A vision-based augmented reality system using an invisible marker indicates an invisible marker on a target object to be tracked, such that it can rapidly and correctly track the target object by detecting the invisible marker. The augmented reality system includes a target object (TO) including an infrared marker (IM) drawn by an invisible infrared light-emitting material; a visible-ray camera (110) for capturing an image of the TO; an infrared-ray camera (120) for capturing an image of the IM included in the TO image; an optical axis converter for allowing the infrared-ray camera (120) and the visible-ray camera (110) to have the same viewing point; an image processing system (140) for rendering a prepared virtual image to the TO image to generate a new image.
Start

Separate TO image and IM image & acquire the separated images S41

Monitor position and pose of IM S42

Track TO on the basis of position and pose of IM S43

Render virtual image to TO image & generate new image S44

Output new image S45

Terminated? S46

Yes

End

No
VISION-BASED AUGMENTED REALITY SYSTEM USING INVISIBLE MARKER

TECHNICAL FIELD

[0001] The present invention relates to an augmented reality system for real-time matching a virtual computer graphic (CG) image with a real image, and more particularly to a vision-based augmented reality system using an invisible marker, which indicates an invisible marker on a target object to be tracked, and rapidly and correctly tracks the target object by detecting the invisible marker, such that it rapidly implements correct augmented reality, obviates problems generated when a visible marker is used, and is applicable to a variety of application fields.

BACKGROUND ART

[0002] Generally, three virtual realities, i.e., an immersive virtual reality (VR), a desktop VR, and an augmented reality, have been widely used. The augmented reality is indicative of a user interface technique capable of correctly matching a virtual image generated by a computer with a real image viewed by a user. The above-mentioned augmented reality can provide a user with a higher reality and higher recognition accuracy. However, if the number of characteristics collected by objects is a small number or an environment condition such as an illumination condition is unstable, performance is greatly deteriorated.

[0003] In order to implement the above-mentioned augmented reality, a method for correctly estimating the movement of a camera or a target object is of importance. A method for implementing the above-mentioned augmented reality generally includes the following first and second methods.

[0004] The first method uses characteristics objects existing in the real world, and is considered to be an ultimate purpose of the augmented reality field.

[0005] However, if the number of characteristics collected by objects is a small number or an environment condition such as an illumination condition is unstable, performance is greatly deteriorated.

[0006] The second method uses known markers, and is more stable than the above-mentioned first method. In this case, it is indicative of an object artificially inserted in the real world to correctly estimate the movement of a camera or a target object, such that it may hide other objects or may be unpleasant to the eye. Due to the above-mentioned problems, the augmented reality technologies using the known marker have limited application.

[0007] The vision-based augmented reality system will hereinafter be described with reference to FIG. 1.

[0008] FIG. 1 is a conventional vision-based augmented reality system.

[0009] Referring to FIG. 1, the conventional vision-based augmented reality system includes a camera 11 for capturing a target object (TO) on which a visible marker (VM) is indicated; an image processor 12 for monitoring a position and attitude of the marker upon receiving a mark image indicated on the TO from the camera 11, tracking a position and pose of the TO, and rendering a virtual image to a TO image such that it generates a new image; and an output unit 13 for displaying the image received from the image processor 12 on a screen.

[0010] The above-mentioned augmented reality system uses the visible marker so that it correctly and rapidly implements the augmented reality. In this case, the marker is an artificial addition not present in the real world, such that the above-mentioned augmented reality system has a disadvantage in that the marker hides a desired target object or is unpleasant to the eye. Also, the number of application fields of the above-mentioned augmented reality system using the visible marker is very limited.

[0011] Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a vision-based augmented reality system using an invisible marker, which indicates an invisible marker on a target object to be tracked, and rapidly and correctly tracks the target object by detecting the invisible marker, such that it rapidly implements correct augmented reality, obviates problems generated when a visible marker is used, and is applicable to a variety of application fields.

SUMMARY OF INVENTION

[0012] In accordance with the present invention, the above and other objects can be accomplished by the provision of a vision-based augmented reality system using an invisible marker, comprising: a target object (TO) including an infrared marker (IM) drawn by an invisible infrared light-emitting material; a visible-ray camera for capturing an image of the TO; an infrared-ray camera for capturing an image of the IM included in the TO image; an optical axis converter for transmitting a visible ray received from the TO to the visible-ray camera, transmitting an infrared ray received from the TO to the infrared-ray camera, and allowing the infrared-ray camera and the visible-ray camera to have the same viewing point; an image processing system for receiving the infrared marker image from the infrared-ray camera, receiving the TO image from the visible-ray camera, separating the infrared marker image and the TO image from each other, real-time monitoring a position and pose of the IM associated with the infrared-ray camera, real-time tracking a position and pose of the TO, rendering a prepared virtual image to the TO image, and generating a new image; and an output unit for displaying the image received from the image processing system on a screen.

[0013] The above-mentioned vision-based augmented reality system using the invisible marker indicates an invisible marker on a target object to be tracked, and rapidly and correctly tracks the target object by detecting the invisible marker. Therefore, the vision-based augmented reality system rapidly implements correct augmented reality, obviates problems generated when a visible marker is used, and is applicable to a variety of application fields. Brief

BRIEF DESCRIPTION OF DRAWINGS

[0014] The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

[0015] FIG. 1 is a block diagram illustrating a conventional vision-based augmented reality system;

[0016] FIG. 2 is a block diagram illustrating a vision-based augmented reality system according to the present invention;

[0017] FIG. 3 is a conceptual diagram illustrating a method for employing a prism as an optical axis converter according to the present invention;

[0018] FIG. 4 is a flow chart illustrating an image processing system according to the present invention;

[0019] FIGS. 5a and 5b are exemplary images captured by a visible-ray camera or an infrared camera according to the present invention; and
FIG. 6 is an implementation example of the augmented reality according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 2 is a block diagram illustrating a vision-based augmented reality system according to the present invention.

Referring to FIG. 2, the vision-based augmented reality system according to the present invention includes a Target Object (TO) to be tracked, a visible-ray camera 110, an infrared-ray camera 120, an optical axis converter, an image processing system 140, and an output unit 150.

The TO includes an infrared marker (IM) designated by an invisible infrared light-emitting material. The IM is adapted to correctly track the TO. Also, an invisible infrared mark is adopted not to intrude upon the user's view. In this case, infrared light-emitting ink may be used as the infrared light-emitting material.

The visible-ray camera 110 captures an image of the TO. In order to augment the degree of separation between a visible ray and an infrared ray, the visible-ray camera 110 may include a color compensation filter for passing visible-ray light.

The infrared-ray camera 120 captures an image of an infrared marker (IM) included in the TO. In order to augment the degree of separation between the infrared ray and the visible ray, the infrared-ray camera 120 may include an infrared pass filter for passing infrared-ray light.

In the case of using the color compensation filter and the infrared pass filter, the visible-ray beam and the infrared-ray light can be separated from each other, such that the degree of separation between the infrared ray and the visible ray can be increased.

The optical axis converter transmits a visible ray received from the TO to the visible-ray camera 110, and transmits an infrared ray received from the TO to the infrared-ray camera 120, such that a viewing point of the infrared-ray camera 120 is equal to that of the visible-ray camera 110.

In this case, the above-mentioned condition where the infrared-ray camera 120 and the visible-ray camera 110 have the same viewing point means that the infrared-ray camera 120 and the visible-ray camera 110 capture the same scene in the same direction at the same location.

The viewing point of the infrared-ray camera 120 is equal to that of the visible-ray camera 110 by means of the above-mentioned optical axis converter, such that the infrared-ray camera 120 and the visible-ray camera 110 can capture the same scene at the same distance and viewing point.

The image processing system 140 receives an infrared marker image from the infrared-ray camera 120, receives the TO image from the visible-ray camera 110, separates the infrared marker image and the TO image from each other, real-time monitors the position and pose of the infrared marker (IM) associated with the infrared-ray camera 120, real-time tracks the position and pose of the TO, and renders a prepared virtual image to the TO image, such that it generates a new image.

In this case, the rendering means that a three-dimensional CG color or effect is applied to individual planes of a real object drawn on a screen, resulting in an increased reality of the real object displayed on a screen.

The output unit 150 displays the image received from the image processing system 140 on a screen. For example, a general monitor, a Head Mounted Display (HMD), stereoscopic glasses such as CrystalEyes, and an optical see-through HMD, etc., may be used as the output unit 150.

In the meantime, the optical axis converter is adapted to allow the viewing point of the infrared-ray camera 120 to coincide with that of the visible-ray camera 110, and can be implemented with a cold mirror 130 or a prism 130A.

Referring to FIG. 2, if the optical axis converter is implemented with a cold mirror, it is arranged between the visible-ray camera 110 and the infrared-ray camera 120, transmits the infrared ray generated from the TO to the infrared-ray camera 120, reflects the visible ray generated from the TO on the visible-ray camera 110, and thereby allows the viewing point of the infrared-ray camera 120 to coincide with that of the visible-ray camera 110.

FIG. 3 is a conceptual diagram illustrating a method for employing a prism as an optical axis converter according to the present invention.

Referring to FIG. 3, if the optical axis converter is implemented with a prism 130A, it refractions a visible ray generated from the TO in the direction of the visible-ray camera 110, and refracts an infrared ray generated from the TO in the direction of the infrared-ray camera 120, such that the viewing point of the infrared-ray camera 120 coincides with that of the visible-ray camera 110.

Operations and effects of the present invention will hereinafter be described with reference to the annexed drawings.

FIG. 4 is a flow chart illustrating an image processing system according to the present invention. Referring to FIGS. 2-3, the optical axis converter transmits a visible ray (OP1) from among a plurality of OPs received from the TO to the visible-ray camera 110, and transmits an infrared ray (OP2) from among a plurality of OPs received from the TO to the infrared-ray camera 120, such that the viewing point of the infrared-ray camera 120 is equal to that of the visible-ray camera 110. By the use of above-mentioned optical axis converter, the infrared-ray camera 120 and the visible-ray camera 110 can capture the same scene at the same distance and viewing point.

In this case, the visible-ray camera 110 captures an image of the TO including the IM drawn by an infrared light-emitting material, and outputs the captured TO image to the image processing system 140. The infrared-ray camera 120 captures an image of the IM included in the TO, and outputs the captured IM image to the image processing system 140.

FIG. 5a is an exemplary image captured by the visible-ray camera, and FIG. 5b is an exemplary image captured by the infrared-ray camera.

FIGS. 5a-5b are images captured by the visible-ray camera and the infrared-ray camera at the same time point, respectively. In more detail, FIG. 5a is an image captured by the visible-ray camera 110, and FIG. 5b is an image captured by the infrared-ray camera 120. As shown in FIG. 5b, the IM denoted by "A" can be captured by the infrared-ray camera 120.

Referring to FIGS. 2 and 4, the image processing system 140 acquires the TO image from the visible-ray camera 110, acquires the IM image from the infrared-ray camera 120 at step S41. The image processing system 140 compares coordinates of the acquired IM image with those of a prepared reference marker, such that it can real-time calculate the position and pose of the IM at step S42.
The image processing system monitors the position and pose of the IM, such that it can real-time track the position and pose of the TO at step S43. The image processing system renders a prepared virtual image to the TO image to generate a new image at step S44, outputs the new image at step S45, and repeats an output control procedure of the output unit until the entire program is terminated at step S46.

Therefore, the image is transmitted from the image processing system to the output unit, resulting in augmented reality implementation.

FIG. 6 is an implementation example of the augmented reality according to the present invention. Referring to FIG. 6, the position of the IM is tracked by the infrared-ray camera such that the pose of the TO is calculated. A prepared image is rendered to the image captured by the visible-ray camera, such that a new image in which the augmented Reality (AR) is implemented is shown in FIG. 6.

As apparent from the above description, the present invention can correctly and rapidly track a TO using a marker made of invisible ink (i.e., an infrared light-emitting material), such that it can correctly and rapidly implement the augmented reality. In more detail, the present invention monitors the marker using the infrared-ray camera, and renders a virtual image on an image captured by the visible-ray camera using the monitored result, resulting in augmented reality implementation. The viewing points of the visible-ray and infrared-ray cameras coincide with each other by a cold mirror or a prism, such that the same augmented reality can be implemented by monitoring an invisible marker on the assumption that only the visible-ray image is considered.

In conclusion, the present invention is applicable to all application fields requiring the augmented reality technology.

In the augmented reality system for real-time matching a virtual CG image with a real image, a vision-based augmented reality system using an invisible marker indicates an invisible marker on a target object to be tracked, and rapidly and correctly tracks the target object by detecting the invisible marker, such that it rapidly implements correct augmented reality, obviates problems generated when a visible marker is used, and is applicable to a variety of application fields.

A vision-based augmented reality system using an invisible marker, comprising:
- A visible-ray camera for capturing target object (TO) including an infrared marker (IM) drawn by an invisible infrared light-emitting material;
- an infrared-ray camera for capturing the IM included in the TO; and
- an image processing system for tracking position and pose of the TO based on position and pose of the IM.

The system of claim further comprising an output unit for displaying the rendered virtual image.

The system of claim wherein the output unit includes at least one of a head mount display, a 3-dimensional glass and a glass-type HMD.

The system of claim wherein the image processing system receives an image of the infrared marker from the infrared-ray camera, receives an image of the TO from the visible-ray camera, and monitors position and pose of the IM associated with the infrared-ray camera.

The system of claim wherein the image of the visible-ray camera and the image of the infrared-ray camera are received separately.

A display device, comprising:
- A visible-ray camera for capturing target object (TO) including an infrared marker (IM) drawn by an invisible infrared light-emitting material;
- an infrared-ray camera for capturing the IM included in the TO; and
- an image processing system for tracking position and pose of the TO based on position and pose of the IM; and
- an output unit for displaying the rendered virtual image.

The device of claim wherein the image processing system receives an image of the infrared marker from the infrared-ray camera, receives an image of the TO from the visible-ray camera, and monitors position and pose of the IM associated with the infrared-ray camera.

The device of claim wherein an image of the visible-ray camera and an image of the infrared-ray camera are received separately.

The device of claim wherein the output unit includes at least one of a head mount display, a 3-dimensional glass and a glass-type HMD.

A method for vision-based augmented reality using an invisible marker, comprising the steps of:
(a) capturing target object (TO) including an infrared marker (IM) drawn by an invisible infrared light-emitting material using a visible-ray camera;
(b) capturing the IM included in the TO using an infrared-ray camera;
(c) monitoring position and pose of the IM associated with the infrared-ray camera, tracking position and pose of the TO based on position and pose of the IM, and rendering a virtual image to the TO image.

The method of claim further comprising optical axis converting step of changing viewing point of at least one of the visible-ray camera and the infrared-ray camera.

The method of claim wherein the optical axis converting step comprises the step of changing the viewing point of at least one of the visible-ray camera and the infrared-ray camera so that the infrared-ray camera and the visible-ray camera have the same viewing point.

The method of claim wherein a cold mirror which reflects infrared ray generated from the TO on the infrared-ray camera and transmits infrared ray generated from the TO to the visible-ray camera is used in the optical axis converting step.

The method of claim for vision-based augmented reality using an invisible marker, comprising the steps of:
(a) capturing a target object (TO) having an infrared marker (IM) drawn by an invisible infrared light-emitting material using an infrared-ray camera;
(b) rendering a virtual image based on position and pose of the IM.

The method of claim further comprising the step of displaying the rendered virtual image.

The method of claim further comprising the capturing the TO using a visible-ray camera.

The method of claim wherein an image of the visible-ray camera and an image of the infrared-ray camera are obtained separately.

The method of claim wherein the virtual image is rendered on the image of the visible-ray camera.
39. The method of claim 37, further comprising the optical axis converting step of changing viewing point of at least one of the visible-ray camera and the infrared-ray camera.

40. The method of claim 39, wherein the optical axis converting step comprises the step of changing the viewing point of at least one of the visible-ray camera and the infrared-ray camera so that the infrared-ray camera and the visible-ray camera have the same viewing point.