the group consisting of Transmission 

Control Protocol ("TCP"), Secure Sockets Layer ("SSL"), Hypertext 

Transport Protocol ("HTTP") tunneling, and Internet InterORB Protocol 

("HOP") tunneling.

According to another aspect of the present invention, the first 

processing device includes memory storage for a Java™ application.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

9

According to another aspect of the present invention, the first 

processing device is a peer of the second processing device. Also, 

the first processing device is a server and the second processing 

device is a client.

According to another aspect of the present invention, a second 

communication medium is coupled to the second processing device. 

A third processing device is coupled to the second communication 

medium. The third processing device includes a first software 

program emulating a processing device ("JVM3"), including a kernel 

software layer having a first data structure ("RJVM1"), and a second 

data structure ("RJVM2").

According to still another aspect of the present invention, the 

first processing device includes a stub having a replica-handler 

software component. The replica-handler software component 

includes a load balancing software component and a failover 

software component.

According to another aspect of the present invention, the first 

processing device includes an Enterprise Java™ Bean object.

According to still another aspect of the present invention, the 

first processing device includes a naming tree having a pool of stubs 

stored at a node of the tree and the second processing device 

includes a duplicate of the naming tree.

According to still another aspect of the present invention, the 

first processing device includes an application program coded in a 

stateless program model and the application program includes a 

stateless session bean.

According to still another aspect of the present invention, the 

first processing device includes an application program coded in a



WO 00/28421 PCT/US99/24639

5

10

15

20

25

10

stateless factory program model and the application program includes 

a stateful session bean.

According to still another aspect of the present invention, the 

first processing device includes an application program coded in a 

stateful program model and the application program includes an 

entity session bean.

According to still another aspect of the present invention, an 

article of manufacture including an information storage medium is 

provided. The article of manufacture comprises a first set of digital 

information for transferring a message from a RJVM in a first 

processing device to a RJVM in a second processing device.

According to another aspect of the present invention, the 

article of manufacture comprises a first set of digital information, 

including a stub having a load balancing software program for 

selecting a service provider from a plurality of service providers.

According to another aspect of the present invention, the stub 

has a failover software component for removing a failed service 

provider from the plurality of service providers.

According to another aspect of the present invention, the load 

balancing software component selects a service provider based on an 

affinity for a particular service provider.

According to another aspect of the present invention, the load 

balancing software component selects a service provider in a round 

robin manner.

According to another aspect of the present invention, the load 

balancing software component randomly selects a service provider.

According to another aspect of the present invention, the load 

balancing software component selects a service provider from the



WO 00/28421 PCT/US99/24639

5

10

15

20

25

1 1

plurality of service providers based upon the load of each service

provider.

According to another aspect of the present invention, the load 

balancing software component selects a service provider from the 

plurality of service providers based upon the data type requested.

According to another aspect of the present invention, the load 

balancing software component selects a service provider from the 

plurality of service providers based upon the closest physical service 

provider.

According to another aspect of the present invention, the load 

balancing software component selects a service provider from the 

plurality of service providers based upon a time period in which each 

service provider responds.

According to another aspect of the present invention, the 

article of manufacture comprises a first set of digital information, 

including an Enterprise Java™ Bean object for selecting a service 

provider from a plurality of service providers.

According to another aspect of the present invention, a stub is 

stored in a processing device in a distributed processing system. The 

stub includes a method comprising the steps of obtaining a list of 

service providers and selecting a service provider from the list of 

service providers.

According to another aspect of the present invention, the 

method further includes removing a failed service provider from the 

list of service providers.

According to still another aspect of the present invention, an 

apparatus comprises a communication medium coupled to a first 

processing device and a second processing device. The first 

processing device stores a naming tree including a remote method



WO 00/28421 PCT/US99/24639

5

10

15

20

25

12

invocation ("RMI") stub for accessing a service provider. The second 

processing device has a duplicate naming tree and the service 

provider.

According to another aspect of the present invention, the 

naming tree has a node including a service pool of current service 

providers.

According to another aspect of the present invention, the 

service pool includes a stub.

According to another aspect of the present invention, a 

distributed processing system comprises a first computer coupled to 

a second computer. The first computer has a naming tree, including 

a remote invocation stub for accessing a service provider. The 

second computer has a replicated naming tree and the service 

provider.

According to another aspect of the present invention, a 

distributed processing system comprising a first processing device 

coupled to a second processing device is provided. The first 

processing device has a JVM and a first kernel software layer 

including a first RJVM. The second processing device includes a first 

JVM and a first kernel software layer including a second RJVM. A 

message may be transferred from the first processing device to the 

second processing device when there is not a socket available 

between the first JVM and the second JVM.

According to another aspect of the present invention, the first 

processing device is running under an applet security model, behind a 

firewall or is a client, and the second processing device is also a 

client.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

13

Other aspects and advantages of the present invention can be 

seen upon review of the figures, the detailed description, and the 

claims which follow.

Brief Description of the Figures

Fig. 1a illustrates a prior art client/server architecture;

Fig. 1b illustrates a prior art Java™ enterprise APIs;

Fig. 1c illustrates a multi-tier architecture;

Fig. 2a illustrates a prior art peer-to-peer architecture;

Fig. 2b illustrates a prior art transaction processing 

architecture;

Fig. 3a illustrates a simplified software block diagram of an 

embodiment of the present invention;

Fig. 3b illustrates a simplified software block diagram of the 

kernel illustrated in Fig. 3a;

Fig. 3c illustrates a clustered enterprise Java™ architecture;

Fig. 4 illustrates a clustered enterprise Java™ naming service 

architecture;

Fig. 5a illustrates a smart stub architecture;

Fig. 5b illustrates an EJB object architecture;

Fig. 6a is a control flow chart illustrating a load balancing 

method;

Figs. 6b-g are control flow charts illustrating load balancing 

methods;

Fig. 7 is a control flow chart illustrating a failover method;

Fig. 8 illustrates hardware and software components of a 

client/server in the clustered enterprise Java™ architecture shown in 

Figs. 3-5.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

14

The invention will be better understood with reference to the 

drawings and detailed description below. In the drawings, like 

reference numerals indicate like components.

DETAILED DESCRIPTION

I. Clustered Enterprise Java™ Distributed Processing System

A. Clustered Enterprise Java™ Software Architecture

Fig. 3a illustrates a simplified block diagram 380 of the 

software layers in a processing device of a clustered enterprise 

Java™ system, according to an embodiment of the present invention. 

A detailed description of a clustered enterprise Java™ distributed 

processing system is described below. The first layer of software 

includes a communication medium software driver 351 for 

transferring and receiving information on a communication medium, 

such as an ethernet local area network. An operating system 310 

including a transmission control protocol ("TCP") software 

component 353 and internet protocol ("IP") software component 352 

are upper software layers for retrieving and sending packages or 

blocks of information in a particular format. An "upper" software 

layer is generally defined as a software component which utilizes or 

accesses one or more "lower" software layers or software 

components. A JVM 354 is then implemented. A kernel 355 having 

a remote Java™ virtual machine 356 is then layered on JVM 354. 

Kernel 355, described in detail below, is used to transfer messages 

between processing devices in a clustered enterprise Java™ 

distributed processing system. Remote method invocation 357 and 

enterprise Java™ bean 358 are upper software layers of kernel 355. 

EJB 358 is a container for a variety of Java™ applications.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

15

Fig. 3b illustrates a detailed view of kernel 355 illustrated in 

Fig. 3a. Kernel 355 includes a socket manager component 363, 

thread manager 364 component, and RJVM 356. RJVM 356 is a 

data structure including message routing software component 360, 

message compression software component 361 including 

abbreviation table 161c, and peer-gone detection software 

component 362. RJVM 356 and thread manager component 364 

interact with socket manager component 363 to transfer information 

between processing devices.

B. Distributed Processing System

Fig. 3 illustrates a simplified block diagram of a clustered 

enterprise Java™ distributed processing system 300. Processing 

devices are coupled to communication medium 301. Communication 

medium 301 may be a wired and/or wireless communication medium 

or combination thereof. In an embodiment, communication medium 

301 is a local-area-network (LAN). In an alternate embodiment, 

communication medium 301 is a world-area-network (WAN) such as 

the Internet or World Wide Web. In still another embodiment, 

communication medium 301 is both a LAN and a WAN.

A variety of different types of processing devices may be 

coupled to communication medium 301. In an embodiment, a 

processing device may be a general purpose computer 100 as 

illustrated in Fig. 8 and described below. One of ordinary skill in the 

art would understand that Fig. 8 and the below description describes 

one particular type of processing device where multiple other types 

of processing devices with a different software and hardware 

configurations could be utilized in accordance with an embodiment of 

the present invention. In an alternate embodiment, a processing



WO 00/28421 PCT/US99/24639

5

10

15

20

25

16

device may be a printer, handheld computer, laptop computer, 

scanner, cellular telephone, pager, or equivalent thereof.

Fig. 3c illustrates an embodiment of the present invention in 

which servers 302 and 303 are coupled to communication medium 

301. Server 303 is also coupled to communication medium 305 

which may have similar embodiments as described above in regard to 

communication medium 301. Client 304 is also coupled to 

communication medium 305. In an alternate embodiment, client 304 

may be coupled to communication medium 301 as illustrated by the 

dashed line and box in Fig. 3c. It should be understood that in 

alternate embodiments, server 302 is (1) both a client and a server, 

or (2) a client. Similarly, Fig. 3 illustrates an embodiment in which 

three processing devices are shown wherein other embodiments of 

the present invention include multiple other processing devices or 

communication mediums as illustrated by the ellipses.

Server 302 transfers information over communication medium 

301 to server 303 by using network software 302a and network 

software 303a, respectively. In an embodiment, network software 

302a, 303a, and 304a include communication medium software 

driver 351, Transmission Control Protocol software 353, and Internet 

Protocol software 352 ("TCP/IP"). Client 304 also includes network 

software 304a for transferring information to server 303 over 

communication medium 305. Network software 303a in server 303 

is also used to transfer information to client 304 by way of 

communication medium 305.

According to an embodiment of the present invention, each 

processing device in clustered enterprise Java™ architecture 300 

includes a message-passing kernel 355 that supports both multi-tier 

and peer-to-peer functionality. A kernel is a software program used



WO 00/28421 PCT/US99/24639

17

to provide fundamental services to other software programs on a

processing device.

In particular, server 302, server 303, and client 304 have 

kernels 302b, 303b, and 304b, respectively. In particular, in order

5 for two JVMs to interact, whether they are clients or servers, each 

JVM constructs an RJVM representing the other. Messages are sent 

from the upper layer on one side, through a corresponding RJVM, 

across the communication medium, through the peer RJVM, and 

delivered to the upper layer on the other side. In various

10 embodiments, messages can be transferred using a variety of 

different protocols, including, but not limited to, Transmission Control 

Protocol/lnternet Protocol ("TCP/IP"), Secure Sockets Layer ("SSL"), 

Hypertext Transport Protocol ("HTTP") tunneling, and Internet 

InterORB Protocol ("HOP") tunneling, and combinations thereof. The

15 RJVMs and socket managers create and maintain the sockets 

underlying these protocols and share them between all objects in the 

upper layers. A socket is a logical location representing a terminal 

between processing devices in a distributed processing system. The 

kernel maintains a pool of execute threads and thread manager

20 software component 364 multiplexes the threads between socket 

reading and request execution. A thread is a sequence of executing 

program code segments or functions.

For example, server 302 includes JVM1 and Java™ application 

302c. Server 302 also includes a RJVM2 representing the JVM2 of

25 server 303. If a message is to be sent from server 302 to server 

303, the message is sent through RJVM2 in server 302 to RJVM1 in 

server 303.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

18

C. Message Forwarding

Clustered enterprise Java™ network 300 is able to forward a 

message through an intermediate server. This functionality is 

important if a client requests a service from a back-end server 

through a front-end gateway. For example, a message from server 

302 (client 302) and, in particular, JVM1 may be forwarded to client 

304 (back-end server 304) or JVM3 through server 303 (front-end 

gateway) or JVM2. This functionality is important in controlling 

session concentration or how many connections are established 

between a server and various clients.

Further, message forwarding may be used in circumstances 

where a socket cannot be created between two JVMs. For example, 

a sender of a message is running under the applet security model 

which does not allow for a socket to be created to the original server. 

A detailed description of the applet security model is provided at 

http//:www.javasoft.com, which is incorporated herein by reference. 

Another example includes when the receiver of the message is 

behind a firewall. Also, as described below, message forwarding is 

applicable if the sender is a client and the receiver is a client and thus 

does not accept incoming sockets.

For example, if a message is sent from server 302 to client 

304, the message would have to be routed through server 303. In 

particular, a message handoff, as illustrated by 302f, between 

RJVM3 (representing client 304) would be made to RJVM2 

(representing server 303) in server 302. The message would be 

transferred using sockets 302e between RJVM2 in server 302 and 

RJVM1 in server 303. The message would then be handed off, as 

illustrated by dashed line 303f, from RJVM1 to RJVM3 in server 303. 

The message would then be passed between sockets of RJVM3 in

http//:www.javasoft.com


WO 00/28421 PCT/US99/24639

5

10

15

20

25

19

server 303 and RJVM2 in client 304. The message then would be 

passed, as illustrated by the dashed line 304f, from RJVM2 in client 

304 to RJVM1 in client 304.

D. Rerouting

An RJVM in client/server is able to switch communication 

paths or communication mediums to other RJVMs at any time. For 

example, if client 304 creates a direct socket to server 302, server 

302 is able to start using the socket instead of message forwarding 

through server 303. This embodiment is illustrated by a dashed line 

and box representing client 304. In an embodiment, the use of 

transferring messages by RJVMs ensures reliable, in-order message 

delivery after the occurrence of a network reconfiguration. For 

example, if client 304 was reconfigured to communication medium 

301 instead of communication medium 305 as illustrated in Fig. 3. In 

an alternate embodiment, messages may not be delivered in order.

An RJVM performs several end-to-end operations that are 

carried through routing. First, an RJVM is responsible for detecting 

when a respective client/server has unexpectedly died. In an 

embodiment, peer-gone selection software component 362, as 

illustrated in Fig. 3b, is responsible for this function, in an 

embodiment, an RJVM sends a heartbeat message to other 

clients/servers when no other message has been sent in a 

predetermined time period. If the client/server does not receive a 

heartbeat message in the predetermined count time, a failed 

client/server which should have sent the heartbeat, is detected. In 

an embodiment, a failed client/server is detected by connection 

timeouts or if no messages have been sent by the failed client/server



WO 00/28421 PCT/US99/24639

5

10

15

20

25

20

in a predetermined amount of time. In still another embodiment, a 

failed socket indicates a failed server/client.

Second, during message serialization, RJVMs, in particular, 

message compression software 360, abbreviate commonly 

transmitted data values to reduce message size. To accomplish this, 

each JVM/RJVM pair maintains matching abbreviation tables. For 

example, JVM1 includes an abbreviation table and RJVM1 includes a 

matching abbreviation table. During message forwarding between an 

intermediate server, the body of a message is not deserialized on the 

intermediate server in route.

E. Multi-tier/Peer-to-Peer Functionality

Clustered enterprise Java™ architecture 300 allows for multi

tier and peer-to-peer programming.

Clustered enterprise Java™ architecture 300 supports an 

explicit syntax for client/server programming consistent with a multi

tier distributed processing architecture. As an example, the following 

client-side code fragment writes an informational message to a 

server's log file:

T3Client clnt = new T3Client("t3://acme:7001 ");
LogServices log = clnt.getT3Services().log(); 
log.info("Hello from a client");

The first line establishes a session with the acme server using 

the t3 protocol. If RJVMs do not already exist, each JVM constructs 

an RJVM for the other and an underlying TCP socket is established. 

The client-side representation of this session - the T3Client object - 

and the server-side representation communicate through these 

RJVMs. The server-side supports a variety of services, including 

database access, remote file access, workspaces, events, and



WO 00/28421 PCT/US99/24639

5

10

15

20

25

21 

logging. The second line obtains a LogServices object and the third 

line writes the message.

Clustered enterprise Java™ computer architecture 300 also 

supports a server-neutral syntax consistent with a peer-to-peer 

distributed processing architecture. As an example, the following 

code fragment obtains a stub for an RMI object from the JNDI- 

compliant naming service on a server and invokes one of its methods.

Hashtable env = new HashtableO; 
env.put(Context.PROVIDER_URL, "t3://acme:7001 "); 

env.put(Context.lNITIAL_CONTEXT_FACTORY, 
" weblogic. jndi.WebLogicInitialContextFactory");

Context ctx = new InitialContext(env);

Example e = (Example) ctx.iookup("acme.eng.example"); 
result = e.example(37);

In an embodiment, JNDI naming contexts are packaged as RMI 

objects to implement remote access. Thus, the above code 

illustrates a kind of RMI bootstrapping. The first four lines obtain an 

RMI stub for the initial context on the acme server. If RJVMs do not 

already exist, each side constructs an RJVM for the other and an 

underlying TCP socket for the t3 protocol is established. The caller

side object - the RMI stub - and the callee-side object - an RMI impl - 

communicate through the RJVMs. The fifth line looks up another 

RMI object, an Example, at the name acme.eng.example and the sixth 

line invokes one of the Example methods. In an embodiment, the 

Example impl is not on the same processing device as the naming 

service. In another embodiment, the Example impl is on a client. 

Invocation of the Example object leads to the creation of the 

appropriate RJVMs if they do not already exist.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

22

II. Replica-Aware or Smart Stubs/EJB Objects

In Fig. 3c, a processing device is able to provide a service to 

other processing devices in architecture 300 by replicating RMI 

and/or EJB objects. Thus, architecture 300 is easily scalable and 

fault tolerant. An additional service may easily be added to 

architecture 300 by adding replicated RMI and/or EJB objects to an 

existing processing device or newly added processing device. 

Moreover, because the RMI and/or EJB objects can be replicated 

throughout architecture 300, a single processing device, multiple 

processing devices, and/or a communication medium may fail and still 

not render architecture 300 inoperable or significantly degraded.

Fig. 5a illustrates a replica-aware ("RA") or Smart stub 580 in 

architecture 500. Architecture 500 includes client 504 coupled to 

communication medium 501. Servers 502 and 503 are coupled to 

communication medium 501, respectively. Persistent storage device 

509 is coupled to server 502 and 503 by communication medium 

560 and 561, respectively. In various embodiments, communication 

medium 501, 560, and 561 may be wired and/or wireless 

communication mediums as described above. Similarly, in an 

embodiment, client 504, server 502, and server 503 may be both 

clients and servers as described above. One of ordinary skill in the 

art would understand that in alternate embodiments, multiple other 

servers and clients may be included in architecture 500 as illustrated 

by ellipses. Also, as stated above, in alternate embodiments, the 

hardware and software configuration of client 504, server 502 and 

server 503 is described below and illustrated in Fig. 8.

RA RMI stub 580 is a Smart stub which is able to find out 

about all of the service providers and switch between them based on 

a load balancing method 507 and/or failover method 508. In an



WO 00/28421 PCT/US99/24639

23

embodiment, an RA stub 580 includes a replica handier 506 that 

selects an appropriate load balancing method 507 and/or failover 

method 507. In an alternate embodiment, a single load balancing 

method and/or single failover method is implemented. In alternate

5 embodiments, replica handler 506 may include multiple load 

balancing methods and/or multiple failover methods and combinations 

thereof. In an embodiment, a repiica handler 506 implements the 

following interface:

public interface ReplicaHandler {

10 Object loadBalanceiObject currentProvider) throws
Refresh AbortedException;

Object failOver(Object failedProvider, 
RemoteException e) throws

RemoteException;

15 }

Immediately before invoking a method, RA stub 580 calls load 

balance method 507, which takes the current server and returns a 

replacement. For example, client 504 may be using server 502 for 

retrieving data for database 509a or personal storage device 509.

20 Load balance method 507 may switch to server 503 because server 

502 is overloaded with service requests. Handler 506 may choose a 

server replacement entirely on the caller, perhaps using information 

about server 502 load, or handler 506 may request server 502 for 

retrieving a particular type of data. For example, handler 506 may

25 select a particular server for calculating an equation because the 

server has enhanced calculation capability. In an embodiment, 

replica handler 506 need not actually switch providers on every 

invocation because replica handler 506 is trying to minimize the 

number of connections that are created.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

24

Fig. 6a is a control flow diagram illustrating the load balancing 

software 507 illustrated in Figs. 5a-b. It should be understood that 

Fig. 6a is a control flow diagram illustrating the logical sequence of 

functions or steps which are completed by software in load balancing 

method 507. In alternate embodiments, additional functions or steps 

are completed. Further, in an alternate embodiment, hardware may 

perform a particular function or all the functions.

Load balancing software 507 begins as indicated by circle 600. 

A determination is then made in logic block 601 as to whether the 

calling thread established "an affinity" for a particular server. A 

client has an affinity for the server that coordinates its current 

transaction and a server has an affinity for itself. If an affinity is 

established, control is passed to logic block 602, otherwise control is 

passed to logic block 604. A determination is made in logic block 

602 whether the affinity server provides the service requested. If so, 

control is passed to logic block 603. Otherwise, control is passed to 

logic block 604. The provider of the service on the affinity server is 

returned to the client in logic block 603. In logic block 604, a naming 

service is contacted and an updated list of the current service 

providers is obtained. A getNextProvider method is called to obtain a 

service provider in logic block 605. Various embodiments of the 

getNextProvider method are illustrated in Figs. 6b-g and described in 

detail below. The service is obtained in logic block 606. Failover 

method 508 is then called if service is not provided in logic block 606 

and load balancing method 507 exits as illustrated by logic block 

608. An embodiment of failover method 508 is illustrated in Fig. 7 

and described in detail below.

Figs. 6b-g illustrate various embodiments of a getNextProvider

method used in logic block 605 of Fig. 6a. As illustrated in Fig. 6b,



WO 00/28421 PCT/US99/24639

5

10

15

20

25

25

the getNextProvider method selects a service provider in a round 

robin manner. A getNextProvider method 620 is entered as 

illustrated by circle 621. A list of current service providers is 

obtained in logic block 622. A pointer is incremented in logic block 

623. The next service provider is selected based upon the pointer in 

logic block 624 and the new service provider is returned in logic 

block 625 and getNextProvider method 620 exits as illustrated by 

circle 626.

Fig. 6c illustrates an alternate embodiment of a 

getNextProvider method which obtains a service provider by selecting 

a service provider randomly. A getNextProvider method 630 is 

entered as illustrated by circle 631. A list of current service 

providers is obtained as illustrated by logic block 632. The next 

service provider is selected randomly as illustrated by logic block 633 

and a new service provider is returned in logic block 634. The 

getNextProvider method 630 then exits, as illustrated by circle 635.

Still another embodiment of a getNextProvider method is 

illustrated in Fig. 6d which obtains a service provider based upon the 

load of the service providers. A getNextProvider method 640 is 

entered as illustrated by circle 641. A list of current service 

providers is obtained in logic block 642. The load of each service 

provider is obtained in logic block 643. The service provider with the 

least load is then selected in logic block 644. The new service 

provider is then returned in logic block 645 and getNextProvider 

method 640 exits as illustrated by circle 646.

An alternate embodiment of a getNextProvider method is 

illustrated in Fig. 6e which obtains a service provider based upon the 

type of data obtained from the service provider. A getNextProvider 

method 650 is entered as illustrated by circle 651. A list of current



WO 00/28421 PCT/US99/24639

5

10

15

20

25

26

service providers is obtained in logic block 652. The type of data 

requested from the service providers is determined in logic block 653. 

The service provider is then selected based on the data type in logic 

block 654. The service provider is returned in logic block 655 and 

getNextProvider method 650 exits as illustrated by circle 656.

Still another embodiment of a getNextProvider method is 

illustrated in Fig. 6f which selects a service provider based upon the 

physical location of the service providers. A getNextProvider method 

660 is entered as illustrated by circle 661. A list of service providers 

is obtained as illustrated by logic block 662. The physical distance to 

each service provider is determined in logic block 663 and the service 

provider which has the closest physical distance to the requesting 

client is selected in logic block 664. The new service provider is then 

returned in logic block 665 and the getNextProvider method 660 

exits as illustrated by circle 666.

Still a further embodiment of the getNextProvider method is 

illustrated in Fig. 6g and selects a service provider based on the 

amount of time taken for the service provider to respond to previous 

requests. Control of getNextProvider method 670 is entered as 

illustrated by circle 671. A list of current service providers is 

obtained in logic block 672. The time period for each service 

provider to respond to a particular message is determined in logic 

block 673. The service provider which responds in the shortest time 

period is selected in logic block 674. The new service provider is 

then returned in logic block 675 and control from getNextProvider 

method 670 exits as illustrated by circle 676.

If invocation of a service method fails in such a way that a 

retry is warranted, RA 580 stub calls failover method 508, which 

takes the failed server and an exception indicating what the failure



WO 00/28421 PCT/US99/24639

5

10

15

20

25

27

was and returns a new server for the retry. If a new server is

unavailable, RA stub 580 throws an exception.

Fig. 7 is a control flow chart illustrating failover software 508 

shown in Figs. 5a-b. Failover method 508 is entered as illustrated by 

circle 700. A failed provider from the list of current providers of 

services is removed in logic block 701. A getNextProvider method is 

then called in order to obtain a service provider. The new service 

provider is then returned in logic block 703 and failover method 508 

exits as illustrated by circle 704.

While Figs. 6-7 illustrate embodiments of a replica handler 506, 

alternate embodiments include the following functions or 

combinations thereof implemented in a round robin manner.

First, a list of servers or service providers of a service is 

maintained. Whenever the list needs to be used and the list has not 

been recently updated, handler 506 contacts a naming service as 

described below and obtains an up-to-date list of providers.

Second, if handler 506 is about to select a provider from the 

list and there is an existing RJVM-level connection to the hosting 

server over which no messages have been received during the last 

heartbeat period, handler 506 skips that provider. In an embodiment, 

a server may later recover since death of peer is determined after 

several such heartbeat periods. Thus, load balancing on the basis of 

server load is obtained.

Third, when a provider fails, handler 506 removes the provider 

from the list. This avoids delays caused by repeated attempts to use 

non-working service providers.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

28

Fourth, if a service is being invoked from a server that hosts a 

provider of the service, then that provider is used. This facilitates co

location of providers for chained invokes of services.

Fifth, if a service is being invoked within the scope of a 

transaction and the server acting as transaction coordinator hosts a 

provider of the service, then that provider is used. This facilitates co

location of providers within a transaction.

The failures that can occur during a method invocation may be 

classified as being either (1) application-related, or (2) infrastructure- 

related. RA stub 580 will not retry an operation in the event of an 

application-related failure, since there can be no expectation that 

matters will improve. In the event of an infrastructure-related failure, 

RA stub 580 may or may not be able to safely retry the operation. 

Some initial non-idempotent operation, such as incrementing the 

value of a field in a database, might have completed. In an 

embodiment, RA stub 580 will retry after an infrastructure failure 

only if either (1) the user has declared that the service methods are 

idempotent, or (2) the system can determine that processing of the 

request never started. As an example of the latter, RA stub 580 will 

retry if, as part of load balancing method, stub 580 switches to a 

service provider whose host has failed. As another example, a RA 

stub 580 will retry if it gets a negative acknowledgment to a 

transactional operation.

A RMI compiler recognizes a special flag that instructs the 

compiler to generate an RA stub for an object. An additional flag can 

be used to specify that the service methods are idempotent. In an 

embodiment, RA stub 580 will use the replica handler described 

above and illustrated in Fig 5a. An additional flag may be used to 

specify a different handler, in addition, at the point a service is



WO 00/28421 PCT/US99/24639

5

10

15

20

25

29

deployed, i.e., bound into a clustered naming service as described 

below, the handler may be overridden.

Fig. 5b illustrates another embodiment of the present invention 

in which an EJB object 551 is used instead of a stub, as shown in 

Fig. 5a.

III. Replicated JNDI-compliant naming service

As illustrated in Fig. 4, access to service providers in 

architecture 400 is obtained through a JNDI-compliant naming 

service, which is replicated across architecture 400 so there is no 

single point of failure. Accordingly, if a processing device which 

offers a JNDI-compliant naming service fails, another processing 

device having a replicated naming service is available. To offer an 

instance of a service, a server advertises a provider of the service at 

a particular node in a replicated naming tree. In an embodiment, 

each server adds a RA stub for the provider to a compatible service 

pool stored at the node in the server's copy of the naming tree. If 

the type of a new offer is incompatible with the type of offers in an 

existing pool, the new offer is made pending and a callback is made 

through a ConflictHandler interface. After either type of offer is 

retracted, the other will ultimately be installed everywhere. When a 

client looks up the service, the client obtains a RA stub that contacts 

the service pool to refresh the client's list of service providers.

Fig. 4 illustrates a replicated naming service in architecture 

400. In an embodiment, servers 302 and 303 offer an example 

service provider P1 and P2, respectively, and has a replica of the 

naming service tree 402 and 403, respectively. The node 

acme.eng.example in naming service tree 402 and 403 has a service



WO 00/28421 PCT/US99/24639

5

10

15

20

25

30

pool 402a and 403a, respectively, containing a reference to Example 

service provider P1 and P2. Client 304 obtains a RA stub 304e by 

doing a naming service lookup at the acme.eng.example node. Stub 

304e contacts an instance of a service pool to obtain a current list of 

references to available service providers. Stub 304e may switch 

between the instances of a service pool as needed for load-balancing 

and failover.

Stubs for the initial context of the naming service are replica- 

aware or Smart stubs which initially load balance among naming 

service providers and switch in the event of a failure. Each instance 

of the naming service tree contains a complete list of the current 

naming service providers. The stub obtains a fresh list from the 

instance it is currently using. To bootstrap this process, the system 

uses Domain Naming Service ("DNS") to find a (potentially 

incomplete) initial list of instances and obtains the complete list from 

one of them. As an example, a stub for the initial context of the 

naming service can be obtained as follows:

Hashtable env = new HashtableO; 
env.put(Context.PROVIDER_URL, "t3://acmeCluster:7001"); 

env.put(Context.lNITIAL_CONTEXT_FACTORY, 
"weblogic.jndi.WebLogicInitialContextFactor");

Context ctx = new InitialContext(env);

Some subset of the servers in an architecture have been bound 

into DNS under the name acmeCluster. Moreover, an application is 

still able to specify the address of an individual server, but the 

application will then have a single point of failure when the 

application first attempts to obtain a stub.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

31

A reliable multicast protocol is desirable. In an embodiment, 

provider stubs are distributed and replicated naming trees are created 

by an IP multicast or point-to-point protocol. In an IP multicast 

embodiment, there are three kinds of messages: Heartbeats, 

Announcements, and StateDumps. Heartbeats are used to carry 

information between servers and, by their absence, to identify failed 

servers. An Announcement contains a set of offers and retractions 

of services. The Announcements from each server are sequentially 

numbered. Each receiver processes an Announcement in order to 

identify lost Announcements. Each server includes in its Heartbeats 

the sequence number of the last Announcement it has sent. 

Negative Acknowledgments ("NAKs") for a lost Announcement are 

included in subsequent outgoing Heartbeats. To process NAKs, each 

server keeps a list of the last several Announcements that the server 

has sent. If a NAK arrives for an Announcement that has been 

deleted, the server sends a StateDump, which contains a complete 

list of the server's services and the sequence number of its next 

Announcement. When a new server joins an existing architecture, 

the new server NAKs for the first message from each other server, 

which results in StateDumps being sent. If a server does not receive 

a Heartbeat from another server after a predetermined period of time, 

the server retracts all services offered by the server not generating a 

Heartbeat.

IV. Programming Models

Applications used in'the architecture illustrated in Figs. 3-5 use

one of three basic programming models: (1) stateless or direct,

(2) stateless factory or indirect, or (3) stateful or targeted, depending

on the way the application state is to be treated. In the stateless



WO 00/28421 PCT/US99/24639

5

10

15

20

25

32

model, a Smart stub returned by a naming-service lookup directly 

references service providers.

Example e = (Example) ctx.lookupC'acme.eng.example"); 
resultl = e.example(37);

result2 = e.example(38);

In this example, the two calls to example may be handled by 

different service providers since the Smart stub is able to switch 

between them in the interests of load balancing. Thus, the Example 

service object cannot internally store information on behalf of the 

application. Typically the stateless model is used only if the provider 

is stateless. As an example, a pure stateless provider might compute 

some mathematical function of its arguments and return the result. 

Stateless providers may store information on their own behalf, such 

as for accounting purposes. More importantly, stateless providers 

may access an underlying persistent storage device and load 

application state into memory on an as-needed basis. For example, 

in order for example to return the running sum of all values passed to 

it as arguments, example might read the previous sum from a 

database, add in its current argument, write the new value out, and 

then return it. This stateless service model promotes scalability.

In the stateless factory programming model, the Smart stub 

returned by the lookup is a factory that creates the desired service 

providers, which are not themselves Smart stubs.

ExampleFactory gf = (ExampleFactory) 
ctx.lookupC'acme. eng.example");

Example e = gf.createO; 

resultl = e.example(37); 

result2 = e.example(38);



WO 00/28421 PCT/US99/24639

5

10

15

20

25

33

In this example, the two calls to example are guaranteed to be 

handled by the same service provider. The service provider may 

therefore safely store information on behalf of the application. The 

stateless factory model should be used when the caller needs to 

engage in a "conversation" with the provider. For example, the caller 

and the provider might engage in a back-and-forth negotiation. 

Replica-aware stubs are generally the same in the stateless and 

stateless factory models, the only difference is whether the stubs 

refer to service providers or service provider factories.

A provider factory stub may failover at will in its effort to 

create a provider, since this operation is idempotent. To further 

increase the availability of an indirect service, application code must 

contain an explicit retry loop around the service creation and 

invocation.

while (true) {

try {
Example e = gf.create!);
resultl = e.example(37); 

result2 = e.example(38);

break;

} catch (Exception e) { 

if (! retry Warranted (e)) 

throw e;

}

}

This would, for example, handle the failure of a provider e that 

was successfully created by the factory. In this case, application 

code should determine whether non-idempotent operations



WO 00/28421 PCT/US99/24639

5

10

15

20

25

34

completed. To further increase availability, application code might

attempt to undo such operations and retry.

In the stateful programming model, a service provider is a long- 

lived, stateful object identified by some unique system-wide key. 

Examples of "entities" that might be accessed using this model 

include remote file systems and rows in a database table. A targeted 

provider may be accessed many times by many clients, unlike the 

other two models where each provider is used once by one client. 

Stubs for targeted providers can be obtained either by direct lookup, 

where the key is simply the naming-service name, or through a 

factory, where the key includes arguments to the create operation. 

In either case, the stub will not do load balancing or failover. Retries, 

if any, must explicitly obtain the stub again.

There are three kinds of beans in EJB, each of which maps to 

one of the three programming models. Stateless session beans are 

created on behalf of a particular caller, but maintain no internal state 

between calls. Stateless session beans map to the stateless model. 

Stateful session beans are created on behalf of a particular caller and 

maintain internal state between calls. Stateful session beans map to 

the stateless factory model. Entity beans are singular, stateful 

objects identified by a system-wide key. Entity beans map to the 

stateful model. All three types of beans are created by a factory 

called an EJB home. In an embodiment, both EJB homes and the 

beans they create are referenced using RMI. In an architecture as 

illustrated in Figs. 3-5, stubs for an EJB home are Smart stubs. 

Stubs for stateless session beans are Smart stubs, while stubs for 

stateful session beans and entity beans are not. The replica handler 

to use for an EJB-based service can be specified in its deployment 

descriptor.



WO 00/28421 PCT/US99/24639

5

10

15

20

25

35

To create an indirect RMI-based service, which is required if 

the object is to maintain state on behalf of the caller, the application 

code must explicitly construct the factory. A targeted RMI-based 

service can be created by running the RMI compiler without any 

special flags and then binding the resulting service into the replicated 

naming tree. A stub for the object will be bound directly into each 

instance of the naming tree and no service pool will be created. This 

provides a targeted service where the key is the naming-service 

name. In an embodiment, this is used to create remote file systems.

V. Hardware and Software Components

Fig. 8 shows hardware and software components of an 

exemplary server and/or client as illustrated in Figs. 3-5. The system 

of Fig. 8 includes a general-purpose computer 800 connected by one 

or more communication mediums, such as connection 829, to a LAN 

840 and also to a WAN, here illustrated as the Internet 880. 

Through LAN 840, computer 800 can communicate with other local 

computers, such as a file server 841. In an embodiment, file server 

801 is server 303 as illustrated in Fig. 3. Through the Internet 880, 

computer 800 can communicate with other computers, both local 

and remote, such as World Wide Web server 881. in an 

embodiment, Web server 881 is server 303 as illustrated in Fig. 3. 

As will be appreciated, the connection from computer 800 to Internet 

880 can be made in various ways, e.g., directly via connection 829, 

or through local-area network 840, or by modem (not shown).

Computer 800 is a personal or office computer that can be, for 

example, a workstation, personal computer, or other single-user or



WO 00/28421 PCT/US99/24639

5

10

15

20

25

36

multi-user computer system; an exemplary embodiment uses a Sun 

SPARC-20 workstation (Sun Microsystems, Inc., Mountain View, 

CA). For purposes of exposition, computer 800 can be conveniently 

divided into hardware components 801 and software components 

802; however, persons of ordinary skill in the art will appreciate that 

this division is conceptual and somewhat arbitrary, and that the line 

between hardware and software is not a hard and fast one. Further, 

it will be appreciated that the line between a host computer and its 

attached peripherals is not a hard and fast one, and that in particular, 

components that are considered peripherals of some computers are 

considered integral parts of other computers. Thus, for example, 

user I/O 820 can include a keyboard, a mouse, and a display monitor, 

each of which can be considered either a peripheral device or part of 

the computer itself, and can further include a local printer, which is 

typically considered to be a peripheral. As another example, 

persistent storage 808 can include a CD-ROM (compact disc read

only memory) unit, which can be either peripheral or built into the 

computer.

Hardware components 801 include a processor (CPU) 805, 

memory 806, persistent storage 808, user I/O 820, and network 

interface 825 which are coupled to bus 810. These components are 

well understood by those of skill in the art and, accordingly, need be 

explained only briefly here.

Processor 805 can be, for example, a microprocessor or a 

collection of microprocessors configured for multiprocessing.

Memory 806 can include read-only memory (ROM), random

access memory (RAM), virtual memory, or other memory 

technologies, singly or in combination. Persistent storage 808 can 

include, for example, a magnetic hard disk, a floppy disk, or other



WO 00/28421 PCT/US99/24639

5

10

15

20

25

37

persistent read-write data storage technologies, singly or in 

combination. It can further include mass or archival storage, such as 

can be provided by CD-ROM or other large-capacity storage 

technology. (Note that file server 841 provides additional storage 

capability that processor 805 can use.)

User I/O (input/output) hardware 820 typically includes a visual 

display monitor such as a CRT or flat-panel display, an alphanumeric 

keyboard, and a mouse or other pointing device, and optionally can 

further include a printer, an optical scanner, or other devices for user 

input and output.

Network I/O hardware 825 provides an interface between 

computer 800 and the outside world. More specifically, network I/O 

825 lets processor 805 communicate via connection 829 with other 

processors and devices through LAN 840 and through the Internet 

880.

Software components 802 include an operating system 850 

and a set of tasks under control of operating system 310, such as a 

Java™ application program 860 and, importantly, JVM software 354 

and kernel 355. Operating system 310 also allows processor 805 to 

control various devices such as persistent storage 808, user I/O 820, 

and network interface 825. Processor 805 executes the software of 

operating system 310, application 860, JVM 354 and kernel 355 in 

conjunction with memory 806 and other components of computer 

system 800. In an embodiment, software 802 includes network 

software 302a, JVM1, RJVM2 and RJVM3, as illustrated in server 

302 of Fig. 3c. In an embodiment, Java™ application program 860 is 

Java™ application 302c as illustrated in Fig. 3c.



WO 00/28421 PCT/US99/24639

5

10

15

20

38

Persons of ordinary skill in the art will appreciate that the 

system of Fig. 8 is intended to be illustrative, not restrictive, and that 

a wide variety of computational, communications, and information 

devices can be used in place of or in addition to what is shown in 

Fig. 8. For example, connections through the Internet 880 generally 

involve packet switching by intermediate router computers (not 

shown), and computer 800 is likely to access any number of Web 

servers, including but by no means limited to computer 800 and Web 

server 881, during a typical Web client session.

The foregoing description of the preferred embodiments of the 

present invention has been provided for the purposes of illustration 

and description. It is not intended to be exhaustive or to limit the 

invention to the precise forms disclosed. Obviously, many 

modifications and variations will be apparent to practitioners skilled in 

the art. The embodiments were chosen and described in order to 

best explain the principles of the invention and its practical 

applications, thereby enabling others skilled in the art to understand 

the invention for various embodiments and with the various 

modifications as are suited to the particular use contemplated. It is 

intended that the scope of the invention be defined by the following 

claims and their equivalents.



WO 00/28421 PCT/US99/24639

5

10

15

20

39

CLAIMS

What is claimed is:

1. A distributed processing system, comprising:

a communication medium;

a first processing device, coupled to the communication 

medium, having a first Java™ virtual machine ("JVM1") and a first 

kernel software layer including a first remote Java™ virtual machine 

("RJVM1");

a second processing device, coupled to the communication 

medium, having a second Java™ virtual machine ("JVM2") and a first 

kernel software layer including a second remote Java™ virtual 

machine ("RJVM2"),

wherein there is not a socket available between JVM1

and JVM2, and

wherein a message may be transferred from the first 

processing device to the second processing device.

2. The distributed processing system of claim 1, wherein 

the first processing device is running under an applet security model.

3. The distributed processing system of claim 1, wherein 

the second processing device is behind a firewall.



WO 00/28421 PCT/US99/24639

40

4. The distributed processing system of claim 1, wherein 

the first processing device is a client and the second processing 

device is a client.

5. The distributed processing system of claim 1, wherein

5 the first kernel layer includes a thread manager software component.

6. The distributed processing system of claim 1, wherein 

the first kernel includes a socket manager software component.

7. The distributed processing system of claim 1, wherein 

the first Java™ virtual machine includes a message routing software

10 component.

8. The distributed processing system of claim 1, wherein 

the first Java™ virtual machine includes a message compression 

software component.

9. The distributed processing system of claim 1, wherein

15 the first Java™ virtual machine includes a peer-gone detection 

software component.



1/15

WO 00/28421 PCT/US99/24639

FIG. 1a(Prior Art)



2/15

WO 00/28421 PCT/US99/24639

JAVA ENTERPRISE APIs 100

REMOTE METHOD INVOCATION 
(RMI) 100a

(peer-to-peer architecture)

ENTERPRISE JAVA BEANS 
(EJBs) 100b

(multi-tier architecture)

JAVA NAMING AND DIRECTORY 
INTERFACE (JNDI) 100c

FIG. Ib(PriorArt)



3/15

WO 00/28421 PCT/US99/24639

FIG. 1c(Prior Art)



WO 00/28421 PCT/US99/24639

4/15

PEER-TO-PEER 
ARCHITECTURE

216
/

RMI 
100a
OPERATING 
SYSTEM 211a

NETWORK 
SOFTWARE 210a

RMI
100a

OPERATING 
SYSTEM 211a

NETWORK
SOFTWARE 210b

218
/

RMI 
100a
OPERATING 
SYSTEM 211a

NETWORK
SOFTWARE 210c

\
COMMUNICATION 

MEDIUM 213
FIG. 2a (Prior Art)

TRANSACTION PROCESSING
(TP) ARCHITECTURE

FIG. 2b (Prior Art)



5/15

380
\

WO 00/28421 PCT/US99/24639

ENTERPRISE JAVA BEAN
358

REMOTE METHOD INVOCATION
357

REMOTE JAVA 
VIRTUAL MACHINE 

356

KERNAL 355

JAVA VIRTUAL MACHINE
354

TRANSMISSION CONTROL 
PROTOCOL 353

INTERNET PROTOCOL OPERATING
352 SYSTEM 310

COMMUNICATION MEDIUM DRIVER
351

FIG. 3a



WO 00/28421 PCT/US99/24639

6/15

PEER-GONE DETECTION 
SOFTWARE 

362

MESSAGE 
COMPRESSION 

SOFTWARE 
361

TABLE 
161c

MESSAGE ROUTING 
SOFTWARE

360
THREAD MANAGER 

SOFTWARE 
364

REMOTE JAVA 
VIRTUAL MACHINE 

356

SOCKET MANAGER 
SOFTWARE 

363

SOCKETS

KERNAL 355

FIG. 3b



WO 00/28421
PCT/US99/24639

O' 
Lil 
π
ω

ο αι < ■

o



WO 00/28421
PCT/US99/24639

8/15
CL

U
ST

ER
ED

 E
N

TE
RP

RI
SE

 JA
VA

 
AR

CH
IT

EC
TU

RE
 N

AM
IN

G 
SE

RV
IC

E
ra 
co

/

ra 
CM

co
Οί 'T
ill
> i 
CC > 
LU <3 
ω

30
4e

 
C

LI
EN

T 
30

4
(J

VM
 3)

0
LL



WO 00/28421 PCT/US99/24639

9/15

CO 
IO

0
LL



WO 00/28421 PCT/US99/24639

10/15

-Q 
io

0
LL



11/15

WO 00/28421 PCT/US99/24639

601

FIG. 6a



WO 00/28421 PCT/US99/24639

12/15

FIG. 6d FIG. 6e



13/15

WO 00/28421 PCT/US99/24639

RETURN NEW SERVICE 
PROVIDER

FIG. 6f

OBTAIN LIST OF
CURRENT SERVICE

672

PROVIDERS
S 673

674

^675

FIG. 6g



WO 00/28421 PCT/US99/24639

14/15

FAILOVER 
METHOD 508

700

FIG. 7



15/15

WO 00/28421 PCT/US99/24639

FIG. 8


