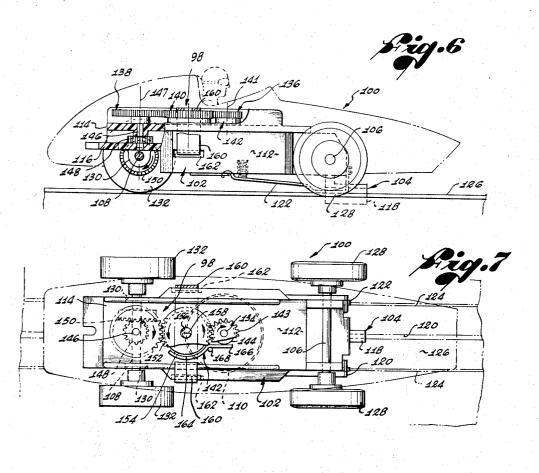
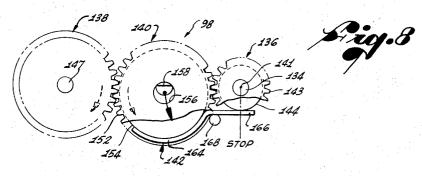

BRAKE-DRIVE ASSEMBLY FOR MINIATURE RACING CARS

Filed Dec. 20, 1965


2 Sheets-Sheet 1



BRAKE-DRIVE ASSEMBLY FOR MINIATURE RACING CARS

Filed Dec. 20, 1965

2 Sheets-Sheet 2

INVENTOR.
EDWARD R.STEWART
BY Fulwider, Patton Ruber,
Tale, and Utecht
ATTORNEYS

3,350,953
BRAKE-DRIVE ASSEMBLY FOR MINIATURE RACING CARS
Edward R. Stewart, 8522 Beverly Blvd.,
Los Angeles, Calif. 90048
Filed Dec. 20, 1965, Ser. No. 514,983
9 Claims. (Cl. 74—411.5)

The present invention relates to improvements in miniature cars of the "slot" racer type and, more particularly, to a novel brake-drive assembly particularly suited for such cars.

In recent years, electric motor driven miniature racing cars, and particularly those adapted for running over tracks of various forms, have become increasingly popular toys. Generally, such cars are of a "slot" racer type including a guide pin or blade riding in a slot to guide the car, and electrical pick up arms sliding along electrical conductors for supplying current to the car's motor. The magnitude of the voltage applied to the car's motor controls the motor speed of operation and hence the rate at which the car travels along the slot in the track. Thus, by regulating the voltage applied to the conductors, the car may be started, speeded up, slowed and stopped.

Unfortunately, in presently available slot racing cars, regulation of the applied voltage is the only means controlling the car's rate of travel. This does not allow for accurate or rapid stopping or slowing of the car since after the voltage supply is terminated, the car continues to move due to its own momentum. In practice, this makes it extremely difficult to control present slot racing cars, particularly during turning, the common result being that the cars often leave the tracks at the turns. This inevitably means the end of the race for the particular racer involved, materially detracts from the enjoyment of the game, and is very hard on the racing car, sometimes resulting in permanent damage thereto.

In view of the foregoing, it is an object of the present invention to provide a brake-drive assembly which allows miniature racing cars to be accurately started, speeded up, slowed and stopped, at the will of their operators.

Another object of the present invention is to provide a novel brake-drive assembly for miniature racing cars which is automatically operable with operation of the motor of the car.

A further object of the present invention is to provide a novel brake-drive assembly for miniature racing cars which is automatically operable with operation of the motor of the car.

A further object of the present invention is to provide a brake-drive assembly of the foregoing character which is simple in design and inexpensive and easy to manufacture and maintain.

The foregoing as well as other objects and advantages of the present invention may be more clearly understood by reference to the following detailed description when taken with the accompanying drawings which set forth by way of illustration and example two forms of brake-drive assemblies embodying the features of the present invention.

In the drawings:

FIGURE 1 is a side view of one form of brake-drive assembly for a miniature racing car, the brake-drive assembly being shown connected to the frame of the car with the body of the car depicted in phantom outline;

FIGURE 2 is a fragmentary top view of the brakedrive assembly and car frame illustrated in FIGURE 1; FIGURE 3 is a schematic representation of the brake9

drive assembly illustrated in FIGURE 1 with the brake disengaged to allow free running of the miniature racing car;

FIGURE 4 is a fragmentary sectional view taken along the line 4—4 in FIGURE 3;

FIGURE 5 is a schematic representation of the brakedrive assembly illustrated in FIGURE 1 with the brake engaged to prevent forward movement of the racing car;

FIGURE 6 is a partially sectioned side view of a sec-10 ond form of the brake-drive assembly for a miniature racing car;

FIGURE 7 is a top view of the brake-drive assembly illustrated in FIGURE 6 with the brake disengaged to allow free running of the racing car; and

FIGURE 8 is a schematic representation of the brake assembly of FIGURES 6 and 7 with the brake engaged to prevent forward movement of the racing car.

In FIGURES 1 and 2, the miniature racing car is represented generally by the numeral 10 and includes a frame 12 supporting a conventional guide blade, electrical pick up assembly 14, front and rear axles 16 and 18, an electric motor 20, and a brake-drive assembly 22.

To provide such support, the frame 12 comprises vertical right and left side plates 24, a horizontal front plate 26 connected to the side plates by front support rods 28, and a pair of rear, support rods 30 extending rearwardly from the side plates.

The guide blade, electrical pick up assembly 14 is pivotally connected to the bottom of the front plate 26 by a pivot pin member 32 such that the blade 34 of the assembly rides in a track slot 36 while the electrical pick ups 38 of the assembly ride over conductors 40 in the top of a track 42 to transmit electrical power to the motor 20.

The front axle 16 is supported for limited vertical movement within vertical slots in a pair of axle support flanges 44 extending from the right and left edges of the front plate 26. Thus supported, the front axle 16 is free to turn about its longitudinal axis with front wheels 46 stationed at opposite ends thereof and separated from the flanges 44 by spacer sleeves 48.

The rear axle 18 on the other hand, carries rear wheels 50 at the ends thereof and is supported for turning within sleeve bearings 52 carried by the support rods 30.

The motor 20 is supported by and connected between the right and left side plates 24 with its drive shaft 54 extending horizontally through the left side plate for connection to the brake-drive assembly 22.

Basically, the brake-drive assembly 22 is connected between the motor 20 and the rear axle 18 and is adapted to turn the rear axle to drive the car 10 forward in response to operation of the motor. In addition, the brake-drive assembly 22 is adapted to automatically and immediately slow, speed up, and halt the car 10 as the motor operation slows, speeds up, and stops.

To accomplish the foregoing, the brake-drive assembly 22 includes a drive gear member 56, a driven gear member 58, a floating idler gear member 60, and a lever arm 62.

The drive gear member 56 is connected to the end of a motor drive shaft 54 for rotation therewith about a horizontal axis 63 parallel to the rear axle 18 and includes a spur gear 64, an annular axial shoulder 65, and an axle hub 66 of reduced radial dimension.

The driven gear member 58 is a relatively large spur gear connected to the rear axle 18 for turning therewith about its longitudinal axis 67 and in the vertical plane of the spur gear 64.

As illustrated most clearly in FIGURE 4, the idler gear member 60 is secured by a washer 68 and a nut 70 for turning around and on a horizontal stub shaft 72 extending inwardly from a vertical pivot plate 74. The pivot plate 74 includes an arcuate slot 76 receiving the axial hub 66 of the drive gear member 56, extends along the outside of the left side plate 24 of the frame 12, and is supported at its front end by a horizontal pivot pin 78 extending through a sleeve 80 connected to the front end of the side plate 24. Thus supported, the pivot plate 74 is adapted to swing in a vertical plane parallel to, and supports the idler gear member 60 between, the drive and driven gear members 56 and 58.

More particularly, the idler gear member 60, like the drive gear member 56, includes a spur gear 82, here of intermediate size, and an annular axial shoulder 84. The spur gear 82 extends in the vertical plane of, between and mates with the spur gear 64 and the driven gear member 58 for turning about a horizontal axis 36 parallel to the axes 63 and 67. Thus arranged, the idler gear member 60 is adapted to transfer driving rotation between the drive and driven gear members 56 and 53 causing the racing car 10 to speed up and slow down with changes in angular drive velocity of the motor drive shaft 54.

In addition, in the brake-drive assembly 22, and due to the support provided by the pivot plate 74, the idler gear member 60 is essentially a floating gear. That is, while turning with the drive and driven gear members 56 and 58, the idler gear member 60 also moves up and down transverse to the axes 63 and 67 and between predetermined limits. The upper limit is set by a vertical flange 88 which extends down from a cross arm 90 connected to the left side plate 24 to engage the top of the pivot plate 74 (see FIGURE 4). The lower limit is established by the lever arm 62 of the brake-drive assembly 22.

In particular, the lever arm 62 is generally W-shaped and lies below the annular shoulders 65 and 84 of the drive and idler gear member 56 and 60. Also, the lever arm 62 is connected at a midpoint to a horizontal pivot pin 92 extending outwardly from the left side plate 24 in a vertical plane tangential to the drive and idler gear members 56 and 60. Thus arranged, as the idler gear member 60 moves vertically into and out of engagement with the concave rear portion 94 of the lever arm 62, the lever arm 62 turns in a vertical plane about the pivot pin 92 to move the concave front end portion 96 of the arm into and out of engagement with the annular shoulder 65 of the drive gear member 56 thereby energizing and deenergizing the brake portion of the brake-drive assembly 22.

More particularly, when the racing car 10 is stationary and the motor 20 is deenergized, the idler gear member 60 bears against the rear portion 94 of the lever arm 62 to pivot the front portion 96 against the drive gear member 56 to resist turning thereof. The friction force exerted on the drive gear member 56 by the lever arm 62, however, is insufficient to prevent driving rotation of the motor drive shaft 54. Hence, when the motor 20 is energized, the drive shaft 54 turns in a clockwise direction and produces a like rotation of the drive gear member 56 and a counterclockwise turning of the idler gear member 60. Initially, the driven gear member 58 is stationary. Therefore, the idler gear member 60 not only turns in a counterclockwise direction but it also climbs upwardly over the driven gear member. As this occurs, the idler gear member moves away from the lever arm 62 which is then free to turn about the pivot pin 92 to release the drive gear member and effectively deenergize the brake portion of the assembly 22.

Thereafter, continued turning of the idler gear member 60 with the drive gear member 56 produces a clockwise turning of the driven gear member 58 and rear axle 18 to drive the racing car 10 in a forward direction. Also, with increases and decreases in the angular velocity

4

of the motor drive shaft 54, the idler gear member 60 instantaneously moves up and down over the driven gear member between the upper and lower limits set by the flange 88 and the lever arm 62.

In particular, as angular velocity of the drive shaft 54 increases relative to the driven gear member 58, the idler gear member 60 is instantaneously rotated at the increased angular velocity of the drive gear member and climbs up over the slower turning driven gear member until the increased angular velocity is transmitted to the driven gear member.

Conversely, as the turning of the motor drive shaft 54 slows relative to the driven gear member 58, the rotation of the idler gear member initially slows and the faster turning driven gear member causes the idler gear member to move down over the driven gear member 56 until the reduction in angular velocity is transmitted to the driven gear member.

The downward movement of the idler gear member 60 20 is particularly rapid and immediately energizes the brake portion of the assembly 22 when power is removed from the motor 20. In particular, when this occurs, driving rotation is removed from the drive gear member 56 which immediately begins to slow. As this occurs, however, the driven gear member 58 continues for the moment to turn at its prior angular velocity. This causes the idler gear member 60 to move rapidly down over the drive gear member 56 to engage the rear end portion 94 and the lever arm 62. The force of the idler gear member 60 on 30 the lever arm 62, in turn, causes the lever arm to turn and pivot the front end portion 96 tightly against the annular shoulder 65 of the drive gear member 56 to rapidly slow and halt the drive gear member and forward movement of the racing car 10.

Thus, by controlling the angular velocity of driving rotation imparted to the drive shaft 54, the brake-drive assembly 22 is automatically and immediately energized to accurately speed up, slow down and stop the racing car 10.

O An alternate form of brake-drive assembly embodying the foregoing features is shown in FIGURES 6, 7 and 8, represented by the numeral 98, and illustrated in combination with a miniature racing car 100.

The miniature racing car 100 includes a frame 102 supporting a guide blade, electrical pick up assembly 104, front and rear axles 106 and 108, an electric motor 110, and the brake-drive assembly 98.

The frame 102 differs somewhat from that illustrated in FIGURES 1 and 2 and includes a generally rectangular block 112 having upper and lower horizontal plates 114 and 116 extending rearwardly therefrom.

A guide blade 118 of the assembly 104 is pivotally connected to the bottom of the block 112 by a pivot pin member such that the blade rides in a track slot 120. The electrical pickups 122 of the assembly 124 take the form of bent, metal, leaf springs attached to the front of the block 112 and to the bottom of the block to ride over conductors 124 in the top of a track 126 to transmit electrical power to the motor 110.

The front axle 106 extends through a lateral hole in the front portion of the block 112 with front wheels 128 stationed at opposite ends thereof while the rear axle 108 is bearing supported by a pair of ears 130 extending downward from the lower plate 116 with rear wheels 132 stationed at the ends thereof.

The motor 110 is recessed within the block 112 with its drive shaft 134 extending vertically from the top of the block for connection to the brake-drive assembly 98.

The brake-drive assembly 98 is very similar to that described in connection with FIGURES 1-5 and comprises a drive gear member 136, a driven gear member 138, a floating idler gear member 140, and a lever arm 142.

axle 18 to drive the racing car 10 in a forward direction.

The drive gear member 136 is connected to the upper Also, with increases and decreases in the angular velocity 75 end of the motor drive shaft 134 for rotation therewith

about a vertical axis 141 and includes a spur gear 142 and a lower, annular, axial shoulder 144 of slightly reduced radial dimension.

The driven gear member 138 is a spur gear supported in the horizontal plane of the spur gear 142 on top of the mounting plate 114 with a vertical stub shaft 146 extending vertically along the axis of rotation 147 of the driven gear member immediately above the rear axle 108. The stub shaft 146 carries a pinion gear 148 mating with a ring gear 150 carried by the rear axle 108. Thus arranged, clockwise rotation of the driven gear member 138 produces a forward rotation of the rear axle 108 to drive the racing car 100 forward along the track 126.

Like the drive gear member 136, the idler gear member 140 includes a spur gear 152 and a lower, annular, axial shoulder 154. The idler gear member 140 also includes a central hole 156 adapted to loosely receive a semicircular stub shaft 158 extending vertically from the top of the block 112. When the idler gear member fits over the stub shaft 158, the bottom thereof rests on top of the block 112 and the spur gear 152 lies on the horizontal plane of, between and mates with the spur gear 143 and driven gear member 138. A retaining strap 160 extends over the top of the idler gear member 140 and the stub shaft 158 with hooked ends fitting into slots 25 162 in the right and left sides of the block 112 to vertically retain the idler gear member in place during operation of the racing car 100.

The lever arm 122 lies on top of the block 112 to the left of the drive and idler gear members 136 and 140 and includes a generally concave rear portion 164 for receiving and engaging a portion of the annular shoulder 154, and a straight front portion 166 for tangentially contracting the annular shoulder 144. The lever arm is retained in place adjacent the drive and idler gear members by a pin 168 extending vertically from the top of the block 112 and engaging the left side of the lever arm at a junction of the front and rear portions. The pin also acts as a fulcrum about which the lever arm turns with transverse movement of the idler gear member 140 into and out of contact with the rear portion of the lever arm.

In particular, and considering the over-all operation of the brake-drive assembly 98, when the motor 110 is energized, it drives the drive gear member 136 in a clockwise direction as illustrated in FIGURE 7. The clockwise turning of the drive gear member produces a counterclockwise turning of the idler gear member 140 which simultaneously travels to the right over the stationary driven gear member 138. As the idler gear member moves to the right, the curved surface of the semicircular shaft 158 engages the inside of the hole 156 to prevent further transverse movement of the idler gear member toward the right side of the racing car 100.

The counterclockwise turning of the idler gear member 140 also rotates the driven gear member 138 in a clockwise direction to drive the racing car 100 in a forward direction.

As the rotational drive developed by the motor 110 decreases or terminates, the drive gear member 136 slows, producing an instantaneous reduction of the angular velocity of the idler gear member 140. For the moment. however, the driven gear member 138 continues to turn at its previous angular velocity to drive the idler gear member 140 over the drive gear member 136 toward the left side of the racing car 100. As the idler gear member moves to the left, the angular shoulder 154 engages the rear portion 164 of the lever arm 142 causing the lever arm to turn in a counterclockwise direction about the pivot pin 168. As this occurs, the front portion 166 of the lever arm 142 presses tightly against the annular shoulder 144 of the drive gear member 136. This produces a rapid slowing of the drive gear member, and, if no driving power is applied to the drive gear member by the motor 110, produces a rapid halting of the racing car 100.

6

In this manner, the brake portion of the brake-drive assembly 98 operates automatically in response to changes in the rotational drive from the motor 110. In particular, driving rotation from the motor 110 to the drive gear member 136 automatically releases the brake and reduction in the rotational power developed by the motor automatically energizes the brake to rapidly halt the forward travel of the racing car 100 when the motor is deenergized.

Accordingly, the present invention provides a brakedrive assembly which allows miniature racing cars to be accurately started, speeded up, slowed and stopped at the will of their operators. In addition, the brake-drve assembly is of a simple design which is inexpensive and easy to manufacture and maintain.

While particular forms of the brake-drive assembly have been described in some detail herein, changes and modifications may be made in the illustrated forms without departing from the spirit of the present invention. It is therefore intended that the invention be limited in scope only by the terms of the following claims.

I claim:

1. A brake-drive assembly particularly suited for miniature racing cars, comprising:

a first gear member connected to a drive motor for turning about a first axis;

a second gear member for turning about a second axis; a floating idler gear member between and mating with said first and second gear members for turning about a third axis and moving in directions transverse to said axes upon rotation of said first and second gear members;

and brake means for preventing driven rotation of said first gear member by said second gear member and automatically operable to release said first gear member in response to movement of said idler gear member transverse to said axes with driving rotation of said first gear member.

2. The assembly of claim 1, including frame means supporting said first and second gear members with said first and second axes fixed relative to each other.

3. The assembly of claim 2, including means for guiding and limiting movement of said idler gear member in directions transverse to said axes.

4. The assembly of claim 2, wherein said brake means includes a lever arm having first and second end portions for contacting said first and idler gear members, and a fulcrum supporting said lever arm for turning about a fourth axis parallel and lying in a plane between said first and third axes whereby contact with said idler gear member by said second end portion rotates said first end portion to contact said first gear member and halt driven rotation thereof.

5. The assembly of claim 4, wherein said first and idler gear members include axial annular shoulders and said first and second end portions of said lever arm contact and ride over said shoulders.

6. The assembly of claim 4, wherein said axes lie in substantially horizontal planes and said fulcrum is below said axes and wherein said assembly further includes an axle connected to said second gear member and extending along said second axis and wheels carried by said axle.

7. The assembly of claim 6, including means for guiding and limiting movement of said idler gear member in directions transverse to said axes comprising a support arm pivotally connected to said frame means for swinging movement in a vertical plane, a horizontal stub shaft extending from said arm along said third axis and carrying said idler gear member, and stop means extending from said frame above said arm for engaging said arm to limit upward travel of said idler gear member.

8. The assembly of claim 4, wherein said axes lie in vertical planes and wherein said assembly includes a 75 horizontal axle supported by said frame means, wheels

carried by said axle, and gear means between said axle and said second gear member for turning said axle in response to rotation of said second gear member.

9. The assembly of claim 8, including means for guid-

9. The assembly of claim 8, including means for guiding and limiting movement of said idler gear member in directions transverse to said axes comprising a central hole in said idler gear and a vertical stud shaft extending from said frame means into said central hole and having a cross-sectional area less than that of said hole.

8

References Cited UNITED STATES PATENTS

2,840,715	6/1958	Lucien	188—181 X
3,029,906		Gauley	
3,202,109	8/1965	Stewart	46—243

DONLEY J. STOCKING, Primary Examiner.

L. H. GERIN, Assistant Examiner.