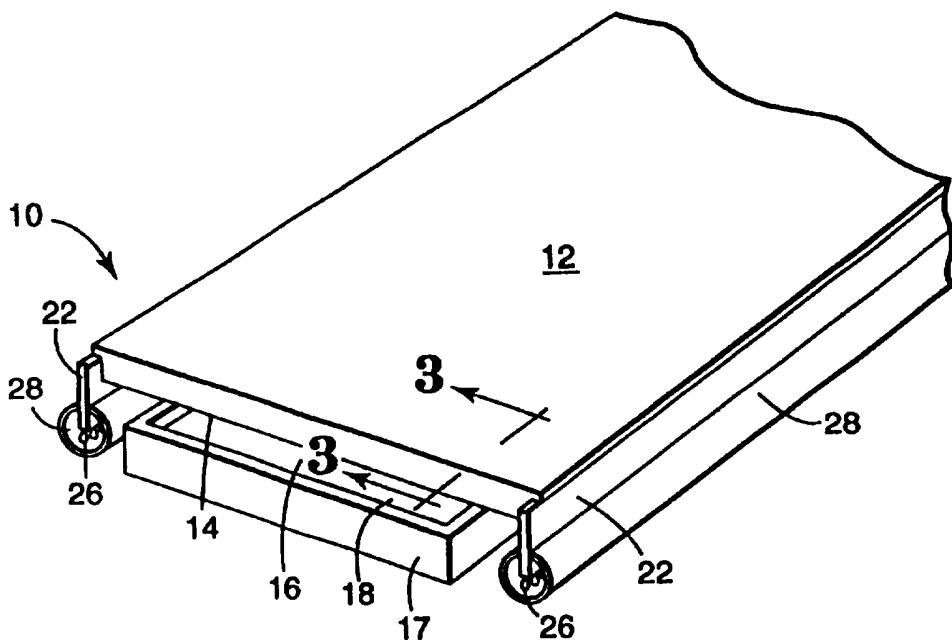


PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau


INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : B01D 5/00	A1	(11) International Publication Number: WO 97/10885 (43) International Publication Date: 27 March 1997 (27.03.97)
(21) International Application Number: PCT/US96/13061		(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 8 August 1996 (08.08.96)		
(30) Priority Data: 08/529,309 18 September 1995 (18.09.95) US		
(71) Applicant: MINNESOTA MINING AND MANUFACTURING COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).		
(72) Inventors: KOLB, William, B.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). HUELSMAN, Gary, L.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).		
(74) Agents: LEVINE, Charles, D. et al.; Minnesota Mining and Manufacturing Company, Office of Intellectual Property Counsel, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).		

Published

With international search report.

(54) Title: COMPONENT SEPARATION SYSTEM INCLUDING CONDENSING MECHANISM

(57) Abstract

A method and apparatus for separating components from a mixture (16) includes a condensing surface (14) located in a high vapor concentration region above the source of evaporated liquid. The evaporated liquid is condensed on the condensing surface (14). The condensed liquid is removed from the condensing surface (14) while it remains liquid, using substantially capillary forces. A plurality of open grooves (20) are formed on the condensing surface (14). The grooves (20) channel the condensed liquid on the condensing surface (14) away from the mixture (16). The grooves (20) can be capillary grooves which satisfy the Concus-Finn Inequality.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

5

COMPONENT SEPARATION SYSTEM
INCLUDING CONDENSING MECHANISM

TECHNICAL FIELD

10 The present invention relates to a system for separating components. More particularly, the present invention relates to removing liquid from a condensing surface used for separating components.

BACKGROUND OF THE INVENTION

15 Condensation is a common separation mechanism for many industrial processes. It is typically used with a heat transfer surface that is controlled at a temperature that will remove specific vapors from a gas stream. When vapors condense on these surfaces they 20 form a combination of a liquid film, rivulets, or droplets that drain by gravity to the lowest point of the surface and then typically fall from the surface in droplet form. In most cases the heat transfer surface must be remote from the original high concentration 25 source of the vapor to prevent the droplets from being reintroduced to the process. Locating the surface at a distance from the original source generally requires that the condensing operation occurs at a lower vapor concentration. This leads to inefficiencies that 30 require colder operating temperatures, more surface area, or reduced rates of condensation.

35 In some processes, active systems remove the condensed liquid from the surface. For example a rotating surface with a scraping blade to remove the condensed liquid film. These systems can be located close to the process since the liquid is removed by mechanical means and will not be reintroduced to the process. However, these systems are complex,

expensive, and have limited design flexibility to fit a particular process.

One example of a component separation system are the conventional dryers of coated substrates which 5 direct large volumes of gas to the coated surface to evaporate the liquid and remove it in vapor form. In many cases, due to environmental or economic reasons, the vapors in the gas stream must be removed before exhausting to the atmosphere. Condensation is a common 10 method of removing these vapors from the gas stream.

Systems using condensation typically are large heat exchangers or chilled rolls with wiping blades. They are located away from the web in the bulk gas flow stream. Typically a heat exchanger is placed in the 15 bulk gas flow stream and the surface temperature is reduced to a point where the vapors condense, removing them from the process.

The vapor concentration in the bulk gas flow stream must be kept below flammable limits, typically 20 1-2% of the gas stream. To obtain acceptable recovery efficiencies with low vapor concentration, the heat transfer surface must be large and the operating temperatures must be very low, on the order of -30°C - 0°C. This is very expensive and there are numerous 25 process problems such as ice formation on the heat transfer surfaces. Significant effort has been expended in raising the vapor concentration to improve the efficiency of this process. An example is the use of inert gas as the gas flow stream which allows the 30 vapor concentration to be increased, because the flammability limit is removed. However, these methods are also very expensive and create additional process problems that have limited their use in the industry. The vapor concentration at the surface of the coating, 35 or gas/liquid interface, is very high and it drops off rapidly within several centimeters of the surface.

It would be ideal for maximum recovery efficiency to locate the heat transfer surface within several centimeters of the gas/liquid interface. Condensing surfaces generally cannot be located this close to the 5 surface as the condensed liquid would drain by gravity back onto the coating surface. Active systems such as a rotating roll with a scraping blade could be close to the process but their shape does not fit the flat surface characteristic of the moving substrate and they 10 are relatively complicated and expensive. There is a need for a system of removing the liquid from condensing surfaces in a component separation system.

SUMMARY OF THE INVENTION

15 The invention is a method and apparatus for separating components from a mixture. A source of evaporated liquid is provided and a condensing surface is located in a high vapor concentration region above the source of evaporated liquid. The evaporated liquid 20 is condensed on the condensing surface, and the condensed liquid is removed from the condensing surface while the condensed liquid remains in the liquid state. This removal uses substantially only capillary forces.

The method and apparatus can also include 25 evaporating liquid from the mixture, and recovering and collecting any liquid removed from the mixture.

The condensing mechanism used for this component separation system includes the condensing surface which receives evaporated liquid from the mixture, and a 30 plurality of open grooves formed on the condensing surface. The grooves channel the condensed liquid on the condensing surface away from the mixture. The condensing surface can have a length of less than 2 m.

The grooves can be capillary grooves which satisfy 35 the Concus-Finn Inequality, and can be parallel to each other. The condensing surface shape can be selected to

correspond to the physical contour required by the component separation process.

An edge plate can be used to contact the condensing surface and facilitate removal of the 5 condensed liquid from the condensing surface.

The condensing apparatus can be a condensing plate and can include passageways for receiving a heat transfer fluid.

10 **BRIEF DESCRIPTION OF THE DRAWINGS**

Figure 1 is a perspective view of the apparatus of the invention.

Figure 2 is a front view, partially in crosssection of the apparatus of Figure 1.

15 Figure 3 is a partial cutaway view of the plate of the apparatus of Figure 1.

DETAILED DESCRIPTION

This invention is a method and apparatus which can 20 be used for various procedures including component separation. For example, drying a coating with solvent recovery is one operation that can be performed by the system. Distillation and liquid separation are other operations. The system is used to separate components 25 from a gas mixture but can be used to separate liquid components from gas or non-gas mixtures by first converting the liquid to gas or vapor form. The method and apparatus can remove liquid from a condensing surface using capillary surfaces to control and direct 30 the liquid that forms on the condensing surface.

This system eliminates the disadvantages of known condensation component separation methods. It uses simple, passive, capillary surfaces to remove liquid from a condensing surface to prevent reintroducing the 35 liquid to the process. The capillary surfaces can be designed to fit any physical contour which provides flexibility to design for whatever physical shape the

process requires. This allows the heat transfer surface to be located close to a high concentration process source of vapor for maximum efficiency. This permits providing a passive, flexible, inexpensive way 5 to improve the condensation rates in processes for a given surface area and temperature differential.

Any kind of condensing structure can be used, such as plates of any type, whether flat or not, fins, tubes, or other structures. Plates, as described in 10 this application, include fixed or moving platens and similar devices. Figures 1-3 show an apparatus using one platen. The platen has a condensing and liquid-removal surface located close to a vapor source of a mixture to be separated.

15 The apparatus operates on various mixtures. These mixtures can be a substrate with liquid coating, a fluid bath having a mixture of components, or any other combination of components from which a liquid or gaseous component can be separated.

20 As shown in Figures 1 and 2, the apparatus 10 includes a condensing platen 12 which has a condensing surface 14. The condensing surface may be placed at any distance from the mixture 16, shown in container 17, which serves as a process vapor source and which 25 has an evaporating surface 18 - a surface from which liquid evaporates to separate that liquid from the other components in the mixture. Vapors from the mixture 16 travel to the condensing surface 14 where they condense. The condensing surface can be located 30 in a region of higher vapor concentration, such as within 1 m of the evaporating surface.

The condensing platen 12, which can be stationary or moving, is placed above but near the mixture 16. The condensing platen 12 can be at any orientation. 35 The condensing platen 12 can be above the mixture 16, below the mixture, and the system can operate with the

platen vertical or at any other angle, as long as the mixture permits such an orientation.

The illustrated condensing surface 14 is located above an evaporating surface 18 that is flat. The 5 condensing surface 14, however, can be of any shape and can be designed to fit the process as required. The condensing surface 14 may be placed at any distance from the mixture 16. Vapors from the mixture 16 travel to the condensing surface 14 where they condense.

10 As shown, the condensing surface 14, which serves as a capillary surface, is flat, but it is not smooth. It has open capillary channels or grooves 20 which are designed to deliver the condensed liquid laterally to both edges of the platens 12. Edge plates 22 are 15 located on both sides of the condensing surface 14, as shown in Figure 1. These edge plates 22 are shown as perpendicular to the condensing surface 14, although they can be at other angles with it. The edge plates 22 can be smooth, capillary surfaces, porous media, or 20 other surfaces.

Liquid from the mixture 16 is evaporated using any type of heat source, such as a heater placed on the side of the mixture opposite the condensing platen 12. The evaporated liquid from the mixture 16 travels 25 across the gap 24 between its evaporating surface 18 and the condensing platen 12 and condenses on the condensing surface 14 of the condensing platen 12. The grooves 20 on the condensing surface 14 use capillary forces to move the condensed liquid to edge plates 22. 30 Alternatively, other capillary mechanisms can be used to remove the condensed liquid from the surface 14 of the condensing platen 12 to prevent the condensed liquid from returning to the mixture 16. Also, the condensed liquid need not be removed from the platen at 35 all, as long as it is removed from the condensing surface 14 to prevent it from returning to the mixture 16.

When the liquid reaches the end of the grooves 20 it intersects with another capillary surface formed at the angle between the edge plates 22 and the grooves 20. The liquid collects at this interface and gravity 5 overcomes the capillary force and the liquid flows as films or droplets 26 down the face of the edge plates 22. The droplets 26 fall from each edge plate 22 and can be collected in a collecting device, which can be located outside of the enclosure or within the 10 enclosure as long as they prevent separated liquid from returning to the mixture. For example, a slotted pipe 28 can be placed around the bottom edge of each edge plate 22 to collect the liquid and direct it to a container.

15 The condensing platen 12 can include internal passageways, such as channels. A heat transfer fluid can be cooled or heated by an external device and circulated through the passageways in the condensing platen 12.

20 There is no limitation in the platen width other than the effective transporting rate of the capillary grooves 20. The capillary grooves 20 can be designed as capillary surfaces. A capillary surface is defined as a geometrically specific surface which satisfies the 25 Concus-Finn Inequality which is: $\alpha + \theta_s < 90^\circ$, where α is half the included angle of any corner and θ_s is the gas/liquid/solid static contact angle. The static contact angle is governed by the surface tension of the liquid for a given surface material in gas. Capillary surfaces are discussed in great detail in Lopez de 30 Ramos, A. L., "Capillary Enhanced Diffusion of CO₂ in Porous Media," Ph.D. Thesis, University of Tulsa (1993).

35 Using capillary surfaces to remove the condensed liquid provides the ability to locate the condensing surface 14 close to the high vapor concentration source just above the evaporating surface 18. As the

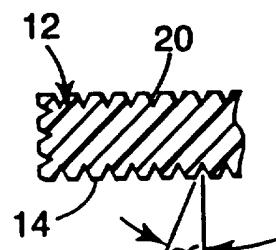
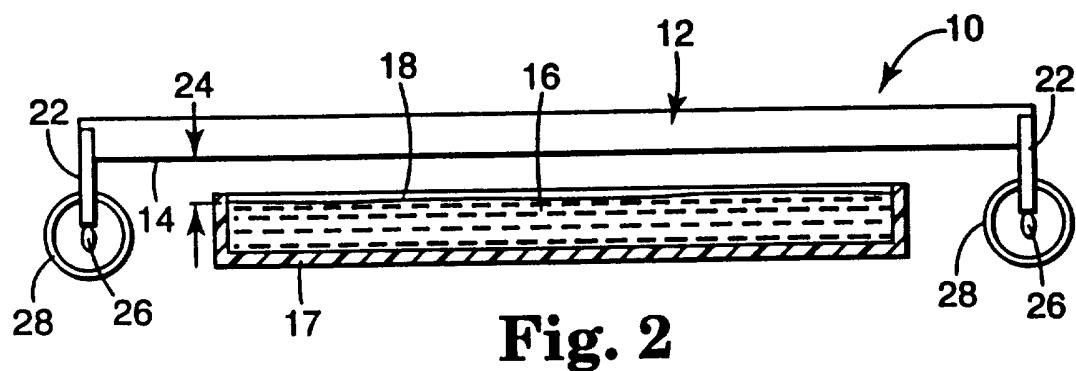
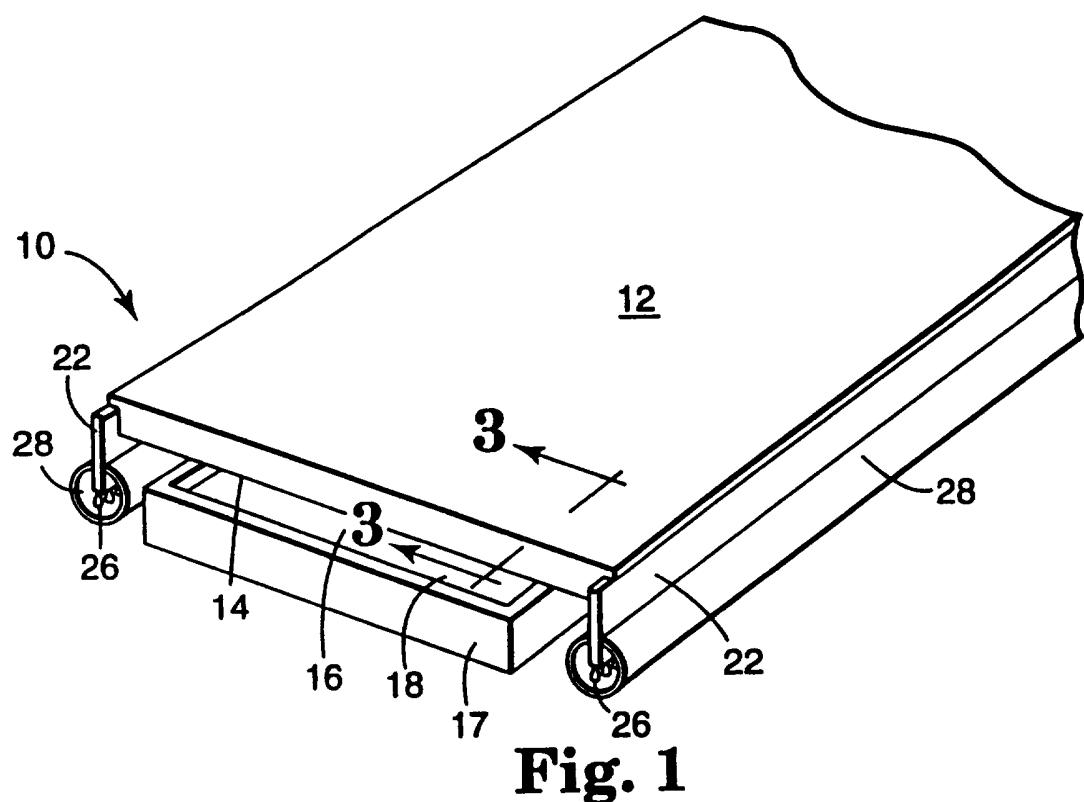
evaporated liquid condenses on the surface, rather than being reintroduced to the process by gravity, it can be passively removed from the process. The invention is an inexpensive method of achieving greater operating 5 efficiencies that allow higher operating temperatures, small surface areas, and high rates of condensation.

CLAIMS

1. A method of separating components from a mixture 16 comprising:
 - 5 providing a source 17 of evaporated liquid; locating a condensing surface 14 above the source 17 of evaporated liquid; condensing the evaporated liquid on the condensing surface 14; and
 - 10 removing, using substantially only capillary forces, the condensed liquid from the condensing surface 14 while the condensed liquid remains in the liquid state.
- 15 2. The method of claim 1 further comprising the step of evaporating liquid from the mixture 16.
3. The method of claim 1 wherein the removing the condensed liquid step comprises recovering and 20 collecting any liquid removed from the mixture 16.
4. The method of claim 1 wherein the locating step comprises locating the condensing surface 14 within 1 m of an evaporating surface 18 of the source 25 of evaporated liquid.
5. A condensing mechanism for use in a component separation system to remove one or more components from a mixture 16 which serves as a source of evaporated liquid, wherein the condensing mechanism comprises:
 - 30 a condensing surface 14 locatable in a high vapor concentration region above the source of evaporated liquid to receive evaporated liquid from the mixture; and
 - 35 a plurality of open grooves 20 formed on the condensing surface 14 to channel the condensed liquid on the condensing surface away from the mixture 16.

6. The condensing mechanism of claim 5 wherein the grooves 20 are parallel capillary grooves which satisfy the Concus-Finn Inequality.

5




7. An apparatus for separating components from a mixture comprising:

the condensing mechanism of claim 5;
means for condensing the evaporated liquid from
10 the mixture 16 on the condensing surface 14; and
means for removing the condensed liquid from the
condensing surface 14 while the condensed liquid
remains in the liquid state.

15 8. The apparatus of claim 7 wherein the condensing surface 14 has a length of less than 2 m and satisfies the Concus-Finn Inequality.

9 9. The apparatus of claim 7 wherein the removing
20 the condensed liquid means comprises at least one edge
22 plate contacting the condensing surface 14.

10. The apparatus of claim 7 further comprising a condensing plate 12 comprising passageways for
25 receiving a heat transfer fluid and located above the mixture 16 wherein the condensing surface 14 is part of the condensing plate 12.

Fig. 3

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 96/13061

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B01D5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B01D C02F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP,A,0 612 691 (MITSUBISHI GAS CHEMICAL COMPANY) 31 August 1994 see page 2, line 26 - page 4, line 14; figures 1A,1B -----	1-5,7,9, 10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- '&' document member of the same patent family

1

Date of the actual completion of the international search

11 November 1996

Date of mailing of the international search report

21.11.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentdaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Van Belleghem, W

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 96/13061

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A-612691	31-08-94	JP-A- 6254536 US-A- 5468351	13-09-94 21-11-95