wo 2014/137645 A2 ||} I ¥ 1000000000 0 A R

(43) International Publication Date
12 September 2014 (12.09.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/137645 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
G11C 11/56 (2006.01)

International Application Number:
PCT/US2014/018066

International Filing Date:
24 February 2014 (24.02.2014)

English
English

Filing Language:
Publication Language:

Priority Data:

13/788,415 7 March 2013 (07.03.2013) Us

Applicant: SANDISK TECHNOLOGIES INC.
[US/US]; Two Legacy Town Center, 6900 North Dallas
Parkway, Plano, Texas 75024 (US).

Inventors: AVILA, Chris Nga Yee; 19839 Charters Av-
enue, Saratoga, California 95070 (US). DUSLIJA, Gautam
Ashok; 111 Jacklin Circle, Milpitas, California 95035
(US).

Agents: GALLAGHER, Peter A. ct al.; Davis Wright
Tremaine LLP, 505 Montgomery Street, Suite 800, San
Francisco, California 94111 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: WRITE SEQUENCE PROVIDING WRITE ABORT PROTECTION

(57) Abstract: In a multi-level cell (MLC) nonvolatile memory array, data
is assigned sequentially to the lower and upper page of a word line, then
both lower and upper pages are programmed together before programming
a subsequent word line. Word lines of multiple planes are programmed to-

Die A Dic B

Plane @ Plane 1 Plane@ Plane 1

R

Az Up 4}
[N oy IVNEY V]

[Coches] [Towhes |

Memory Controller

FIG. 12

[hes | [Ghes]

i

gether using latches to hold data until all data is transferred. Tail-ends of
data of write commands are stored separately.

WO 2014/137645 A2 |IIIWAT 000N 00T N AR OO A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2014/137645 PCT/US2014/018066

WRITE SEQUENCE PROVIDING WRITE ABORT PROTECTION

BACKGROUND

[0001] This application relates to the operation of re-programmable non-volatile
memory systems such as semiconductor flash memory that can store more than one
bit per cell by writing multiple states, and more specifically, to methods of
programming data in such memory systems so that carlier-written data is not

endangered during programming of later data.

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retains its stored data even after power is turned off. Also, unlike ROM
(read only memory), flash memory is rewritable similar to a disk storage device. In
spite of the higher cost, flash memory is increasingly being used in mass storage

applications.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is
retained on the floating gate. That is, for a given level of charge on the floating gate,
there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. Flash memory such as Flash EEPROM allows entire blocks of memory cells

to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
-1-

WO 2014/137645 PCT/US2014/018066

programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page are read or programmed together.

[0006] In one common arrangement, individual cells may use two or more memory
states to store one or more bits of data. Initially, a page of memory cells may be
programmed with a “lower page” of data consisting of one bit per cell. Later
programming may add an “upper page” of data in the same cells by writing an
additional bit in each cell. More than two bits may also be successively stored in this
way in some memory systems. Where data is programmed to cells that contain earlier-
written data there is a danger that the earlier-written data may be damaged by the
writing process so that it may not be recoverable. For example, if a write abort occurs
during writing of upper page data then lower page data may be unrecoverable from
the memory cells because they are in some intermediate states that do not reflect the
lower page bits. Where earlier-written data is from another write command the data
may be unrecoverable from any other source (i.e. there may be no other copy).

Avoiding endangering such data during later programming is generally desirable.

SUMMARY OF THE INVENTION

[0007] Data of a given write command may be programmed in a multi-level cell
(MLC) flash memory so that no data of the write command is left in a lower page
with an unwritten upper page where it could be at risk during subsequent
programming of the upper page when executing a subsequent write command. Data

may be assigned to word lines sequentially, with both lower and upper pages being

2

WO 2014/137645 PCT/US2014/018066

filled in each word line. At the end of the data for a particular write command, if there
is a tail-end that is less than a full word line (e.g. lower page only) then this tail-end is
stored in an alternate location, thus avoiding storing any data in a partially filled word
line in the main portion of the memory array. In multi-plane memories, data may be
assigned to word lines of each plane (both lower and upper pages of each word line).
Then all planes may be programmed together in parallel with both lower and upper

page data.

[0008] An example of a method of programming a multi-level cell (MLC) memory
array includes: determining whether data to be stored is sufficient to fill a lower page
and an upper page of a word line; if the data to be stored is sufficient to fill the lower
page and the upper page of the word line, then programming the lower page and the
upper page together without programming other data to any other word line between
the programming of the lower page and the programming of the upper page; and if the
data to be stored is insufficient to fill the lower page and the upper page of the word

line, then programming the data at an alternate location other than the word line.

[0009] The word line may be in a first erase block and the alternate location may be
in a second erase block. If remaining data to be stored after the programming of the
lower page and the upper page together is sufficient to fill a lower page and an upper
page of an additional word line, then the lower page and the upper page of the
additional word line may be programmed together without programming other data to
any other word line. The determination may be performed for a plurality of additional
word lines, with the data to be stored being sufficient to fill lower pages and upper
pages of each of the plurality of additional word lines, each of which has its lower
page and its upper page programmed together without programming other data to any
other word line between the programming of its lower page and the programming of
its upper page. If the remaining data to be stored is insufficient to fill the lower page
and the upper page of the additional word line then the data may be programed to the
alternate location. The MLC memory may be a 3-D NAND memory which has
NAND strings extending perpendicular to a substrate.

[0010] An example of a method of programming a multi-plane multi-level cell

(MLC) memory array includes: receiving a plurality of units of data to be stored in a

plurality of planes of the multi-plane MLC memory array; assigning the plurality of
-3-

WO 2014/137645 PCT/US2014/018066

units of data for storage in the following predetermined order: first plane, first word
line, lower page; subsequently, first plane, first word line, upper page; subsequently,
second plane, first word line, lower page; subsequently, second plane, first word line,
upper page; and subsequently, programming the lower pages and the upper pages of
the first word lines of the first and second planes together without intervening

programming of any other word lines of the first and second planes.

[0011] Units of data may be latched in the predetermined order until lower and upper
pages of the first word line of the first and second planes can be programmed together
in response to a command that indicates that programming is to be performed
together. The plurality of planes may include a third plane and a fourth plane, and the
predetermined order may extend, subsequent to the second plane, first word line,
upper page, as follows: third plane, first word line, lower page; subsequently, third
plane, first word line, upper page; subsequently, fourth plane, first word line, lower
page; and subsequently, fourth plane, first word line upper page. The upper pages and
lower pages of the first word lines of the first, second, third, and fourth planes may be
programmed together without intervening programming of any other word lines of the
first, second, third, and fourth planes. Additional units of data of the plurality of units
of data may be assigned for storage in the plurality of planes in one or more
subsequent word lines of the plurality of planes in the following order: first plane,
lower page; subsequently, first plane, upper page; subsequently, second plane, lower
page; and subsequently, second plane, upper page. The plurality of units of data to be
stored may end with one or more units assigned to a lower page, and the one or more
units assigned to the lower page may be programmed in an alternate location other
than the lower page. The one or more units assigned to the lower page may be

programmed in the alternate location using single-level cell (SLC) programming.

[0012] An example of a multi-plane multi-level cell (MLC) memory array includes: a
first plurality of word lines for storing portions of write-command data that are
sufficiently large to occupy both an upper page and a lower page of an individual
word line; and a second plurality of word lines for storing portions of write-command
data that are too small to occupy both an upper page and a lower page of an individual

word line.

[0013] The multi-plane MLC memory may include a plurality of latches for holding
-4-

WO 2014/137645 PCT/US2014/018066

both upper page data and lower page data for programming together to an individual
word line of the first plurality of word lines. The second plurality of word lines may
store portions of write-command data in a different format to a format used for
storage of data in the first plurality of word lines. The multi-plane MLC memory may
be formed on a plurality of memory dies and each die may contain some of the first
plurality of word lines and some of the second plurality of word lines. The memory
may be a three-dimensional memory that includes strings of memory cells that extend

in a direction that is perpendicular to a substrate.

[0014] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for
all purposes. To the extent of any inconsistency or conflict in the definition or use of
terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 illustrates schematically the main hardware components of a memory

system suitable for implementing the present invention.
[0016] FIG. 2 illustrates schematically a non-volatile memory cell.

[0017] FIG. 3 illustrates the relation between the source-drain current I and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may

be selectively storing at any one time at fixed drain voltage.

[0018] FIG. 4A illustrates schematically a string of memory cells organized into a
NAND string.

[0019] FIG. 4B illustrates an example of a NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A.

[0020] FIG. 5 illustrates a page of memory cells, organized in the NAND

configuration, being sensed or programmed in parallel.

-5-

WO 2014/137645 PCT/US2014/018066

[0021] FIG. 6 illustrates an example of programming a population of 4-state memory

cells.

[0022] FIGs. 7A-7C illustrate an example of the programming of the 4-state memory

encoded with a given 2-bit code.
[0023] FIG. 8 shows an example of a three-dimensional NAND flash memory array.

[0024] FIG. 9 shows an example of a scheme for assigning data to lower and upper

pages of word lines.

[0025] FIG. 10 shows another example of a scheme for assigning data to lower and

upper pages of word lines.

[0026] FIG. 11 shows an example of storing the tail-end of data of a particular write

command in an alternate location.

[0027] FIG. 12 shows an example of a scheme for assigning data of a write command

to lower and upper pages of word lines in a multi-plane memory array.

[0028] FIG. 13 illustrates how data of a particular write command may be assigned to

lower and upper pages of word lines in a multi-plane memory array.

[0029] Fig. 14 illustrates storage of tail-ends of data of different write commands in

an alternate location.

[0030] FIG. 15A-C are timing diagrams that illustrate different schemes for

programming data of a write command.

DETAILED DESCRIPTION

MEMORY SYSTEM

[0031] FIG. 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention. The memory system 90
typically operates with a host 80 through a host interface. The memory system is
typically in the form of a memory card or an embedded memory system. The
memory system 90 includes a memory 102 whose operations are controlled by a

controller 100. The memory 102 comprises one or more array of non-volatile
-6-

WO 2014/137645 PCT/US2014/018066

memory cells distributed over one or more integrated circuit chip. The controller 100
may include interface circuits 110, a processor 120, ROM (read-only-memory) 122,
RAM (random access memory) 130, programmable nonvolatile memory 124, and
additional components. The controller is typically formed as an ASIC (application
specific integrated circuit) and the components included in such an ASIC generally

depend on the particular application.

Physical Memory Structure

[0032] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a diclectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0033] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of

memory cells, each type having one or more charge storage element.

[0034] Typical non-volatile memory cells include EEPROM and flash EEPROM.
Examples of EEPROM cells and methods of manufacturing them are given in United
States patent no. 5,595,924. Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In
particular, examples of memory devices with NAND cell structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of
memory devices utilizing dielectric storage elements have been described by Eitan et
al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0035] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the

floating gate defines a corresponding threshold voltage window or a corresponding
-7-

WO 2014/137645 PCT/US2014/018066

conduction current window.

[0036] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current (cell-read reference current). In one implementation the
detection of the conduction current relative to a threshold current is accomplished by
examining the rate the conduction current is discharging through the capacitance of

the bit line.

[0037] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. With fixed drain voltage bias, the four solid Ip
versus Veg curves represent four possible charge levels that can be programmed on a
floating gate of a memory cell, respectively corresponding to four possible memory
states. As an example, the threshold voltage window of a population of cells may
range from 0.5V to 3.5V. Seven programmed memory states “07, “17, “27, “3”, “4”,
“5”, “6”, and one erased state (not shown) may be demarcated by partitioning the
threshold window into regions in intervals of 0.5V each. For example, if a reference
current, IREF of 2 pA is used as shown, then the cell programmed with Q1 may be
considered to be in a memory state “1” since its curve intersects with Irgr in the
region of the threshold window demarcated by VCG = 0.5V and 1.0V. Similarly, Q4

1S in a memory state “5”.

[0038] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0039] FIG. 4A illustrates schematically a string of memory cells organized into a
NAND string. A NAND string 50 comprises of a series of memory transistors M1,
M2, ... Mn (e.g., n= 4, 8, 16 or higher) daisy-chained by their sources and drains. A

-8-

WO 2014/137645 PCT/US2014/018066

pair of select transistors S1, S2 controls the memory transistor chain’s connection to
the external world via the NAND string’s source terminal 54 and drain terminal 56
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line (see FIG. 4B). Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the NAND string is coupled to a
bit line of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As will be seen in FIG. 4B,
the control gates 30 of corresponding memory transistors of a row of NAND string
are all connected to the same word line. Similarly, a control gate 32 of each of the
select transistors S1, S2 provides control access to the NAND string via its source
terminal 54 and drain terminal 56 respectively. Likewise, the control gates 32 of
corresponding select transistors of a row of NAND string are all connected to the

same select line.

[0040] When an addressed memory transistor 10 within a NAND string is read or is
verified during programming, its control gate 30 is supplied with an appropriate
voltage. At the same time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of sufficient voltage on their
control gates. In this way, a conductive path is effectively created from the source of
the individual memory transistor to the source terminal 54 of the NAND string and
likewise for the drain of the individual memory transistor to the drain terminal 56 of
the cell. Memory devices with such NAND string structures are described in United

States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0041] FIG. 4B illustrates an example of a NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A. Along each
column of NAND strings, a bit line such as bit line 36 is coupled to the drain terminal
56 of cach NAND string. Along each bank of NAND strings, a source line such as
source line 34 is coupled to the source terminals 54 of each NAND string. Also the
control gates along a row of memory cells in a bank of NAND strings are connected
to a word line such as word line 42. The control gates along a row of select

transistors in a bank of NAND strings are connected to a select line such as select line

9.

WO 2014/137645 PCT/US2014/018066

44. An entire row of memory cells in a bank of NAND strings can be addressed by
appropriate voltages on the word lines and select lines of the bank of NAND strings.

[0042] FIG. S illustrates a page of memory cells, organized in the NAND
configuration, being sensed or programmed in parallel. FIG. § essentially shows a
bank of NAND strings 50 in the memory array 210 of FIG. 4B, where the detail of
cach NAND string is shown explicitly as in FIG. 4A. A physical page, such as the
page 60, is a group of memory cells enabled to be sensed or programmed in parallel.
This is accomplished by a corresponding page of sense amplifiers 212. The sensed
results are latched in a corresponding set of latches 214. Each sense amplifier can be
coupled to a NAND string via a bit line. The page is enabled by the control gates of
the cells of the page connected in common to a word line 42 and each cell accessible
by a sense amplifier accessible via a bit line 36. As an example, when respectively
sensing or programming the page of cells 60, a sensing voltage or a programming
voltage is respectively applied to the common word line WL3 together with

appropriate voltages on the bit lines.

Physical Organization of the Memory

[0043] One important difference between flash memory and other of types of memory
is that a cell must be programmed from the erased state. That is the floating gate must
first be emptied of charge. Programming then adds a desired amount of charge back
to the floating gate. It does not support removing a portion of the charge from the
floating gate to go from a more programmed state to a lesser one. This means that
update data cannot overwrite existing one and must be written to a previous unwritten

location.

[0044] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciable time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the
minimum number of memory cells that are erased together. While aggregating a large
number of cells in a block to be erased in parallel will improve erase performance, a

large size block also entails dealing with a larger number of update and obsolete data.

-10-

WO 2014/137645 PCT/US2014/018066

[0045] Each block is typically divided into a number of physical pages. A logical
page is a unit of programming or reading that contains a number of bits equal to the
number of cells in a physical page. In a memory that stores one bit per cell, one
physical page stores one logical page of data. In memories that store two bits per cell,
a physical page stores two logical pages. The number of logical pages stored in a
physical page thus reflects the number of bits stored per cell. In one embodiment, the
individual pages may be divided into segments and the segments may contain the
fewest number of cells that are written at one time as a basic programming operation.
One or more logical pages of data are typically stored in one row of memory cells. A

page can store one or more sectors. A sector includes user data and overhead data.

All-bit, Full-Sequence MLC Programming

[0046] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state
memory cells. FIG. 6(0) illustrates the population of memory cells programmable
into four distinct distributions of threshold voltages respectively representing memory
states “0”, “17, “2” and “3”. FIG. 6(1) illustrates the initial distribution of “erased”
threshold voltages for an erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been programmed. Essentially, a cell
initially has an “erased” threshold voltage and programming will move it to a higher
value into one of the three zones demarcated by verify levels vV, vV, and vVs. In
this way, each memory cell can be programmed to one of the three programmed states
“17, “2” and “3” or remain un-programmed in the “erased” state. As the memory gets
more programming, the initial distribution of the “erased” state as shown in FIG. 6(1)

will become narrower and the erased state is represented by the “0” state.

[0047] A 2-bit code having a lower bit and an upper bit can be used to represent each
of the four memory states. For example, the “0”, “1”, “2” and “3” states are
respectively represented by “117, “017, “00” and ‘10”. The 2-bit data may be read
from the memory by sensing in “full-sequence” mode where the two bits are sensed
together by sensing relative to the read demarcation threshold values rV,, rV, and rV;

in three sub-passes respectively.

Bit-by-Bit MLC Programming and Reading

[0048] FIGs. 7A-7C illustrate the programming of the 4-state memory encoded with
-11-

WO 2014/137645 PCT/US2014/018066

a given 2-bit code. FIG. 7A illustrates threshold voltage distributions of the 4-state
memory array when each memory cell stores two bits of data using the 2-bit code.

Such a 2-bit code has been disclosed in US Patent 7,057,939.

[0049] FIG. 7B illustrates the lower page programming (lower bit) in a 2-pass
programming scheme using the 2-bit code. The fault-tolerant LM New code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first pass lower page programming has the logical state (upper bit,
lower bit) = (1, 1) transits to some intermediate state (x, 0) as represented by
programming the “unprogrammed” memory state “0” to the “intermediate” state
designated by (x, 0) with a programmed threshold voltage greater than Da but less
than Dc.

[0050] FIG. 7C illustrates the upper page programming (upper bit) in the 2-pass
programming scheme using the 2-bit code. In the second pass of programming the
upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits to
(0, 1) as represented by programming the “unprogrammed” memory state “0” to “1”.
If the lower page bit is at “0”, the logical state (0, 0) is obtained by programming from
the “intermediate” state to “3”. Similarly, if the upper page is to remain at “1”, while
the lower page has been programmed to “0”, it will require a transition from the
“intermediate” state to (1, 0) as represented by programming the “intermediate” state

to “2”‘

[0051] It can be seen that, during the programming of an upper page as illustrated in
FIG. 7C, memory cells transition through conditions that may make it difficult or
impossible to resolve lower page bits. For example, cells being programmed from
state 0 to state 1 may have threshold voltages between Dy and Dg at the same time
that cells being programmed from state 1 to states 2 and 3 still have threshold voltages
between Dy and Dg. Thus, threshold voltages for cells with lower bit “0” and lower

bit “1” may overlap and so resolving the lower bit may not be possible.

[0052] In the bit-by-bit scheme for a 2-bit memory, a physical page of memory cells
will store two logical data pages, a lower data page corresponding to the lower bit and
an upper data page corresponding to the upper bit. In other examples, additional pages

of data may be stored by storing more than two bits per cell in a physical page. In

-12-

WO 2014/137645 PCT/US2014/018066

general, when programming an upper page of data into cells that contain one or more
previously programmed lower pages, the lower page data may not be resolvable
throughout the programming of the upper page. Thus, if there is a write abort during
the programming of the upper page, then the lower page data may be unrecoverable

and may be permanently lost.

[0053] FIG. 8 shows another type of flash memory array, a three-dimensional NAND
array in which NAND strings extend vertically (in the direction perpendicular to the
substrate) with memory cells stacked in the vertical direction. The array shown in
FIG. 8 has U-shaped NAND strings. Other examples may have straight NAND strings
with connections at the substrate and at the top of the NAND string. Examples of
three-dimensional flash memory arrays are described in U.S. Patent Publication Nos.
2012/0220088 and 2012/0256247. The different geometry of three-dimensional
NAND may have various benefits including allowing more memory cells to fit in a
given area on a memory chip. However, three-dimensional NAND arrays suffer from
many of the same problems as planar NAND including the danger of losing lower

page data when programming upper page data in MLC NAND.

[0054] The sequence in which data is assigned to word lines, and to lower and upper
pages within word lines, may be important for several reasons. In particular, cell-to-
cell coupling between cells in adjacent word lines may be affected by the order of
programming. It has been found that certain programming schemes that only program
an upper page of a word line after programming of the lower page of its neighbor can

reduce disturbance caused by such cell-to-cell coupling.

[0055] FIG. 9 shows an example of a sequence of writing lower page (“LP”) and
upper page (“UP”) data to word lines (“WL”) of a block. The lower page of word line
0 is programmed first, followed by the lower page of word line 1. Then the upper
page of word line 0 is programmed. Thus, between programming the lower page of
word line 0 and the upper page of word line 0, the lower page of word line 1 is
programmed. Then, the lower page of word line 2 is programmed, followed by the
upper page of word line 1. Thus, between programming the lower page and the upper
page of word line 1, the upper page of word line 0 and the lower page of word line 2
are programmed. This alternating between word lines helps to reduce the effect of
cell-to-cell coupling between cells of different word lines on memory cell states.

-13-

WO 2014/137645 PCT/US2014/018066

However, it may lead to leaving lower page data exposed to danger during subsequent

upper page programming.

[0056] FIG. 9 shows data 0-9 stored in word lines 0-5. Because of the order of storing
data, two logical pages of data (7 and 9) are stored as lower pages of word lines that
do not have any upper page data stored (WLs 4 and 5). The data of logical pages 7
and 9 may be at risk during a subsequent programming of upper pages of word lines 4
and 5. It can be seen that at the end of executing a write command using the sequence
of FIG. 9, there will always be either one or two lower pages remaining that do not
have upper page data (e.g. if the write command ended at logical page 8, and there

was no logical page 9, then only logical page 7 would be exposed).

[0057] In many cases, when a write command is executed and the data has been
programmed successfully (verified) the data is considered “committed.” Until data is
committed, the host generally maintains a copy of any data it has sent for storage
because it does not know whether the memory has successfully stored the data or not.
Once the data is committed, the host generally does not maintain a copy and there
may be no way to recover the data if the data cannot be obtained from the memory
system. Thus, the safety of such committed data is particularly important. Data from
an carlier write command is generally committed when a subsequent write command
is received and is being executed. Thus, the data stored in FIG. 9 would generally be
committed when upper pages of word lines 4 and 5 are to be programmed in response
to a subsequent write command. Keeping such committed data safe is particularly

important.

[0058] FIG. 10 shows a write sequence that provides some reduction in exposure of
lower page data. In the sequence shown, each word line is programmed in sequence,
with both lower page and upper page data without intervening programming of any
other word lines. Thus, the lower page of word line 0 is programmed, then the upper
page of word line 0, and only then does programming of word line 1 begin. In some
cases, the lower page is programmed first and subsequently the upper page is
programmed. In other cases, the lower and upper pages are programmed together in
what may be referred to as “full-sequence” programming. In either case, word lines
are programmed in sequential order, with each word line being fully programmed
before moving to the next word line.

-14-

WO 2014/137645 PCT/US2014/018066

[0059] FIG. 10 shows logical pages 0-8 that are stored in response to a write
command. It can be seen that logical page 8 is exposed to a subsequent write to the
upper page of word line 4 and thus data of logical page 8 is at risk. In some cases
there will be no such exposed data using this scheme (e.g. if an even number of
logical pages was received such as in FIG. 9, then there would be no last logical page
to store in a lower page). The worst case for such a 2-bit per cell memory is that one
logical page is exposed as shown in FIG. 10. This is in contrast to the scheme of FIG.

9 which exposes either one logical page or two (never zero).

[0060] FIG. 11 shows a scheme for protecting data such as logical page 8 of FIG. 10.
In particular, data that is assigned for storage in the lower page of a word line, where
there is no data of the present write command to be stored in the upper page is not
stored in the lower page of the word line to which it is assigned. Instead of storing it
in the lower page of the word line to which it is assigned (WL 4 in this example),
where it would be exposed to damage during execution of a subsequent write
command, the data is stored at an alternate location 151 in the memory array 153.
Thus, in the main portion 155 of the memory array, any word line that is written has

both lower and upper pages written (a lower page alone is never written).

[0061] The alternate location shown may be in a separate block, or blocks, in the
memory array that is dedicated to storing such tail-ends of write commands. The
alternate location may operate using different operating parameters to the main
portion of the memory array. For example, the alternate location may include blocks
that store data in single level cell (SLC) format (in contrast to the main portion where
data is stored in MLC format). Such alternate location may be part of binary cache,
for example, as described in U.S. Patents Nos. 8,244,960 and 8,094,400, or may be a
separate structure. The alternate location may be in an area of the memory array that
is used for multiple purposes such as a scratch pad block. Examples of scratch pad

blocks and methods of using them are described in U.S. Patent No. 7,315,916.

[0062] Aspects of the present invention may be particularly advantageous when
applied to multi-plane memory arrays. In general, a plane is a portion of a memory
array that is independently operable and has its own word line and bit line decoder
circuits. Examples of multi-plane memory arrays are described in U.S. Patents Nos.
7,120,051, and 7,913,061.

-15-

WO 2014/137645 PCT/US2014/018066

[0063] FIG. 12 shows an example of a memory system that includes four planes on
two different dies (die A and die B, each containing plane 0 and plane 1). The order of
assigning data to word lines of the planes is illustrated by the arrows and numbers
shown. Starting with plane 0 of die A, data is assigned to the lower page, then the
upper page. Then, data is assigned to the lower page and the upper page of plane 1 of
die A. Then, the lower and upper pages of die B, plane 0; followed by the lower and
upper pages of die B, plane 1. This sequence is in contrast to many prior assignment
schemes which stripe data across planes so that data for all lower pages can be sent

and programmed, followed by data for all upper pages.

[0064] According to an example assignment scheme, data sufficient to fill word lines
(both lower and upper pages) is assigned to word lines of successive planes and then
all planes are programmed together with both lower and upper page data. Latches are
provided so that both lower page and upper page data may be latched prior to

programming.

[0065] In general, the assignment scheme shown in FIG. 12 continues for as many
word lines as can be filled with data of a given write command. After programming
all planes, data is latched for subsequent programming in the same order. This
continues until the tail-end of the data of the write command. The tail-end of the data
of the write command may be assigned to a location in a lower page so that if it was
programmed to its assigned location, it would be exposed to a subsequent write of the
upper page. Accordingly, such data is not stored at its assigned location, but instead is

stored in an alternate location.

[0066] FIG. 13 shows logical pages 0-20 that are stored in response to a write
command. Logical page 20 is the last data of the write command and it occupies the
lower page of word line 2 in plane 2. No data of the write command is assigned to the
upper page of word line 2 in plane 2. Thus, if logical page 20 was written at its
assigned location it would be exposed to a subsequent write of the upper page of word

line 2 in plane 2.

[0067] Instead of writing logical page 20 in its assigned location in the lower page of
word line 2 in plane 2, logical page 20 is written to an alternate location 401 as shown

in FIG. 14. This means that no word line in the main portion 403 of the memory array

-16-

WO 2014/137645 PCT/US2014/018066

405 is partially written (e.g. lower page only) at the end of executing the write
command. The last write step of the write command in the main portion 403 programs
logical pages 16-19 to word line 2 (both upper and lower pages) in planes 0 and 1.
Programming of logical page 20 in the alternate location may be performed at least
partially in parallel with programming logical pages 16-19. For example, logical page
20 may be stored in a different block in plane 2 so that it can be programmed in

parallel with logical pages 16-19.

[0068] When a subsequent write command is received, the data of the subsequent
write command begins with data X and is stored as shown in FIG. 14. The subsequent
write command ends with data X+10, which is assigned to the lower page of word
line 3 in plane 3. Because this is a lower page, data X+10 is stored in the alternate
location 401. Thus, at the end of executing the subsequent write command all written
word lines in the main portion of the memory array are filled (both lower and upper
pages written). Tail-ends of both write commands are stored in the alternate location
401. Other write commands may have an even number of logical pages and may not

have any tail-ends that need to be stored in an alternate location.

[0069] Some advantages of aspects of the present invention may be seen from
comparisons of different programming schemes. FIG. 15A is a timing diagram for a
prior art scheme in which exposed data is copied prior to writing upper page data in
the same memory cells. A command 501 is issued by the controller to read the lower
page data. The lower page data is then read 503 and transferred 505 to the controller.
A write command 507 is then issued, and the data transferred 509 to the memory,
where the data is written 511 in SLC mode (which is quicker than writing in MLC
mode). Subsequently, the controller issues the command 513 to program upper page
data. The data is transferred 515 to the memory, and the data is programmed 517. It
can be seen that this scheme suffers from the disadvantage that significant time is
needed to copy the lower page data prior to writing the upper page data. In some
cases, such a delay may cause a host to time-out (i.c. the host expects the memory to
respond within a certain time period to indicate that the data is stored — failure to

respond in time may cause the host to consider the memory to be defective).

[0070] FIG. 15B is a timing diagram for storage of data in two planes according to the
sequence: shown in FIG. 12 using conventional commands. The controller first sends

-17-

WO 2014/137645 PCT/US2014/018066

a command 521 to program lower page data in plane 0. The data is transferred 523
and programmed 525. Only after this is completed does the controller send a
command 527 to program the upper page in plane 0. This data is then transferred 529
and programmed 531. Once this is complete, the controller sends a command 533 to
program lower page data in plane 1. This data is transferred 535 and programmed
537. Subsequently, the controller sends a command 539 to program the upper page in
plane 1 and the data is transferred 541 and programmed 543. Such sequential

operation can be seen to be inefficient.

[0071] FIG. 15C is a timing diagram for storage of data in two planes according to the
sequence shown in FIG. 12 using latches to store lower and upper pages for
programming together and using a command that indicates to the memory that lower
and upper pages of both planes are to be programmed together. The command 551 is
sent by the controller, followed by a transfer 553 of data for both planes 0 and 1
(lower and upper pages). Then, both planes program lower and upper pages together
555. It can be seen that this provides a considerable time saving because of parallel
operation of both planes. An even greater time saving may be achieved where more

than two planes are programmed in parallel in this manner.
Conclusion

[0072] The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.

18-

WO 2014/137645 PCT/US2014/018066

IT IS CLAIMED:

1. A method of programming a multi-level cell (MLC) memory
array comprising:

determining whether data to be stored is sufficient to fill a lower page
and an upper page of a word line;

if the data to be stored is sufficient to fill the lower page and the upper
page of the word line, then programming the lower page and the upper page
together without programming other data to any other word line between the
programming of the lower page and the programming of the upper page; and

if the data to be stored is insufficient to fill the lower page and the
upper page of the word line, then programming the data at an alternate

location other than the word line.

2. The method of claim 1 wherein the word line is in a first erase

block and the alternate location is in a second erase block.

3. The method of claim 1 further comprising, if remaining data to
be stored after the programming of the lower page and the upper page together
is sufficient to fill a lower page and an upper page of an additional word line,
then programming the lower page and the upper page of the additional word

line together without programming other data to any other word line.

4. The method of claim 3 wherein the determination is performed
for a plurality of additional word lines, with the data to be stored being
sufficient to fill lower pages and upper pages of each of the plurality of
additional word lines, each of which has its lower page and its upper page
programmed together without programming other data to any other word line

between the programming of its lower page and the programming of its upper

page.

5. The method of claim 3 wherein if the remaining data to be
stored is insufficient to fill the lower page and the upper page of the additional

word line then programming the data to the alternate location.

-19-

WO 2014/137645 PCT/US2014/018066

6. The method of claim 1 wherein the MLC memory is a 3-D
NAND memory which has NAND strings extending perpendicular to a

substrate.

7. A method of programming a multi-plane multi-level cell
(MLC) memory array comprising:
receiving a plurality of units of data to be stored in a plurality of planes
of the multi-plane MLC memory array;
assigning the plurality of units of data for storage in the following
predetermined order:
first plane, first word line, lower page;
subsequently, first plane, first word line, upper page;
subsequently, second plane, first word line, lower page;
subsequently, second plane, first word line, upper page; and
subsequently, programming the lower pages and the upper pages of the
first word lines of the first and second planes together without intervening

programming of any other word lines of the first and second planes.

8. The method of claim 7 wherein units of data are latched in the
predetermined order until lower and upper pages of the first word line of the
first and second planes can be programmed together in response to a command

that indicates that programming is to be performed together.

9. The method of claim 7 wherein the plurality of planes further
includes a third plane and a fourth plane, and wherein the predetermined order
extends, subsequent to the second plane, first word line, upper page, as
follows:

third plane, first word line, lower page;

subsequently, third plane, first word line, upper page;

subsequently, fourth plane, first word line, lower page; and

subsequently, fourth plane, first word line upper page.

220-

WO 2014/137645 PCT/US2014/018066

10. The method of claim 9 wherein the upper pages and lower
pages of the first word lines of the first, second, third, and fourth planes are
programmed together without intervening programming of any other word

lines of the first, second, third, and fourth planes.

11. The method of claim 7 further comprising, assigning additional
units of data of the plurality of units of data for storage in the plurality of
planes in one or more subsequent word lines of the plurality of planes in the
following order:

first plane, lower page;

subsequently, first plane, upper page;

subsequently, second plane, lower page; and

subsequently, second plane, upper page.

12. The method of claim 11 wherein the plurality of units of data to
be stored ends with one or more units assigned to a lower page, further
comprising programming the one or more units assigned to the lower page in

an alternate location other than the lower page.

13. The method of claim 12 further comprising programming the
one or more units assigned to the lower page in the alternate location using

single-level cell (SLC) programming.

14. A multi-plane multi-level cell (MLC) memory array
comprising:

a first plurality of word lines for storing portions of write-command
data that are sufficiently large to occupy both an upper page and a lower page
of an individual word line; and

a second plurality of word lines for storing portions of write-command
data that are too small to occupy both an upper page and a lower page of an

individual word line.

15. The multi-plane MLC memory of claim 14 further comprising

a plurality of latches for holding both upper page data and lower page data for
21-

WO 2014/137645 PCT/US2014/018066

programming together to an individual word line of the first plurality of word

lines.

16. The multi-plane MLC memory of claim 14 wherein the second
plurality of word lines store portions of write-command data in a different

format to a format used for storage of data in the first plurality of word lines.

17. The multi-plane MLC memory of claim 14 wherein the multi-
plane MLC memory is formed on a plurality of memory dies and each die
contains some of the first plurality of word lines and some of the second

plurality of word lines.

18. The multi-plane MLC memory of claim 14 wherein the
memory is a three-dimensional memory that includes strings of memory cells

that extend in a direction that is perpendicular to a substrate.

20

WO 2014/137645 PCT/US2014/018066
1/12

HOST 80

MEMORY SYSTEM 90

Controller 100 v

Interface 11

Processor 12

Optional
CoProcessor 121

Flash Memory 200
ROM 122

Optional
Programmable
Nonvolatile Memory
124

RAM 130

FIG. 1

PCT/US2014/018066

WO 2014/137645

2/12

0

Control
gate
1A

N

20

Source

L] 1 L] "2" "3" "4" "5" "6"

"0"

IREF

Vee(V)

3.5

FIG. 3

WO 2014/137645 PCT/US2014/018066
3/12
Drain
NAND STRING |56
50\/
Drain I
Select / I S2
32
20
30 (
N L]
Control Gate n I | Mn —
[]
[]
[]
[]
[]
[]
[]
' , 10
Control Gate 2 & 'l M2 —
[]
30
N : 10
Control Gate 1 tl M1 —
[]
32
Source \ I 31
Select I
[54
Source

FIG. 4A

WO 2014/137645

PCT/US2014/018066

4/12
210
Vs
44 f56' @ el
:l
42 50 50
—
7 Source
44 |54 Line
{ l B N
34
4 4 e]
36

Bit Lines

FIG. 4B

WO 2014/137645 PCT/US2014/018066

5/12
214 Physical Page of Data Latches <>
212 .
210 Physical Page of Sense Amps
AN
BLO BL1 BL2 BL3 BL4 BL5 BLm-1 BLm

42/

!
!

!
I
L

s —HE
WL2 Hi
WL1 :
WLO :
SGS J
s
I‘(— 3\1 Source Line\ 34

FIG. 5

WO 2014/137645 PCT/US2014/018066
6/12

<«4— Threshold Window ——»
Erased

I rV1 : rV2 : rV3 :
| |
(0) ml ‘ m ‘ “2” ‘ “3”
I [[

(1)

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(2)
01

11 I
/ I I
Upper Bit \I Lower Bit

Programming into four states represented by a 2-bit code

FIG. 6

WO 2014/137645 PCT/US2014/018066
712

of Cells Upper Bit ~¥ Lower Bit
“11” “01” “10” “00”

| | > Vs

\
Threshold Voltage

Multistate Memory

FIG. 7A

of Cells /_\

“1 1”

“XO”
[13 ” DA [13 H »
0 ‘ Intermediate
‘ > VT

Lower Page Programming (2-bit Code)

FIG. 7B

“Intermediate”

#ofCells 7 N

4 “11” “01” “10” “00”

D D D
“0” A “1 ” B “2” C “3”
» \/

Upper Page Programming (2-bit Code)

FIG. 7C

T

WO 2014/137645
8/12

/Blt Line

gigigigigh <
t L I.Ill M
_r_rl_rL_r_rL o

&

Common Source Line
~>—

- i — [5ss
-+
—H
=
=
i i +

-g
u .- - - - e - e - e
- - - - - - - - e
n

FIG. 8

PCT/US2014/018066

PCT/US2014/018066

WO 2014/137645

9/12

upP

LP

WL

upP

LP

WL

FIG. 10

FIG. 9

e e e e e e e — — — — — — — — — — — — — — —

FIG. 11

WO 2014/137645 PCT/US2014/018066

10/12
Die A Die B
Plane O Plane 1 Plane O Plane 1
up 8
/“‘5 LP 75
l UP 6
LP 5
_//r

Up 2 up 4
l LP 1\‘ LP 3

Y T A A

[Latches | | Latches | [Latches | | Latches |

¢

Memory Controller

FIG. 12

WO 2014/137645

PCT/US2014/018066

11/12
o
[
: Plane 0 Plane 1 Plane 2 Plane 3
| WL | LP | UP WL | LP | UP WL | LP | UP WL | LP | UP
: 0 0 1 0 2 3 0 4 5 0 6 7
| 1 8 9 1 10 | 11 1 12 | 13 1 14 | 15
: 2 16 | 17 2 18 | 19 2 20 2
HEE 3 3 3
: 4 4 4 4
i 5 5 5
[
[
[
[
[
[
L o o o o
o
[
: Plane 0 Plane 1 Plane 2 Plane 3
| WL | LP | UP WL | LP | UP WL | LP | UP WL | LP | UP
: 0 0 1 0 2 3 0 4 5 0 6 7
| 1 8 9 1 10 | 11 1 12 | 13 1 14 | 15
: 2 16 | 17 2 18 | 19 2 X | X+1 2 | X+2 | X+3
| 3 | X+4 | X+5 3 | X+6 | X+7 3 | X+8 | X+9 3
: 4 4 4 4
e 5 5 5
[
[
[
[
[
[
| \
' 403
: 20 10 |~401
[
[
L o o o o

FIG. 14

405

PCT/US2014/018066

WO 2014/137645

12/12

961 "OId

L+0 dN+dT
666" L+0 X1
ess—" | pwo
166"
g6l ‘Old
i i
L dn L d 0dn 0dT
evG—" X1 166" | xL | 1eg—" X1 ' gzs—" | xL
16" | pwo ges—" | pwo 625" | pwo A
6es—" geg—" 1267 126"
vael "Oid
i £09~_ i
dn - 0N 918 Gos~_ | ¥
116" X1 AN X1 !
- T 605" | pwo pwo
gig—" 205" Log "

aNVN
sng
Jg||onuo)

aNVN
sng
Jg||onuo)

aNVN
sng
Jg||onuo)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

