P. I. N. 83 290

Memória descritiva referente à patente de invenção de HOECHST AKTIENGESELLSCHAFT, alemã, industrial e comercial, com sede em D-6230 Frankfurt/Main 80, República Federal Alemã, para PROCESSO PARA A PREPARAÇÃO DE FONTES DE TECNÉCIO 99M".

MEMÓRIA DESCRITIVA

A presente invenção refere-se a uma fonte de tecnécio 99m aperfeiçoada com base em molibdénio-99 absorvido num suporte, ao processo para a preparação dessas fontes e à sua utilização para a obtenção de eluídos que contêm o tecnécio-99m sob a forma de pertecnetato.

O tecnécio-99m é o nuclídio radioactivo mais largamente utilizado no diagnóstico médico nuclear. Esse facto baseia-se nas suas propriedades físicas nucleares óptimas para utilização (curto período de semitransformação de 6,0 horas, ausência de qualquer irradiação corpuscular, energia favorável 140 keV). Pode obter-se de maneira fácil e simples a partir de uma fonte de molibdénio-99/tecnécio-99m.

Actualmente, o tipo de fonte mais utilizada é o molibdénio-99 a partir do qual se forma continuamente isóto po de tecnécio-99m por desintegração do núcleo absorvido numa coluna de óxido de alumínio como molibdénio-99 molibdato. O tecnécio-99m que existe quimicamente sob a forma de pertecnetato é separado do molibdénio-99 por lavagem com solução de

X1

cloreto de sódio, isotónica. Como molibdénio-99 utiliza-se ho je quase exclusivamente o chamado molibdénio de desintegração nuclear. Ele é isolado a partir da mistura de produtos de des integração que se obtêm na desintegração atómica do urânio 235 e possui uma actividade específica muito elevada. Desta forma, é possível obter-se elevadas actividades em tecnécio--99m em pequenos volumes de solução de cloreto de sódio duma fonte.

_ \$

A utilização do molibdénio de desintegração permite empregar nas fontes também ainda pequenas quantidades (1-2 g) de óxido de alumínio pelo que se pode limitar apenas a alguns mililitros (cerca de 5 ml) a quantidade mínima de solução de cloreto de sódio necessária para a eluição do tecnécio 99m.

As especificações mínimas impostas a uma fonte de utilização são indicadas na norma DIN 6854 (Janeiro de 1985). De acordo com ela, a actividade eluível de Tc-99m numa eluição realizada em intervalos de vinte e quatro horas não deve ser inferior a 70%. A qualidade do eluido tem de obedecer a determinados requisitos. É naturalmente desejável que os valores limites sejam atingidos o mais largamente possível. Isto é válido especialmente para o molibdénio-99 que está contido em elevadas actividades da fonte e, no caso da utilização em seres humanos, origina uma carga de radiação descessária por causa do seu longo período de semitransformação de sessenta e seis horas.

Sabe-se que as fontes radioactivas de Mo-99/
Tc-99m com molibdénio de desintegração, especialmente com ele
vadas actividades de Mo-99, têm tendência a perdas de rendimento ou muitas vezes até a interrupções de rendimento (patente Europeia B O 014 957). Este efeito é ainda aumentado pelas
impurezas orgânicas existentes no agente de eluição que, por
exemplo, podem existir na solução do cloreto de sódio em virtude de serem retiradas dos recipientes de plástico contendo

o agente de eluição.

Para evitar estas perdas de rendimento, empregam-se estabilizadores de rendimento. Sabe-se que os iões de cobre-II têm esta acção estabilizadora.

No entanto, neste caso, verifica-se a dificuldade proveniente do facto de as pequenas quantidades existentes no óxido de alumínio não serem suficientes para evitar a passagem do cobre para o líquido eluído com o tempo.

Na Memória Descritiva publicada para inspecção pública da Patente Alemã Número 1 929 067 descreve-se a adição de acetato de cobre-(II) ao agente de eluição. Como quantidades mínimas são necessários 0,001% em volume, em que no caso de acetato de cobre-(II) se deve ter presente 10 µg/ml = 3,5 µg de Cu(II)/ml. Para as modernas fontes radioactivas que, ao contrário daquelas que na data de prioridade do mencionado Pedido de Patente Alemã eram correntes, só contêm uma pequena quantidade de óxido de alumínio, esta não é suficiente - mesmo no caso de se empregarem as concentrações mínimas de cobre-(II) mencionadas - para evitar a mencionada passagem do cobre para o eluído. Além disso, verificou-se que 3,5 µg de Cu-(II)/ml de agente de eluição nem sempre garante um rendimento elevado estável.

Para evitar a passagem de iões cobre para o eluído, na Patente Europeia B O 014 957 descreve-se um proces so que permite a fixação de grandes quantidades de cobre-(II) no óxido de alumínio. No entanto, este método necessita uma operação adicional na preparaçãodas fontes e é, portanto, dispendioso.

A Requerente descobriu agora que geles de sílica modificados com grupos amino e eventualmente silicatos de magnésio constituem materiais de suporte vantajosos para fontes de tecnécio-99m que possibilitam a ligação fixa de iões

de cobre-(II). A invenção refere-se, portanto, a fontes de te cnécio-99m à base de molibdénio-99 absorvido em suportes que se caracterizam pelo facto de conterem gel de sílica modifica do com grupos amino e eventualmente silicatos de magnésio.

A Requerente descobriu ainda que o gel de sílica modificado com grupos amino está em posição de absorver mo libdénio-99 radioactivo. Dessa forma, podem baixar-se os teores de molibdénio-99 no eluído para valores inferiores a suci de Mo-99/Ci de Tc-99m. Um aperfeiçoamento da invenção refere-se a uma fonte de tecnécio-99m cujo material de suporte consiste em gel de sílica modificado com grupos amino. As formas de realização preferidas da presente invenção contêm, no entanto, adicionalmente óxido de alumínio e, eventualmente, silicatos de magnésio.

As fontes, de acordo com a presente invenção, contendo um teor de silicato de magnésio têm também convenien temente óxido de alumínio adicional para a absorção do Mo-99 juntamente com o gel de sílica modificado com grupos amino de acordo com a presente invenção. Para essas fontes que contêm mais do que um material de suporte é bàsicamente possível mis turar os materiais de suporte e encher o equipamento usual com a mistura. Como, no entento, os diferentes materiais possuem em geral uma granulometria diferente, deve evitar-se que na carga existam "canais" mediante precauções especiais, por exemplo, moagem conjunta. É, portanto, em geral, conveniente introduzir na fonte os diferentes materiais sob a forma de ca madas. A expressão "sob a forma de camadas" pode neste caso significar que os diferentes materiais sejam colocados em várias camadas consecutivas alternadamente, mas, no entanto, conveniente introduzir cada material sob a forma de uma camada individual.

De preferência, coloca-se o gel de sílica modificado com grupos amino como camada inferior na coluna que constitui a fonte. Depois, coloca-se uma camada de óxido de

alumínio.

Ý

A invenção descrita na Patente Europeia B O O14 957 mostra que é necessário preparar uma fonte radioactiva na qual na camada superior se coloque óxido de alumínio car regado com cobre-(II), em seguida uma camada de óxido de alumínio e por baixo uma camada do material de suporte de acordo com a presente invenção.

Nas Figuras 1 e 2 representam-se esquematicamente e não necessáriamente nas proporções das dimensões duas formas de realização da presente invenção.

Na Figura 1, (1) designa a coluna em que se carrega o material de suporte, indicando-se por meio da seta a direcção de eluição (de baixo para cima). (2) e (3) representam as camadas de materiais de suporte diferentes; numa forma de realização preferida, o óxido de alumínio é a camada (2) e o gel de sílica modificado com grupos amino é a camada (3).

A Figura 2 refere-se a uma disposição correspondente com três camadas, em que se utilizam três materiais
diferentes: (2), (3) e (4). Numa forma de realização preferida deste aspecto da presente invenção, (4) significa uma cama
da constituida por óxido de alumínio carregado com cobre-(II),
(2) significa alumínio e (3) gel de sílica modificado com gru
pos amino e, eventualmente, silicato de magnésio.

A forma de realização técnica de fontes radioactivas de nuclídeos é conhecida e é descrita, por exemplo,
na Memória Descritiva da Patente Alemã Número 1 614 486 (ou
na correspondente Memória Descritiva da Patente dos Estados
Unidos Número 3 369 121) ou na Memória Descritiva da Patente
da Grã-Bretanha Número 1 186 587. Por esse motivo, não se faz
aqui a sua descrição detalhada.

A quantidade do material de suporte depende da

dimensão da fonte e da sua actividade. Pode determinar-se fâcilmente por meio de simples ensaios prévios.

Os geles de sílica modificados com grupos amino são correntes como materiais de suporte para os processos
cromatográficos. Uma forma preferida contém os grupos amino
sob a forma de grupos de 1,3-propilamina. No entanto, podem
utilizar-se também outros materiais de suporte, por exemplo,
aqueles que têm grupos de amina secundários e terciários que
servem como adsorventes para compostos ácidos.

Como silicatos de magnésio são apropriados os produtos que existem na Natureza, tais como fosterite, enstatite, serpentina, serpentina-amianto, talco, antigorite ou es puma do mar assim como os correspondentes produtos sintéticos que contêm ortossilicato de magnésio, dissilicato de magnésio ou polissilicato de magnésio, estes últimos com a estrutura de cadeias, bandas ou camadas (folha). Esses materiais são, por exemplo, utilizados para processos cromatográficos.

Nos seguintes exemplos esclarece-se a invenção mais completamente:

Para a preparação de colunas de geradores, utilizaram-se os seguintes materiais de suporte; óxido de alumínio S, ácido, superactivo da firma Riedel de Haen e (R)LiChroperep NH2 para a cromatografia em fase líquida da firma Merk, seguidamente designada apenas como gel de sílica. Como agente eluente utilizou-se solução fisiológica de cloreto de sódio que continha diferentes quantidades de cloreto de cobre-(II) di-hidratado. A determinação do cobre-(II) realizou-se colorimetricamente em que o valor limite inferior de detecção foi de 0,1 ppm.

Exemplo 1

Por eluição realizada em condições iguais, foi

determinado em que medida os materiais de suporte são capazes de fixar iões cobre-(II). Os eluídos Números 1 e 8 foram em todos os casos isentos de cobre. Como a seguinte Tabela 1 mos tra, o gel de sílica pode captar muito mais cobre-(II) do que o óxido de alumínio.

Tabela 1

de suporte 2H ₂ 0 mililitros de el no agente Eluído Nº		FF /
de eluição 9 10 11	12	13
a) 1,2 g Al ₂ 0 ₃ 10 ppm ~0,2	~0,5	1
15 " ~9,2 ~0,5 1	-1	
500 mg 50 ppm	-	_
b) Gel de sílica 100 ppm	-	-
950 mg Al ₂ 0 ₃ ¹⁾ 30 ppm	-	=
c) 150 mg 40 "	-	-
Gel de sílica 50 "	-	-

1) Antes da eluição com a solução de cloreto de sódio contendo cobre, as columas foram carregadas com 0,5 mg de molibdato de amónio.

Exemplo 2.

Numa coluna de vidro, introduzem-se 105 mg de gel de sílica e, por cima, uma camada de 1,0 g de óxido de alumínio. A coluna é carregada com Mo-99 e eluída diàriamente em dias úteis com solução fisiológica de cloreto de sódio que contém 20 µg de CuCl₂ x 2H₂O por milílitro. Antes da adição do cloreto de cobre-(II), esterilizou-se em autoclave uma solução de cloreto de sódio juntamente com as folhas de PVC que correntemente serviram para o empacotamento. Sabe-se que as

impurezas orgânicas que passam para o agente de eluição podem originar forte diminuição do rendimento.

Para comparação, encheu-se uma coluna de vidro com 1,2 g de óxido de alumínio e outra com 105 mg de gel de sílica e 1,0 g de óxido de alumínio. As duas colunas foram eluídas com agente de eluição carregado com impurezas orgânicas isento de cobre.

Nos eluídos, determinou-se o teor de tecnécio-99m, de molibdénio-99 e, sempre que o agente de eluição continha cobre-(II), o teor de cobre-(II). Na Tabela 2 estão indicados os resultados. Indica-se também o rendimento em Tc-99m em percentagem, relativamente à actividade de Mo-99, o
teor de molibdénio-99 em ppm em relação à actividade de Tc-99m e o teor de cobre-(II) em ppm.

A Tabela 2 mostra que

- 1. Por utilização de gel de sílica baixa-se o teor de Mo-99 no eluído para um valor inferior a 1 ppm.
- 2. Utilizando gel de sílica, pode adicionar-se cobre-(II) ao agente de eluição, mantendo-se os rendimentos em Tc-99 igualmente elevados sem ser possível detectar a presença de cobre-(II) em quantidades dignas de nota no eluído.
- 3. Por utilização de gel de sílica, pode aumentar-se o teor de cobre-(II) no agente de eluição para um valor superior ao mínimo de 20 ppm.

POSOO 10\$00
PORTUGAL

CANGGERIA

CANGGERIA

ESCUDOS

TABELA 2

agente de de de eluição feluição formadimento de to Tc-99m do mo-99 (ppm) Rendimento Tc-99m Rendimento Tc-99m Rendimento Tc-99m	6# eira eira 69,7	V #	ب م	†	ŋ	С		0)	
Rendimen- to Tc-99m Mo-99 (ppm) Rendimento Tc-99m Mo-99 (ppm)		feira	j- feira	4ª feira	5ª feira	6a feira	2ª feira	3ª feira	λ ka feira	feira
Rendimento Tc-99m Mo-99(ppm)	н	80,1	45,2 1	37,2	31,0	27,6	36,9	17.4 4	10,7	8,0
ento ppm)										-
Mo-99(ppm)	43,2	87,7 7	78,0	78,6	78,9	78,8	3,0	55. 55.	23,4	14,1
:	H	< 1	<1	< 1	1	1	. <1	<1	< 1	ત
1	77,1	85,5	77,1	76,9	78,4	77,4	85,0	6,97	76,3	76,2
Mo - 99 (ppm)	1	Т.	(1	< 1	<1	41	41	< 1	41	41
ppm* Rendimen- to Tc-99m	77,5	85,4	9,92	4,97	75,9	76,1	82,9	76,7	77,0	6,92
Mo-99(ppm)	n) 1	Ħ	4 1	77	<1	۲٦	41	<1	41	41
ppm ^ж Rendimen- to Tc-99	77,1	84,3	77,5	9,22	77,6	77,6	85,0	75,3	73,9	73,8
(mdd) 66-oM	ゴ	Н	41	ひ	41	ij	4	77	77	7

TABELA 2 (continuação)

Fontes	CuCl, x	Parâmetro			7	Dias de	eluição	2ão				
radioactivas	2H20°no	2H20 no de	7	ત	n	77	יע	9	7	∞	6	10
	de eluição	Medi ção	6# feira	2ª feira	3ª feira	4a feira	5ª feira	6ª feira	2ª feira	3ª feira	4ª feira	5ª feira
679 mCi	30 ppm	30 ppm Rendimen- 7	78,0 85,6	85,6	77.7	77,5	78,0 78,5	78,5	84,9	77,1	76,8	76,0
Mo-99 no BT		(maa) 66-oM	<1	7	₹	41	4 1	<1	7	7	4	₽

BT = Dia da determinação = dia de eluição nº 2, segunda-feira.

* Em nenhum eluída foi possível detectar a presença de Cu-(II).

Exemplo 3

Prepararam-se colunas que servem como fontes radioactivas de acordo com o processo da Patente Europeia B 0 014 957. Algumas continham como camada inferior adicionalmente gel de sílica. Estes foram carregados com Mo-99 e eluídas em dias de trabalho normal com solução de cloreto de sódio fisiológico. A Tabela 3 indica os resultados obtidos.

TABELA_3

Parâmetro de medição			Dias de eluição								
			1	2	3	4	. 5	6	7	8	9
			2ª fª	3ª fª	4ª fª	5ª fª	6ª fª	2ª fª	3ª fª	4 <u>a</u> f <u>a</u>	5ª fª
Fonte ra- dioactiva de acordo com EP-B 14957	Rendi- mento	Tc-99m	88,9	81,8	81,9	809	80,0	883	8 0,7	80,7	81,
401 mCi Mo-99 no BT	Mo - 99	(ppm)	6	7	6	6	6	5	5	5	5
Fonte radioactiva de acordo com EP-B 14957,	Rendi- mento	Tc-99m	867	79.9	796	793	78,8	871	78,4	776	771
muito em- bora com gel de sí lica	Mo-99	(ppm)	<1	<1	<1	<i><</i> 1	< 1	41	\1	(1	〈 1
680 mCi Mo-99 no BT											

BT=dia da determinação=dia de eluição número 1, segunda feira
A Tabela 3 mostra a diminuição do teor de Mo-99 no eluído quando se utiliza a forma de realização de acor
do com a Patente Europeia B 0 014 957. Em nenhum eluído foi
possível detectar a presença de Cu-(II).

R E I V I N D I C A Ç Õ E S

- 1ª -

Processo para a preparação duma fonte de tecnécio 99M à base de molibdénio-99 adsorvido num suporte, que é eluído com soluções contendo cobre-(II), caracterizado pelo facto de, como material de suporte, se empregar gel de sílica modificado com grupos amino.

_ 24 _

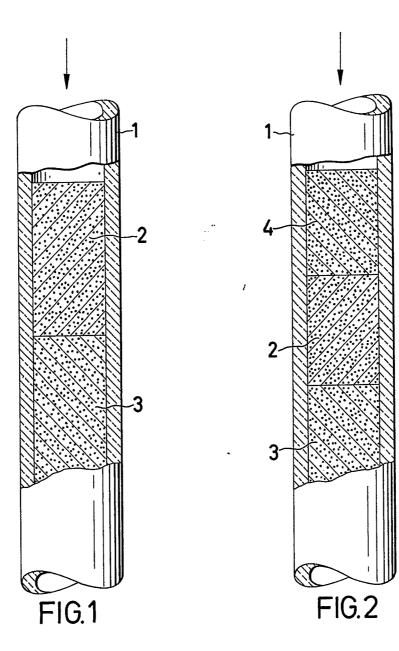
Processo de acordo com a reivindicação 1, caracterizado pelo facto de, numa coluna de eluição (1) se colo car o suporte que contém o molibdénio-99 como camada superior (2) e o gel de sílica modificado com grupos amino como camada inferior (3).

_ 3ª -

Processo de acordo com as reivindicações 1 ou 2, caracterizado pelo facto de, numa coluna de eluição (1), se colocar o óxido de alumínio carregado com cobre-(II) como camada superior (4), óxido de alumínio como camada intermédia (2) e gel de sílica modificado com grupos amino como camada inferior (3).

A requerente declara que o primeiro pedido des ta patente foi depositado na República Federal Alemã em 3 de Setembro de 1985, sob o nº P 35 31 355.2.

Lisboa, 2 de Setembro de 1986



RESUMO

"PROCESSO PARA A PREPARAÇÃO DE FONTES DE TECNÉCIO 99M"

A invenção refere-se a um processo para a preparação duma fonte de tecnécio 99M à base de molibdénio-99 adsorvido num suporte, que é eluído com soluções contendo cobre-(II), caracterizado pelo facto de, como material de suporte, se empregar gel de sílica modificado com grupos amino.

