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METHODS AND SYSTEMS FOR DECOMPOSITION AND QUANTIFICATION OF
DNA MIXTURES FROM MULTIPLE CONTRIBUTORS OF KNOWN OR UNKNOWN
GENOTYPES

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims benefits under 35 U.S.C. § 119(e) to U.S. Provisional
Patent  Application No. 62/522,605, entitled: METHODS FOR ACCURATE
COMPUTATIONAL DECOMPOSITION OF DNA MIXTURES FROM CONTRIBUTORS OF
UNKNOWN GENOTYPES, filed June 20, 2017, which is herein incorporated by reference in its

entirety for all purposes.

BACKGROUND
[0002] Sequencing data from a nucleic acid (e.g., DNA or RNA) mixture of closely

related genomes is frequently found in research as well as clinical settings, and quantifying the
mixing contributors has been a challenge when the original genomes are unknown. For example,
in the context of microbiology and metagenomics, researchers and clinicians may need to
quantify closely related bacterial strains of the same species in an environmental sample. In the
setting of forensics, law enforcement personnel may need to quantify as well as identify human
individuals from a blood sample containing DNA of multiple individuals. In the setting of
biomedical research, scientists may need to determine the purity or extend of contamination in a

cell or DNA sample.

{0003] Another application is Next Generation Sequencing (NGS) coupled liquid biopsy.
NGS-coupled liquid biopsy is an emerging diagnosis strategy with potential applications in
various clinical settings. In the context of organ or tissue transplant, NGS-coupled liquid biopsy
provides a non-invasive approach for monitoring the health of allogeneic graft by quantifying the
amount of allogeneic DNA in recipient blood. In some applications, the donor and recipient

genomes are unknown or partially unknown.

[0004] The term chimera has been used in modern medicine to describe individuals
containing cell populations originated from different individuals. The state of chimerism may
occur spontaneously through inheritance, but is more frequently produced artificially via

transplantation, transfusion, or sample contamination.
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{0005] Chimerism leaves informative signals in different DNA types depending on the
type of transplant. For bone marrow and hematopoietic stem cell transplants, blood genomic
DNA (gDNA) collected post-transplant will have varying levels of chimerism depending on the
engraftment state of the transplant. For solid organ transplants, chimerism signals can be seen in
the blood cell-free DNA (cfDNA). Such signals can be extracted through non-invasive liquid
biopsy, as contrast to the invasive tissue biopsy procedure that is the current standard of care for

organ transplant monitoring.

[0006] Reproducible and accurate determinations of the relative contributions of donor
genomes to a chimerism DNA sample would provide an informative tool for transplant
monitoring, allowing researchers and clinicians to non-invasively and objectively measure the
changes in dynamics among donor and recipient cells, which reflect the health status of the donor
cells and organs. This disclosure introduces novel and improved methods for quantifying the

relative contribution of each genome to a chimerism sample.

SUMMARY
[0007] Some implementations presented herein provide computer-implemented methods
and systems for quantification and deconvolution of nucleic acid mixture samples including
nucleic acid of two or more contributors of unknown genotypes. One aspect of the disclosure
relates to methods for quantifying nucleic acid fractions in nucleic acid samples including
nucleic acid (e.g., DNA or RNA) of two or more contributors having different genomes. In some
implementations, the nucleic acid mixture samples include biological tissues, cells, peripheral
blood, saliva, urine, and other biological fluid, as described below. In some applications, the
nucleic acid sample includes the nucleic acid of only a single contributor, and the
implementations described herein can determine that the single contributor’s nucleic acid
accounts for 100% of the nucleic acid in the sample. So although the description hereinafter
refers to the nucleic acid sample as a nucleic acid mixture sample in some implementations, it is
understood that the sample can include a single contributor’s nucleic acid, with the contributor’s
fraction being 100% or 1. Of course, the methods can also be used to quantify a sample

including nucleic acid of two or more contributors.

{0008] Because various methods and systems provided herein implement strategies and

processes that use probabilistic mixture models and Bayesian inference techniques, the
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embodiments provide technological improvements over conventional methods in quantification
and deconvolution of nucleic acid (e.g., DNA or RNA) mixture samples. Some implementations
provide improved analytical sensitivity and specificity, providing more accurate deconvolution

and quantification of nucleic acid mixture samples.

{0009] Some implementations allow accurate quantification of nucleic acid mixture
samples with nucleic acid quantities that are too low for conventional methods to accurately
quantify. Some implementations allow accurate quantification of 3-10ng of cell free DNA
(cIDNA) mixture samples, which cannot be accurately quantified by conventional methods.
Some implementations allow application to mixture samples with 3 or more contributors, which
conventional methods cannot handle. Some implementations allow applications to mixtures with
one or more unknown genomes, which conventional methods cannot handle. Some
implementations described herein refer to a DNA sample, but it is understood that the

implementations are also applicable to analyzing RNA samples.

[0010] In some embodiments, the method is implemented at a computer system that
includes one or more processors and system memory configured to deconvolve and quantify a

nucleic acid mixture sample including nucleic acid of two or more contributors.

[0011] Some embodiments provide a method for quantifying a fraction of nucleic acid of
a contributor in a nucleic acid mixture sample comprising nucleic acid of the contributor and at
least one other contributor. The method involves: (a) extracting nucleic acid molecules from the
nucleic acid sample; (b) amplifying the extracted nucleic acid molecules; (c) sequencing the
amplified nucleic acid molecules using a nucleic acid sequencer to produce nucleic acid
sequence reads; (d) mapping, by the one or more processors, the nucleic acid sequence reads to
one or more polymorphism loci on a reference sequence; (e) determining, using the mapped
nucleic acid sequence reads and by the one or more processors, allele counts of nucleic acid
sequence reads for one or more alleles at the one or more polymorphism loci; and (f)
quantifying, using a probabilistic mixture model and by the one or more processors, one or more
fractions of nucleic acid of the one or more contributors in the nucleic acid sample, wherein
using the probabilistic mixture model includes applying a probabilistic mixture model to the
allele counts of nucleic acid sequence reads, and wherein the probabilistic mixture model uses

probability distributions to model the allele counts of nucleic acid sequence reads at the one or
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more polymorphism loci, the probability distributions accounting for errors in the nucleic acid

sequence reads.

[0012] In some implementations, the mapping of (d) includes mapping using computer
hashing or computer dynamic programming. In some implementations, the quantifying of (f)
comprises quantifying using a novel optimization method combining a multi-iteration grid
searching and a Broyden—Fletcher—Goldfarb—Shanno (BFGS) - quasi-Newton method. In some
implementations, the quantifying of (f) comprises quantifying using an iterative weighted linear
regression. These features require computers to perform and are rooted in computer technology.
[0013] In some implementations, the method further includes, determining, using the
probabilistic mixture model and by the one or more processors, one or more genotypes of the one
or more contributors at the one or more polymorphism loci.

[0014] In some implementations, the method further includes, determining, using the one
or more fractions of nucleic acid of the one or more contributors, a risk of one contributor (a

donee) rejecting a tissue or an organ transplanted from another contributor (a donor).

[0015] In some implementations, the one or more contributors include two or more
contributors.

[0016] In some implementations, the nucleic acid molecules include DNA molecules or
RNA molecules.

[0017] In some implementations, the nucleic acid sample includes nucleic acid from

zero, one, or more contaminant genomes and one genome of interest.
[0018] In some implementations, the one or more contributors include zero, one, or more
donors of a transplant and a donee of the transplant, and wherein the nucleic acid sample

includes a sample obtained from the donee.

[0019] In some implementations, the transplant includes an allogeneic or xenogeneic
transplant.
{0020] In some implementations, the nucleic acid sample includes a biological sample

obtained from the donee.

{0021} In some implementations, the nucleic acid sample includes a biological sample
obtained from a cell culture.

10022] In some implementations, the extracted nucleic acid molecules include cell-free

nucleic acid.
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[0023] In some implementations, the extracted nucleic acid molecules include cellular
DNA.
[0024] In some implementations, the one or more polymorphism loci include one or

more biallelic polymorphism loci.

[0025] In some implementations, the one or more alleles at the one or more
polymorphism loci include one or more single nucleotide polymorphism (SNP) alleles.

[0026] In some implementations, the probabilistic mixture model uses a single-locus
likelihood function to model allele counts at a single polymorphism locus. The single-locus
likelihood function includes:

[0027] M(ni;, n2i | pri, 0)

[0028] ny;iis the allele count of allele 1 at locus 1, ny; is the allele count of allele 2 at locus
i, p1i is an expected fraction of allele 1 at locus i, and € includes one or more model parameters.
[0029] In some implementations, p;; is modeled as a function of: (i) genotypes of the
contributors at locus i, or g; = (g1, ..., gp1i), which is a vector of copy number of allele 1 at
locus 7 in contributors 1...D; (i1) read count errors resulting from the sequencing operation in (c),
or 4; and (iii) fractions of nucleic acid of contributors in the nucleic acid sample, or f = (f1, ...,
Pp), wherein D is the number of contributors. In some implementations, the contributors include
two or more contributors, and pr; = p(gi, 4, f) < [(I- 1) gi + 4 (2- gi)] / 2 * B, where ¢ is vector
dot product operator.

[0030] In some implementations, the contributors include two contributors, and pj; is
obtained using the p;’ values in Table 3.

[0031] In some implementations, zero, one or more genotypes of the contributors are
unknown. In some implementations, (f) includes marginalizing over a plurality of possible
combinations of genotypes to enumerate the probability parameter p;;. In some implementations,
the method further includes determining a genotype configuration at each of the one or more
polymorphism loci, the genotype configuration including two alleles for each of the one or more
contributors. In some implementations, the single-locus likelihood function include a first
binomial distribution. In some implementations, the first binomial distribution is expressed as
follows:

[0032] n1i ~ BN(ni, p1i)
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[0033] n1; is an allele count of nucleic acid sequence reads for allele 1 at locus i; and #; is
a total read count at locus i, which equals to a total genome copy numbers n”. In some
implementations, (f) includes maximizing a multiple-loci likelihood function calculated from a
plurality of single-locus likelihood functions.

{0034] In some implementations, (f) includes: calculating a plurality of multiple-loci
likelihood values using a plurality of potential fraction values and a multiple-loci likelihood
function of the allele counts of nucleic acid sequence reads determined in (e); identifying one or
more potential fraction values associated with a maximum multiple-loci likelihood value; and
quantifying the one or more fractions of nucleic acid of the one or more contributors in the

nucleic acid sample as the identified potential fraction value.

[0035] In some implementations, the multiple-loci likelihood function includes:
[0036] LP, 6, A m;ny,n)=11; [2gi M(ny;, n2i | p(gi, 4, B), 68) < P(gil )]
[0037] L(p, 0, A,  ; n1, n2) is the likelihood of observing allele count vectors »; and n; for

alleles 1 and 2; p(gi, A, f) is the expected fraction or probability of observing allele 1 at locus i
based on the contributors’ genotypes g; at locus 1; P(gilz) is the prior probability of observing the
genotypes g; at locus 1 given a population allele frequency (x); and 2g; denotes summing over a

plurality of possible combinations of genotypes of the contributors.

[0038] In some implementations, the multiple-loci likelihood function includes:
[0039] LP, A m;ny,ny)=11; [Xgi BN(nii | ni,- p(gi, 4, ) < P(gil 7)]
[0040] In some implementations, the contributors include two contributors and the

likelihood function includes:

[0041] L(B, A, 7, n1, n2) = IT; Xgiig2i BN(niil ni, pri(gri, g2i, A, B)) - P(g1i, g2il7)

[0042] LB, A, 7 ; ni1, n2) is the likelihood of observing allele count vectors n; to a2 for
alleles / and 2 given parameters f and 7 ; pii(g1i, g2, A, p)is a probability parameter, taken as p;’
from Table 3, indicating a probability of allele / at locus i based on the two contributors’
genotypes (g1, 82i); and P(gr;,g2ilm) is a prior joint probability of observing the two contributors’
genotypes given a population allele frequency (7).

[0043] In some implementations, the prior joint probability is calculated using marginal
distributions P(gy; I7) and P(gzilz) that satisfy the Hardy-Weinberg equilibrium.

[0044] In some implementations, the prior joint probability is calculated using genetic

relationship between the two contributors.
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[0045] In some implementations, the probabilistic mixture model accounts for nucleic
acid molecule copy number errors resulting from extracting the nucleic acid molecules
performed in (a), as well as the read count errors resulting from the sequencing operation in (c).
In some implementations, the probabilistic mixture model uses a second binomial distribution to
model allele counts of the extracted nucleic acid molecules for alleles at the one or more

polymorphism loci. In some implementations, the second binomial distribution is expressed as

follows:
[0046] nii"~ BN(ni", p1i)
[0047] nz;" is an allele count of extracted nucleic acid molecules for allele / at locus i; n;”

is a total nucleic acid molecule count at locus i; and pi,is a probability parameter indicating the
probability of allele / at locus i.

[0048] In some implementations, the first binomial distribution is conditioned on an
allele fraction nz"/n”". In some implementations, the first binomial distribution is re-
parameterized as follows:

[0049] nii ~ BN(ni, ni;"/n;")

[0050] nyi is an allele count of nucleic acid sequence reads for allele / at locus #; n;" is a
total number of nucleic acid molecules at locus i, which equals to a total genome copy numbers

!

n'"; n; 1s a total read count at locus i; and n;;"” is a number of extracted nucleic acid molecules for
allele / at locus i.

[0051] In some implementations, the probabilistic mixture model uses a first beta
distribution to approximate a distribution of n;"/n". In some implementations, the first beta
distribution has a mean and a variance that match a mean and a variance of the second binomial
distribution. In some implementations, locus i is modeled as biallelic and the first beta
distribution is expressed as follows:

[0052] ni1"/n" ~ Beta((n"-1)p1, (n"-1)p2i)

[0053] piiis a probability parameter indicating the probability of a first allele at locus i;
and p2;is a probability parameter indicating the probability of a second allele at locus i.

[0054] In some implementations, (f) includes combining the first binomial distribution,
modeling sequencing read counts, and the first beta distribution, modeling extracted nucleic acid

molecule number, to obtain the single-locus likelihood function of ni; that follows a first beta-

binomial distribution. In some implementations, the first beta-binomial distribution has the form:
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nii ~ BB(ni, (n"-1)-p1;, (n"-1)-p2i), or an alternative approximation: n;; ~ BB(n;, n" - pri, n" - p2i). In
some implementations, the multiple-loci likelihood function includes:

[0055] LB, n", A m; n,nz) =1l [Xgi BB(nii | ni, (n"-1)-p1;, (n”-1)-p2i) * P(gil )]

[0056] LB, n", A, m; ni,n2) is the likelihood of observing allele count vectors n; and n2
for alleles / and 2 at all loci, and p1; = p(gi, 4, B), p2i = 1 — p1.

[0057] In some implementations, the contributors include two contributors, and the

multiple-loci likelihood function includes:

[0058] L(p, n", A, m ; n1, n2) = li2g1ig2i BB(ngi, nai | ny, (n" -1)-p1i(gn, g2, A p), (n" -
1)-p2i(g1i, 821, A, B)) - P(g1i, g2ilm).
[0059] LB, n", A, @ ; n1, n2) is the likelihood of observing an allele count vector for the

first allele of all loci (n;) and an allele count vector for the second allele of all loci (n2) given
parameters f, n”, A, and 7; pri(g1;, g2i, A, p) is a probability parameter, taken as p;’ from Table 3,
indicating a probability of allele / at locus i based on the two contributors’ genotypes (g1 82i);
p2i(g1i, g2i, A, p) is a probability parameter, taken as p2’ from Table 3, indicating a probability of
allele 2 at locus i based on the two contributors’ genotypes (g1;, g2:); and P(g1,82ilm) is a prior
joint probability of observing the first contributor’s genotype for the first allele (gs;) and the
second contributor’s genotype for the first allele (g2) at locus i given a population allele
frequency (7).

[0060] In some implementations, (f) includes estimating the total extracted genome copy
number n"” from a mass of the extracted nucleic acid molecules. In some implementations, the
estimated total extracted genome copy number n"” is adjusted according to fragment size of the
extracted nucleic acid molecules.

[0061] In some implementations, the probabilistic mixture model accounts for nucleic
acid molecule number errors resulting from amplifying the nucleic acid molecules performed in
(b), as well as the read count errors resulting from the sequencing operation in (c). In some
implementations, the amplification process of (b) is modeled as follows:

[0062] Xewl = Xr + Vil

[0063] x1+1 1s the nucleic acid copies of a given allele after cycle 7+ of amplification; x;
is the nucleic acid copies of a given allele after cycle ¢ of amplification; y+s1is the new copies
generated at cycle 7+1/, and it follows a binomial distribution yw+; ~BN(x;, ri+1); and rwg is the

amplification rate for cycle 7+1.
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[0064] In some implementations, the probabilistic mixture model uses a second beta
distribution to model allele fractions of the amplified nucleic acid molecules for alleles at the one
or more polymorphism loci.

[0065] In some implementations, locus i is biallelic and the second beta distribution is
expressed as follows:

[0066] nii/ (nn' + na2i') ~ Beta(n"-pip1i , n"pi-p2i)

[0067] nyi' is an allele count of amplified nucleic acid molecules for a first allele at locus
i; n2;' is an allele count of amplified nucleic acid molecules for a second allele at locus i; n” is a
total nucleic acid molecule count at any locus; p; is a constant related to an average amplification
rate 1; pr is the probability of the first allele at locus 7; and pz;is the probability of the second
allele at locus i. In some implementations, p; is (I+r)/(1-r) / [1-(1+r)"], and r is the average
amplification rate per cycle. In some implementations, p;is approximated as (/+r)/(1-r).

[0068] In some implementations, (f) includes combining the first binomial distribution
and the second beta distribution to obtain the single-locus likelihood function for #;; that follows
a second beta-binomial distribution. In some implementations, the second beta-binomial
distribution has the form:

[00069] nii ~ BB(ni, n"-pi-pri, n"-pip2i)

[0070] nsiis an allele count of nucleic acid sequence reads for the first allele at locus i; pi
is a probability parameter indicating the probability of a first allele at locus i; and p2 is a
probability parameter indicating the probability of a second allele at locus i.

[0071] In some implementations, (f) includes, by assuming the one or more
polymorphism loci have a same amplification rate, re-parameterizing the second beta-binomial
distribution as: n; ~ BB(n;, n” -(1+r)/(1-r)-pn, n"-(1+r)/(1-r)-p2i), where r is an amplification

rate. In some implementations, the multiple-loci likelihood function includes:

[0072] Lp, n", r, A, m; ny, n2)=1i [Xgi BB(nii | nj, n” -(1+r)/(1-r)-pr, n" -(1+r)/(1-r)-p2i)
* P(giln)]
[0073] In some implementations, the contributors include two contributors and the

multiple-loci likelihood function includes:
[0074] LB, n", r, A, w; n1, n2) = Ii2grigai [BB(nii | niy n"- (1+r)/(1-r)pii(gn, g2i, A p), n"
(1+r)/(1-r)p2i(gn, g2i, A B))-P(g1i, g2ilr)]
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[0075] LB, n", r, A, w; n1, n2) is the likelihood of observing an allele count vector for the
first allele of all loci (n;) and an allele count vector for the second allele of all loci (n2) given
parameters S, n”, r, A, and 7.

[0076] In some implementations, (f) includes, by defining a relative amplification rate of
each polymorphism locus to be proportional to a total reads of the locus, re-parameterizing the

second beta-binomial distribution as:

[0077] nii ~ BB(ni, ¢"ni-p1i, ¢ nip2i)

[0078] ¢'1s a parameter to be optimized; and »;is the total reads at locus i.

{0079] In some implementations, the multiple-loci likelihood function includes:

[0080] LB, n", c', A w; ny,nz) =11l [Xgi BB(nyil n,, ¢"ni-pr, c nip2i) < P(gil 7)]

{0081} In some implementations, the probabilistic mixture model accounts for nucleic

acid molecule number errors resulting from extracting the nucleic acid molecules performed in
(a) and amplifying the nucleic acid molecules performed in (b), as well as the read count errors
resulting from the sequencing operation in (c). In some implementations, the probabilistic
mixture model uses a third beta distribution to model allele fractions of the amplified nucleic
acid molecules for alleles at the one or more polymorphism loci, accounting for the sampling
errors resulting from extracting the nucleic acid molecules performed in (a) and amplifying the
nucleic acid molecules performed in (b). In some implementations, locus i is biallelic and the
third beta distribution has the form of:

[0082] nii/ (nii' + n2i') ~ Beta(n" - (1+ ri )/2 - pri, n"- (1+ ri )/2 - p2i)

[0083] nyi' is an allele count of amplified nucleic acid molecules for a first allele at locus
i; n2;' is an allele count of amplified nucleic acid molecules for a second allele at locus i; n" is a
total nucleic acid molecule count; r; is the average amplification rate for locus i; py is the
probability of the first allele at locus i; and pz;is a probability of the second allele at locus i. In
some implementations, (f) includes combining the first binomial distribution and the third beta

distribution to obtain the single-locus likelihood function of #;; that follows a third beta-binomial

distribution.

[0084] In some implementations, the third beta-binomial distribution has the form:
[0085] nii~BB(ni, n" - (1+ri )2 -pr,n" - (1+ ri )2 - p2i)

[0086] r; is an amplification rate.

[0087] In some implementations, the multiple-loci likelihood function includes:

10



WO 2018/236911 PCT/US2018/038342

[0088] Lp,n", r,A mw;ny,n)=1Ii [Xgi BB(niiln, n" - (1+ 1 )/2 pri, n" - (1+ 1 )/2 - p2i)
* P(giln)]
[0089] In some implementations, the contributors include two contributors, and wherein

the multiple-loci likelihood function includes:

[0090] LB, n", r, A, m;nynz) = Ii2grig2i BB(niil ni, n" - (1+ r )/2 - pri(gn, 82i, A p), n" -
(1+ 1 )2 - p2(gn, g2i, A B)) - P(g1i, g2ilm)
[0091] L(ni, n2l B, n”, r, A, =) is the likelihood of observing allele counts for the first

allele vector n; and an allele count for the second allele vector n2 given parameters £, n”, r, A, and
T.

[0092] In some implementations, the method further includes: (g) estimating one or more
confidence intervals of the one or more fractions of nucleic acid of the one or more contributors
using the hessian matrix of the log-likelihood using numerical differentiation.

{0093] In some implementations, the mapping of (d) includes identifying, by the one or
more processors using computer hashing and computer dynamic programing, reads among the
nucleic acid sequence reads matching any sequence of a plurality of unbiased target sequences,
wherein the plurality of unbiased target sequences includes sub-sequences of the reference
sequence and sequences that differ from the subsequences by a single nucleotide. In some
implementations, the plurality of unbiased target sequences includes five categories of sequences
encompassing each polymorphic site of a plurality of polymorphic sites: (i) a reference target
sequence that is a sub-sequence of the reference sequence, the reference target sequence having a
reference allele with a reference nucleotide at the polymorphic site; (ii) alternative target
sequences each having an alternative allele with an alternative nucleotide at the polymorphic site,
the alternative nucleotide being different from the reference nucleotide; (iii) mutated reference
target sequences including all possible sequences that each differ from the reference target
sequence by only one nucleotide at a site that is not the polymorphic site; (iv) mutated alternative
target sequences including all possible sequences that each differ from an alternative target
sequence by only one nucleotide at a site that is not the polymorphic site; and (v) unexpected
allele target sequences each having an unexpected allele different from the reference allele and
the alternative allele, and each having a sequence different from the previous four categories of

sequences.
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[{0094] In some implementations, the method further includes estimating a sequencing
error rate A at the variant site base on a frequency of observing the unexpected allele target
sequences of (v). In some implementations, (¢) includes using the identified reads and their
matching unbiased target sequences to determine allele counts of the nucleic acid sequence reads
for the alleles at the one or more polymorphism loci. In some implementations, the plurality of
unbiased target sequences includes sequences that are truncated to have the same length as the
nucleic acid sequence reads. In some implementations, the plurality of unbiased target sequences
includes sequences stored in one or more hash tables, and the reads are identified using the hash
tables.

{0095] The disclosed embodiments also provide a computer program product including a
non-transitory computer readable medium on which is provided program instructions for
performing the recited operations and other computational operations described herein.

[0096] Some embodiments provide a system for quantifying a fraction of nucleic acid of
a contributor in a nucleic acid mixture sample comprising nucleic acid of the contributor and at
least one other contributor. The system includes a sequencer for receiving nucleic acids from the
test sample providing nucleic acid sequence information from the sample, a processor; and one
or more computer-readable storage media having stored thereon instructions for execution on the

processor to deconvolve and quantify DNA mixture samples using the method recited herein.

[{0097] Another aspect of the disclosure provides a system quantifying a nucleic acid
sample including nucleic acid of one or more contributors. The system includes: (a) a sequencer
configured to (i) receive nucleic acid molecules extracted from the nucleic acid sample, (ii)
amplify the extracted nucleic acid molecules, and (iii) sequence the amplified nucleic acid
molecules under conditions that produce nucleic acid sequence reads; and (b) a computer
including one or more processors configured to: map the nucleic acid sequence reads to one or
more polymorphism loci on a reference sequence; determine, using the mapped nucleic acid
sequence reads, allele counts of nucleic acid sequence reads for one or more alleles at the one or
more polymorphism loci; and quantify, using a probabilistic mixture model, one or more
fractions of nucleic acid of the one or more contributors in the nucleic acid sample. Using the
probabilistic mixture model includes applying a probabilistic mixture model to the allele counts

of nucleic acid sequence reads, and the probabilistic mixture model uses probability distributions
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to model the allele counts of nucleic acid sequence reads at the one or more polymorphism loci,

the probability distributions accounting for errors in the nucleic acid sequence reads.

[0098] In some implementations, the system includes a tool for extracting nucleic acid
molecules from the nucleic acid sample. In some implementations, the probability distributions

include a first binomial distribution as follows:
{0099] n1i ~ BN(ni, pii).

[00100] n1; is an allele count of nucleic acid sequence reads for allele 1 at locus i; n; is a
total read count at locus i, which equals to a total genome copy numbers n"”; and ps is a

probability parameter indicating the probability of allele 1 at locus 7.

[00101] An additional aspect of the disclosure provides a computer program product
including a non-transitory machine readable medium storing program code that, when executed
by one or more processors of a computer system, causes the computer system to implement a
method of quantifying a nucleic acid sample including nucleic acid of one or more contributors,
said program code including: code for mapping the nucleic acid sequence reads to one or more
polymorphism loci on a reference sequence; code for determining, using the mapped nucleic acid
sequence reads, allele counts of nucleic acid sequence reads for one or more alleles at the one or
more polymorphism loci; and code for quantifying, using a probabilistic mixture model, one or
more {ractions of nucleic acid of the one or more contributors in the nucleic acid sample. Using
the probabilistic mixture model includes applying a probabilistic mixture model to the allele
counts of nucleic acid sequence reads, and the probabilistic mixture model uses probability
distributions to model the allele counts of nucleic acid sequence reads at the one or more
polymorphism loci, the probability distributions accounting for errors in the nucleic acid

sequence reads.

[00102] Yet another aspect of the disclosure provides a method, implemented at a
computer system that includes one or more processors and system memory, of quantifying a
nucleic acid sample including nucleic acid of one or more contributors. The method includes: (a)
receiving, by the one or more processors, nucleic acid sequence reads obtained from the nucleic
acid sample; (b) mapping, by the one or more processors, using computer hashing and computer
dynamic programming, the nucleic acid sequence reads to one or more polymorphism loci on a

reference sequence; (c) determining, using the mapped nucleic acid sequence reads and by the
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one or more processors, allele counts of nucleic acid sequence reads for one or more alleles at the
one or more polymorphism loci; and (d) quantifying, using a probabilistic mixture model and by
the one or more processors, one or more fractions of nucleic acid of the one or more contributors
in the nucleic acid sample and confidence of the fractions. Using the probabilistic mixture model
includes applying a probabilistic mixture model to the allele counts of nucleic acid sequence
reads. The probabilistic mixture model uses probability distributions to model the allele counts of
nucleic acid sequence reads at the one or more polymorphism loci, the probability distributions
accounting for errors in the mapped nucleic acid sequence reads. The quantifying employs (i) a
computer optimization method combining multi-iteration grid searching and a BFGS - quasi-
Newton method, or an iterative weighted linear regression, and (ii) a numerical differentiation

method.

[{00103] Although the examples herein concern humans and the language is primarily
directed to human concerns, the concepts described herein are applicable to genomes from any
plant or animal. These and other objects and features of the present disclosure will become more
fully apparent from the following description and appended claims, or may be learned by the

practice of the disclosure as set forth hereinafter.

INCORPORATION BY REFERENCE
[00104] All patents, patent applications, and other publications, including all sequences

disclosed within these references, referred to herein are expressly incorporated herein by
reference, to the same extent as if each individual publication, patent or patent application was
specifically and individually indicated to be incorporated by reference. All documents cited are,
in relevant part, incorporated herein by reference in their entireties for the purposes indicated by
the context of their citation herein. However, the citation of any document is not to be construed

as an admission that it is prior art with respect to the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[00105] Figures 1A-1C show an overview of a method and statistical model designed for

contributor DNA quantification.
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{00106] Figure 2A shows a block diagram illustrating a process for quantifying one or
more fractions of nucleic acid (e.g., DNA or RNA) of one or more contributors in the nucleic

acid sample.

[00107] Figure 2B shows a block diagram illustrating various components of a

probabilistic mixture model.

{00108] Figure 2C schematically illustrates sequencing errors that convert one allele to

another allele and true alleles to unexpected alleles.

[{00109] Figure 3 shows a block diagram illustrating a process for evaluating a nucleic acid

sample including nucleic acid of one or more contributors.

[00110] Figure 4 shows block diagram of a typical computer system that can serve as a

computational apparatus according to certain embodiments.

[00111] Figure 5 shows one implementation of a dispersed system for producing a call or

diagnosis from a test sample.

[00112] Figure 6 shows options for performing various operations of some

implementations at distinct locations.

[00113] Figure 7 shows the performance of disclosed and baseline methods each under

different choices of cfDNA length parameter.
[00114] Figure 8 shows analytical accuracy of some implementations in another format.
[00115] Figure 9 shows the coefficient of variance (CV) of 16 conditions for determining

Jimit of quantification (LOQ) for some implementations.

DETAILED DESCRIPTION

Definitions

[00116] Unless otherwise indicated, the practice of the method and system disclosed
herein involves conventional techniques and apparatus commonly used in molecular biology,
microbiology, protein purification, protein engineering, protein and DNA sequencing, and
recombinant DNA fields, which are within the skill of the art. Such techniques and apparatus are

known to those of skill in the art and are described in numerous texts and reference works (See
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e.g., Sambrook et al., “Molecular Cloning: A Laboratory Manual,” Third Edition (Cold Spring
Harbor), [2001]); and Ausubel et al., “Current Protocols in Molecular Biology” [1987]).

[00117] Numeric ranges are inclusive of the numbers defining the range. It is intended
that every maximum numerical limitation given throughout this specification includes every
lower numerical limitation, as if such lower numerical limitations were expressly written herein.
Every minimum numerical limitation given throughout this specification will include every
higher numerical limitation, as if such higher numerical limitations were expressly written
herein. Every numerical range given throughout this specification will include every narrower
numerical range that falls within such broader numerical range, as if such narrower numerical

ranges were all expressly written herein.
[00118] The headings provided herein are not intended to limit the disclosure.

[00119] Unless defined otherwise herein, all technical and scientific terms used herein
have the same meaning as commonly understood by one of ordinary skill in the art. Various
scientific dictionaries that include the terms included herein are well known and available to
those in the art. Although any methods and materials similar or equivalent to those described
herein find use in the practice or testing of the embodiments disclosed herein, some methods and

materials are described.

{00120] The terms defined immediately below are more fully described by reference to the
Specification as a whole. It is to be understood that this disclosure is not limited to the particular
methodology, protocols, and reagents described, as these may vary, depending upon the context

they are used by those of skill in the art. As used herein, the singular terms “a,” “an,” and “the”

include the plural reference unless the context clearly indicates otherwise.

[00121] Unless otherwise indicated, nucleic acids are written left to right in 5° to 3’
orientation and amino acid sequences are written left to right in amino to carboxy orientation,

respectively.

[00122] The term “chimerism sample” is used herein to refer to a sample believed to
contain DNA of two or more genomes. Chimerism analysis is used herein to refer to the
biological and chemical processing of a chimerism sample and/or the quantification of the

nucleic acid of two or more organisms in the chimera sample. In some implementations, a
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chimerism analysis also determines some or all of the sequence information of the genomes of

the two or more organisms.

[00123] The term donor DNA (dDNA) refers to DNA molecules originating from cells of
a donor of a transplant. In various implementations, the dDNA is found in a sample obtained

from a donee who received a transplanted tissue/organ from the donor.

[00124] Circulating cell-free DNA or simply cell-free DNA (cfDNA) are DNA fragments
that are not confined within cells and are freely circulating in the bloodstream or other bodily
fluids. It is known that cfDNA have different origins, in some cases from donor tissue DNA
circulating in a donee’s blood, in some cases from tumor cells or tumor affected cells, in other
cases from fetal DNA circulating in maternal blood. In general, cfDNA are fragmented and
include only a small portion of a genome, which may be different from the genome of the

individual from which the cfDNA is obtained.

{00125] The term non-circulating genomic DNA (gDNA) or cellular DNA are used to

refer to DNA molecules that are confined in cells and often include a complete genome.

[00126] The term “allele count” refers to the count or number of sequence reads of a
particular allele. In some implementations, it can be determined by mapping reads to a location
in a reference genome, and counting the reads that include an allele sequence and are mapped to

the reference genome.

[00127] A beta distribution is a family of continuous probability distributions defined on
the interval [0, 1] parameterized by two positive shape parameters, denoted by, e.g., a and B, that
appear as exponents of the random variable and control the shape of the distribution. The beta
distribution has been applied to model the behavior of random variables limited to intervals of
finite length in a wide variety of disciplines. In Bayesian inference, the beta distribution is the
conjugate prior probability distribution for the Bernoulli, binomial, negative binomial and
geometric distributions. For example, the beta distribution can be used in Bayesian analysis to
describe initial knowledge concerning probability of success. If the random variable X follows

the beta distribution, the random variable X is written as X ~ Beta(a, ).

[00128] A binomial distribution is a discrete probability distribution of the number of

successes in a sequence of n independent experiments, each asking a yes—no question, and each
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with its own Boolean-valued outcome: a random variable containing single bit of information:
positive (with probability p) or negative (with probability q = 1 — p). For a single trial, i.e., n =
1, the binomial distribution is a Bernoulli distribution. The binomial distribution is frequently
used to model the number of successes in a sample of size n drawn with replacement from a
population of size N. If the random variable X follows the binomial distribution with

parameters # € N and p € [0,1], the random variable X is written as X ~ B(n, p).

[00129] Poisson distribution, denoted as Pois() herein, is a discrete probability distribution
that expresses the probability of a given number of events occurring in a fixed interval of time
and/or space if these events occur with a known average rate and independently of the time since
the last event. The Poisson distribution can also be used for the number of events in other
specified intervals such as distance, area or volume. The probability of observing k events in an
interval according to a Poisson distribution is given by the equation:

Mgt

Pk events in interval) == ¥

where A is the average number of events in an interval or an event rate, also called the rate
parameter e is 2.71828, Euler's number, or the base of the natural logarithms, k takes values 0, 1,

2, ..., and k/ is the factorial of k.

[00130] Gamma distribution is a two-parameter family of continuous probability
distributions. There are three different parametrizations in common use: with a shape parameter
k and a scale parameter 6; with a shape parameter o = k and an inverse scale parameter = 1/0,
called a rate parameter; or with a shape parameter k and a mean parameter p = k/p. In each of
these three forms, both parameters are positive real numbers. The gamma distribution is the
maximum entropy probability distribution for a random variable X for which E[X] = k6 = o/ is
fixed and greater than zero, and E[In(X)] = y(k) + In(0) = y(a) — In(P) is fixed (y is the digamma

function).

[00131] Polymorphism and genetic polymorphism are used interchangeably herein to refer
to the occurrence in the same population of two or more alleles at one genomic locus, each with

appreciable frequency.
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[00132] Polymorphism site and polymorphic site are used interchangeably herein to refer
to a locus on a genome at which two or more alleles reside. In some implementations, it is used

to refer to a single nucleotide variation with two alleles of different bases.

[00133] Allele frequency or gene frequency is the frequency of an allele of a gene (or a
variant of the gene) relative to other alleles of the gene, which can be expressed as a fraction or
percentage. An allele frequency is often associated with a particular genomic locus, because a
gene is often located at with one or more locus. However, an allele frequency as used herein can
also be associated with a size-based bin of DNA fragments. In this sense, DNA fragments such
as cfDNA containing an allele are assigned to different size-based bins. The frequency of the

allele in a size-based bin relative to the frequency of other alleles is an allele frequency.

[00134] The term “parameter” herein refers to a numerical value that characterizes a
property of a system such as a physical feature whose value or other characteristic has an impact
on a relevant condition such as a sample or DNA fragments. In some cases, the term parameter
is used with reference to a variable that affects the output of a mathematical relation or model,
which variable may be an independent variable (i.e., an input to the model) or an intermediate
variable based on one or more independent variables. Depending on the scope of a model, an
output of one model may become an input of another model, thereby becoming a parameter to

the other model.
[00135] The term “plurality” refers to more than one element.

[00136] The term “paired end reads” refers to reads from paired end sequencing that
obtains one read from each end of a nucleic acid fragment. Paired end sequencing may involve
fragmenting strands of polynucleotides into short sequences called inserts. Fragmentation is

optional or unnecessary for relatively short polynucleotides such as cell free DNA molecules.

[00137] The terms “polynucleotide,” “nucleic acid” and “nucleic acid molecules™ are used
interchangeably and refer to a covalently linked sequence of nucleotides (i.e., ribonucleotides for
RNA and deoxyribonucleotides for DNA) in which the 3’ position of the pentose of one
nucleotide is joined by a phosphodiester group to the 5’ position of the pentose of the next. The
nucleotides include sequences of any form of nucleic acid, including, but not limited to RNA and
DNA molecules such as cf[DNA or cellular DNA molecules. The term “polynucleotide”

includes, without limitation, single- and double-stranded polynucleotide.
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{00138] The term “test sample” herein refers to a sample typically derived from a
biological fluid, cell, tissue, organ, or organism, comprising a nucleic acid or a mixture of
nucleic acids. Such samples include, but are not limited to sputum/oral fluid, amniotic fluid,
blood, a blood fraction, or fine needle biopsy samples (e.g., surgical biopsy, fine needle biopsy,
etc.), urine, peritoneal fluid, pleural fluid, and the like. Although the sample is often taken from
a human subject (e.g., patient), the assays can be used in samples from any mammal, including,
but not limited to dogs, cats, horses, goats, sheep, cattle, pigs, etc. The sample may be used
directly as obtained from the biological source or following a pretreatment to modify the
character of the sample. For example, such pretreatment may include preparing plasma from
blood, diluting viscous fluids and so forth. Methods of pretreatment may also involve, but are
not limited to, filtration, precipitation, dilution, distillation, mixing, centrifugation, freezing,
lyophilization, concentration, amplification, nucleic acid fragmentation, inactivation of
interfering components, the addition of reagents, lysing, etc. If such methods of pretreatment are
employed with respect to the sample, such pretreatment methods are typically such that the
nucleic acid(s) of interest remain in the test sample, sometimes at a concentration proportional to
that in an untreated test sample (e.g., namely, a sample that is not subjected to any such
pretreatment method(s)). Such “treated” or “processed” samples are still considered to be

biological “test” samples with respect to the methods described herein.

[00139] The term “Next Generation Sequencing (NGS)” herein refers to sequencing
methods that allow for massively parallel sequencing of clonally amplified molecules and of
single nucleic acid molecules. Non-limiting examples of NGS include sequencing-by-synthesis

using reversible dye terminators, and sequencing-by-ligation.

[{00140] The term “read” refers to a sequence obtained from a portion of a nucleic acid
sample. Typically, though not necessarily, a read represents a short sequence of contiguous base
pairs in the sample. The read may be represented symbolically by the base pair sequence (in A,
T, C, or G) of the sample portion. It may be stored in a memory device and processed as
appropriate to determine whether it matches a reference sequence or meets other criteria. A read
may be obtained directly from a sequencing apparatus or indirectly from stored sequence
information concerning the sample. In some cases, a read is a DNA sequence of sufficient length
(e.g., at least about 25 bp) that can be used to identify a larger sequence or region, e.g., that can

be aligned and specifically assigned to a chromosome or genomic region or gene.
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[00141] The term “genomic read” is used in reference to a read of any segments in the

entire genome of an individual.

[00142] As used herein, the terms “aligned,” “alignment,” or “aligning” refer to the
process of comparing a read or tag to a reference sequence and thereby determining whether the
reference sequence contains the read sequence. If the reference sequence contains the read, the
read may be mapped to the reference sequence or, in certain embodiments, to a particular
location in the reference sequence. In some cases, alignment simply tells whether or not a read is
a member of a particular reference sequence (i.e., whether the read is present or absent in the
reference sequence). For example, the alignment of a read to the reference sequence for human
chromosome 13 will tell whether the read is present in the reference sequence for chromosome
13. A tool that provides this information may be called a set membership tester. In some cases,
an alignment additionally indicates a location in the reference sequence where the read or tag
maps to. For example, if the reference sequence is the whole human genome sequence, an
alignment may indicate that a read is present on chromosome 13, and may further indicate that

the read is on a particular strand and/or site of chromosome 13.

[00143] Aligned reads or tags are one or more sequences that are identified as a match in
terms of the order of their nucleic acid molecules to a known sequence from a reference genome.
Alignment can be done manually, although it is typically implemented by a computer program,
as it would be impossible to align reads in a reasonable time period for implementing the
methods disclosed herein. One example of an program from aligning sequences is the Efficient
Local Alignment of Nucleotide Data (ELAND) computer program distributed as part of the
INlumina Genomics Analysis pipeline. Alternatively, a Bloom filter or similar set membership
tester may be employed to align reads to reference genomes. See US Patent Application No.
61/552,374 filed October 27, 2011 which is incorporated herein by reference in its entirety. The
matching of a sequence read in aligning can be a 100% sequence match or less than 100% (non-

perfect match).

[00144] The term “mapping” used herein refers to specifically assigning a sequence read
to a larger sequence, e.g., a reference genome, a subsequence of the larger sequence using

alignment or membership assignment.
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[{00145] As used herein, the term “reference genome” or “reference sequence” refers to
any particular known genome sequence, whether partial or complete, of any organism or virus
which may be used to reference identified sequences from a subject. For example, a reference
genome used for human subjects as well as many other organisms is found at the National Center
for Biotechnology Information at ncbi.nlm.nih.gov. A “genome” refers to the complete genetic

information of an organism or virus, expressed in nucleic acid sequences.

[00146] In various embodiments, the reference sequence is significantly larger than the
reads that are aligned to it. For example, it may be at least about 100 times larger, or at least
about 1000 times larger, or at least about 10,000 times larger, or at least about 10° times larger,

or at least about 10° times larger, or at least about 107 times larger.

[00147] In one example, the reference sequence is that of a full length human genome.
Such sequences may be referred to as genomic reference sequences. In another example, the
reference sequence is limited to a specific human chromosome such as chromosome 13. In some
embodiments, a reference Y chromosome is the Y chromosome sequence from human genome
version hgl9. Such sequences may be referred to as chromosome reference sequences. Other
examples of reference sequences include genomes of other species, as well as chromosomes,

sub-chromosomal regions (such as strands), etc., of any species.

{00148 In various embodiments, the reference sequence is a consensus sequence or other
combination derived from multiple individuals. However, in certain applications, the reference

sequence may be taken from a particular individual.

[00149] The term “derived” when used in the context of a nucleic acid or a mixture of
nucleic acids, herein refers to the means whereby the nucleic acid(s) are obtained from the source
from which they originate. For example, in one embodiment, a mixture of nucleic acids that is
derived from two different genomes means that the nucleic acids, e.g., cfDNA, were naturally
released by cells through naturally occurring processes such as necrosis or apoptosis. In another
embodiment, a mixture of nucleic acids that is derived from two different genomes means that
the nucleic acids were extracted from two different types of cells from a subject. For instance, a
mixture of nucleic acids includes nucleic acids originating from donor cells and donee cells
obtained from an organ transplant subject. In some implementations, a mixture of nucleic acids

comprise biological materials of two or more contributor individuals. For example, a forensic
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sample including biological materials of two or more individuals includes DNA of the two or

more individuals.

[{00150] The term “based on” when used in the context of obtaining a specific quantitative
value, herein refers to using another quantity as input to calculate the specific quantitative value

as an output.

{00151] The term “biological fluid” herein refers to a liquid taken from a biological source
and includes, for example, blood, serum, plasma, sputum, lavage fluid, cerebrospinal fluid, urine,
semen, sweat, tears, saliva, and the like. As used herein, the terms “blood,” “plasma” and
“serum” expressly encompass fractions or processed portions thereof. Similarly, where a sample
is taken from a biopsy, swab, smear, etc., the “sample” expressly encompasses a processed

fraction or portion derived from the biopsy, swab, smear, etc.

[00152] As used herein, the term “corresponding to” sometimes refers to a nucleic acid
sequence, €.g., a gene or a chromosome, that is present in the genome of different subjects, and
which does not necessarily have the same sequence in all genomes, but serves to provide the

identity rather than the genetic information of a sequence of interest, e.g., a gene or chromosome.

[00153] The term “contributor” herein refers to a human contributor as well as a non-
human contributor such as a mammal, an invertebrate, a vertebrate, a fungus, a yeast, a
bacterium, and a virus. Although the examples herein concern humans and the language is
primarily directed to human concerns, the concepts disclosed herein are applicable to genomes
from any plant or animal, and are useful in the fields of veterinary medicine, animal sciences,

research laboratories and such.

[00154] The term “sensitivity” as used herein refers to the probability that a test result will
be positive when the condition of interest is present. It may be calculated as the number of true

positives divided by the sum of true positives and false negatives.

[00155] The term “specificity” as used herein refers to the probability that a test result will
be negative when the condition of interest is absent. It may be calculated as the number of true

negatives divided by the sum of true negatives and false positives.

[00156] The term “primer,” as used herein refers to an isolated oligonucleotide that is

capable of acting as a point of initiation of synthesis when placed under conditions inductive to
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synthesis of an extension product (e.g., the conditions include nucleotides, an inducing agent
such as DNA polymerase, and a suitable temperature and pH). The primer is preferably single
stranded for maximum efficiency in amplification, but may alternatively be double stranded. If
double stranded, the primer is first treated to separate its strands before being used to prepare
extension products. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be
sufficiently long to prime the synthesis of extension products in the presence of the inducing
agent. The exact lengths of the primers will depend on many factors, including temperature,

source of primer, use of the method, and the parameters used for primer design.

Introduction

[00157] This disclosure provides methods and systems for quantification and
deconvolution of nucleic acid mixture samples including nucleic acid of two or more
contributors of unknown genotypes, providing various advantages and technological
improvements. For instance, some implementations apply probabilistic mixture modeling,
Bayesian inference techniques, and numerical optimization methods to quantify contributor

DNA in a mixture without knowing contributor’s genotypes.

[00158] Sequencing data from a nucleic acid (e.g., DNA or RNA) mixture of closely
related genomes is frequently found in research as well as clinical settings, and quantifying the

mixing contributors has been a challenge when the original genomes are unknown.

[00159] Conventional methods of chimerism analysis (for bone marrow and blood stem
cell transplants only) utilize capillary electrophoresis (CE) fragment analysis or quantitative
polymerase chain reaction (QPCR) analysis of short tandem repeats (STRs) or small insertions
and deletions (Indels). These methods tend to have poor limit of quantification, dynamic range,
or reproducibility.  They have limited number of targets, complicated workflow, and time-
consuming and inaccurate manual input for analysis. The conventional methods tend to comprise
among these different metrics. CE approach has a LOQ ranging from 1%-5%, and suffers from
low reproducibility. These limitations can be significant in clinical use. For example, an actual
chimerism result of 99% will be reported as 100%. The qPCR approach can achieve low LOQ of
0.1% but that requires 66ng or more chimerism DNA not considering the DNA required for pure

baseline samples. Neither 66ng nor 10ng is possible for routine ¢fDNA analysis for solid organ
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transplant. In addition, the dynamic range of qPCR-based chimerism suffers, and chimerism

predictions when the minor contributor is greater than 30% are not reliable.

{00160] Given the high input DNA requirement, CE and qPCR approaches are only
applicable to bone marrow or blood stem cell transplant. Neither approach works for solid organ
transplant monitoring, for which the cfDNA amount from a typical blood draw is much less than
10ng. In addition, even at the same amount, cfDNA is not as effective as gDNA as PCR

template.

[00161] Besides high DNA input requirement, both CE and qPCR approaches require pure
pre-transplant baseline samples to be available. They are also associated with complex assay and

require manual intervention in selecting the appropriate markers before quantification.

[00162] In addition to these, there are two fundamental challenges in chimerism

quantification that our methods systematically addressed, while existing methods do not work.

[00163] The first challenge is to quantify chimerism sample with more than two
contributors, corresponding to transplant with more than one donor. Multi-donor transplants are
common for bone marrow and blood stem cell transplants. It also occurs in solid organ
transplant, for example for 2™ kidney transplant following the failure of previous kidney, or

when solid organ transplant coincide with blood transfusion from another donor.

[00164] The second challenge is to quantify chimerism samples when one of the
contributors is unknown. This occurs frequently in clinical setting, for example 1) when the
donor genome is not available, 2) when in the multi-donor cases, when an old organ’s donor
genome is not available, or 3) when solid organ transplant recipient also received blood

transfusion from unknown donors.

[00165] While conventional methods do not address these challenges, the methods
disclose herein can accurately quantify chimerism samples when there is an unknown donor.
When there is only one donor neither the donor or recipient genome are required using the
disclosed methods. Further, the disclosed methods can work with arbitrary number of donors.
Some empirical studies have validated the performance of the disclosed method for 4 donors and

achieved an LOQ of less than 0.35% at10ng total gDNA input.
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[00166] In some implementations, the disclosed methods achieve 0.1% to 0.2% LOQ with
as low as 3ng cfDNA input, and achieve a broad dynamic range from 0.1% - 99.9%. Some
implementations do not require baseline genomes to be known, although knowing the baseline
can improve performance. The disclosed methods can work with chimerism samples of arbitrary
number of donors, and have been experimentally validated for samples with 0-4 donors, which
covers nearly all clinically relevant cases for solid organ transplant, bone marrow transplant, and
hematopoietic stem cell transplants. In addition, the disclosed methods do not require any
manual intervention in selecting genetic markers, allowing digitization and automation of

quantification of nucleic acids.

{00167] Some implementations provide methods and systems for quantifying contributor
DNA from multi-marker targeted-resequencing data of blood cfDNA or gDNA samples. Some
implementations provide methods and systems for quantifying contributor DNA from multi-
marker targeted-resequencing data of blood cfDNA or gDNA samples using novel probabilistic
models and numerical optimization methods. Some implementations provide methods and
systems for quantifying contributor DNA for genetically related donor and recipient of unknown
genotypes using Bayesian modeling with prior distributions that encode genetic-relationship. By
using genetic-relationship information to provide prior information in a Bayesian framework,
quantification of DNA mixture can be improved compared to methods that do not use the

genetic-relationship information.

[00168] Some implementations provide methods and systems for estimating the
confidence interval of DNA quantification by numerically computing the Cramer-Rao bound

from the estimated Hessian matrices of log-likelihood functions.

{00169] Allelic bias in short sequencing read mapping confounds DNA quantification. In
some implementations, we reduce the confounding effect through an unbiased mapping strategy

of reads spanning variant sites.

[00170] Implementations described herein can accurately estimate the contributor DNA
fraction even though the genotypes for the contributing genomes are totally unknown. The allele
fraction of a marker site after PCR amplification can be reliably modeled with a beta-

distribution.
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[00171] Using the unbiased reference DNA sequence database containing both reference
and alternate allele, one can remove read mapping biases towards the reference alleles, and

reliably estimate the allele counts and sequencing error at the variant sites.

[00172] Implementations described herein can estimate the confidence interval of the

predicted contributor DNA fractions with a single sequencing run of a mixture DNA sample.

[00173] Formally, the problem of contributor DNA quantification (CDQ) is stated as
following: Given the sequencing data of a DNA sample comprised of one or more contributors,
determine the fraction of each contributor in the sample. When the genotypes of the contributor
genomes are unknown, the CDQ problem is referred to as blind contributor DNA quantification
(blind-CDQ); the opposite is referred to as non-blind-CDQ. Some descriptions regarding some
implementations refer to the two contributors as the donor and the recipient, but they do not limit
the applications of the methods to the organ donation setting. In some description hereinafter
regarding some implementations, a contributor is equivalent to a donor, and the other contributor

is equivalent to a donee.

[00174] Blind-CDQ is a harder problem compared to non-blind CDQ, but it is of wider
application to all scenarios where only a single sequencing experiment of the mixture sample is
achievable, while the non-blind-CDQ requires prior sequencing experiments to determine

genotypes of the contributors (e.g. organ donors and recipients).

[00175] The computational methods described in this document address both the blind-

CDQ and the non-blind-CDQ problems with single, two, or multiple contributors.

[00176] Figures 1A-1C show an overview of methods and statistical model designed for
contributor DNA quantification. Figure 1A shows an experimental pipeline for sequencing based
allogeneic DNA detection. Figure 1B shows an unbiased read mapping workflow for allele
counting. Figure 1C shows a hierarchical, probabilistic mixture model for allelic counts per

marker locus.

[00177] Some implementations apply experimental pipeline as depicted in Figure 1A. This

generic experimental pipeline has the following steps.

[00178] 1) A blood or other type of sample is obtained containing DNA from multiple

genetic origins.
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{00179] 2) The appropriate type of DNA is extracted, e.g. cellular DNA (also referred to
as gDNA) or cell free DNA (cfDNA), depending on the application.

[{00180] 3) Specific variant sites or polymorphism sites of the genome is targeted and
enriched by approaches such as PCR amplification or hybridization. The variant sites are prior-
selected to be variable among diverse populations of human (or another organism of interest).

Alternatively, untargeted (whole genome) sequencing can be done, and all variant sites will be

covered.

[00181] 4) The DNA sample is sequenced by NGS or other DNA sequencing techniques
such as some of the ones described hereinafter to obtain sequencing reads that cover variant sites
of interest.

[00182] The computational method for CDQ has three main components:

[00183] 1) Allele Counting: an computer program based on hashing and dynamic

programming for unbiased counting of sequencing reads from each allele for each target marker

site (Figure 1B), and

[00184] 2) Contributor DNA Quantification: a hierarchical probabilistic model and novel
combination of multi-iteration grid search strategy with BFGS - quasi-Newton method, or in

some implementations an iterative weighted linear regression, for quantifying the contributor

DNA fraction (Figure 1C).

[00185] 3) Confidence interval (uncertainly) determination: around the quantified mixture
fractions, variances are determined based on the hessian matrix of the log likelihood function

base on information inequality.

[00186] The totality of these components for chimerism quantification is impossible to
execute manually by human experts or be carried out in their heads. They require computers and
are computer-implemented technology. These computational components allow the disclosed
methods to achieve unparalleled quantification sensitivity, dynamic range, and reproducibility.
They also enable the disclosed methods to reliably quantify diverse set of chimerism samples,
including cfDNA or gDNA, 3-10ng or more input DNA, O to 4 or more donors, and genetically

related or unrelated donor with known or unknown genomes.
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[00187] Although some implementation only address “relative quantification” here,
meaning that the implementations estimate the percentage or fraction of the DNA sample that is
originated from the contributor sources, rather than the absolute amount (in terms of mass or
copy numbers). Additional steps can be taken to convert the relative abundance to absolute

abundance if the total amount of input DNA is measured or known.

Overview of Processes for Quantifying Contributor Fractions in a Nucleic Acid Sample

[00188] Figure 2A shows a block diagram illustrating a process 200 for quantifying one or
more fractions of nucleic acid (e.g., DNA or RNA) of one or more contributors in the nucleic
acid sample. The method is implemented on a computer system that includes one or more
processors and system memory such as the systems described hereinafter. Descriptions herein
refer to DNA in some implementations and applications, but one skilled in the art appreciates
that other forms of nucleic acids can also be analyzed using the implementations described
herein. The various implementations described herein can be used to analyze a nucleic acid
sample containing nucleic acid from one or more contributors. In some implementations,
methods and systems are provided to quantify one or more fractions of nucleic acid of the one or
more contributors. In some descriptions herein, the nucleic acid sample is referred to as a
mixture sample because the sample can include nucleic acid from two more contributors.
However, it is understood that the use of the term “mixture” indicates the possibility that the
sample includes two or more contributors’ nucleic acid, and it does not exclude the possibility
that the sample includes nucleic acid from only a single contributor. In the latter case, a fraction
of 1 or a percentage of 100% (or values within a margin of error) may be determined for the one

contributor.

[00189] In some implementations, the one or more contributors of the nucleic acid sample
include a donor of a transplant and a donee of the transplant. In some implementations, the
transplant includes an allogeneic or a xenogeneic transplant. In some implementations, the
nucleic acid sample is a biological sample obtained from the donee. In some implementations,
the nucleic acid sample includes cell-free nucleic acid. In some implementations, the sample
includes cellular DNA. In some implementations, the nucleic acid sample includes nucleic acid
from zero, one, or more contaminant genomes and one genome of interest. In some

implementations, the nucleic acid sample includes a biological sample obtained from a cell
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culture, which can be a mixture of multiple cell lines of different genetic origins in some

implementations.

[00190] Process 200 involves extracting nucleic acid molecules from the nucleic acid

sample using techniques such as those described herein. See block 202.

[00191] Process 200 further involves amplifying or enriching the extracted nucleic acid
molecules. See block 204. Various amplification or enrichment techniques such as those
described herein may be used. In some implementations, PCR are used to amplify the extracted
nucleic acid molecules. In some implementations, the amplification targets specific
polymorphisms, which amplification is also referred to as targeted enrichment. In other
implementations, whole genome amplification may be performed, and allele data for specific

polymorphism sites may be obtained by sequencing.

[00192] Process 200 also involves sequencing the amplified or enriched nucleic acid
molecules using a nucleic acid sequencer to produce nucleic acid sequence reads. See block 206.
Various sequencing techniques and devices are further described hereinafter, which may be

applied in operation 206.

[00193] Process 200 further involves mapping the nucleic acid sequence reads to one or
more polymorphism loci on a reference sequence. In some implementations, alignment
techniques may be used to map the nucleic acid sequence reads to one or more polymorphism
loci. In other implementations, an unbiased mapping techniques may be used to match the
nucleic acid sequence reads to the polymorphism loci. See block 208. In some implementations,
the nucleic acid sequence reads are mapped to specific alleles at the polymorphism loci. The
unbiased mapping technique is further described hereinafter. In some implementations, the one
or more polymorphism loci (or polymorphic loci) include biallelic loci. In some
implementations, the alleles at the one or more polymorphism loci include single nucleotide

polymorphism (SNP) alleles.

[00194] In some implementations, unique molecular indexes (UMIs) are attached to the
extracted nucleic acid molecules, which are then amplified, sequenced, and mapped to the
polymorphism loci or alleles. The unique molecular indices provide mechanisms to reduce the
errors that can occur in the sample processing and analysis steps. For instance, different reads

sharing a same unique molecular index (UMI) can be combined or collapsed to determine a
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sequence from which the reads are derived, effectively removing errors that have occurred

during amplification and sequencing.

[00195] Process 200 further involves determining, using the method nucleic acid sequence
reads, allele counts of nucleic acid sequence reads for alleles at the one or more polymorphism

loci. See block 210.

{00196] Process 200 also involves applying the probabilistic mixture model to the allele
counts of nucleic acid sequence reads. The probabilistic mixture model uses probability
distributions to model allele count of nucleic acid sequence reads at the one or more
polymorphism loci. The probability distributions account for errors and noises in the nucleic
acid sequence reads. The probabilistic mixture model treats each allele count of nucleic acid

sequence reads as a random sample from a probability distribution.
[00197] In the equations hereinafter, the notations below are used.
[00198] d: indicator for donors, d = 1, 2..., D, where D is the total number of contributors.

D can be any natural number. In some implementations, D is 5 or smaller. In some

implementations, D is 9 or smaller.

[00199] a: indicator for alleles. In some implementations, the alleles include biallelic

SNPs, and a = 1 or 2.

[00200] i: indicator for marker loci, i = 7 ... I, where [ is the total number of markers, e.g.
300.
[00201] gdai: genotypes of contributor d allele type a for marker i. It takes value 0, 1, or 2,

representing the number of copies of allele a for this locus in this contributor.

[00202] Mai, Nai's Nai': copies of reads, DNA molecules after amplification, and DNA

molecules before amplification, of allele type ¢ and marker locus 7 .

[00203] ni, ni, n;": total copies of reads, nucleic acid molecules after amplification, and

DNA molecules before amplification, for marker locus i.
[00204] rqi: fractions of read counts for allele type a and marker locus i.

{00205] Pai: probability of seeing a read of allele type a at a given marker locus i.
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[00206] Note that for gaui, nai, Hai's R4, 1, 0, 1", Fai, and pai, the subscript i is sometimes

omitted when the implementations are focused on a single locus.

[00207] Pa: fraction of nucleic acids from contributor d that contribute to a mixture
sample.

[00208] A: Sequencing error rate.

[00209] Bold letters represent vectors or matrices:

[00210] g = lganili = 1.1 a=1.p: genotype matrix with reference allele counts in all

contributors and all loci.

[00211] gi = [ga1ild=1..p: genotype vector with reference allele counts for all contributors

and given locus i.

[00212] r = [r1]i = 1.1: allele fraction vector with fractions of allele 1 reads for every loci.
[00213] n = [n;]; = ;..;: read count vector with read count for every loci.

[00214] p = [piili = 1..1: vector with expected allele 1 fraction for every loci.

[00215] P = [Pala = 1.p: contributor fraction vector with relative fraction of each

contributor contributing to the nucleic acid sample.

[00216] In some implementations, the probabilistic mixture model uses a single-locus
likelihood function to model allele counts at a single polymorphism locus, the single-locus

likelihood function can be expressed as:

[00217] M(nii, n2i | p1i, 6), where ny; is the allele count of allele 1 at locus i, ny; is the allele
count of allele 2 at locus i, pz; is an expected fraction of allele 1 at locus i, and € includes one or

more model parameters.

{00218] In some implementations, p;; is modeled as a function p(g;, 4, f) of: (i) genotypes
of the contributors at locus i, or g; = (g11i, ..., gp1i), which is a vector of copy number of allele 1
at locus i in contributors 1...D; (ii) read count errors, or 4, resulting from the sequencing; and
(ii1) fractions of nucleic acid of contributors in the nucleic acid sample, or #= (1, ..., fp), where

D is the number of contributors.
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[00219] In some implementations, py; is calculated as pzi = p(gi, 4, f) < [(I- 1) gi + 4 (2-

gi)]/2 ¢ p, where ¢ is vector dot product operator.

[00220] In some implementations, the contributors include two contributors, and pj; is

obtained using the p;’ values in Table 3 described hereinafter.

[00221] In some implementations (method S), the single-locus likelihood function is a
probability distribution that includes a first binomial distribution. In some implementations, the
first binomial distribution includes a quantity parameter indicating the total allele count at a locus
and a probably parameter indicating a probability of the first allele at the locus. In some

implementations, the first binomial distribution is expressed as follows:

[00222] nii ~ BN(n;, p1i)

[00223] where n1; is an allele count of nucleic acid sequence reads for allele 1 at locus i; n;
is a total read count at locus #; and pj;is a probability parameter indicating the probability of

allele 1 at locus 1.

[{00224] In some implementations, the probability parameter p is a function of a fraction of
nucleic acid of a contributor, or f. The probably parameter is also a function of genotypes of the
one or more contributors g. The probability parameter is also a function of errors resulting from
the sequencing operation of 206, or 4. In some implementations, zero, one or more genotypes of
the contributors were unknown. In some implementations the probabilistic mixture model

includes various probability distributions as shown in Figure 2B.

[00225] Returning to Figure 2A, process 200 involves quantifying, using the probabilistic
mixture model, one or more fractions of nucleic acid of the one or more contributors in the
nucleic acid sample. See block 214. In some implementations, the quantifying includes
marginalizing over a plurality of possible combinations of genotypes to enumerate the
probability parameter p. In some implementations, the quantifying includes determining f, the
fractions of nucleic acid of the contributors, using a multiple-loci likelihood function of the allele
counts of nucleic acid sequence reads determined in operation 210 conditioned on parameters of

the probabilistic mixture model.
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{00226] In some implementations, the quantification includes calculating a plurality of
likelihood values using a plurality of potential fraction values and a multiple-loci likelihood
function of the allele counts of nucleic acid sequence reads. The quantification also involves
identifying a potential fraction value that is associated with a likelihood value that is the
maximum value among the plurality of likelihood values. In some implementations, the plurality
of likelihood values is obtained for a plurality of parameters and the values thereof in a multi-
dimensional grid. The quantification also involves quantifying the fraction of nucleic acid of the
contributor(s) in the nucleic acid sample at the identified potential fraction value having the
maximum likelihood. In some implementations, the multiple-loci likelihood function includes a

plurality of marginal distributions for the one or more polymorphism loci.

[00227] In some implementations, the multiple-loci likelihood function of the one or more

contributors, with known, unknown, or partially known genotypes, is computed as following:
[00228] LP, 6, A, w; nyny) =11 [Xg M(ny, nai | p(gi, 4, B), 8) = P(gil )]

[00229] where L(f}, 6, 4, = ; n1, n2) is the likelihood of observing allele count vectors n;
and n; for alleles 1 and 2; p(g;, 4, f#) is the expected fraction or probability of observing allele 1 at
locus i based on the contributors’ genotypes g; at locus 1; P(gilz) is the prior probability of
observing the genotypes g; at locus 1 given a population allele frequency (x); and, 2g; denotes
summing over a plurality of possible combinations of genotypes of the contributors, subjecting to

constraints of the known genotypes for some or all the contributors.

[00230] In some implementations, the prior joint probability is calculated using marginal

distributions P(gy; I7) and P(gzilz) that satisfy the Hardy-Weinberg equilibrium.

[00231] In some implementations, all genotypes are known, and the multi-loci likelihood
function is computed using the genotype vector g; representing the known genotype combination

for the contributors: L(f, 6, A, =, ni1, n2) = II; [M(n1, n2i | p(gi, 4, ), 8) - P(gi| 7)].

[00232] In some implementations, the probabilistic mixture model accounts for nucleic
acid molecule number errors resulting from extracting the nucleic acid molecules performed in

202, as well as the read count errors resulting from the sequencing operation in 206.

[00233] In some implementations, the probabilistic mixture model uses a second binomial

distribution to model allele counts of the extracted nucleic acid molecules for alleles at the one or
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more polymorphism loci. In some implementations, the second binomial distribution is

expressed as follows:
[00234] nii"~ BN(n;", p1i)

[00235] where n;;” is an allele count of extracted nucleic acid molecules for allele / at
locus i; n;” is a total nucleic acid molecule count at locus i, which equals to a total genome copy

numbers n"; and py; is a probability parameter indicating the probability of allele / at locus i.

[00236] In some implementations, the first binomial distribution is conditioned on an
allele fraction ny;"/n;". In some implementations, the first binomial distribution is re-

parameterized as follows:

[00237] nyi ~ BN(n;, n;i"/ni")
[00238] where n;; 1s an allele count of nucleic acid sequence reads for allele / at locus i.
[00239] In some implementations, the probabilistic mixture model uses a first beta

distribution to approximate a distribution of nz;"/n”. In some implementations, the first beta
distribution has a mean and a variance that match a mean and a variance of the second binomial

distribution.

[00240] In some implementations, locus i is modeled as biallelic and the first beta

distribution is expressed as follows:
[00241] ni'"/m" ~ Beta((n"-Dpn, (n"-1)p2i)

[00242] where pj; is a probability parameter indicating the probability of a first allele at

locus 7; and p2; is a probability parameter indicating the probability of a second allele at locus i.

[00243] In some implementations, the process includes combining the first binomial
distribution, modeling sequencing read counts, and the first beta distribution, modeling extracted
nucleic acid molecule number, to obtain the single-locus likelihood function of ni; that follows a

first beta-binomial distribution.

[00244] In some implementations, the first beta-binomial distribution has the form:
[00245] nii ~ BB(ni, (n"-1)-pn;, (n"-1)-p2i),
[00246] or an alternative approximation:
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[00247] nii ~ BB(ni, n" - pri, n" - p2i).

[00248] In some implementations, the multiple-loci likelihood function can be expressed
as:

[00249] LB, n", A, w; ninz) = 11; [ X4 BB(nsil ni, (n"-1)-pr, (n"-1)-p2:) = P(gi| )]

[00250] where L(f, n", A, m ; ni,nz) is the likelihood of observing allele count vectors n;

and n; for alleles / and 2 at all loci, and p7; = p(gi, A, B), p2i = 1 — p1..

[00251] In some implementations, the contributors include two contributors, and the

multiple-loci likelihood function is expressed as:

[00252] LB, n", A, ; ni, n2) = Ili2grig2i BB(nii, nail ny, (n" -1)-pri(gn, g2, 4, p), (n" -
1)-p2i(g1i, 821, 4, P)) - P(g1i, g2ilm)

[00253] where L(f, n", A, & ; n1, n2) is the likelihood of observing an allele count vector for
the first allele of all loci (n7) and an allele count vector for the second allele of all loci (n2) given
parameters f, n", A, and 7; p1i(g1, g2i, 4, B) is a probability parameter, taken as p;' from Table 3,
indicating a probability of allele / at locus i based on the two contributors’ genotypes (g1 82i);
p2i(g1i, g2i, 4, f) is a probability parameter, taken as p2' from Table 3, indicating a probability of
allele 2 at locus i based on the two contributors’ genotypes (g1;, g2:); and P(g1,82ilm) is a prior
joint probability of observing the first contributor’s genotype for the first allele (gs;) and the
second contributor’s genotype for the first allele (g2) at locus i given a population allele

frequency (7).

[00254] In some implementations, operation 214 includes estimating the total extracted
genome copy number n” from a mass of the extracted nucleic acid molecules. In some
implementations, the estimated total extracted genome copy number n” is adjusted according to

fragment size of the extracted nucleic acid molecules as further described hereinafter.

[00255] In some implementations, the probabilistic mixture model accounts for nucleic
acid molecule number errors resulting from amplifying the nucleic acid molecules performed in
204, as well as the read count errors resulting from the sequencing operation in 206. In some

implementations, the nucleic acid amplification process is modeled as follows:

Xt+]1 = Xt + Y+l
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wherein x:+; 1s the nucleic acid copies of a given allele after cycle 14/ of amplification; x; is the
nucleic acid copies of a given allele after cycle ¢ of amplification; y.+; is the new copies
generated at cycle 7+/, and it follows a binomial distribution y;+; ~BN(xs, r1+1); and rr+1 is the

amplification rate for cycle 7+1.

[00256] In some implementations, the probabilistic mixture model uses a second beta
distribution to model allele fractions of the amplified nucleic acid molecules for alleles at the one
or more polymorphism loci. In some implementations, locus i is modeled as biallelic and the

second beta distribution is expressed as follows:

[00257] nii/ (nn' + na2i') ~ Beta(n"-pip1i , n"pi-p2i)

[00258] where n;;'1s an allele count of amplified nucleic acid molecules for a first allele at
locus i; nz;' is an allele count of amplified nucleic acid molecules for a second allele at locus i; n”
is a total nucleic acid molecule count at any locus; p; is a constant related to an average
amplification rate ri over all amplification cycles; pyis the probability of the first allele at locus i;
and p2;is the probability of the second allele at locus i. In some implementations, p; is (1+7r:)/(1-

ri)/ [1-(1+r;)"]. In some implementations, p; is approximated as (1+ri)/(1-ri).

[00259] In some implementations, operation 214 includes combining the first binomial
distribution and the second beta distribution to obtain the single-locus likelihood function for n;;
that that follows a second beta-binomial distribution. In some implementations, the second beta-

binomial distribution has the form:

nii ~ BB(ni, n"-pi-p1i, n"-pi-p2i), wherein ny; is an allele count of nucleic acid sequence reads for
the first allele at locus i; pyiis a probability parameter indicating the probability of a first allele at

locus i; and p2;is a probability parameter indicating the probability of a second allele at locus i.

[00260] In some implementations, operations 214 includes, by assuming the one or more
polymorphism loci have a same amplification rate, re-parameterizing the second beta-binomial

distribution as:
nyi ~ BB(ni, n" -(1+r)/(1-r)-pr, n"-(1+r)/(1-r)-p2i), wherein r is an amplification rate.

[00261] In some implementations, operation 214 includes quantifying the one or more

fractions of nucleic acid of the one or more contributors in the nucleic acid sample using a
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multiple-loci likelihood function obtained using the second beta-binomial distribution, the

multiple-loci likelihood function is as follows:
L(ﬂ, n'", r, AT, ny nz) =i [Xg;BB(nji |l ny, 0" -(1+r)/(1-r)pu, n" (1+r)(1-r)p2) * P(gi| 7)]

100262] In some implementations, the contributors include two contributors and the

multiple-loci likelihood function comprises:

[00263] LB, n", r, A, &, ny, n2) = lidgrigi [BB(niil ni, 0" (1+r)/(1-r)-p1i(gii, g2, 4, p), n"
(1+r)/(1-r)p2i(g1i g2is 4, B))-P(g1i, g2ilm)]

[00264] wherein L(f, n", r, A, @ ; n;, n2) is the likelihood of observing an allele count
vector for the first allele of all loci (n7) and an allele count vector for the second allele of all loci

(n2) given parameters f, n”, r, A, and 7.

[00265] In some implementations, operation 214 includes, by defining a relative
amplification rate of each polymorphism locus to be proportional to a total reads per locus, re-

parameterizing the second beta-binomial distribution as:

[00266] nii ~ BB(ni, c"ni-pr, c"nip2i), wherein ¢’ is a parameter to be optimized.

[00267] In some implementations, operation 214 includes quantifying the one or more
fractions of nucleic acid of the one or more contributors in the nucleic acid sample using a
multiple-loci likelihood function obtained using the second beta-binomial distribution, the

multiple-loci likelihood function follows:
[00268] LB, n", c', A w; ny,nz) =11l [Xgi BB(nyil n,, ¢"ni-pr, c nip2i) < P(gil 7)]

[00269] In some implementations, the probabilistic mixture model accounts for nucleic
acid molecule number errors resulting from extracting the nucleic acid molecules performed in
202 and amplifying the nucleic acid molecules performed in 204, as well as the read count errors

resulting from the sequencing operation in 206.

[00270] In some implementations, the probabilistic mixture model uses a third beta
distribution to model allele fractions of the amplified nucleic acid molecules for alleles at the one
or more polymorphism loci, accounting for the sampling errors resulting from extracting the

nucleic acid molecules performed in 202 and amplifying the nucleic acid molecules performed in
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204. In some implementations, locus i is modeled as biallelic and the third beta distribution has

the form of:
[00271] nii/ (n1i' + n2i') ~ Beta(n'' - (1+ ri )/2 - pri, n' (1+ ri )/2 - p2i)
[00272] where n;;'1s an allele count of amplified nucleic acid molecules for a first allele at

locus i; n2i is an allele count of amplified nucleic acid molecules for a second allele at locus i; n”
is a total nucleic acid molecule count; r; is the average amplification rate for locus #; pi is the

probability of the first allele at locus i; and p2;is a probability of the second allele at locus i.

[00273] In some implementations, operation 214 includes combining the first binomial
distribution and the third beta distribution to obtain the single-locus likelihood function of ny;
that follows a third beta-binomial distribution. In some implementations, the third beta-binomial

distribution has the form:

[00274] nii~BB(ni, n' - (1+ri )2 -pr,n" - (1+ 1 )/2 - p2i)

[00275] where r; is an amplification rate.

[00276] In some implementations, the multiple-loci likelihood function is:

[00277] Lp,n", r, A, m;n1,n2)=1i[2giBB(niln,n"-(1+r)2 -pu,n"-(1+r)2-p)
* P(giln)]

[00278] where r is an amplification rate assumed to be equal for all loci.

[00279] In some implementations, the contributors include two contributors, and the

multiple-loci likelihood function is:

[00280] LB, n", r, &, 7w, ni, n2) = l:2g1i02i BB(nsil niy n'' - (1+ r )/2 - p1i(gi, g2i, 4, f), n"" -
(1+ r)/2 - pa(gn, g2, 4 B)) - P(grni, g2il7)

[00281] where L(nj, n2l p, n”, r, 4, m) is the likelihood of observing allele counts for the
first allele vector n; and an allele count for the second allele vector n given parameters g, n”, r,
A, and 7.

[00282] In some implementations, process 200 further includes estimating, using the

Cramer-Rao inequality, one or more confidence intervals of the one or more fractions of nucleic

acid of the one or more contributors.
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{00283] In some implementations, the mapping operation of 208 includes identifying
reads among the nucleic acid sequence reads matching any sequence of a plurality of unbiased
target sequences, wherein the plurality of unbiased target sequences includes sub-sequences of

the reference sequence and sequences that differ from the subsequences by a single nucleotide.

[00284] In some implementations, the plurality of unbiased target sequences comprises
five categories of sequences encompassing each polymorphic site of a plurality of polymorphic
sites: (1) a reference target sequence that is a sub-sequence of the reference sequence, the
reference target sequence having a reference allele with a reference nucleotide at the
polymorphic site; (ii) alternative target sequences each having an alternative allele with an
alternative nucleotide at the polymorphic site, the alternative nucleotide being different from the
reference nucleotide; (ii1) mutated reference target sequences comprising all possible sequences
that each differ from the reference target sequence by only one nucleotide at a site that is not the
polymorphic site; (iv) mutated alternative target sequences comprising all possible sequences
that each differ from an alternative target sequence by only one nucleotide at a site that is not the
polymorphic site; and (v) one or more unexpected allele target sequences each having an
unexpected allele different from the reference allele and the alternative allele, and each having a
sequence different from the previous four categories of sequences. In some implementations, the
five categories of sequences have the same length and are located at the same region of a

genome.

[00285] In some implementations, operation 208 includes using the identified reads and
their matching unbiased target sequences to determine allele counts of the nucleic acid sequence
reads for the alleles at the one or more polymorphism loci. In some implementations, the
plurality of unbiased target sequences includes sequences that are truncated to have the same
length as the nucleic acid sequence reads. In some implementations, the plurality of unbiased
target sequences includes sequences stored in one or more hash tables, and the reads are

subsequently identified using the hash tables.

[00286] In some implementations, the process 200 further includes a procedure to
determine if a contributor of known genotype is a true contributor to a mixture sample by

comparing two versions of maximized multi-loci likelihood values, one version using a genotype
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matrix containing the known genotype for the contributor, another version using a genotyping

matrix with unknown genotype for the contributor.

[00287] In some implementations, the process further includes determining one or more
genotypes of the one or more contributors at the one or more polymorphism loci. In some
implementations, the process includes determining, using the one or more fractions of nucleic
acid of the one or more contributors, a risk of one contributor (a donee) rejecting a tissue or an
organ transplanted from another contributor (a donor). In many applications, the risk is not or
cannot be based solely on the estimated contributor fractions. Instead, the contributor fractions
are used as an intermediate parameter or intermediate result for determining the risk. In various
implementations, other parameters obtained from other methods are combined with the
contributor fractions to determine the risk. Such other methods include, and are not limited to,

tissue biopsy, serum creatinine measurement, HLA-DSA (donor specific antibody) analysis.

{00288 Figure 3 shows a block diagram illustrating process 300 for evaluating a nucleic
acid sample including nucleic acid of one or more contributors. Process 300 starts by receiving
nucleic acid sequence reads of one or more alleles at one or more polymorphism loci obtained
from the nucleic acid sample. See block 302. In some implementations, the nucleic acid
sequence reads were obtained by sequencing the nucleic acid in the nucleic acid sample using

various techniques described herein.

[00289] In some implementations, unique molecular indexes (UMIs) are attached to the
extracted nucleic acid molecules, which are then amplified, sequenced, and mapped to the
polymorphism loci or alleles. The unique molecular indices provide mechanisms to reduce the
errors that can occur in the sample processing and analysis steps. For instance, different reads
sharing a same unique molecular index (UMI) can be combined or collapsed to determine a
sequence from which the reads are derived, effectively removing errors that have occurred
during sample processing and sequencing. US Patent Application No. 15/130,668, filed April
16, 2016, and US Patent Application No. 15/863,737, filed January 5, 2018 describe various
methods and systems for sequencing nucleic acids using unique molecular indexes, which are

incorporated by reference by their entireties for all purposes.

[00290] When UMl is used in an assay, the redundant DNA molecules resulting from PCR

amplification of a template nucleotide acid are collapsed into a single read. For such
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experimental procedure, a preferred model for single locus read counts is the first beta-binomial
distribution, which combined the first binomial distribution, modeling sequencing read counts,

and the first beta distribution, modeling extracted nucleic acid molecule number.

[00291] When UMI is not used in an assay, nucleic acid extraction, amplification, and
sequencing all contribute to the statistical variability in read counts. For such experimental
procedure, a preferred model for single locus read counts is the third beta-binomial distribution,
which combined the first binomial distribution, modeling sequencing read counts, the third beta
distribution, modeling allele fractions of the amplified nucleic acid molecules, and the first beta

distribution, modeling allele fractions in extracted nucleic acid molecule.

[{00292] Process 300 further involves determining, using the nucleic acid sequence reads,

allele counts for the one or more alleles at the one or more polymorphism loci.

[00293] Process 300 also involves applying the probabilistic mixture model to the allele
counts. The probabilistic model uses probabilistic distributions to model allele counts of alleles
at the one or more polymorphism loci. The probabilistic distributions count for errors in the
allele data. The errors include errors originating from nucleic acid extraction, sample processing,

and sequencing operations.

[00294] In some implementations, the probabilistic distributions include a first binomial
distribution. In some implementations, the first binomial distribution includes a parameter
indicating the total allele count at a locus and a probability parameter indicating the probability
of the first allele at the locus. In some implementations, the probability parameter is a function
of the fractions of nucleic acid of the one or more contributors in the nucleic acid sample. The
probability parameter is also a function of genotypes of the one or more contributors, or G, and a
function of errors in the nucleic acid sequence read data, or #. In some implementations, the
errors in the read data include errors originating from nucleic acid extraction, sample processing,

and sequencing operations.

[00295] Process 300 also involves obtaining likelihood values of observing the allele data

given model parameters and potential nucleic acid fraction values. See block 308.
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[00296] In some implementations, process 300 involves quantifying, using the likelihood
values, fractions of nucleic acid of the one or more contributors in the nucleic acid sample. See

block 310.

[00297] In some implementations, process 300 further involves determining, using the

likelihood values, at least one genotype for at least one of the contributors. See block 312.

{00298] In some implementations, genotypes of the contributors were unknown prior to

process 300.

[00299] In some implementations, the probabilistic mixture model uses a beta distribution
to model the errors in the allele data. In some implementations, the beta distribution is defined by
a mean parameter and a concentration parameter. In some implementations, the concentration
parameter has discrete prior representing different noise conditions. The concentration

parameter varies across loci.

{00300] In some implementations, the quantification of operation 310 includes combining
the first binomial distribution and the beta distribution to obtain a marginal distribution that

follows a beta-binomial distribution.

[00301] In some implementations, the quantification of 310 includes quantifying the
fractions of nucleic acid of the one or more contributors in the nucleic acid sample using a
multiple-loci likelihood function of the allele data. In some implementations, the quantification
involves calculating a plurality of likelihood values using a plurality of potential fraction values
and a multiple-loci likelihood function of the allele counts. The quantification also involves
identifying a potential fraction vector associated with the maximum likelihood value, and
quantifying the fractions of nucleic acid of the one or more contributors in the nucleic acid

sample using the identified potential fraction vector.

[00302] In some implementations, the multiple-loci likelihood function depends on
P(Gln), which is a prior probability of the genotype of the one or more contributors given a
population allele frequency (n). In some implementations, the prior probability is calculated

considering a dummy allele with a fixed prior probability representing mechanistic drop-out.

[00303] In some implementations, the one or more contributors include two or more

contributors. In some implementations, process 300 includes an operation of determining a total
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number of contributors in the one or more contributors. In some implementations, one or more
genotypes of the one or more contributors were unknown, and process 300 includes an operation
of determining an allele configuration at each of the one or more polymorphism loci, the allele
configuration comprising an allele for each of the one or more contributors. In some
implementations, process 300 includes an operation of determining an estimated probability for

the allele configuration.

[00304] In some implementations, process 300 further includes obtaining a posterior
probability that a specific contributor among the one or more contributors has a specific
genotype. In some implementations, process 300 further includes calling, based on the posterior
probability, that the nucleic acid sample includes nucleic acid from the specific contributor. In
some implementations, obtaining the posterior probability that a specific contributor among the
one or more contributors has a specific genotype includes: (i) multiplying prior probabilities of
genotype configurations by likelihoods of the genotype configurations; (ii) normalizing a product
of (1) by a sum over genotype space; and (iii) summing over genotype configurations containing

the specific genotype to obtain the posterior probability.

[00305] In some implementations, the specific genotype includes a multiple-locus
genotype, and the method further includes: summing, over all contributors, a posterior
probability that a contributor has the specific genotype at all loci; and determining, based on the

summed probability, the specified multiple-locus genotype appears in any contributor.

{00306] In some implementations, the nucleic acid sample is a forensic sample and the
data of the multiple-locus genotype is obtained from a person of interest. The process further

includes determining that the person of interest is a contributor of the nucleic acid sample.

[00307] In some implementations, the probabilistic mixture model uses a second binomial
distribution to model stutter errors in the allele data. In some implementations, the second

binomial distribution is expressed as follows:

Sik ~ BN(nix+1), 7i)
where si 1s a stutter allele count at locus 7 of a stutter allele that appears to be allele & but actually
results from a stutter error of allele k+1; nix+1) 1s an original allele count of allele k+1 at locus i;

and r;1s a stutter rate for locus i.
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{00308] In some implementations, the stutter rate r varies across loci and has a prior

representing different noise conditions, the prior being shared across loci.

{00309] In some implementations, operation 310 includes quantifying fractions of nucleic
acid of the one or more contributors in the nucleic acid sample using a multiple-loci likelihood
function including a product of likelihoods of non-stutter allele counts and likelihoods of stutter

allele counts.

[00310] In some implementations, applying the probabilistic mixture model includes
adding a fixed number of molecules to an allele count assigned to allele k+/ when determining a

number of molecules from which stutter can potentially originate.

[00311] In some implementations, the probabilistic mixture model uses a dummy out-of-
sample allele to model natural drop-out. In some implementations, the prior of the dummy out-
of-sample allele is proportional to a number of unobserved alleles. In some implementations, the
number of unobserved alleles is estimated by: interpolating all integers between the shortest and
longest observed integer-valued alleles, adding any observed non-integer-valued alleles, and

returning the maximum of the resulting value and a criterion value.

[00312] In some implementations, applying the probabilistic mixture model involves
pruning genotype configurations from data used to quantify the fractions of nucleic acid of the
one or more contributors in the nucleic acid sample. In some implementations, pruning genotype
configurations involves: limiting genotype configurations that are plausible by constructing a list
of required alleles and excluding loci with not enough contributors to explain all required alleles.
In some implementations, the list of required alleles consists essentially of alleles having allele
counts above a threshold and too high to be plausible due to stutter drop-in. In some
implementations, the threshold is a sum of (i) a maximum non-stutter allele count, and (ii) a
value multiplied by a count of potential stutter donor alleles. In some implementations, pruning
genotype configurations involves removing genotype configurations that have poor matches
between the allele data and expected allele counts. In some implementations, the genotype
configurations that have poor matches have root mean squared error (RMSE) values larger than

one or more thresholds.

[00313] In some implementations, the alleles at the one or more polymorphism loci

include single nucleotide polymorphism (SNP) alleles and/or short tandem repeat (STR) alleles.
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Method for Unbiased Mapping of Reads to Marker Sites

[00314] Conventional computational methods for mapping nucleic acid (e.g., DNA or
RNA) sequencing reads to the genome can be biased by the reference genome used. Since only
one allele (the reference allele) for each variant site is present in the reference genome,
mismatches between the reads and references are treated as sequencing errors in existing read
mapping strategies. The problem is that when reads containing the non-reference alleles are
treated as containing sequencing errors, the alignment confidence (score) is decreased, and hence
they are less likely to be retained as confidently mapped reads in subsequent filtering steps. This
mapping bias will skew the allele counts (Figure 1B), and subsequently compromise the

estimation of contributor DNA fractions.

[00315] To address the mapping bias issue and enable optimal CDQ, some
implementations provide a novel workflow for mapping reads to variant sites. The new read
mapping approach enables unbiased counting of alleles and estimation of sequencing error on

variant sites and non-variant sites.

[00316] The read mapping workflow is as follows. The workflow first generates five types
of sequences (see Table 1) based on 1) the reference sequences and 2) the known alleles of the
variant sites. If more than one single mutation is allowed per sequence, more types of sequences
will be generated. The five types of sequences are referred to as ref, alt, ref.mut, alt.mut, and
snp.mut respectively. For example, for each biallelic SNP marker site covered by a target
sequence of length L, there are one ref, one alt, [L — 1] x 3 ref.mut, [L — 1] x 3 alt.mut, and 2
snp.mut sequences. All five types of sequences are then included in the database of “unbiased
target sequences” (Figure 1B). Depending on the length of the reads from the sequencer, the
unbiased target sequences are then truncated into two versions. Let r be the read length. Version
1 of the truncated target sequences comprises the r 5° bases of all unbiased target sequences,
while version 2 of the truncated target sequences comprises the reverse complement of the r 3’
bases of all unbiased target sequences. Redundant sequences in truncated target sequences are
then removed. The unique sequences in the two truncated sequence databases are then recorded
into two hash tables. Next, sequencing reads are counted using the hash tables. For pair end
sequencing strategies, R1 reads and R2 reads are counted using the first and second hash tables

respectively. For non-pair end sequencing, all reads are counted using the first hash table.

46



WO 2018/236911 PCT/US2018/038342

Finally, for each marker site, the counts are aggregated into the five types defined above

depending on which type the truncated unbiased target sequences corresponds to in Table 1.

[00317] A similar strategy can be implemented when sequence alignment tools are used
instead of using hash table for the mapping. For each marker site, the ref and alt types of
sequences are generated to form the unbiased sequence database. Each sequencing read is then
aligned to this database with up to a predefined number of sequencing errors. The mapped reads
are then categorized based on Table 1. For SNP markers only the bi-allelic scenario is presented
here, but the method extends to multi-allelic loci.

Table 1. Definition of five types of target sequences to be generated from the reference
sequence around a variant site.

Type Definition

ref SNP site taking reference allele

alt SNP site taking alternative allele

ref.mut | Single mutation on non SNP site when the SNP site is ref

alt.mut | Single mutation on non SNP site when the SNP site is alt

snp.mut | SNP site taking neither reference nor alternative alleles

[00318] The proposed read mapping workflow addresses the read mapping bias issue
when tested using real data. With the workflow, the observed error rates of the reference to
alternative errors and the alternative to reference errors are identical. The sequencing error rate
on the non-variant sites on the reference DNA copy and that on the alternative DNA copy are

also identical.

Linking Contributor DNA Fraction with Allele Fractions

Sequencing Error-Free Scenario

{00319] We denote n; as the number of contributor 1 (e.g. organ recipient) cells and n2 as
the number of contributor 2 (e.g. organ donor) cells that supplied DNA to the sample. Based on
these cells, the implementations define the contributor 2 fraction as 2 = n2/(n1+ n2). For two-

contributor scenario, we denote B2 as B for short. Depending on the genotypes of the two
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contributors at each specific locus, the two alleles have different fractions (see Table 2 for
details), and the generic formula for calculating them is p1 =[g11(1-B) + g21-B] /2 and p2 = [g12 (1-
B) + g22-B] /2. Note that g11 and g1 are the contributor 1 (recipient) genotype, i.e. copies of allele
1 and 2 in the recipient genome; g21 and g2 are contributor 2 (donor) genotype, i.e. copies of

allele 1 and 2 in the donor genome.

{00320] In matrix notation, the relationship for multiple contributor cases is generally
implemented as p <— g/2¢ f#, where p is a vector of expected allele 1 fraction for all loci, g is a
matrix of genotype of all loci in all contributor, and f = [f1, f2, ..., fp] is the vector of nucleic
acid fractions for all constructors. The implementation is generally applied to single-, two-, and

multi-contributor scenarios.

Table 2: The binomial model parameters expected allele 1 and allele 2 fractions p1 and p2
for the 9 possible genotype combinations between a contributor 1 and contributor 2 pair
for a given variant site

gu g1 p1 p2

0 0 0 1

0 1 B2 1-B/2

0 2 B 1-B

1 0 (1-p)2 (1+B)/2

1 1 1/2 1/2

1 2 (1+B)/2 (1-p)2

2 0 1-B B

2 1 1-B/2 B2

2 2 1 0
General Scenario with Sequencing Error

[00321] When there are two known alleles at a variant site, sequencing errors will convert

one allele to another in addition to converting the two known alleles to the two remaining
nucleotides at this locus. The consequence is that the allele fractions in the sequenced reads will

deviate from the allele fractions in the NGS input sample.

{00322] Figure 2C schematically illustrates sequencing errors that convert one allele to
another allele and true alleles to unexpected alleles. Panel (A) shows nucleotide-dependent

sequencing error, and panel (B) shows uniform sequencing error.
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{00323] Let N1, N2 be the allele 1 and allele 2 nucleotides. Let p1', p2' be the probability of
observing allele 1 and allele 2 reads respectively, whether it is real or due to sequencing error;
and po' = 1- p1' - p2' be the probability of observing the two unexpected alleles due to sequencing
error. Let Anin2 be the mutation rate (probability) from N to N2, where N1 and N2 are unique to

each SNP site, and
[{00324] An1#: mutation probability from Ny to any of the 3 nucleotide non-N; nucleotides.

[00325] The transition diagram among the 4 nucleotide of a SNP site is shown in Figure
2C. Based on this, the implementations obtain the following equations for converting from true

allele fractions p1, p2 to observed allele fractions p1', p2', and po":

[00326] Pt =DPp1 - pr-Ani# + p2-ANan1

[00327] p2' = p2 - p2AN2# + prr-ANINg

[00328] po' = p1-(An1#- ANIN2) + p2- (An2# - AnaN1).

{00329] When the implementations assume uniform sequencing error rate that is

independent to the nucleotide identity, the implementations have,

[00330] pt'=pt-(1-3X)+p2- A

[00331] p2'=p2-(1-3X) +p1- A

[00332] po' = 2\

[00333] When the implementations ignore the unexpected alleles
[00334] pt'=(pt- (1-3-1)+p2- V/(1-2}0)

[00335] p2'=(p2- (1-3-1)+p1- V/(1-2M),

[00336] with o(A\?) approximation error, these are rewritten as
[00337] pt'=pt-(1-A)+p2- A

[00338] p2'=p2-(1-A)+p1- A

[00339] Or for locus i and substituting g and f for p:

[00340] pii' «— Za[(gai = (I-N) +gai * A * Ba)/2
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[00341] pai' — Za[(ga2i = (1-A)+gaii = A] = Pa)2
[00342] which is referred to as an error-adjusted-genotype weighted mixing coefficients.
{00343] The formula linking contributor 2 fraction B with the observed allele fraction p1'

in two contributor scenario is listed in Table 3.

Table 3: Expected probabilities of observing alleles 1 and 2 allowing for sequencing errors,
conditioned on each donor/recipient genotype combination in a two-contributor setting.
Here a uniform sequencing error rate ANinz = A is used for all nucleotide pairs N1 and Na.

Since mutation rate A is small, a first order approximation is used.

gi1 221 p1' p2'

0 0 A 1-A

0 1 B2 +A—PA 1-B2-A+BA

0 2 B+A-2BA 1-B-A+2BA

1 0 (1-B)/2 + BA (1+B)/2 - Br

1 1 172 1/2

1 2 (1+B)/2 — A (1-B)/2 + Br

2 0 1-B-A+2BA B+A-2BA

2 1 1-B/2-A+BA B/2 +A-Br

2 2 1-A A

[00344| In matrix format, error-adjusted-genotype for allele 1 accounting for sequencing
error A is implemented as: G «— [(/-A) g + A1 (2-g)] /2

[{00345] For general cases with more than two contributors, the expected mixing fraction

vector for allele 1 is computed as: p < G ¢ f, which is implemented for nucleic acid mixtures
with single, two, or multiple contributors.

[00346] When A = 0, the implementation has the special case: p «— g/2¢ f8

Overview of the DNA Extraction, PCR (Amplification), and Sequencing Models

[00347] Three probabilistic models (Figure 1C) are provided to model the three major
components in the generic experimental pipeline (Figure 1A): 1) DNA/RNA extraction; 2)
DNA/RNA amplification (e.g., PCR) as an approach for enriching target DNA/RNA; 3)
sequencing (e.g., NGS sequencing). These and other modeling components are then integrated to

implement the single-locus model and compute the single-locus likelihood function M(n;;, n2; |

pr1i, 0).
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[00348] The following notations are used in the mathematical models detailed in Table 4

and the remaining of this section.
[00349] B(): beta function

[00350] Beta(), BN(), Pois(), Gamma(): beta distribution, binomial distribution, Poisson

distribution, and Gamma distribution

[00351] NB() denotes a negative binomial distribution, which is a discrete probability
distribution of the number of successes in a sequence of independent and identically distributed
Bernoulli trials before a specified (non-random) number of failures (denoted r) occurs.

Table 4: Statistical models for the three major components in the generic experiment

pipeline (Figure 1). The model for each component is conditioned on the previous
component. The models are per each locus and locus index i is omitted.

§gDNA or cfDNA %Copies of allele 1: §Copies of allele 2:

.extracted from a ny" ~ Pois(c - p1) n2" ~ Pois(c - p2)

blood sample (Model VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV f VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
;E) | Capies of allele 1 given the total copies of the locus:

n "In" ~ BN(n", p1), where n" = ny" + ny'

PCR amplified DNA Coples of allele 1: Copies of allele 2:
(Model P) ny' ~ Gamma(n:"-p, 8) nz' ~ Gamma(nz"p, 6)

Fraction of allele 1 of the locus in the PCR product, conditioning
on allele 1 and allele 2 copies in the extracted DNA: :
n{'/n"| n{", nx"~ Beta(n:"-p, n2"p), where n' = n{" + ny".

Ignormg DNA samplmg variation (hence n{" = n"-p4, n2" = n"-p2):
ni'/n' ~ Beta(n"-p-p1 , N"pp2) :

§Cop|es of sequenced Copies of allele 1 given the total copies of the locus, condltlonlng

rreads mapped to the on fraction of allele 1 of a locus in the PCR product:
loci (without ni|n, ny'/n' ~ BN(n, p = n4'/n'), where n = ny + no.
'sequencing error)

(Model S)

DNA Extraction Model: Model E
[00352] When cfDNA or cellular DNA is extracted from a blood sample, the obtained

DNA is a small sample from the large pool of DNA, and hence the implementations model the

counts of two alleles at each locus as two Poisson distributions. Hence the DNA copy (n:1") for
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allele 1 at a locus conditioned on the total counts n" follows the binomial distribution: n;" ~

BN(n", p1), with mean po=n"-p1 and variance S>=n" - p1- p2-

[00353] When gDNA is extracted from a sample, the resulting gDNA amount for each
locus can again be variable due to extraction losses. Viewing pi as the fraction of allele 1 in the
input sample, the amount of allele 1 in the extracted DNA can again be modeled by a binomial

distribution: n1" ~ BN(n", p1).

PCR Amplification Model: Model P

[00354] We model the PCR amplification process as a stochastic process in order to obtain
a probabilistic distribution of allele 1 counts in the PCR product. Let x; be the DNA copies of a
given allele after cycle t of PCR amplification, let r: be the amplification rate for cycle t, and let
yebe the new copies generated at cycle t. By assuming each piece of DNA has a probability r of
getting amplified and added to the DNA pool, the implementations have the following model for

amplification:

[00355] Xerl = X¢ + Y1, Where yu1 ~BN(Xq, 1e+1) follows a binomial distribution with x; and

I'i+1 as parameters.

{00356] Based on this model, the implementations assume that the DNA copy number for
a locus in the PCR product follows the Gamma distribution approximately. Below is the

justification.

[00357] Step 1: Using Yule process (a continuous time stochastic process) to approximate

PCR (a discrete time stochastic process).

{00358] The PCR process X1 = Xt + Y1, where yu1 ~BN(xq, 1w+1) 1S a discrete time pure-
birth process: in a given cycle of time t, each copy of DNA "gives birth" independently at some
rate r.. The continuous time version of the pure-birth process is well-known as the Yule-Furry
Process. For the continuous time birth process, the final copy number for a locus at a given time t
is known to follow a negative binomial distribution. The implementations can use the same
distribution to approximate the discrete time birth process, when the total number of PCR cycles

is not close to 1.

{00359] Step 2: Using Gamma distribution (a continuous distribution) to approximate

negative binomial distribution (a discrete distribution).
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{00360] A negative binomial random variable can be written as a sum of independent and
identically distributed (i.i.d.) geometric random variables. The exponential distribution is known
to be the continuous version of the geometric distribution. Hence, the sum of i.i.d. exponential
random variables, which follows the Gamma distribution, is the continuous version of the sum of

binomial random variable, which is negative binomial.

{00361] Below the implementations that estimate the parameters of the Gamma

distributions of the allele counts in the PCR products.

[00362] Based on the law of total variance var(xw1)= var(E(xu1lx)) + E(var(xw1lx¢)), the

implementations can derive the mean and variance of x; recursively as follows:

[00363] Hert = He - (14701)

[00364] Bert® = e - Teat - (1-teat) + 87 - (I4ren)’,

[00365] where p = E(x), 8°= var(xy).

{00366] Assuming an average amplification rate per PCR cycle 141 = 1, the

implementations have

[00367] pe=po - (141)"
[00368] 82 = o - (141)' - [(140)-1] - (1-0)/(141) + 8o - (141)*
[00369] Notice that poand 8¢* are the mean and variance of DNA allele counts in the PCR

amplification input, and they can be computed based on the DNA extraction model (model E)
described above. Alternatively, if the implementations do not treat cfDNA/cellular DNA allele

counts as random variables, the implementations have po=n;" or n>", and 8> = 0.

[00370] The corresponding gamma distribution G(x; | k, 8) = x*'e™¥[6*T'(k)] that
P g 8

matches this mean and variance has parameters:

[00371] 0= [(141)-1] - (1-1)/(141) + So* /o - (141)"
[00372] k= po- (1404 [[(141)-1] (1-0)/(141) + So*/po - (141)1].
[00373] For a given locus with two alleles and two initial copies (n1", n2"), assuming

identical amplification rate r1 = 2 = r for two alleles for each locus, the two corresponding

gamma distributions G(n1' | ki, 81) and G(n2' | k2, 62) have the following parameters:
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[00374] 01 = [(1+40)-1] - (1-0)/(1+1) + p2 - (141)"

[00375] 02 = [(140)-1] - (1-0)/(1+1) + p1 - (141)"

[00376] ki= n"pi/[[1-(A+40)] - (I-0)/(141) + p2]

[00377] ko= n"p2/[[1- (1+41)"] - (1-r)/(141) + p1].

[00378] When the implementations condition the PCR model on the DNA extraction

model, s.t. po=ni" or n>" and 80> = 0, the implementations then have

[00379] 01 = [(140)-1] - (1-r)/(1+1)

[00380] 02 = [(140)-1] - (1-r)/(1+r)

[00381] ki= ni" - (1+0)/(1-r) / [1-(1+1) "]

[00382] ko= n2" - (1+r)/(1-r) / [1-(1+1)1].

[00383] Hence the allele copies ni' and n2' in the PCR product follow two Gamma

distributions with identical scale parameters 61 and 62, which are only dependent on the PCR

process (the number of cycles and amplification rate). Therefore,
[00384] ni'/ (ni' + ') ~ Beta(ni" - p, ma" - p),

[00385] where p is a constant related to the amplification rate r, which is only dependent
on the PCR process: p = (1+r)/(1-r) / [1-(14r)"], or approximately p = (1+r)/(1-r) when the
number of cycles t is large. For a specific locus, this is written as nii'/ (n1i' + nzi') ~ Beta(nii" - pi,

nai" - pi), to capture the locus specific PCR amplification rate.

[00386] If the implementations ignore DNA sampling and assume all loci have the same
total DNA copy number n;" = n", then nii" = n"- p1i and n2i" = n"- pai. The allele fraction for a

locus in the PCR product follows:
[00387] nii/ (nii' + n2i') ~ Beta(n"- pi-p1i , n"- pi- p2i)-

[00388] Note that without the Gamma distribution approximation, the allele counts of
PCR products have ni' ~ NB(r1, p) and n2' ~ NB(r2, p), and the ratio n1'/(n1' + n2') has no closed
form distribution. With the Gamma distribution approximation, ni' ~ Gamma(n:"-p, 0) and n2'~

Gamma(nz"-p, 0), and n1/(n1' + n2') follows the beta distribution.
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Sequencing Read Count Model: Model S
[{00389] NGS sequencing is a process that samples from the pool of DNA molecules

supplied to the sequencer and reads out the sequences of these molecules. The fraction of allele 1
for a locus 1 in the PCR product is ni1i/ (n1i' + n2i'). This fraction determines the probability that
allele 1 reads occur in the sequencing results. Conditioning on nj, the total number of reads per
locus, the distribution of nii, the allele 1 read count of a locus, is then modeled as a binomial

distribution ni; ~ BN(ni, n1'/ (n1' + n2")).

Modeling the Genetic Relationship between the Contributors as a Prior Distribution

{00390] If the contributor genotypes are completely known, they can be directly
incorporated (using Table 2 or Table 3) as parameters of the component models described above.
However, when the genotypes are unknown, the implementations make use of the genetic-
relationship information between the donor and recipient in a two-contributor setting to achieve
accurate mixture quantification. Genetic relationship is commonly available in clinical
applications such as organ transplant. Here we present the implementation for two-contributor

scenario, but this “genetic prior” approach can be generalized to any number of contributors.

[00391] We formulate different types of donor-recipient relationships as distinct prior
distributions on the space of possible genotype combinations of the donor (contributor 2) and
recipient (contributor 1). Assuming Hardy-Weinberg equilibrium, the genotype distribution for a
given loci for a single individual is P(g = [0,1,2]) = [(1-m)%, 2n(1-7), =°], where 7 is the
population frequency of allele 1, g is the allele 1 copy number. Notice that all genetic
relationships are the results of parent-child relationships. Based on the genetic-relationships
between parent and child for a give biallelic marker site (Table 5), the implementations can

compute the joint distribution for any genetic relationship among two or multiple contributors.

Table 5: Probability distribution of child genotype given parents' genotypes (father
genotype gramer and mother genotype gmomer) for a given locus, as well as the joint
distribution between father and mother assuming they are not relatives.

;gFather OMother Child probability for genctype {Oi 1, 2} P(gFa:her, gMcther)

... [especlively conditioned onparentgenotypes
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[00392] The prior distributions for various types of genetic-relationship between two

contributors are further provided below.

Joint Distribution between Father and Child Genotypes

[00393] As an example, the Father-Child donor-recipient genotype (GT) joint distribution

is computed using the following formula:

[00394] P(Recipient = Me GT, Donor = Father GT) = Znotmer gr [P(Me GTIFather GT,
Mother GT) - P(Father GT, Mother GT)],

[00395] where values of P(Me GTIFather GT, Mother GT) and P(Father GT, Mother GT)

are taken from the Table 5 columns 3 and 4 respectively.

Joint Distribution between Sibling Genotypes

[00396] As an example, the Me-Sibling donor-recipient genotype joint distribution is
computed using the following formula, based on the conditional independence of two sibling

genotypes given parents genomes:

[00397] P(Recipient = Me GT, Donor = Sibling GT) = Xnother 6T Zfather T [P(Me GT
[Father GT, Mother GT) - P(Sibling GTIFather GT, Mother GT) - P(Father GT, Mother GT)],

[00398] Where values of P(Me GTlFather GT, Mother GT), P(Sibling GTIFather GT,
Mother GT) , and P(Father GT, Mother GT) are taken from the Table 5 columns 3, column 3,

and column 4 respectively.
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Joint Distribution between Uncle-Nephew Genotypes

[{00399] As a example, the Uncle/Aunt-Nephew/Niece donor-recipient genotype joint

distribution is computed using the following formula:
[00400] P(Recipient = Me GT, Donor = Uncle GT)

100401] = Zgrandrnother GT Zgrandfather GT Zmother GT Lfather GT [P(Me GTIFather GT, Mother GT) .
P(Mother GT) - P(Father GTIGrandFather GT, GrandMother GT) - P(Uncle GTIlGrandFather,
GrandMother GT) - P(GrandFather GT, GrandMother GT)]

[00402] = Ymother GT Zfather 6T P(Me GTIFather GT, Mother GT) - P(Mother GT) - P(Father
GT, Uncle GT),

[00403] where values of P(Me GTIFather GT, Mother GT) is taken from column 3 of table
5, and P(Father GT, Uncle GT) is the same as P(Recipient = Me GT, Donor = Sibling GT).

[00404] In matrix notation, this can be computed using the parent/child prior matrix, the

sibling prior matrix, and the single genome prior vector

[00405] = [P(Me GT, Father GT)]we, Father * diag( 1 / [P(Father GT)]rater ) * [P(Father GT,
Uncle GT)]Father, Uncle

Joint Distribution between Cousin Genotypes

[00406] Assuming cousin is genetically linked by their fathers, who are brother, and the

mothers are genetically unrelated, then,
[00407] P(Recipient = Me GT, Donor = Cousin GT)

[00408] = Yaunt GT Zuncle GT Zmother GT Zfather 6T P(Me GTIFather GT, Mother GT) - P(Mother
GT) - P(Father GT, Uncle GT) - P(Aunt GT) - P(Cousin GT[Uncle GT, Aunt GT)

[00409] = Yaunt 6T Zuncle 6T P(Me GT, Uncle GT) - P(Aunt GT) - P(Cousin GTlUncle GT,
Aunt GT)

[00410] = Yuncle 6T P(Me GT, Uncle GT) - P(Cousin GT, Uncle GT) / P(Uncle GT)
[00411] In matrix notation, this can be computed using the uncle/niece prior matrix, the

parent/child prior matrix, and the single genome prior vector
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[00412] = [P(Me GT, Uncle GT)]me, uncte ® diag( 1 / [P(Uncle GT)]uncte ) * [P(Cousin GT,
Uncle GT)]Uncle, Cousin

[00413] Notice that P(Cousin GT, Uncle GT) is the same as parent-child relationship.

Joint Distribution between Half Sibling Genotypes

[00414] Assuming half sibling is linked by a single mother, and the two fathers are
unrelated:

[00415] P(Recipient = Me GT, Donor = HafSib GT)

[00416] = ZFather GT ZMother GT ZstepFather GT P(Me GTIFather GT, Mother GT) - P(HalfSib

GTIStepFather GT, Mother GT) -P(Mother GT) - P(Father GT) - P(StepFather GT)
[00417] = XMother 6T P(Me GT, Mother GT) - P(HalfSib GT, Mother GT) / P(Mother GT)

[00418] In matrix notation, this can be computed using the two parent child prior matrix,

and the single genome prior vector

[00419] = [P(Me GT, Mother GT)]wme, Mother ® diag( 1 / [P(Mother GT)]mother) * [P(HalfSib
GT, Mother GT)]Haitsib, Mother

[00420] Note that under HardyWeinburg equilibrium, half sibling relationship follows the
same distribution as the uncle/aunt/nephew/niece relationship. This may not be true without

HardyWeinburg equilibrium.

Summary
[00421] The results from the above derivations is summarized in Table 6, and the specific

instances given population SNP allele frequency m = 0.5 is provided in Table 7. Additional
relationships, such as grandparent-grandchild relationship or multi-contributor relationship, can
be derived based on the same underlying principle.

Table 6: Prior distributions P(gi11, g21) of related or unrelated genomes. Assuming all SNPs

are from autosomes, all married couples are genetically-unrelated, and in Hardy Weinberg
equilibrium. gi1 is the recipient genome, g21 is the donor genome.

Donor's relationship to Recipient

gu | 821 | Parent Sibling Half Siblings Uncle/Aunt or

or Nephew/Niece Cousin Unrelated
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Child

0 [0 | (n)’ (1-m)*(1-1/2)? 1-n)*(1-n/2) 1-n)*(1-n/2) (1-m)’(1-31/4) (1-m)*

0 1 | n(1-m)? a(1-m)*(1-7/2) | =(1-m)*(3/2-7) w(1-m)*(3/2-1) n(1-m)*(7/4-31/2) | 2n(1-n)

0O (2 |0 *(1-m)%4 w(1-m)*/2 w(1-m)*/2 3/4m*(1-m)? w*(1-w)?

1 0 | a(1-m)? w(1-n)*(1-a/2) | a(1-n)*(3/2-n) w(1-m)*(3/2-m) w(1-0)X(7/4-37/2) | 2n(1-m)*
w(1-m)[1+7- (1-m)[1/2+27- (1-m)[1/2+27- w(1-m)[1/4+37-

1 |1 |=(l-m )] )] 2] 37 4’(1-m)?
w(1- w(1-

1 X (1-1) D(1/2472) 72(1-m)(1/2+7) 72(1-m)(1/2+7) D(1/4+3/2) 21’ (1-n)

2 (0 |0 *(1-m)%4 w(1-m)*/2 w(1-m)*/2 3/4m*(1-m)? w*(1-w)?
w(1- w(1-

2 1 | a*(1-n) D(1/2+772) w*(1-m)(1/2+7) w*(1-m)(1/2+7) o(1/4+3m/2) 27 (1-w)

2 |2 |n w2 (1/247/2)? ©(1/2+7/2) ©(1/2+7/2) ©(1/4437/4) ot

Table 7: Prior distributions P(gi1, g21) of related or unrelated genomes given SNP
population allele frequency &t = 0.5.

Donor's relationship to Recipient
Parent Uncle/Aunt
But &t or Sibling IS_II?)llt;n or Cousin | Unrelated
Child g Nephew/Niece
0 0 8/64 9/64 6/64 6/64 5/64 4/64
0 1 8/64 6/64 8/64 8/64 8/64 8/64
0 2 0 1/64 2/64 2/64 3/64 4/64
1 0 8/64 6/64 8/64 8/64 8/64 8/64
1 1 16/64 | 20/64 16/64 16/64 16/64 16/64
1 2 8/64 6/64 8/64 8/64 8/64 8/64
2 0 0 1/64 2/64 2/64 3/64 4/64
2 1 8/64 6/64 8/64 8/64 8/64 8/64
2 2 8/64 9/64 6/64 6/64 5/64 4/64
[00422] The distributions for parent-child and sibling relationship are quite different from

unrelated, while uncle/aunt-nephew/niece are close to unrelated. In the case when the donor

genotype is unknown, the implementations can infer the genetic relationship by evaluating the

likelihood function of fitted models of each of the above genetic relationships. Alternatively, the
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implementations can allow multiple free parameters in the genetic priors distribution (with
additional constraints that the marginal distributions should follow Hardy-Weinberg

equilibrium), and estimate these parameters together with the estimation of donor fraction.

Adjustment of DNA Copyv Numbers based on DNA Length

[00423] For an amplicon-based assay that involves PCR DNA amplification, the DNA
length impacts the effectiveness of the DNA as PCR template. In the extreme, when DNA
fragments are shorter than the intended amplicon length, they are 0% effective as PCR template.
To correct for this effect, we used the following procedure to adjust the DNA copy numbers
using the average DNA length, which varies depending on the type of the input DNA. Some
implementations adjust the effective input DNA molecule number based on the average length of
input DNA template. In some implementation, the effective input DNA molecule number is

adjusted according to the equation below:

[00424] n"=w/wo- (L-La+ 1)/L,

[00425] where n" is the effective input DNA molecule number (haploid), w is the input
DNA amount, wo (3.59 x 103 ng/copy) is the weight of haploid human genome, L is the average
length of input DNA template, and L. is the average amplicon length (110bp for our amplicon
design).

[00426] DNA template efficiency is defined as e = (L - La + 1)/L, which is defined for L
>= L. Table 8 shows example DNA types and their efficiency as PCR templates.

Table 8. DNA type and their efficiency as PCR template

DNA type DNA length parameter (L) | Template Efficiency (e)

genomic DNA (gDNA) 100,000 0.9989
cell free DNA (cfDNA) 165 0.3394
mock cfDNA (mcfDNA) 160 0.3188
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Integration of the Modeling Components

[00427] The components of the probabilistic mixture model are integrated to provide a
solution to the contributor DNA quantification (CDQ) problem. The population allele frequency
7 for each SNP site can be obtained from public databases such as dbSNP. If one selects the most
informative SNP markers, i.e. SNPs with & = 0.5, in an experiment design, one can set T = 0.5
for all loci and let P(gi1,g21) be the genetic-relationship prior distribution as described in the

previous section.

[00428] On a schematic level, Figure 2B shows a block diagram illustrating various
components of the probabilistic mixture model 250. Some components are optional in some
implementations. The probabilistic mixture model 250 includes a binomial distribution 258 for
modeling allelic counts of sequencing reads. In some implementations, the probabilistic mixture
model also includes a component for modeling donor-donee (or recipient) relationship using a
genetic relationship prior distribution 252. In some implementations, the probabilistic mixture
model also includes a binomial distribution 254 for modeling DNA extraction allelic counts. In
some implementations, the probabilistic mixture model 250 also includes a beta distribution 256
for modeling PCR product or amplification product allelic fraction. See block 256.

[00429] In some implementations, the mixture model combines the binomial distribution
208 with binomial distribution 254 to model both the DNA extraction errors and sequencing
errors. In such implementations, the mixture model uses a beta-binomial distribution 260 to
model the allelic counts of sequencing reads while capturing variability in the allelic counts due
to DNA extraction.

[00430] In some implementations, the probabilistic mixture model 250 combines beta
distribution 256 and binomial distribution 258, and uses a beta-binomial distribution 262 to
model both errors in the PCR or amplification process and errors of sequencing process.

[00431] In some implementations, the probabilistic mixture model 250 combines binomial
distribution 254, beta distribution 256, and binomial distribution 258 to account for variance
resulting from DNA extraction, amplification process, and sequencing process, respectively. In
such implementations, probabilistic mixture model 200 first uses a beta distribution 264 to
approximate the effects of binomial distribution 254 and beta distribution 256. The probabilistic
mixture model 250 then combines beta distribution 264 and binomial distribution 258 using beta-

binomial distribution 256.
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The Sequencing Model: Model S
[00432] A basic version of the full model ignores the DNA extraction model and the PCR

model, and only considers the sequencing model. For each locus, the sequencing read count for
the reference allele is modeled by a binomial distribution (Figure 1C), ni; ~ BN(ni, p1i), where
the value of parameter p1i(g1i, g2i, A f) is a function on the donor-recipient genotype combination
for the loci (Table 2 and Table 3). Given that the genotypes are unknown, the implementations
marginalize over the 9 possible genotype combinations for each locus with P(gii,gailm) as prior
distribution (Table 6 and Table 7). The complete likelihood function across all loci is the product

of the marginal distributions for all loci:

[00433] LB, A, & ; n1, n2) = Il 2g1ig2i BN(nil ni, pii(gni, g2i, 4, p)) - P(g1i, g2ilm), where
L(p, 4, m ; ni, n2) is the likelihood of observing allele count vectors n; to n; for alleles / and 2
given parameters f and 7 ; p1i(g1, g2i, 4, f) is a probability parameter, taken as p;’ from Table 3,
indicating a probability of allele / at locus i based on the two contributors’ genotypes (g1 82i);
and P(g1;,g2im) is a prior joint probability of observing the two contributors’ genotypes given a

population allele frequency (x).

[00434] Expanding it to multiple contributors, the likelihood function can be expressed as:

[00435] Lp, 2, m; ny, nz) = 11; [Xgi BN(nii | ni,- p(gi, 4, B)) = P(gil 7)]

The Extraction-Seq Compound Model: Model ES

[00436] A more advanced model combines the DNA extraction model as well as the

Sequencing model. The implementations ignore the PCR step (i.e. assume that, for each locus,
the allele fraction in the PCR product is the same as the allele fraction in the DNA sample), and
only model DNA sampling and sequencing steps For each locus, there is a binomial distribution
for the allele counts in the input DNA sample. This captures the locus-to-locus variability of the

allele fractions in the input DNA provided to the NGS sequencing.

[00437] For the DNA extraction model, the implementations have ni;;" ~ BN(n", p1i), while
conditioning on the DNA extraction model, the sequencing model is niilni;i", n" ~ BN(n;, n1;"/n"),
where n;" =n" is the copies of haploid genomes the input DNA correspond to. Unfortunately, the
marginal distribution of nj; has no closed form formula. The implementations approximate the

distribution of nj;"/n" with a beta distribution Beta(a, b), and the best Beta distribution is selected
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by matching the mean and variance of nii"/n" with those derived from the binomial model niyi" ~

BN(n", p1i):

[00438] pii = a/(a+b)
[00439] pii- (1-pr)/n" = ab/(a+b)*/(a+b+1).
[00440] Solving the equations gives the beta distribution Beta((n"-1)p1i, (n"-1)p2i) as the

best approximation. With this approximation to the DNA extraction model, the marginal

distribution of ni; then follows a beta-binomial distribution of the form:

[00441] nii ~ BB(ni, (n"-1)-p1, (n"-1)-p2i).

[00442] Or in an alternative approximation:

[00443] nii~BB(ni, n" - pn, n" - p2i).

[00444] The corresponding full likelihood function considering the genetic-relationship

prior is then:

[00445] LB, n", A, w; ni,nz) = 11i [Xgi BB(njil n,, (n"-1)-prn, (n”-1)-p2i) = P(gilw)]

[00446] wherein L(f, n", A, = ; n,nz) is the likelihood of observing allele count vectors n;
and n; for alleles / and 2 at all loci, and p7; = p(gi, A, B), p2i = 1 — p1..

[00447] Notice that both n" and t = 0.5 are known parameters, and the final full likelithood
function has only a single unknown parameter 3, the donor DNA fraction.

[{00448] The input DNA (haploid) copy numbers n" can be derived from the input DNA
mass. When input DNA amount is 8ng, n" = 8 ng / [3.59 x 10 ng/copy] = 2228.412.

PCR-Seq Compound Model: Model PS
[00449| Ignoring the DNA extraction model, and assuming a known genotype

combination for a given locus, then the PCR model: ni;'/ (nii' + n2i') ~ Beta(n"-pi-p1i , n"- pi-p2i)
and Sequencing model nii ~ BN(n;, ni/ (ni' + n2)) can be combined into the beta-binomial
distribution: BB(ni, n"-pi-p1i, n"-pi-p2i). Notice that both the underlying loci specific PCR
amplification rates p; are unknown. If the implementations assume all loci have the same inherent

amplification rate, then the implementations have, BB(n;, c-p1i(g11, 21, B), ¢ pai(g11, g21, B)).
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[00450] The complete likelihood model across all loci is then: L(B, n", ¢, A, @ ; n1, nz) = 11i

[2gi BB(nyil n;, c-p1i, c:p2i) < P(gi| )], where ¢ and B are two parameters to be estimated.

[00451] Alternatively, the implementations can define the relative amplification rate of
each locus to be proportional to the total reads per locus, and re-parameterize the beta-binomial
as n;; ~ BB(ni, c"nip1i, c"ni-p2i), where ¢'is a parameter to be optimized; and n;1is the total reads

at locus i.
[00452] The complete likelihood model across all loci is then: L(f, n”, ¢, A, & ; ni, n2) =
Ili [Xgi BB(nyl ni, ¢ niprn, ¢ ni-p2i) < P(gi | m)], where ¢’ and B are two parameters to be

estimated

Extraction-PCR-Seq Compound Model: Model EPS

[00453] All three components in the Extraction-PCR-sequencing generic experimental

pipeline can be modeled together by a beta-binomial if the implementations combine DNA
extraction and PCR models into one model and approximate it by a single beta distribution.
Intuitively, although the expected value of allele 1 fraction in the PCR product (ni'/n’, see Table
4) remains p1, the uncertainty (variance) of ni'/n' originates from both the DNA extraction and
the PCR steps. To obtain a beta distribution beta(a,b) to model DNA extraction and PCR
together, the implementations compute the unconditional mean and variance of nii/n' based on
the following laws: E(nii'/n") = E(E(nii'/ni' | nii"/n"), and var(nij;'/n') = var(E(nii'/ni' | nii"/n")) +
E(var(nii'/n; '  n1i"/n")). This gives: E(nii'/n') = pii, and var(nii'/n') = piip2i/ n" + piip2i/ (n"-pi + 1)
- pip2/ [n" - (n"-pi + 1)] , where pi = (1411)/(1-1)) > 1 is the constant related to the amplification
rate r;. Since n" is large, the implementations have the following approximation var(ni'/n') =
puip2i/ [n" - (1+ 1i )/2]. The best beta distribution that models DNA extraction and PCR is then
Beta([n"- (1+ 1i )/2 - 1]p1i, [n"- (14 17 )/2 - 1]p2i). Notice this is close to the beta distribution for
cfDNA/gDNA extraction Beta((n"-1)pii, (n"-1)p2i), yet the variance is now larger. For a typical
PCR reaction with r; = 0.8 to 0.95, the implementations have n" - (1+1;)/2=0.9 - n" to 0.975 -

"

n".
[00454] The full multiple-loci likelihood function for cfDNA-PCR-Seq model is:

LB, n", r, A, 7w, ng n2) = i2erigi BB(niil ni, n" - (1+ r )/2 - p1i(gni, 82i, A, p). n" - (1+r)/2 -
p2i(81i, 82, 4, B)) - P(g1i, g2ilm)
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Baseline Method: Naivel M or KGT.Naivel M

[00455] A conventional method for quantifying DNA fractions of contributors uses a basic

linear regression formulation, which does not use the same probabilistic model or cost functions

described above. Instead, its cost function is expressed as:

[00456] E = [r - p]* - [r - p], where r is the allele fraction vector, p = g/2+ f is the
expected allele fraction vector, g is the genotype matrix, and f is the contributor DNA fraction

vector. The naive method is only applicable when all base lines are known.

Method for Estimating Contributor Nucleic Acid Fractions and Their Confidence Intervals

Numerical Optimization for Estimating Contributor DNA Fractions

[00457] The contributor DNA fraction 3 is estimated as the value that maximize the full
likelihood function L(ni, n2l B). As mentioned above, although DNA is referred to in this and
other examples, RNA and other nucleic acid molecules may be processed and analyzed similarly.
Also, although the examples refer to nucleic acid mixture samples, the sample may include only
a single contributor’s nucleic acid, in which case the contributor fraction would be estimated as 1

or within a margin of error from 1.

[00458] During the calculation of L(ni, n2l B), multiple small probabilities values are
multiplied. To avoid numerical underflowing when multiplying small probabilities, the
implementations perform all summation and multiplications on log scale. The sum of small
probability on log scale is performed as following: 1) obtain the max of the log probabilities as
Xmax; 2) subtract all the log probabilities by the max; 3) exponentiate and then sum the resulting
values; 4) log transform the resulting sum; 5) add back the max of the log probabilities.

log(exp(xi- Xmax ) + €xp(X2- Xmax ) + ... + exp(Xn- Xmax )) + Xmax .

[00459] To ensure positive contributor fractions within O to 1, the logit transformation =

1/(1+e™) is used.
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{00460] A novel numerical optimization computer strategy that seamlessly integrating
iterative grid search with Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton method is

implemented as described below.

[00461] Step 1: A grid initialization method generates even grids in N-1 dimensional
space, where N is the number of contributors. In applications with only two contributors, to
ensure global optimization and avoiding local optimums, the full likelihood function is initialized
with Bo= 1/(1+e™p), where 1 is the value among -10, -9.9, -9.8, .... , -0.1, O that maximizes L(ni,
n2l Bo=1/(1+e™p)) for two contributor cases. In applications with for multi-contributor cases, B is

transformed using softmax, and then initialized over a high dimensional grid.

[{00462] Step 2: An exhaustive search on the grid is performed to identified mixture

fractions that minimizes —log2(L).

[00463] Step 3: Initializing using the identified mixture fractions, numerical optimization
of n is then performed using Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton method

to minimize -log2(L). Record the optimized mixture fraction as well as the convergence.

[00464] Step 4: Hessian matrix of —log2(L) is computed using numerical differentiation on

the identified mixture fractions.

{00465] Step 5: Errors and confidence interval around computed mixture fractions is
determined based on the inverse of the hessian matrix. Meanwhile, determine if the hessian

matrix is positive semi-definite.

[004066] Step 6: If BFGS optimization did not converge or if the hessian matrix is not
positive semi-definite, then the procedure is configured for a next iteration of optimization.

Otherwise optimization complete.

[00467] Step 7: When next iteration of optimization is to be performed, a finer N-1
dimensional grid is constructed covering 2! original grids around the previously determined 7,
which corresponds to the estimated mixture fractions. The procedure then loops back to step 2

for next iteration of grid search and BFGS optimization.

[00468] The totality of these steps cannot be performed by human experts manually or in

their heads. Instead, one or more computers are required to perform these steps.
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Iterative Strategy for Model S with Known Genotypes (KGT.IterlL.M)

[{00469] In some implementations, the single-locus likelihood function comprises a

binomial distribution and the multiple-loci likelihood function is as follows: L(f, 4, = ; n1, n2) =

IT; [2gi BN(nii | niy- p(gin 4, B)) = P(gil 7)]

[00470] In some implementations, the contributors include two contributors and the

likelihood function is: L(p, 4, 7 ; ni1, n2) = Il; Xgr1i 2 BN(niil ni, p1i(gri, g2i, 4, B)) - P(gr, g2ilm)

[00471] where L(f, A, w; n1, n2) is the likelihood of observing allele count vectors n; to n;
for alleles / and 2 given parameters £ and 7; p1i(g1, g2i, 4, p) is a probability parameter, taken as
p1' from Table 3, indicating a probability of allele / at locus i based on the two contributors’
genotypes (g1, 82i); and P(gr;,g2ilm) is a prior joint probability of observing the two contributors’

genotypes given a population allele frequency (7).

[00472] In some implementations, the genotypes of all contributors are known, and the
likelihood functions are expressed as L( 4, A; n1, n2) = II nil/(nyilnzi!) p1iip2, where poi = X
d=0..D-1 8dai * Bda/ [ Xa=0.p1 Fa * (Xa=12 gasi)]. If all markers are on somatic chromosomes,

then pai = 1/2 + Xi-0..p-1 gdai = /4. In matrix notation, this is p «— g/2¢ £4.

[00473] The iterative weighted linear regression method is developed by constructing a
cost function that has the same gradient as that of log[L(f; n;, n2)] in each iteration when 4 = &

0:
[00474] E=1/2 = Xin/[piiPo) = (1-p1iPo))] * (nii/ni- pr(P))*.

[00475] In matrix notation, this is E = 1/2 + (r - p)T « W? « (r - p), where W = diag([n /

o - (- po))™”?) is a diagonal matrix, and po = g/2+ Po.

[00476] Iterative weighted linear regression is carried out by executing the following

steps, given inputs: r, n, g, and A

[00477] Step 1. Initialize f as a uniform length D probability vector £ <« [1/D]p

[00478] Step 2. Compute error correction of genotype matrix g: G «— [(I- 1) g + 4 (2-
212

[00479] Step 3: Repeat Step a - Step e until convergence
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{00480] Step a:. Update expected allele 1 fraction using the previous computed contributor
fraction:p «— G+ f#

[00481] Step b. Compute the weights for weighted regression W « diag([n / (p - (I -
I

[00482] Step c. Solve the weighted linear regression: & «— (W Gy le(Wer)

[00483] Step d. Ensure non-negativity: for each contributor i, f; «— max(f; 0)

[00484] Step e. Normalization to probability vector: ff < f/2; fi — normalization

Estimate the Confidence Interval

[00485] The lower bound of the confidence interval of the estimates are determined based
on the Cramer-Rao inequality: var(6mr) > 1/I(6mr), where Omwr is the maximum likelihood
estimate of parameter 0, and I(Owmr) is fisher's information at Owmi. Based on this, one can
estimate the variance of B and ¢ in the above described likelihood functions. The standard error is
estimated as sqrt(1/H) following the Cramér—Rao bound, where H is the Hessian matrix which

can be approximated and is estimated in the BFGS - quasi-Newton method.

{00486] We use the following reparameterizations during the numerical optimization to

estimate 3 and c,

[00487] B=1/(1+e™),
[00488] c=e¢e"
[00489] Let I(n) and I(x) be the Fisher's information under parameterization n and «, then

the Fisher's information of the original parameters are
[00490] 1) = Im) (1/(BA-B))*
[00491] I(c) = I(k) (1/c)>.

{00492] Hence the implementations have the following transformation on top of the

numerical optimization method for estimating stand deviations,

[00493] std(B) = std(n)-B-(1-B)
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[00494] std(B) = std(n)-c.
Samples
[00495] Samples used herein contain nucleic acids that are “cell-free” (e.g., cfDNA) or

cell-bound (e.g., cellular DNA). Cell-free nucleic acids, including cell-free DNA, can be
obtained by various methods known in the art from biological samples including but not limited
to plasma, serum, and urine (see, e.g., Fan et al., Proc Natl Acad Sci 105:16266-16271 [2008];
Koide et al., Prenatal Diagnosis 25:604-607 [2005]; Chen et al., Nature Med. 2: 1033-1035
[1996]; Lo et al., Lancet 350: 485-487 [1997]; Botezatu et al., Clin Chem. 46: 1078-1084, 2000;
and Su et al., ] Mol. Diagn. 6: 101-107 [2004]). To separate cell-free DNA from cells in a
sample, various methods including, but not limited to fractionation, centrifugation (e.g., density
gradient centrifugation), DNA-specific precipitation, or high-throughput cell sorting and/or other
separation methods can be used. Commercially available kits for manual and automated
separation of cfDNA are available (Roche Diagnostics, Indianapolis, IN, Qiagen, Valencia, CA,
Macherey-Nagel, Duren, DE). Biological samples comprising cfDNA have been used in assays
to determine the presence or absence of chromosomal abnormalities, e.g., trisomy 21, by

sequencing assays that can detect chromosomal aneuploidies and/or various polymorphisms.

[00496] In various embodiments the DNA present in the sample can be enriched
specifically or non-specifically prior to use (e.g., prior to preparing a sequencing library). Non-
specific enrichment of sample DNA refers to the whole genome amplification of the genomic
DNA fragments of the sample that can be used to increase the level of the sample DNA prior to
preparing a DNA sequencing library. Non-specific enrichment can be the selective enrichment
of one of the two genomes present in a sample that comprises more than one genome. For
example, non-specific enrichment can be selective of the cancer genome in a plasma sample,
which can be obtained by known methods to increase the relative proportion of cancer to normal
DNA in a sample. Alternatively, non-specific enrichment can be the non-selective amplification
of both genomes present in the sample. For example, non-specific amplification can be of cancer
and normal DNA in a sample comprising a mixture of DNA from the cancer and normal
genomes. Methods for whole genome amplification are known in the art. Degenerate

oligonucleotide-primed PCR (DOP), primer extension PCR technique (PEP) and multiple
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displacement amplification (MDA) are examples of whole genome amplification methods. In
some embodiments, the sample comprising the mixture of cfDNA from different genomes is un-
enriched for cfDNA of the genomes present in the mixture. In other embodiments, the sample
comprising the mixture of cf[DNA from different genomes is non-specifically enriched for any

one of the genomes present in the sample.

[{00497] The sample comprising the nucleic acid(s) to which the methods described herein
are applied typically comprises a biological sample (“test sample”), e.g., as described above. In
some embodiments, the nucleic acid(s) to be analyzed is purified or isolated by any of a number

of well-known methods.

[{00498] Accordingly, in certain embodiments the sample comprises or consists of a
purified or isolated polynucleotide, or it can comprise samples such as a tissue sample, a
biological fluid sample, a cell sample, and the like. Suitable biological fluid samples include, but
are not limited to blood, plasma, serum, sweat, tears, sputum, urine, sputum, ear flow, lymph,
saliva, cerebrospinal fluid, ravages, bone marrow suspension, vaginal flow, trans-cervical lavage,
brain fluid, ascites, milk, secretions of the respiratory, intestinal and genitourinary tracts,
amniotic fluid, milk, and leukophoresis samples. In some embodiments, the sample is a sample
that is easily obtainable by non-invasive procedures, e.g., blood, plasma, serum, sweat, tears,
sputum, urine, sputum, ear flow, saliva or feces. In certain embodiments the sample is a
peripheral blood sample, or the plasma and/or serum fractions of a peripheral blood sample. In
other embodiments, the biological sample is a swab or smear, a biopsy specimen, or a cell
culture. In another embodiment, the sample is a mixture of two or more biological samples, e.g.,
a biological sample can comprise two or more of a biological fluid sample, a tissue sample, and a
cell culture sample. As used herein, the terms “blood,” “plasma” and “serum” expressly
encompass fractions or processed portions thereof. Similarly, where a sample is taken from a
biopsy, swab, smear, etc., the “sample” expressly encompasses a processed fraction or portion

derived from the biopsy, swab, smear, etc.

[00499] In certain embodiments, samples can be obtained from sources, including, but not
limited to, samples from different individuals, samples from different developmental stages of
the same or different individuals, samples from different diseased individuals (e.g., individuals

with cancer or suspected of having a genetic disorder), normal individuals, samples obtained at
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different stages of a disease in an individual, samples obtained from an individual subjected to
different treatments for a disease, samples from individuals subjected to different environmental
factors, samples from individuals with predisposition to a pathology, samples individuals with

exposure to an infectious disease agent (e.g., HIV), and the like.

{00500] In one illustrative, but non-limiting embodiment, the sample is a donee sample
that is obtained from a donee of an organ transplant, such as a plasma sample from a donee,
which includes cfDNA originating from the donee and cfDNA originating from a tissue or organ
transplanted from the donor. In this instance, the sample can be analyzed using the methods
described herein to quantify donee and donor DNA portions. The donee sample can be a tissue
sample, a biological fluid sample, or a cell sample. A biological fluid includes, as non-limiting
examples, blood, plasma, serum, sweat, tears, sputum, urine, sputum, ear flow, lymph, saliva,
cerebrospinal fluid, ravages, bone marrow suspension, vaginal flow, transcervical lavage, brain
fluid, ascites, milk, secretions of the respiratory, intestinal and genitourinary tracts, and

leukophoresis samples.

{00501] In another illustrative, but non-limiting embodiment, the donee sample is a
mixture of two or more biological samples, e.g., the biological sample can comprise two or more
of a biological fluid sample, a tissue sample, and a cell culture sample. In some embodiments,
the sample is a sample that is easily obtainable by non-invasive procedures, e.g., blood, plasma,
serum, sweat, tears, sputum, urine, milk, sputum, ear flow, saliva and feces. In some
embodiments, the biological sample is a peripheral blood sample, and/or the plasma and serum
fractions thereof. In other embodiments, the biological sample is a swab or smear, a biopsy
specimen, or a sample of a cell culture. As disclosed above, the terms “blood,” “plasma” and
“serum” expressly encompass fractions or processed portions thereof. Similarly, where a sample
is taken from a biopsy, swab, smear, etc., the “sample” expressly encompasses a processed

fraction or portion derived from the biopsy, swab, smear, etc.

[00502] In certain embodiments samples can also be obtained from in vitro cultured
tissues, cells, or other polynucleotide-containing sources. The cultured samples can be taken
from sources including, but not limited to, cultures (e.g., tissue or cells) maintained in different
media and conditions (e.g., pH, pressure, or temperature), cultures (e.g., tissue or cells)

maintained for different periods of length, cultures (e.g., tissue or cells) treated with different
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factors or reagents (e.g., a drug candidate, or a modulator), or cultures of different types of tissue

and/or cells.

[00503] Methods of isolating nucleic acids from biological sources are well known and
will differ depending upon the nature of the source. One of skill in the art can readily isolate
nucleic acid(s) from a source as needed for the method described herein. In some instances, it
can be advantageous to fragment the nucleic acid molecules in the nucleic acid sample.
Fragmentation can be random, or it can be specific, as achieved, for example, using restriction
endonuclease digestion. Methods for random fragmentation are well known in the art, and
include, for example, limited DNAse digestion, alkali treatment and physical shearing. In one
embodiment, sample nucleic acids are obtained from as cfDNA, which is not subjected to

fragmentation.

Sequencing Library Preparation

[00504] In one embodiment, the methods described herein can utilize next generation
sequencing technologies (NGS), that allow multiple samples to be sequenced individually as
genomic molecules (i.e., singleplex sequencing) or as pooled samples comprising indexed
genomic molecules (e.g., multiplex sequencing) on a single sequencing run. These methods can
generate up to several hundred million reads of DNA sequences. In various embodiments the
sequences of genomic nucleic acids, and/or of indexed genomic nucleic acids can be determined
using, for example, the Next Generation Sequencing Technologies (NGS) described herein. In
various embodiments analysis of the massive amount of sequence data obtained using NGS can

be performed using one or more processors as described herein.

{00505] In various embodiments the use of such sequencing technologies does not involve

the preparation of sequencing libraries.

[00506] However, in certain embodiments the sequencing methods contemplated herein
involve the preparation of sequencing libraries. In one illustrative approach, sequencing library
preparation involves the production of a random collection of adapter-modified DNA fragments
(e.g., polynucleotides) that are ready to be sequenced. Sequencing libraries of polynucleotides
can be prepared from DNA or RNA, including equivalents, analogs of either DNA or cDNA, for
example, DNA or cDNA that is complementary or copy DNA produced from an RNA template,
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by the action of reverse transcriptase. The polynucleotides may originate in double-stranded
form (e.g., dsDNA such as genomic DNA fragments, cDNA, PCR amplification products, and
the like) or, in certain embodiments, the polynucleotides may originated in single-stranded form
(e.g., ssDNA, RNA, etc.) and have been converted to dsDNA form. By way of illustration, in
certain embodiments, single stranded mRNA molecules may be copied into double-stranded
cDNAs suitable for use in preparing a sequencing library. The precise sequence of the primary
polynucleotide molecules is generally not material to the method of library preparation, and may
be known or unknown. In one embodiment, the polynucleotide molecules are DNA molecules.
More particularly, in certain embodiments, the polynucleotide molecules represent the entire
genetic complement of an organism or substantially the entire genetic complement of an
organism, and are genomic DNA molecules (e.g., cellular DNA, cell free DNA (cfDNA), etc.),
that typically include both intron sequence and exon sequence (coding sequence), as well as non-
coding regulatory sequences such as promoter and enhancer sequences. In certain embodiments,
the primary polynucleotide molecules comprise human genomic DNA molecules, e.g., c[DNA

molecules present in peripheral blood of a pregnant subject.

[00507] Preparation of sequencing libraries for some NGS sequencing platforms is
facilitated by the use of polynucleotides comprising a specific range of fragment sizes.
Preparation of such libraries typically involves the fragmentation of large polynucleotides (e.g.

cellular genomic DNA) to obtain polynucleotides in the desired size range.

[{00508] Fragmentation can be achieved by any of a number of methods known to those of
skill in the art. For example, fragmentation can be achieved by mechanical means including, but
not limited to nebulization, sonication and hydroshear. However mechanical fragmentation
typically cleaves the DNA backbone at C-O, P-O and C-C bonds resulting in a heterogeneous
mix of blunt and 3’- and 5’-overhanging ends with broken C-O, P-O and/ C-C bonds (see, €.g.,
Alnemri and Liwack, J Biol. Chem 265:17323-17333 [1990]; Richards and Boyer, J] Mol Biol
11:327-240 [1965]) which may need to be repaired as they may lack the requisite 5’-phosphate
for the subsequent enzymatic reactions, e.g., ligation of sequencing adaptors, that are required for

preparing DNA for sequencing.
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{00509] In contrast, cfDNA, typically exists as fragments of less than about 300 base pairs
and consequently, fragmentation is not typically necessary for generating a sequencing library

using cfDNA samples.

[00510] Typically, whether polynucleotides are forcibly fragmented (e.g., fragmented in
vitro), or naturally exist as fragments, they are converted to blunt-ended DNA having 5’-
phosphates and 3’-hydroxyl. Standard protocols, e.g., protocols for sequencing using, for
example, the Illumina platform as described elsewhere herein, instruct users to end-repair sample
DNA, to purify the end-repaired products prior to dA-tailing, and to purify the dA-tailing

products prior to the adaptor-ligating steps of the library preparation.

[00511] Various embodiments of methods of sequence library preparation described
herein obviate the need to perform one or more of the steps typically mandated by standard
protocols to obtain a modified DNA product that can be sequenced by NGS. An abbreviated
method (ABB method), a 1-step method, and a 2-step method are examples of methods for
preparation of a sequencing library, which can be found in patent application 13/555,037 filed on

July 20, 2012, which is incorporated by reference by its entirety.

Sequencing Methods

[00512] As indicated above, the prepared samples (e.g., Sequencing Libraries) are
sequenced as part of the procedure for quantifying and deconvolving DNA mixture samples.

Any of a number of sequencing technologies can be utilized.

[00513] Some sequencing technologies are available commercially, such as the
sequencing-by-hybridization platform from Affymetrix Inc. (Sunnyvale, CA) and the
sequencing-by-synthesis platforms from 454 Life Sciences (Bradford, CT), Illumina/Solexa
(Hayward, CA) and Helicos Biosciences (Cambridge, MA), and the sequencing-by-ligation
platform from Applied Biosystems (Foster City, CA), as described below. In addition to the
single molecule sequencing performed using sequencing-by-synthesis of Helicos Biosciences,
other single molecule sequencing technologies include, but are not limited to, the SMRT™
technology of Pacific Biosciences, the ION TORRENT™ technology, and nanopore sequencing

developed for example, by Oxford Nanopore Technologies.
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[00514] While the automated Sanger method is considered as a ‘first generation’
technology, Sanger sequencing including the automated Sanger sequencing, can also be
employed in the methods described herein. Additional suitable sequencing methods include, but
are not limited to nucleic acid imaging technologies, e.g., atomic force microscopy (AFM) or
transmission electron microscopy (TEM). Illustrative sequencing technologies are described in

greater detail below.

[00515] In one illustrative, but non-limiting, embodiment, the methods described herein
comprise obtaining sequence information for the nucleic acids in a test sample, e.g., cf[DNA in a
donee sample including donor DNA and donee DNA, cfDNA or cellular DNA in a subject being
screened for a cancer, and the like, using Illumina’s sequencing-by-synthesis and reversible
terminator-based sequencing chemistry (e.g. as described in Bentley et al., Nature 6:53-59
[2009]). Template DNA can be genomic DNA, e.g., cellular DNA or c¢fDNA. In some
embodiments, genomic DNA from isolated cells is used as the template, and it is fragmented into
lengths of several hundred base pairs. In other embodiments, cfDNA is used as the template, and
fragmentation is not required as cfDNA exists as short fragments. For example fetal cf[DNA
circulates in the bloodstream as fragments approximately 170 base pairs (bp) in length (Fan et
al., Clin Chem 56:1279-1286 [2010]), and no fragmentation of the DNA is required prior to
sequencing. Circulating tumor DNA also exist in short fragments, with a size distribution
peaking at about 150-170bp. Illumina’s sequencing technology relies on the attachment of
fragmented genomic DNA to a planar, optically transparent surface on which oligonucleotide
anchors are bound. Template DNA is end-repaired to generate 5’-phosphorylated blunt ends,
and the polymerase activity of Klenow fragment is used to add a single A base to the 3° end of
the blunt phosphorylated DNA fragments. This addition prepares the DNA fragments for
ligation to oligonucleotide adapters, which have an overhang of a single T base at their 3* end to
increase ligation efficiency. The adapter oligonucleotides are complementary to the flow-cell
anchor oligos (not to be confused with the anchor/anchored reads in the analysis of repeat
expansion). Under limiting-dilution conditions, adapter-modified, single-stranded template
DNA is added to the flow cell and immobilized by hybridization to the anchor oligos. Attached
DNA fragments are extended and bridge amplified to create an ultra-high density sequencing
flow cell with hundreds of millions of clusters, each containing about 1,000 copies of the same

template. In one embodiment, the randomly fragmented genomic DNA is amplified using PCR
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before it is subjected to cluster amplification. Alternatively, an amplification-free (e.g., PCR
free) genomic library preparation is used, and the randomly fragmented genomic DNA is
enriched using the cluster amplification alone (Kozarewa et al., Nature Methods 6:291-295
[2009]). The templates are sequenced using a robust four-color DNA sequencing-by-synthesis
technology that employs reversible terminators with removable fluorescent dyes. High-
sensitivity fluorescence detection is achieved using laser excitation and total internal reflection
optics. Short sequence reads of about tens to a few hundred base pairs are aligned against a
reference genome and unique mapping of the short sequence reads to the reference genome are
identified using specially developed data analysis pipeline software. After completion of the first
read, the templates can be regenerated in situ to enable a second read from the opposite end of
the fragments. Thus, either single-end or paired end sequencing of the DNA fragments can be

used.

[00516] Various embodiments of the disclosure may use sequencing by synthesis that
allows paired end sequencing. In some embodiments, the sequencing by synthesis platform by
Illumina involves clustering fragments. Clustering is a process in which each fragment molecule
is isothermally amplified. In some embodiments, as the example described here, the fragment has
two different adaptors attached to the two ends of the fragment, the adaptors allowing the
fragment to hybridize with the two different oligos on the surface of a flow cell lane. The
fragment further includes or is connected to two index sequences at two ends of the fragment,
which index sequences provide labels to identify different samples in multiplex sequencing. In

some sequencing platforms, a fragment to be sequenced is also referred to as an insert.

[00517] In some implementation, a flow cell for clustering in the Illumina platform is a
glass slide with lanes. Each lane is a glass channel coated with a lawn of two types of oligos.
Hybridization is enabled by the first of the two types of oligos on the surface. This oligo is
complementary to a first adapter on one end of the fragment. A polymerase creates a
compliment strand of the hybridized fragment. The double-stranded molecule is denatured, and
the original template strand is washed away. The remaining strand, in parallel with many other

remaining strands, is clonally amplified through bridge application.

[00518] In bridge amplification, a strand folds over, and a second adapter region on a

second end of the strand hybridizes with the second type of oligos on the flow cell surface. A
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polymerase generates a complimentary strand, forming a double-stranded bridge molecule. This
double-stranded molecule is denatured resulting in two single-stranded molecules tethered to the
flow cell through two different oligos. The process is then repeated over and over, and occurs
simultaneously for millions of clusters resulting in clonal amplification of all the fragments.
After bridge amplification, the reverse strands are cleaved and washed off, leaving only the

forward strands. The 3’ ends are blocked to prevent unwanted priming.

[00519] After clustering, sequencing starts with extending a first sequencing primer to
generate the first read. With each cycle, fluorescently tagged nucleotides compete for addition to
the growing chain. Only one is incorporated based on the sequence of the template. After the
addition of each nucleotide, the cluster is excited by a light source, and a characteristic
fluorescent signal is emitted. The number of cycles determines the length of the read. The
emission wavelength and the signal intensity determine the base call. For a given cluster all
identical strands are read simultaneously. Hundreds of millions of clusters are sequenced in a

massively parallel manner. At the completion of the first read, the read product is washed away.

[00520] In the next step of protocols involving two index primers, an index 1 primer is
introduced and hybridized to an index 1 region on the template. Index regions provide
identification of fragments, which is useful for de-multiplexing samples in a multiplex
sequencing process. The index 1 read is generated similar to the first read. After completion of
the index 1 read, the read product is washed away and the 3’ end of the strand is de-protected.
The template strand then folds over and binds to a second oligo on the flow cell. An index 2
sequence is read in the same manner as index 1. Then an index 2 read product is washed off at

the completion of the step.

[00521] After reading two indices, read 2 initiates by using polymerases to extend the
second flow cell oligos, forming a double-stranded bridge. This double-stranded DNA is
denatured, and the 3’ end is blocked. The original forward strand is cleaved off and washed
away, leaving the reverse strand. Read 2 begins with the introduction of a read 2 sequencing
primer. As with read 1, the sequencing steps are repeated until the desired length is achieved.
The read 2 product is washed away. This entire process generates millions of reads, representing
all the fragments. Sequences from pooled sample libraries are separated based on the unique

indices introduced during sample preparation. For each sample, reads of similar stretches of base
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calls are locally clustered. Forward and reversed reads are paired creating contiguous sequences.

These contiguous sequences are aligned to the reference genome for variant identification.

[00522] The sequencing by synthesis example described above involves paired end reads,
which is used in many of the embodiments of the disclosed methods. Paired end sequencing
involves two reads from the two ends of a fragment. When a pair of reads are mapped to a
reference sequence, the base-pair distance between the two reads can be determined, which
distance can then be used to determine the length of the fragments from which the reads were
obtained. In some instances, a fragment straddling two bins would have one of its pair-end read
aligned to one bin, and another to an adjacent bin. This gets rarer as the bins get longer or the
reads get shorter. Various methods may be used to account for the bin-membership of these
fragments. For instance, they can be omitted in determining fragment size frequency of a bin;
they can be counted for both of the adjacent bins; they can be assigned to the bin that
encompasses the larger number of base pairs of the two bins; or they can be assigned to both bins

with a weight related to portion of base pairs in each bin.

[00523] Paired end reads may use insert of different length (i.e., different fragment size to
be sequenced). As the default meaning in this disclosure, paired end reads are used to refer to
reads obtained from various insert lengths. In some instances, to distinguish short-insert paired
end reads from long-inserts paired end reads, the latter is also referred to as mate pair reads. In
some embodiments involving mate pair reads, two biotin junction adaptors first are attached to
two ends of a relatively long insert (e.g., several kb). The biotin junction adaptors then link the
two ends of the insert to form a circularized molecule. A sub-fragment encompassing the biotin
junction adaptors can then be obtained by further fragmenting the circularized molecule. The
sub-fragment including the two ends of the original fragment in opposite sequence order can then
be sequenced by the same procedure as for short-insert paired end sequencing described above.
Further details of mate pair sequencing using an Illumina platform is shown in an online
publication at the following URL, which is incorporated by reference by its entirety:
resl.[illuminal.lcom/documents/products/technotes/technote_nextera_matepair_data_processing.

Additional information about paired end sequencing can be found in US Patent No. 7601499 and
US Patent Publication No. 2012/0,053,063, which are incorporated by reference with regard to

materials on paired end sequencing methods and apparatuses.
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[00524] After sequencing of DNA fragments, sequence reads of predetermined length,
e.g., 100 bp, are mapped or aligned to a known reference genome. The mapped or aligned reads
and their corresponding locations on the reference sequence are also referred to as tags. In one
embodiment, the reference genome sequence is the NCBI36/hg18 sequence, which is available
on the world wide web at genome dot ucsc dot edu/cgi-
bin/hgGateway?org=Human&db=hg18&hgsid=166260105). Alternatively, the reference
genome sequence is the GRCh37/hg19, which is available on the World Wide Web at genome
dot ucsc dot edu/cgi-bin/hgGateway. Other sources of public sequence information include
GenBank, dbEST, dbSTS, EMBL (the European Molecular Biology Laboratory), and the DDBJ
(the DNA Databank of Japan). A number of computer programs are available for aligning
sequences, including but not limited to BLAST (Altschul et al., 1990), BLITZ (MPsrch)
(Sturrock & Collins, 1993), FASTA (Person & Lipman, 1988), BOWTIE (Langmead et al.,
Genome Biology 10:R25.1-R25.10 [2009]), or ELAND (Illumina, Inc., San Diego, CA, USA).
In one embodiment, one end of the clonally expanded copies of the plasma cfDNA molecules is
sequenced and processed by bioinformatics alignment analysis for the Illumina Genome
Analyzer, which uses the Efficient Large-Scale Alignment of Nucleotide Databases (ELAND)

software.

[00525] In one illustrative, but non-limiting, embodiment, the methods described herein
comprise obtaining sequence information for the nucleic acids in a test sample, e.g., cf[DNA in a
donee sample including donee and donor DNA, cfDNA or cellular DNA in a subject being
screened for a cancer, and the like, using single molecule sequencing technology of the Helicos
True Single Molecule Sequencing (tSMS) technology (e.g. as described in Harris T.D. et al.,
Science 320:106-109 [2008]). In the tSMS technique, a DNA sample is cleaved into strands of
approximately 100 to 200 nucleotides, and a polyA sequence is added to the 3’ end of each DNA
strand. Each strand is labeled by the addition of a fluorescently labeled adenosine nucleotide.
The DNA strands are then hybridized to a flow cell, which contains millions of oligo-T capture
sites that are immobilized to the flow cell surface. In certain embodiments the templates can be
at a density of about 100 million templates/cm2. The flow cell is then loaded into an instrument,
e.g., HeliScope™ sequencer, and a laser illuminates the surface of the flow cell, revealing the
position of each template. A CCD camera can map the position of the templates on the flow cell

surface. The template fluorescent label is then cleaved and washed away. The sequencing
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reaction begins by introducing a DNA polymerase and a fluorescently labeled nucleotide. The
oligo-T nucleic acid serves as a primer. The polymerase incorporates the labeled nucleotides to
the primer in a template directed manner. The polymerase and unincorporated nucleotides are
removed. The templates that have directed incorporation of the fluorescently labeled nucleotide
are discerned by imaging the flow cell surface. After imaging, a cleavage step removes the
fluorescent label, and the process is repeated with other fluorescently labeled nucleotides until
the desired read length is achieved. Sequence information is collected with each nucleotide
addition step. Whole genome sequencing by single molecule sequencing technologies excludes
or typically obviates PCR-based amplification in the preparation of the sequencing libraries, and
the methods allow for direct measurement of the sample, rather than measurement of copies of

that sample.

[00526] In another illustrative, but non-limiting embodiment, the methods described
herein comprise obtaining sequence information for the nucleic acids in the test sample, e.g.,
cfDNA in a donee test sample including donee and donor DNA, cfDNA or cellular DNA in a
subject being screened for a cancer, and the like, using the 454 sequencing (Roche) (e.g. as
described in Margulies, M. et al. Nature 437:376-380 [2005]). 454 sequencing typically
involves two steps. In the first step, DNA 1is sheared into fragments of approximately 300-800
base pairs, and the fragments are blunt-ended. Oligonucleotide adaptors are then ligated to the
ends of the fragments. The adaptors serve as primers for amplification and sequencing of the
fragments. The fragments can be attached to DNA capture beads, e.g., streptavidin-coated beads
using, e.g., Adaptor B, which contains 5’-biotin tag. The fragments attached to the beads are
PCR amplified within droplets of an oil-water emulsion. The result is multiple copies of clonally
amplified DNA fragments on each bead. In the second step, the beads are captured in wells (e.g.,
picoliter-sized wells). Pyrosequencing is performed on each DNA fragment in parallel.
Addition of one or more nucleotides generates a light signal that is recorded by a CCD camera in
a sequencing instrument. The signal strength is proportional to the number of nucleotides
incorporated. Pyrosequencing makes use of pyrophosphate (PPi), which is released upon
nucleotide addition. PP1i is converted to ATP by ATP sulfurylase in the presence of adenosine 5’
phosphosulfate. Luciferase uses ATP to convert luciferin to oxyluciferin, and this reaction

generates light that is measured and analyzed.
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[00527] In another illustrative, but non-limiting, embodiment, the methods described
herein comprises obtaining sequence information for the nucleic acids in the test sample, e.g.,
cfDNA in a donee test sample, cf[DNA or cellular DNA in a subject being screened for a cancer,
and the like, using the SOLiD™ technology (Applied Biosystems). In SOLiD™ sequencing-by-
ligation, genomic DNA is sheared into fragments, and adaptors are attached to the 5 and 3’ ends
of the fragments to generate a fragment library. Alternatively, internal adaptors can be
introduced by ligating adaptors to the 5’ and 3’ ends of the fragments, circularizing the
fragments, digesting the circularized fragment to generate an internal adaptor, and attaching
adaptors to the 5° and 3’ ends of the resulting fragments to generate a mate-paired library. Next,
clonal bead populations are prepared in microreactors containing beads, primers, template, and
PCR components. Following PCR, the templates are denatured and beads are enriched to
separate the beads with extended templates. Templates on the selected beads are subjected to a
3’ modification that permits bonding to a glass slide. The sequence can be determined by
sequential hybridization and ligation of partially random oligonucleotides with a central
determined base (or pair of bases) that is identified by a specific fluorophore. After a color is

recorded, the ligated oligonucleotide is cleaved and removed and the process is then repeated.

[00528] In another illustrative, but non-limiting, embodiment, the methods described
herein comprise obtaining sequence information for the nucleic acids in the test sample, e.g.,
cfDNA in a donee test sample, cf[DNA or cellular DNA in a subject being screened for a cancer,
and the like, using the single molecule, real-time (SMRT™) sequencing technology of Pacific
Biosciences. In SMRT sequencing, the continuous incorporation of dye-labeled nucleotides is
imaged during DNA synthesis. Single DNA polymerase molecules are attached to the bottom
surface of individual zero-mode wavelength detectors (ZMW detectors) that obtain sequence
information while phospholinked nucleotides are being incorporated into the growing primer
strand. A ZMW detector comprises a confinement structure that enables observation of
incorporation of a single nucleotide by DNA polymerase against a background of fluorescent
nucleotides that rapidly diffuse in an out of the ZMW (e.g., in microseconds). It typically takes
several milliseconds to incorporate a nucleotide into a growing strand. During this time, the
fluorescent label is excited and produces a fluorescent signal, and the fluorescent tag is cleaved
off. Measurement of the corresponding fluorescence of the dye indicates which base was

incorporated. The process is repeated to provide a sequence.
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[00529] In another illustrative, but non-limiting embodiment, the methods described
herein comprise obtaining sequence information for the nucleic acids in the test sample, e.g.,
cfDNA in a maternal or donee test sample, cfDNA or cellular DNA in a subject being screened
for a cancer, and the like, using nanopore sequencing (e.g. as described in Soni GV and Meller
A. Clin Chem 53: 1996-2001 [2007]). Nanopore sequencing DNA analysis techniques are
developed by a number of companies, including, for example, Oxford Nanopore Technologies
(Oxford, United Kingdom), Sequenom, NABsys, and the like. Nanopore sequencing is a single-
molecule sequencing technology whereby a single molecule of DNA is sequenced directly as it
passes through a nanopore. A nanopore is a small hole, typically of the order of 1 nanometer in
diameter. Immersion of a nanopore in a conducting fluid and application of a potential (voltage)
across it results in a slight electrical current due to conduction of ions through the nanopore. The
amount of current that flows is sensitive to the size and shape of the nanopore. As a DNA
molecule passes through a nanopore, each nucleotide on the DNA molecule obstructs the
nanopore to a different degree, changing the magnitude of the current through the nanopore in
different degrees. Thus, this change in the current as the DNA molecule passes through the

nanopore provides a read of the DNA sequence.

[00530] In another illustrative, but non-limiting, embodiment, the methods described
herein comprises obtaining sequence information for the nucleic acids in the test sample, e.g.,
cfDNA in a donee test sample, cf[DNA or cellular DNA in a subject being screened for a cancer,
and the like, using the chemical-sensitive field effect transistor (chemFET) array (e.g., as
described in U.S. Patent Application Publication No. 2009/0026082). In one example of this
technique, DNA molecules can be placed into reaction chambers, and the template molecules can
be hybridized to a sequencing primer bound to a polymerase. Incorporation of one or more
triphosphates into a new nucleic acid strand at the 3° end of the sequencing primer can be
discerned as a change in current by a chemFET. An array can have multiple chemFET sensors.
In another example, single nucleic acids can be attached to beads, and the nucleic acids can be
amplified on the bead, and the individual beads can be transferred to individual reaction
chambers on a chemFET array, with each chamber having a chemFET sensor, and the nucleic

acids can be sequenced.

[00531] In another embodiment, the present method comprises obtaining sequence

information for the nucleic acids in the test sample, e.g., cf[DNA in a donee test sample, using
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transmission electron microscopy (TEM). The method, termed Individual Molecule Placement
Rapid Nano Transfer (IMPRNT), comprises utilizing single atom resolution transmission
electron microscope imaging of high-molecular weight (150kb or greater) DNA selectively
labeled with heavy atom markers and arranging these molecules on ultra-thin films in ultra-dense
(3nm strand-to-strand) parallel arrays with consistent base-to-base spacing. The electron
microscope 1s used to image the molecules on the films to determine the position of the heavy
atom markers and to extract base sequence information from the DNA. The method is further
described in PCT patent publication WO 2009/046445. The method allows for sequencing

complete human genomes in less than ten minutes.

{00532] In another embodiment, the DNA sequencing technology is the Ion Torrent single
molecule sequencing, which pairs semiconductor technology with a simple sequencing chemistry
to directly translate chemically encoded information (A, C, G, T) into digital information (0, 1)
on a semiconductor chip. In nature, when a nucleotide is incorporated into a strand of DNA by a
polymerase, a hydrogen ion is released as a byproduct. Ion Torrent uses a high-density array of
micro-machined wells to perform this biochemical process in a massively parallel way. Each
well holds a different DNA molecule. Beneath the wells is an ion-sensitive layer and beneath
that an ion sensor. When a nucleotide, for example a C, is added to a DNA template and is then
incorporated into a strand of DNA, a hydrogen ion will be released. The charge from that ion
will change the pH of the solution, which can be detected by Ion Torrent’s ion sensor. The
sequencer—essentially the world’s smallest solid-state pH meter—calls the base, going directly
from chemical information to digital information. The Ion personal Genome Machine (PGM™)
sequencer then sequentially floods the chip with one nucleotide after another. If the next
nucleotide that floods the chip is not a match. No voltage change will be recorded and no base
will be called. If there are two identical bases on the DNA strand, the voltage will be double,
and the chip will record two identical bases called. Direct detection allows recordation of

nucleotide incorporation in seconds.

[00533] In another embodiment, the present method comprises obtaining sequence
information for the nucleic acids in the test sample, e.g., cf[DNA in a donee test sample, using
sequencing by hybridization. Sequencing-by-hybridization comprises contacting the plurality of
polynucleotide sequences with a plurality of polynucleotide probes, wherein each of the plurality

of polynucleotide probes can be optionally tethered to a substrate. The substrate might be flat
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surface comprising an array of known nucleotide sequences. The pattern of hybridization to the
array can be used to determine the polynucleotide sequences present in the sample. In other
embodiments, each probe is tethered to a bead, e.g., a magnetic bead or the like. Hybridization
to the beads can be determined and used to identify the plurality of polynucleotide sequences

within the sample.

{00534] In some embodiments of the methods described herein, the mapped sequence tags
comprise sequence reads of about 20bp, about 25bp, about 30bp, about 35bp, about 40bp, about
45bp, about 50bp, about 55bp, about 60bp, about 65bp, about 70bp, about 75bp, about 80bp,
about 85bp, about90bp, about 95bp, about 100bp, about 110bp, about 120bp, about 130, about
140bp, about 150bp, about 200bp, about 250bp, about 300bp, about 350bp, about 400bp, about
450bp, or about 500bp. It is expected that technological advances will enable single-end reads of
greater than 500bp enabling for reads of greater than about 1000bp when paired end reads are
generated. In one embodiment, the mapped sequence tags comprise sequence reads that are
36bp. Mapping of the sequence tags is achieved by comparing the sequence of the tag with the
sequence of the reference to determine the chromosomal origin of the sequenced nucleic acid
(e.g. cfDNA) molecule, and specific genetic sequence information is not needed. A small degree
of mismatch (0-2 mismatches per sequence tag) may be allowed to account for minor
polymorphisms that may exist between the reference genome and the genomes in the mixed

sample.

[00535] A plurality of sequence tags are typically obtained per sample. In some
embodiments, at least about 1 x 10° sequence tags comprising between 75bp read are obtained

from mapping the reads to the reference genome per sample.

[00536] The accuracy required for correctly quantifying DNA mixture samples, is
predicated on the variation of the number of sequence tags that map to the reference genome
among samples within a sequencing run (inter-run variability), and the variation of the number of
sequence tags that map to the reference genome in different sequencing runs (inter-run
variability). Other variations can result from using different protocols for the extraction and
purification of the nucleic acids, the preparation of the sequencing libraries, and the use of

different sequencing platforms.
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Apparatus and Svstem for Deconvolving and Quantifying Mixtures of Nucleic Acid from

Multiple Sources

[00537] Analysis of the sequencing data and the diagnosis derived therefrom are typically
performed using various computer programs. Therefore, certain embodiments employ processes
involving data stored in or transferred through one or more computer systems or other processing
systems. Embodiments disclosed herein also relate to apparatus for performing these operations.
This apparatus may be specially constructed for the required purposes, or it may be a general-
purpose computer (or a group of computers) selectively activated or reconfigured by a computer
program and/or data structure stored in the computer. In some embodiments, a group of
processors performs some or all of the recited analytical operations collaboratively (e.g., via a
network or cloud computing) and/or in parallel. A processor or group of processors for
performing the methods described herein may be of various types including microcontrollers and
microprocessors such as programmable devices (e.g., CPLDs and FPGAs) and non-

programmable devices such as gate array ASICs or general purpose microprocessors.

{00538] In addition, certain embodiments relate to tangible and/or non-transitory computer
readable media or computer program products that include program instructions and/or data
(including data structures) for performing various computer-implemented operations. Examples
of computer-readable media include, but are not limited to, semiconductor memory devices,
magnetic media such as disk drives, magnetic tape, optical media such as CDs, magneto-optical
media, and hardware devices that are specially configured to store and perform program
instructions, such as read-only memory devices (ROM) and random access memory (RAM).
The computer readable media may be directly controlled by an end user or the media may be
indirectly controlled by the end user. Examples of directly controlled media include the media
located at a user facility and/or media that are not shared with other entities. Examples of
indirectly controlled media include media that is indirectly accessible to the user via an external
network and/or via a service providing shared resources such as the “cloud.” Examples of
program instructions include both machine code, such as produced by a compiler, and files

containing higher level code that may be executed by the computer using an interpreter.

[{00539] In various embodiments, the data or information employed in the disclosed

methods and apparatus is provided in an electronic format. Such data or information may
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include reads and tags derived from a nucleic acid sample, counts or densities of such tags that
align with particular regions of a reference sequence (e.g., that align to a chromosome or
chromosome segment), reference sequences (including reference sequences providing solely or
primarily polymorphisms), calls such as SNV or aneuploidy calls, counseling recommendations,
diagnoses, and the like. As used herein, data or other information provided in electronic format
is available for storage on a machine and transmission between machines. Conventionally, data
in electronic format is provided digitally and may be stored as bits and/or bytes in various data

structures, lists, databases, etc. The data may be embodied electronically, optically, etc.

[00540] One embodiment provides a computer program product for generating an output
indicating the presence or absence of an SNV or aneuploidy associated with a cancer, in a test
sample. The computer product may contain instructions for performing any one or more of the
above-described methods for determining a chromosomal anomaly. As explained, the computer
product may include a non-transitory and/or tangible computer readable medium having a
computer executable or compilable logic (e.g., instructions) recorded thereon for enabling a
processor to quantify DNA mixture samples. In one example, the computer product comprises a
computer readable medium having a computer executable or compilable logic (e.g., instructions)

recorded thereon for enabling a processor to quantify DNA mixture samples.

[00541] The sequence information from the sample under consideration may be mapped to
chromosome reference sequences to identify a number of sequence tags for each of any one or
more chromosomes of interest. In various embodiments, the reference sequences are stored in a

database such as a relational or object database, for example.

[00542] It should be understood that it is not practical, or even possible in most cases, for
an unaided human being to perform the computational operations of the methods disclosed
herein. For example, mapping a single 30 bp read from a sample to any one of the human

chromosomes might require years of effort without the assistance of a computational apparatus.

[{00543] The methods disclosed herein can be performed using a system for quantifying
DNA mixture samples. The system comprising: (a) a sequencer for receiving nucleic acids from
the test sample providing nucleic acid sequence information from the sample; (b) a processor;
and (c) one or more computer-readable storage media having stored thereon instructions for

execution on said processor to carry out a method for quantifying DNA mixture samples.

86



WO 2018/236911 PCT/US2018/038342

[00544] In some embodiments, the methods are instructed by a computer-readable
medium having stored thereon computer-readable instructions for carrying out a method for
quantifying DNA mixture samples. Thus one embodiment provides a computer program product
comprising one or more computer-readable non-transitory storage media having stored thereon
computer-executable instructions that, when executed by one or more processors of a computer
system, cause the computer system to implement a method for quantifying DNA mixture
samples. The method includes: (a) extracting nucleic acid molecules from the nucleic acid
sample; (b) amplifying the extracted nucleic acid molecules; (c) sequencing the amplified nucleic
acid molecules using a nucleic acid sequencer to produce nucleic acid sequence reads; (d)
mapping, by the one or more processors, the nucleic acid sequence reads to one or more
polymorphism loci on a reference sequence; (e) determining, using the mapped nucleic acid
sequence reads and by the one or more processors, allele counts of nucleic acid sequence reads
for one or more alleles at the one or more polymorphism loci; and (f) quantifying, using a
probabilistic mixture model and by the one or more processors, one or more fractions of nucleic
acid of the one or more contributors in the nucleic acid sample, wherein using the probabilistic
mixture model comprises applying a probabilistic mixture model to the allele counts of nucleic
acid sequence reads, and wherein the probabilistic mixture model uses probability distributions
to model the allele counts of nucleic acid sequence reads at the one or more polymorphism loci,
the probability distributions accounting for errors in the nucleic acid sequence read sequences

and counts.

[00545] In some embodiments, the instructions may further include automatically
recording information pertinent to the method in a patient medical record for a human subject
providing the donee test sample. The patient medical record may be maintained by, for example,
a laboratory, physician’s office, a hospital, a health maintenance organization, an insurance
company, or a personal medical record website. Further, based on the results of the processor-
implemented analysis, the method may further involve prescribing, initiating, and/or altering
treatment of a human subject from whom the donee test sample was taken. This may involve

performing one or more additional tests or analyses on additional samples taken from the subject.

[{00546] Disclosed methods can also be performed using a computer processing system
which is adapted or configured to perform a method for quantifying DNA mixture samples. One

embodiment provides a computer processing system, which is adapted or configured to perform

87



WO 2018/236911 PCT/US2018/038342

a method as described herein. In one embodiment, the apparatus comprises a sequencing device
adapted or configured for sequencing at least a portion of the nucleic acid molecules in a sample
to obtain the type of sequence information described elsewhere herein. The apparatus may also

include components for processing the sample. Such components are described elsewhere herein.

[00547] Sequence or other data, can be input into a computer or stored on a computer
readable medium either directly or indirectly. In one embodiment, a computer system is directly
coupled to a sequencing device that reads and/or analyzes sequences of nucleic acids from
samples. Sequences or other information from such tools are provided via interface in the
computer system. Alternatively, the sequences processed by system are provided from a
sequence storage source such as a database or other repository. Once available to the processing
apparatus, a memory device or mass storage device buffers or stores, at least temporarily,
sequences of the nucleic acids. In addition, the memory device may store tag counts for various
chromosomes or genomes, etc. The memory may also store various routines and/or programs for
analyzing the presenting the sequence or mapped data. Such programs/routines may include

programs for performing statistical analyses, etc.

[00548] In one example, a user provides a sample into a sequencing apparatus. Data is
collected and/or analyzed by the sequencing apparatus, which is connected to a computer.
Software on the computer allows for data collection and/or analysis. Data can be stored,
displayed (via a monitor or other similar device), and/or sent to another location. The computer
may be connected to the internet which is used to transmit data to a handheld device utilized by a
remote user (e.g., a physician, scientist or analyst). It is understood that the data can be stored
and/or analyzed prior to transmittal. In some embodiments, raw data is collected and sent to a
remote user or apparatus that will analyze and/or store the data. Transmittal can occur via the
internet, but can also occur via satellite or other connection. Alternately, data can be stored on a
computer-readable medium and the medium can be shipped to an end user (e.g., via mail). The
remote user can be in the same or a different geographical location including, but not limited to a

building, city, state, country or continent.

[00549] In some embodiments, the methods also include collecting data regarding a
plurality of polynucleotide sequences (e.g., reads, tags and/or reference chromosome sequences)

and sending the data to a computer or other computational system. For example, the computer
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can be connected to laboratory equipment, e.g., a sample collection apparatus, a nucleotide
amplification apparatus, a nucleotide sequencing apparatus, or a hybridization apparatus. The
computer can then collect applicable data gathered by the laboratory device. The data can be
stored on a computer at any step, e.g., while collected in real time, prior to the sending, during or
in conjunction with the sending, or following the sending. The data can be stored on a computer-
readable medium that can be extracted from the computer. The data collected or stored can be
transmitted from the computer to a remote location, e.g., via a local network or a wide area
network such as the internet. At the remote location various operations can be performed on the

transmitted data as described below.

{00550] Among the types of electronically formatted data that may be stored, transmitted,
analyzed, and/or manipulated in systems, apparatus, and methods disclosed herein are the

following:
Reads obtained by sequencing nucleic acids in a test sample

Tags obtained by aligning reads to a reference genome or other reference sequence or

sequences
The reference genome or sequence

Allele counts - Counts or numbers of tags for each allele and regions of a reference

genome or other reference sequences
Determined contributor nucleic acid fractions and the associated confidence intervals
Diagnoses (clinical condition associated with the calls)
Recommendations for further tests derived from the calls and/or diagnoses
Treatment and/or monitoring plans derived from the calls and/or diagnoses

[00551] These various types of data may be obtained, stored transmitted, analyzed, and/or
manipulated at one or more locations using distinct apparatus. The processing options span a
wide spectrum. At one end of the spectrum, all or much of this information is stored and used at
the location where the test sample is processed, e.g., a doctor’s office or other clinical setting. In
other extreme, the sample is obtained at one location, it is processed and optionally sequenced at

a different location, reads are aligned and calls are made at one or more different locations, and
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diagnoses, recommendations, and/or plans are prepared at still another location (which may be a

location where the sample was obtained).

[00552] In various embodiments, the reads are generated with the sequencing apparatus
and then transmitted to a remote site where they are processed to produce calls. At this remote
location, as an example, the reads are aligned to a reference sequence to produce tags, which are
counted and assigned to chromosomes or segments of interest. Also at the remote location, the

doses are used to generate calls.

[00553] Among the processing operations that may be employed at distinct locations are

the following:
Sample collection
Sample processing preliminary to sequencing
Sequencing
Analyzing sequence data and quantifying DNA mixture samples
Diagnosis
Reporting a diagnosis and/or a call to patient or health care provider
Developing a plan for further treatment, testing, and/or monitoring
Executing the plan
Counseling

[00554] Any one or more of these operations may be automated as described elsewhere
herein. Typically, the sequencing and the analyzing of sequence data and quantifying DNA
mixture samples will be performed computationally. The other operations may be performed

manually or automatically.

[00555] Examples of locations where sample collection may be performed include health
practitioners’ offices, clinics, patients’ homes (where a sample collection tool or kit is provided),
and mobile health care vehicles. Examples of locations where sample processing prior to
sequencing may be performed include health practitioners’ offices, clinics, patients’ homes

(where a sample processing apparatus or kit is provided), mobile health care vehicles, and

90



WO 2018/236911 PCT/US2018/038342

facilities of DNA analysis providers. Examples of locations where sequencing may be
performed include health practitioners’ offices, clinics, health practitioners’ offices, clinics,
patients’ homes (where a sample sequencing apparatus and/or kit is provided), mobile health care
vehicles, and facilities of DNA analysis providers. The location where the sequencing takes
place may be provided with a dedicated network connection for transmitting sequence data
(typically reads) in an electronic format. Such connection may be wired or wireless and have
and may be configured to send the data to a site where the data can be processed and/or
aggregated prior to transmission to a processing site. Data aggregators can be maintained by

health organizations such as Health Maintenance Organizations (HMOs).

{00556] The analyzing and/or deriving operations may be performed at any of the
foregoing locations or alternatively at a further remote site dedicated to computation and/or the
service of analyzing nucleic acid sequence data. Such locations include for example, clusters
such as general purpose server farms, the facilities of a DNA analysis service business, and the
like. In some embodiments, the computational apparatus employed to perform the analysis is
leased or rented. The computational resources may be part of an internet accessible collection of
processors such as processing resources colloquially known as the cloud. In some cases, the
computations are performed by a parallel or massively parallel group of processors that are
affiliated or unaffiliated with one another. The processing may be accomplished using
distributed processing such as cluster computing, grid computing, and the like. In such
embodiments, a cluster or grid of computational resources collective form a super virtual
computer composed of multiple processors or computers acting together to perform the analysis
and/or derivation described herein. These technologies as well as more conventional
supercomputers may be employed to process sequence data as described herein. Each is a form
of parallel computing that relies on processors or computers. In the case of grid computing these
processors (often whole computers) are connected by a network (private, public, or the Internet)
by a conventional network protocol such as Ethernet. By contrast, a supercomputer has many

processors connected by a local high-speed computer bus.

[00557] In certain embodiments, the diagnosis is generated at the same location as the
analyzing operation. In other embodiments, it is performed at a different location. In some
examples, reporting the diagnosis is performed at the location where the sample was taken,

although this need not be the case. Examples of locations where the diagnosis can be generated
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or reported and/or where developing a plan is performed include health practitioners’ offices,
clinics, internet sites accessible by computers, and handheld devices such as cell phones, tablets,
smart phones, etc. having a wired or wireless connection to a network. Examples of locations
where counseling is performed include health practitioners’ offices, clinics, internet sites

accessible by computers, handheld devices, etc.

{00558] In some embodiments, the sample collection, sample processing, and sequencing
operations are performed at a first location and the analyzing and deriving operation is performed
at a second location. However, in some cases, the sample collection is collected at one location
(e.g., a health practitioner’s office or clinic) and the sample processing and sequencing is
performed at a different location that is optionally the same location where the analyzing and

deriving take place.

[00559] In various embodiments, a sequence of the above-listed operations may be
triggered by a user or entity initiating sample collection, sample processing and/or sequencing.
After one or more these operations have begun execution the other operations may naturally
follow. For example, the sequencing operation may cause reads to be automatically collected
and sent to a processing apparatus which then conducts, often automatically and possibly without
further user intervention, the sequence analysis and quantifying DNA mixture samples. In some
implementations, the result of this processing operation is then automatically delivered, possibly
with reformatting as a diagnosis, to a system component or entity that processes reports the
information to a health professional and/or patient. As explained such information can also be
automatically processed to produce a treatment, testing, and/or monitoring plan, possibly along
with counseling information. Thus, initiating an early stage operation can trigger an end to end
sequence in which the health professional, patient or other concerned party is provided with a
diagnosis, a plan, counseling and/or other information useful for acting on a physical condition.
This is accomplished even though parts of the overall system are physically separated and

possibly remote from the location of, e.g., the sample and sequence apparatus.

[00560] Figure 4 illustrates, in simple block format, a typical computer system that, when
appropriately configured or designed, can serve as a computational apparatus according to
certain embodiments. The computer system 2000 includes any number of processors 2002 (also

referred to as central processing units, or CPUs) that are coupled to storage devices including
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primary storage 2006 (typically a random access memory, or RAM), primary storage 2004
(typically a read only memory, or ROM). CPU 2002 may be of various types including
microcontrollers and microprocessors such as programmable devices (e.g., CPLDs and FPGAs)
and non-programmable devices such as gate array ASICs or general-purpose microprocessors.
In the depicted embodiment, primary storage 2004 acts to transfer data and instructions uni-
directionally to the CPU and primary storage 2006 is used typically to transfer data and
instructions in a bi-directional manner. Both of these primary storage devices may include any
suitable computer-readable media such as those described above. A mass storage device 2008 is
also coupled bi-directionally to primary storage 2006 and provides additional data storage
capacity and may include any of the computer-readable media described above. Mass storage
device 2008 may be used to store programs, data and the like and is typically a secondary storage
medium such as a hard disk. Frequently, such programs, data and the like are temporarily copied
to primary memory 2006 for execution on CPU 2002. It will be appreciated that the information
retained within the mass storage device 2008, may, in appropriate cases, be incorporated in
standard fashion as part of primary storage 2004. A specific mass storage device such as a CD-

ROM 2014 may also pass data uni-directionally to the CPU or primary storage.

[00561] CPU 2002 is also coupled to an interface 2010 that connects to one or more
input/output devices such as such as a nucleic acid sequencer (2020), video monitors, track balls,
mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or
paper tape readers, tablets, styluses, voice or handwriting recognition peripherals, USB ports, or
other well-known input devices such as, of course, other computers. Finally, CPU 2002
optionally may be coupled to an external device such as a database or a computer or
telecommunications network using an external connection as shown generally at 2012. With
such a connection, it is contemplated that the CPU might receive information from the network,
or might output information to the network in the course of performing the method steps
described herein. In some implementations, a nucleic acid sequencer (2020) may be
communicatively linked to the CPU 2002 via the network connection 2012 instead of or in

addition to via the interface 2010.

{00562] In one embodiment, a system such as computer system 2000 is used as a data
import, data correlation, and querying system capable of performing some or all of the tasks

described herein. Information and programs, including data files can be provided via a network
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connection 2012 for access or downloading by a researcher. Alternatively, such information,

programs and files can be provided to the researcher on a storage device.

[00563] In a specific embodiment, the computer system 2000 is directly coupled to a data
acquisition system such as a microarray, high-throughput screening system, or a nucleic acid
sequencer (2020) that captures data from samples. Data from such systems are provided via
interface 2010 for analysis by system 2000. Alternatively, the data processed by system 2000
are provided from a data storage source such as a database or other repository of relevant data.
Once in apparatus 2000, a memory device such as primary storage 2006 or mass storage 2008
buffers or stores, at least temporarily, relevant data. The memory may also store various routines
and/or programs for importing, analyzing and presenting the data, including sequence reads,
UMIs, codes for determining sequence reads, collapsing sequence reads and correcting errors in

reads, etc.

[00564] In certain embodiments, the computers used herein may include a user terminal,
which may be any type of computer (e.g., desktop, laptop, tablet, etc.), media computing
platforms (e.g., cable, satellite set top boxes, digital video recorders, etc.), handheld computing
devices (e.g., PDAs, e-mail clients, etc.), cell phones or any other type of computing or

communication platforms.

[00565] In certain embodiments, the computers used herein may also include a server
system in communication with a user terminal, which server system may include a server device
or decentralized server devices, and may include mainframe computers, mini computers, super
computers, personal computers, or combinations thereof. A plurality of server systems may also
be used without departing from the scope of the present invention. User terminals and a server
system may communicate with each other through a network. The network may comprise, €.g.,
wired networks such as LANs (local area networks), WANs (wide area networks), MANs
(metropolitan area networks), ISDNs (Intergrated Service Digital Networks), etc. as well as
wireless networks such as wireless LANs, CDMA, Bluetooth, and satellite communication

networks, etc. without limiting the scope of the present invention.

[00566] Figure 5 shows one implementation of a dispersed system for producing a call or
diagnosis from a test sample. A sample collection location 01 is used for obtaining a test sample

from a patient such as a pregnant female or a putative cancer patient. The samples then provided
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to a processing and sequencing location 03 where the test sample may be processed and
sequenced as described above. Location 03 includes apparatus for processing the sample as well
as apparatus for sequencing the processed sample. The result of the sequencing, as described
elsewhere herein, is a collection of reads which are typically provided in an electronic format and

provided to a network such as the Internet, which is indicated by reference number 05 in Figure

5.

[00567] The sequence data is provided to a remote location 07 where analysis and call
generation are performed. This location may include one or more powerful computational
devices such as computers or processors. After the computational resources at location 07 have
completed their analysis and generated a call from the sequence information received, the call is
relayed back to the network 05. In some implementations, not only is a call generated at location
07 but an associated diagnosis is also generated. The call and or diagnosis are then transmitted
across the network and back to the sample collection location O1 as illustrated in Figure 5. As
explained, this is simply one of many variations on how the various operations associated with
generating a call or diagnosis may be divided among various locations. One common variant
involves providing sample collection and processing and sequencing in a single location.
Another variation involves providing processing and sequencing at the same location as analysis

and call generation.

[00568] Figure 6 elaborates on the options for performing various operations at distinct
locations. In the most granular sense depicted in Figure 6, each of the following operations is
performed at a separate location: sample collection, sample processing, sequencing, read

alignment, calling, diagnosis, and reporting and/or plan development.

[00569] In one embodiment that aggregates some of these operations, sample processing
and sequencing are performed in one location and read alignment, calling, and diagnosis are
performed at a separate location. See the portion of Figure 6 identified by reference character A.
In another implementation, which is identified by character B in Figure 6, sample collection,
sample processing, and sequencing are all performed at the same location. In this
implementation, read alignment and calling are performed in a second location. Finally,
diagnosis and reporting and/or plan development are performed in a third location. In the

implementation depicted by character C in Figure 6, sample collection is performed at a first
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location, sample processing, sequencing, read alignment, calling,, and diagnosis are all
performed together at a second location, and reporting and/or plan development are performed at
a third location. Finally, in the implementation labeled D in Figure 6, sample collection is
performed at a first location, sample processing, sequencing, read alignment, and calling are all
performed at a second location, and diagnosis and reporting and/or plan management are

performed at a third location.

[00570] One embodiment provides a system for analyzing cell-free DNA (cfDNA) for
simple nucleotide variants associated with tumors, the system including a sequencer for
receiving a nucleic acid sample and providing nucleic acid sequence information from the
nucleic acid sample; a processor; and a machine readable storage medium comprising
instructions for execution on said processor, the instructions comprising: code for mapping the
nucleic acid sequence reads to one or more polymorphism loci on a reference sequence; code for
determining, using the mapped nucleic acid sequence reads, allele counts of nucleic acid
sequence reads for one or more alleles at the one or more polymorphism loci; and code for
quantifying, using a probabilistic mixture model, one or more fractions of nucleic acid of the one
or more contributors in the nucleic acid sample, wherein using the probabilistic mixture model
comprises applying a probabilistic mixture model to the allele counts of nucleic acid sequence
reads, and the probabilistic mixture model uses probability distributions to model the allele
counts of nucleic acid sequence reads at the one or more polymorphism loci, the probability

distributions accounting for errors in the nucleic acid sequence reads.

[00571] In some embodiments of any of the systems provided herein, the sequencer is
configured to perform next generation sequencing (NGS). In some embodiments, the sequencer
is configured to perform massively parallel sequencing using sequencing-by-synthesis with
reversible dye terminators. In other embodiments, the sequencer is configured to perform
sequencing-by-ligation. In yet other embodiments, the sequencer is configured to perform single

molecule sequencing.
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EXPERIMENTAL
Example 1
[00572] This example uses data obtained from actual DNA mixture samples to illustrate

that some implementations can provide higher accuracy and reliability, as well as lower
empirical bias, in quantifying DNA mixture samples, than conventional technologies that do not

use the probabilistic approaches disclosed herein.

[00573] The DNA mixture samples included two DNA from genomes (contributors), and
the minor fractions are 0.1%, 0.2%, 0.4%, and 2% in different samples. Some samples included
3 ng of input DNA, and others included 10 ng. The samples were processed in two experimental
procedures labeled as Nack or Nack? to indicate two primer designs, where the numbers of target
loci are different for the two designs. Some samples were processed using the MiSeq sequencing

platform and some using the MiniSeq platform.

[00574] The sample data were analyzed using three different methods. Table 8 shows the
average of coefficient of variance (CV, defined as standard_deviation_of predictions /
true_fraction) values over multiple mixture fractions and the average of coefficient of variation +
bias (CVB, commonly denoted as CV(RMSD) and defined as RMSD/true_fraction) values over
multiple mixture fractions for the three different methods using various samples and
experimental procedures. The first method applies a probabilistic model including a binomial
distribution for modeling sequencing errors. The first method corresponds to some
implementations descried as the Seq Model above. The data for the first method (Seq) are shown
in the third row of Table 8. The second method applies a probabilistic mixture model including
probability distributions accounting for DNA extraction errors, PCR amplification errors, and
sequencing errors. The second method corresponds to some implementations descried as the
Extraction-PCR-Seq Model above. The data for the second method (EPS) are shown in the
fourth row of Table 8.

[00575] The third method corresponds to the baseline method NaiveLM or also called
KGT.NaiveLLM as described above. It determines DNA fractions of contributors using a basic

linear regression formulation. The data for the third method (NaiveLM) are shown in the fifth

row of Table 8.
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[00576] It is worth noting that the genotype information of the contributors was not used
to quantify the contributor fractions in the Seq or EPS method, but it was used in the NaiveLM
method. Despite the fact that the Seq method and the EPS method did not need to use the
genotype information of the contributors, they produced more reliable results as indicated by the
smaller coefficient of variation values than the NaiveLM method. Moreover, the Seq method
and the EPS method had lower bias as indicated by the smaller CVB values than the NaiveLM
method. The best results among the three methods are bolded in Table 8. In short, the two
methods using probabilistic mixture models produced more reliable, accurate, and less biased

results than the linear regression method.

Table 8. CV and CVB performance metrics for two of disclosed methods (Seq and EPS)

compared to baseline method (NaiveLM) on four different datasets.

Nack? Nack?
MNack (3ng, Nack? (3ng, | MiniSeq WValidation
Method Genotype | 10ng) 10ng) (3ng, 10ng} (3ng, 10ng)
CV CVB [ CV CVB | CV CVB | CV CVB
Seq Notused | 0.151 | 0.796 | 0.214 | 0.688 | 0.175 | 0.414 | 0.21 | 0.488
EPS Not used | 0.139 | 0.207 | 0.126 | 0.193 | 0.125 | 0.216 | 0.165 | 0.253
NaiveLM | Used 0.771 1 1.117 | 0.889 | 1.388 | 3.818 | 1.03 | 8.83 | 1.407
Example 2
[00577] There are multiple free parameters, such as the average length of DNA template,

average length of amplicon, human genome molecular weight, that are used together with the
input DNA amount to estimate the effective input DNA amount and read counts. Justified
adjustment of these parameters may ensure less biases and robust prediction performance. This
example investigates how the average length of DNA template affects the performance of the

various methods described above for quantifying DNA mixtures.

[00578] This example uses mock cfDNA (mcfDNA) to mimic real cfDNA. In order to
obtain a proper correcting factor for real cfDNA, we need to 1) generate the similar standard
mixtures using real cfDNA extracted from two individuals; 2) perform gDNA spike in

experiments over real cfDNA mixtures.
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Source Genomes
[00579] mcfDNA: mcfDNA from one of the tested cell lines, for which Nack4 target sites
do not have CNYV for the cell line.

{00580] cfDNA: cfDNA from a healthy person but not maternal cfDNA

[00581] gDNA: gDNA from one of the tested cell line or a normal cell line

Mixture Composition Design

[00582] Mixture 1: 75% cfDNA or mcfDNA, 25% gDNA
[00583] Mixture 2: 50% cfDNA or mcfDNA, 50% gDNA
[00584] Mixture 3: 25% cfDNA or mcfDNA, 75% gDNA
[00585] Mixture 4: 10% cfDNA or mcfDNA, 90% gDNA
[00586] Each with 3 replicates.
Mixing Strategy
[00587] 1. cfDNA and gDNA templates are quantified;
[00588] 2. cfDNA and gDNA templates are mixed at 3:1, 1:1, 1:3, 1:9 ratios;
[00589] 3. PCR over the mixed templates.
[{00590] The resulting mixtures and their compositions are shown in Table 9.

Table 9. Mock and real DNA mixtures and estimated mixture fractions reflecting the
impact of cfDNA/mcfDNA length on their relative effectiveness as PCR templates. There

are three replicates for each type of mixture.

Mixing Fraction mcfDNA + gDNA cfDNA + gDNA

Mixture 1 (75%) 82.9%, 84.0% , 84.9% 68.6%, 68.8%, 69.1%

Mixture 3 (25%) 14.2%, 14.5%, 14.4% 20.5%, 20.2%, 20.0%

Mixture 4 (10% ) 5.37%, 5.51%, 5.40% 8.94%, 8.86%, 9.09%

[00591] Figure 7 shows the CVB performance of various methods each under different

choices of cfDNA length parameter. The following lengths: 120bp, 130bp, 140bp, 150bp, 160bp,

99



WO 2018/236911 PCT/US2018/038342

216bp, 300bp, 409bp, and 100k bp are evaluated. Different shades of bars indicate different

mcfDNA lengths.
[00592] The different methods are labeled as follows.
[00593] S: probabilistic model accounting for errors due to sequencing. Not using baseline

genomes as input. (without knowing D and R genome)

[00594] EPS: probabilistic model accounting for errors due to DNA extraction, PCR, and
sequencing. Not using baseline genomes as input.

[00595] PUGT.EPS00: generic implementation of EPS model allowing both known,
unknown, and partially known baselines. Not using baseline genomes as input.

[{00596] PUGT.EPS: generic implementation of EPS model allowing both known,
unknown, and partially known baselines. Using baseline genomes as input.

[00597] KGT.IterLM: Iterative Linear Model. Using baseline genomes as input.

[00598] KGT.Seq: probabilistic model accounting for errors due to sequencing. Using

baseline genomes as input.

[00599] KGT.NaiveLM: Baseline method, the naive linear model with known genotype.
Using baseline genomes as input.

[00600] At default DNA length parameter of 160bp, the EPS models have the best
performance (indicated by arrows), both when the baseline genomes are available and not
available.

[00601] Moreover, the quantification performances of the EPS methods remain

outstanding even when practitioners perturb the DNA length parameter from 160bp to 120bp or
216bp. This indicates robustness of the methods to the cfDNA length parameter. The range is
comfortably wider than the parameters used in the implementations described above: 160bp for
mcfDNA, and 165bp for cfDNA.

[00602] The performance ranking among different methods is:

[00603] PUGT.EPS (using baseline genomes) > KGT.seq or KGT.IterLM (using baseline
genomes) > PUGT.EPS or EPS (not using baseline genomes) > S (not using baseline genomes) >
KGT.Naive (using baseline genomes).

[00604] Notably, the three EPS methods have markedly lower CVB than the naive linear

model with known genotype, indicating that the EPS methods have improved accuracy and
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reduced bias over conventional linear model methods. Note that conventional methods are only
applicable to mixture samples with known baselines genomes.

[00605] Furthermore, under default DNA length parameters, methods described in this
disclosure have lower limit of bland (LOB) and higher analytical sensitivity than the method
using conventional linear model. As shown in Table 10, the limit of blank (LOB) is below 0.1%

for four methods disclosed, but the conventional, naive linear model method’s LOB is at 0.42%.

Table 10. LOB of Different Methods

Method S PUGT.EPS00 | PUGT.EPS | KGT.seq | KGT.NaiveLM
LOB 0.05% 0.08% 0.06% 0.03% 0.42%
Example 3

[00606] This example uses data obtained from mock cfDNA (mcfDNA) and actual

genomic DNA (gDNA) to investigate the sensitivities of some of the disclosed methods, and

compare them to a known method KIMERDx that uses a qPCR technique.
[00607] Table 11 shows the LOQ of two probabilistic models labeled as follows.

{00608 EPS: probabilistic model accounting for errors due to DNA extraction, PCR, and

sequencing. Not using baseline genomes as input.

[00609] PUGT.EPS: generic implementation of EPS model allowing both known,

unknown, and partially known baselines. Using baseline genomes as input.

[{00610] LOQ, or limit of quantification, is a measure of quantification sensitivity. It is
defined as the minimal donor fraction that can be determined at no greater than 20% coefficient

of variation (CV).

[00611] Under mcfDNA conditions (top two rows of data in Table 11), which mimic
cfDNA samples from solid organ transplant patients, DNA mixture samples of two contributors
were generated. Each sample included 3 ng of DNA. The probabilistic methods PUGT.EPS
(using baseline genotypes) and EPS (without using baseline genotypes from pre-transplant

recipient and donor) were applied to 5 samples x 3 replicates. Both probabilistic methods
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achieved LOQ of <=0.2% when using only 3 ng of input DNA, indicating high sensitivity for
both disclosed methods.

[00612] Under a gDNA condition (third row of data in Table 11), which mimics blood
gDNA samples from bone marrow transplant patients, DNA mixture samples of two contributors
were generated. Each sample includes 10 ng of DNA. The PUGT.EPS method was used to
analyze 5 samples x 3 replicates. The PUGT.EPS method achieved an LOQ of <=0.1% when
using 10 ng of input DNA, which, as expected, is lower than the LOQ in the mcfDNA conditions
using 3ng of input DNA.

[00613] Under another gDNA condition (four row of data in Table 11), DNA mixture
samples of five contributors were generated. Each sample includes 10 ng total amount of DNA.
The PUGT.EPS method was used to analyze 5 samples x 3 replicates. The PUGT.EPS method
achieved an LOQ of <=0.35%. Even for such a difficult condition with five contributors, the

method achieved a great LOQ significantly lower than 1%.

Table 11. Sensitivity of Disclosed Methods

Sample Type LOQ Sample Size Method
mcfDNA 3ng, 2 contributors 0.2% 5 samples x 3 PUGT.EPS
mcfDNA 3ng, 2 contributors 0.2% 5 samples x 3 EPS (no baseline)

gDNA 10ng, 2 contributors 0.1% 5 samples x 3 PUGT.EPS
gDNA 10ng, 5 contributors 0.35% 4 samples x 3 PUGT.EPS
[00614] Table 12 shows the sensitivity (LOQ) values of a KIMERDx method that uses a

gPCR technique on mixture samples of only two contributors. The KIMERDx method was used
to analyze different quantity of input gDNA. To achieve 0.1% of LOQ, it requires 66 ng of input
gDNA. In comparison, the PUGT.EPS method only requires <=10ng of input DNA to achieve
the same level of sensitivity. With 10ng input gDNA, KIMERDx would achieve an LOQ of
0.7% compared to <0.1% for PUGT.EPS.
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Table 12. Sensitivity of qPCR KIMERDx Method

LOQ # Cells Input DNA (ng)
0.05% 20000 132
0.1% 10000 66
1% 1000 7
2% 500 3
5% 200 1
[00615] Therefore, this example illustrates that the disclosed probabilistic methods

required significantly less input DNA to achieve a same level of sensitivity compared to the state
of art method. Conversely, the disclose methods achieves a significantly higher sensitivity at low
input DNA amount. Due to their improved sensitivity, the methods may allow for faster sample

processing, require less reagent and improve accuracy of DNA mixture quantification.

[00616] Existing chimerism assays do not work for solid organ transplant monitoring,
which our methods are designed for. The disclosed methods improve the sensitivity of DNA
mixture quantification, which is particularly beneficial in applications where the input DNA
quantity is limited, which covers all solid organ transplant cases. Solid organ transplant
monitoring using cfDNA is challenging because the amount of cfDNA extracted from a typical
blood sample is typically < 10ng, much lower than the amount of extractable gDNA. Meanwhile,

cfDNA is much less effective as PCR template compared to gDNA of the same amount.

[00617] Existing methods also do not work for transplant with more than one donor, for
which the methods we disclosed still achieved high sensitivity. Transplants with more than one
donor occur frequently for bone marrow transplants, and are also commonly seen in organ

transplant with blood transfusion and in patients with prior organ transplants .
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Example 4

[{00618] Conventional methods of chimerism analysis utilize capillary electrophoresis
(CE) fragment analysis or quantitative polymerase chain reaction (qPCR) analysis of short
tandem repeats (STRs) or small insertions and deletions (Indels). There are a number of
drawbacks associated with these methods including limit of quantification, dynamic range,
number of targets, workflow, analysis, and reproducibility. An alternative approach to these
conventional methods utilizes next-generation sequencing (NGS) targeting hundreds of SNPs to
quantitatively assess chimerism with low limit of quantification, broad dynamic range, simple

workflow, automated analysis, and robust reproducibility.

Conventional Chimerism Analysis Using CE

Targets: STRs

[{00619] STRs are loci found throughout the genome. They are comprised of short
sequences, usually between 2 and 8 nucleotides and most commonly 4, that are repeated
tandemly (e.g. gata tandemly repeated as gatagatagatagatagata). The number of repeats varies
between 4 and 40 repeats making a typical STR less than 400 total nucleotides in length. The
number of repeats is highly variable within the human population. These two characteristics of
STRs, relatively short total length and high variability, have made them attractive targets for
human identification in forensic science. The short length is important for poor quality forensic
samples because amplification of larger regions is difficult with these types of samples. The high
variability in the population is an attractive feature because a relatively small number are needed
for positive identification. While more than 100 STRs have been well characterized in the human

genome, most applications use less than 30.

Assay Design

[00620] PCR primers are designed in the conserved flanking regions surrounding the STR.
Primers can be multiplexed with each of the four fluorophores containing 4 to 7 STRs of varying
lengths. This means that the multiplexes support between 10 and 21 unique STRs. The CE
system measures the relative fluorescence units and the elapse time to detection to generate an
electropherogram for each STR. Most labs utilize the full multiplexes for generating pre-

transplant baseline genotypes for the recipient and the donor. The pre-transplant genotypes are
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compared to one another to select informative markers, markers in which the recipient and donor
have unique alleles. The chimerism samples may be run with the entire multiplex or with
individual singleplex assays for the informative STRs. Singleplex assays generally provide the

highest level of sensitivity, but many labs prefer to run the multiplex assay.

Workflow

. DNA is extracted from peripheral blood, bone marrow, or cell lineages isolated with

magnetic beads or by flow cytometry.
. PCR amplification of the target STRs is performed including fluorescent tagging.

° Separation and detection of the STR-PCR amplicons is performed with electrophoresis,
most frequently a CE instrument. The CE system measures the relative fluorescence units and

the elapse time to detection to generate electropherograms for each allele present in the sample.

. The person performing the analysis reviews the electropherograms for each informative
marker to determine the relative frequency of the donor to the recipient. In cases with multiple
informative markers, the average frequency is usually taken as the final measure of chimerism

after taking into account variable performance of the different markers.

[00621] From extracted DNA to data analysis takes about seven hours with about 2 hours
of that hands-on time. The analysis of the data is highly variable and takes from 15 minutes to
two hours to analyze a single chimerism sample depending on the number of informative

markers, the variability between the markers, and the complexity of the stutter peak subtraction.

Limitations
[00622] There are three primary limitations to CE analysis of STR regions for chimerism
analysis.
[00623] First, the electropherogram peaks alone are often difficult to analyze and percent

chimerism from multiple peaks within the same sample frequently vary 10-15%. As a
consequence of this variability, analysis can often take hours for a single sample and the results

are still semiquantitative.
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[00624] Second, limit of quantification (LOQ), often referred to as limit of detection
(LOD) or sensitivity, ranges from 1-5% with this methodology. This broad range exists because
each STR will have its own LOQ depending on the PCR enzyme stutter or “slippage” on the

STR and variable performance of the fluorophores.

[00625] Third, although more than 100 STR targets are well characterized in the genome,
including more than 21 STRs in an assay has not been reliable. This is because multiplexing that
many specific primer pools into a single assay is very difficult to make robust and reliable.
Therefore, chimerism mixtures from closely related individuals may have difficulty identifying

informative markers and cases with many donors may be very difficult to analyze.

[{00626] These limitations can be significant in clinical use. For example, an actual

chimerism result of 99% will be reported as 100%.

Conventional Chimerism Analysis Using gPCR

Targets: Indels

[00627] An indel is an insertion or deletion of 1 to 10,000 nucleotide bases. Millions of
indels have been discovered in the human genome making it the second largest contributor to
human genome variability after SNPs. Similar to STRs, many indels are short and can be easily
amplified even from highly degraded DNA and small amounts of DNA. In addition, there is a
wide variety of indels available in different lengths, different allele frequencies, and they are
broadly distributed throughout the genome. These features of indels make them attractive targets

for human identification and chimerism analysis.

Assay Design
[00628] PCR primers are designed to amplify the indel and are designed as singleplex,

small multiplexes (~3 targets), or large multiplexes (30-40 targets). It has been shown that 30-40
appropriately selected indels are needed to distinguish individuals from one another. With the
commercially available kits, pre-transplant donor and recipient baseline samples are run through
30 to 40 indel targets in either 3-indel multiplexes or individual indels laid out on a 96-well plate.

This step identifies informative targets in which the donor and recipient have different alleles. A
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minimum of two informative targets are then selected for each donor-recipient pair to be used for

chimerism analysis.

[00629] Each indel is targeted by a set of fluorescently labeled primers that hybridize the
DNA of interest. As the amplicon undergoes PCR cycling, the increasing fluorescence is
proportional to the quantity of amplicon present. The quantification is determined by the number
of PCR cycles required to reach the threshold cycle (Ct) value. The informative markers are
usually selected to amplify the genome of the minor contributor, usually the recipient in the case
of stem cell transplantation. The quantity is then determined by comparing the Ct values of the

post-transplant sample, the matched pre-transplant baseline, and the reference control sample.

Workflow

® DNA is extracted from peripheral blood, bone marrow, or cell lineages isolated with
magnetic beads or by flow cytometry.

® Purified DNA is quantified and diluted as needed to achieve target concentrations.

e Baseline genotyping is performed by testing both the donor and recipient pre-transplant
samples for every target indel in the system. In the small multiplex system this includes 10
individual reactions of 2-3 indel targets per reaction. In the singleplex system, this requires
46 individual reactions with a single indel target in each reaction. Each baseline sample run
must also include a positive control and a no template control. This means that the small
multiplex system can fit 8 baseline samples on a 96-well plate and the singleplex system can
fit 2 per plate.

* 10ng of baseline DNA is added to each reaction well (100ng total for small multiplex and
460ng for singleplex)

® PCR Master Mix is prepared and added to each reaction well.

e Amplification primers are added to the appropriate wells (8x10 for the small multiplex and
2x46 for the singleplex)

¢ Plates are sealed, vortexed, centrifuged, and loaded onto the qPCR instrument.

® Results are loaded into the application-specific software.

® Recipient and donor baselines are compared in the software and informative markers are
selected for chimerism analysis. Usually two informative targets are selected for each

transplant recipient/donor pair.
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¢ For each target to be amplified, the pre-transplant baseline sample from the minor contributor
must be run in triplicate, each post-transplant chimerism sample must be run in triplicate, a
positive control for every two reaction wells, and a no template control for each target. In
other words, to perform a single post-transplant chimerism analysis 60ng (6 wells) of
reference DNA must be run, 60ng (6 wells) of pre-transplant baseline DNA must be run, and
60ng (6 wells) of post-transplant chimerism DNA must be run. This is a total of 21 wells to
generate data from 2 targets.

® PCR Master Mix is prepared and added to each reaction well.

e Amplification primers are added to the appropriate wells (7 wells per sample — 3 pre-
transplant, 3 post-transplant, and 1 no template control)

¢ Plates are sealed, vortexed, centrifuged, and loaded onto the qPCR instrument.

® Results are loaded into the application-specific software.

{00630] From extracted DNA to genotyping data for informative marker selection takes
about 3 total hour with one and half hours hands-on. After selection of informative markers and
DNA extraction from chimerism samples, an addition 3 hours and one and a half hours of hands-

on time is needed for generation of the chimerism data.

Limitations
[00631] There are three primary limitations of qPCR-based chimerism analysis of indel
targets.
[00632] First, each chimerism analysis requires 60ng of pre-transplant recipient baseline

sample. This is in addition to the 100-500ng of baseline DNA required for the initial genotyping.
For programs frequently performing chimerism analysis, the pre-transplant baseline samples may

be depleted, limiting the ability to run this assay for long periods of times.

[00633] Second, the requirement to run the chimerism analyses as singleplex reactions
complicates the overall system requiring dozens of unique assays to be held in inventory. In
addition, the cost of each reaction usually limits the analysis to only two targets per donor-
recipient pair and these targets are likely to be different for each donor-recipient pair, making the

setup susceptible to error.
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[00634] Third, while the LOQ for qPCR 1is very low, the dynamic range of qPCR-based
chimerism suffers and chimerism predictions when the minor contributor is greater than 30% are

not reliable.

Novel Chimerism Analysis by NGS

Targets: SNPs

[00635] SNPs are single nucleotide positions in which variation is present to a measurable
degree within the human population or within specific populations. dbSNP is a database of SNPs
managed by the National Center for Biotechnology Information (NCBI) and it currently contains
more than 170 million human SNPs with nearly 25 million of them validated. This means that
SNPs are responsible for the vast majority of variability within the human population averaging
one SNP per 1,000 nucleotide bases. SNPs can be biallelic (two observed alleles), triallelic (three
observed alleles), or tetra-allelic (four observed alleles). A single base variant can be considered
a SNP when the minor allele has a frequency of at least 1% in a random set of individuals in a
population. SNPs are excellent targets for chimerism analysis because of their low mutation rate,

small amplicon size, and compatibility with high-throughput sequencing technology.

Assay Design
[00636] SNPs are selected to be biallelic with roughly 50/50 allele frequency within

various populations around the world. In addition, SNPs having low mutation rates and no
linkage disequilibrium with the SNP pool are selected. Finally, SNPs were assessed for design-
ability, both in terms of minimizing primer-primer interaction and uniformity in PCR
amplification and in sequencing coverage. The total number of SNPs is determined based on

power to discriminate between first-degree relatives from all populations around the world.

[00637] A single PCR step amplifies the DNA, isolates the amplicons of interest, and
incorporates flowcell adapters (inverse oligonucleotide sequences to those on the Illumina
flowcells allowing the sample amplicons to bind to the flowcell), sequencing primers
(oligonucleotide sequences that serve as initiation sites for the Illumina sequencing by synthesis
(SBS) process), and index barcode sequences (oligonucleotide sequences that allow multiple

samples to be run simultaneously).
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{00638] The NGS system sequences each amplicon hundreds to thousands of times. In
pre-transplant baseline samples, this information is used to genotype each contributor. In post-
transplant chimerism samples, the reads counts for each nucleotide at a SNP location can be used
with or without the baseline genotypes to accurately estimate the percent chimerism of each

contributor, up to five total contributors.

Workflow
e DNA is extracted from peripheral blood, bone marrow, or cell lineages isolated with
magnetic beads or by flow cytometry.
® Purified DNA is quantified and diluted as needed to achieve target concentrations.
¢ Unique index barcodes are added to each sample DNA.
® Master mix is added to every sample, mixed, sealed, and centrifuged.
® PCR amplification is performed.
¢ All samples are pooled into a single well and then a PCR clean-up is performed.
¢ The cleaned pool is quantified, diluted, and denatured.
¢ The final pool, also called a library, is loaded onto the sequencer and sequencing is initiated.
® Sequencing data is imported into the chimerism-specific analysis software for automated

quality control and chimerism analysis.

[00639] From extracted DNA to loading of the sequencer takes less than 3 hours with less
than 2 hours of hands-on time. The sequencing run requires 9 to 13 hours depending on the
number of samples being run simultaneously. Once sequencing data are collected, the analysis
of the data does not require manual intervention, allowing automation of the analysis and

reducing human errors.

Limitations
[00640] There is one primary limitation of NGS-based chimerism analysis using SNPs:
compared to CE and qPCR-based chimerism analysis, NGS-based sample processing and
sequencing take longer, although the hands-on time is equivalent. The NGS-based library
preparation can be completed in the afternoon with the sequencing completed overnight. This

allows 24-hour turnaround for samples received in the morning. However, because sequencing
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may be multiplexed, this method can combine multiple samples for sequencing, thereby

improving the overall efficiency of sample processing.

Summary

[00641] NGS-based chimerism analysis using SNP targets is an efficient, accurate, and
reliable method to overcome many of the limitations associated with conventional methods of
chimerism analysis. The results are truly quantitative and can be automatically generated without
the need for laborious human review of electropherograms and stutter subtractions. The NGS-
based chimerism analysis has a broad dynamic range with low LOQ and no performance
degradation at high levels of mixed chimerism. More than 200 SNP targets are used with the
NGS system and they are multiplexed into a single reaction. This allows for utility with more
than one donor and with donor-recipient pairs that are very closely related. The indexing
capabilities and throughput of the NGS system allow for baseline and chimerism samples to be
run simultaneously, only one assay and kit to be stored in inventory, and low potential for human

error in the workflow.

Example S

[00642] This example shows that some implementations improve over conventional
methods because of the throughput of the NGS sequencer, the assay design with incredibly high
uniformity, and the use of SNPs as targets. The disclosed methods can analyze far more targets
than conventional methods, which are limited to <30 targets. The process allows multiplex many

samples to boost efficiency. The methods are quantitative, and can all be done cost-effectively.

[00643] One experiment compares the performance of the methods in some
implementations with baseline genomes known or unknown. Table 12 shows the DNA
quantifications for four samples with different recipient portions for three baseline conditions
(both baselines known, both baselines unknown, and recipient known but donor unknown). The
results show that the methods can be performed with and without baselines with similar
performance at different recipient portions. When baselines are known, the methods tend to

produce results with smaller confidence intervals (and higher reliability).

Table 12. DNA Quantifications with Known and Unknown Baselines
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Both Baselines Known Both Baselines Unknown Recipient Known Donor Unknown

% Low High % Low High % Low High
recipient | 95% Ct | 95% Ct | recipient | 95% Ct | 95% Ct | recipient | 95% Ct | 95% Ct

Sample 1 | 0.7% 0.6% 0.8% 0.7% 0.5% 0.9% 0.7% 0.6% | 0.8%

Sample 2 | 5.8% 5.4% 6.2% 5.7% 5.2% 6.2% 5.8% 54% | 6.2%

Sample 3 | 12.3% 120% | 12.6% | 12.3% 11.8% | 12.7% | 123% | 12% 12.6%

Sample 4 | 38.6% 38.1% | 39.0% | 38.7% 38.0% |393% |38.6% |38.1% |39.0%

[00644] Figure 8 compares DNA portion determined by some implementations (Y axis)
and actual DNA portions (X axis). The horizontal lines indicate the values of actual portions.
The chimerism sample includes cfDNA mixtures that are mock cfDNA provided by Horizon
Discovery (Catalog No. 12498714289). As the figure shows, the predicted minor contributor

portion are quite close to the actual minor contributor portion at 0.1%, 0.2%, 0.4%, and 2%.

[00645] Figure 9 shows the coefficient of variance (CV) of 16 conditions for determining
the limit of quantification (LOQ) for some implementations. LOQ is defined as the lowest
concentration at which an analyte can be reliably detected at which the imprecision (CV) is less
than 20%. This measurement takes into account both analytical sensitivity (i.e., limit of
detection) and reproducibility (i.e., precision). The four different groups of bars represent
different minor contributor fractions of 0.1%, 0.2%, 0.4%, and 2%. The four bars in a group
represent, from left to right, four input DNA conditions: 10ng of gDNA, 3 ng of gDNA, 10ng of
cf DNA, and 3 ng of cfDNA. At each minor contributor fraction, there is a consistent pattern as

expected —samples of smaller amounts lead to higher CV, and ¢fDNA lead to higher CV.

[00646] All but one condition (0.1% minor contributor fraction, 3ng of cfDNA) can detect
an analyte with an imprecision (CV) less than 20%. In other words, the one condition (3ng of

cfDNA) has an LOQ of 0.2%, while the rest of the conditions have an LOQ of 0.1%.

[00647] Table 13 summarizes the data above. It clearly shows that all four input DNA
conditions have LOQ values smaller than 0.2%, and all but the most challenging input condition

(3 ng cfDNA) have LOQ of 0.1%.
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Table 13. Limit of Quantification for some Implementations with Different DNA Input

Input DNA Limit of Quantification
10 ng cfDNA <0.1%
3 ng cfDNA <0.2%
10 ng gDNA <0.1%
3 ng gDNA <0.1%
Discussions
[00648] Conventional chimerism methods using qPCR or CE technologies sacrifice ease

of use, number of targets, sensitivity, or dynamic range.

[00649] The implemented methods multiplex samples in a single assay. This enables pre-
transplant baseline samples and post-transplant chimerism samples to be run using the same
assay and side by side on the same sequencing run. The methods can be performed with and

without baselines with near identical performance.

[00650] gPCR and CE chimerism methods may provide some level of multiplexing for the
pre-transplant baseline samples, but these methods have performance degradation for post-
transplant chimerism quantification when targets are multiplexed. This means that baseline and
chimerism samples must be run separately and the entire system may requires at least a dozen

unique assays.

[00651] While qPCR is sensitive for microchimerism detection, it lacks the dynamic range
to be reliable for mixed chimerism. CE-based chimerism analysis offers a broad dynamic range
for mixed chimerism detection, but lacks the sensitivity for microchimerism. The disclosed
methods provide both a reliable low limit of quantification (LOQ) and a broad dynamic range,

enabling one solution that can cover all different types of chimerism.
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CLAIMS

What is claimed is:

1. A method, implemented at a computer system that includes one or more processors and
system memory, of quantifying a nucleic acid sample comprising nucleic acid of one or more
contributors, the method comprising:

(a) extracting nucleic acid molecules from the nucleic acid sample;

(b) amplifying the extracted nucleic acid molecules;

(c) sequencing the amplified nucleic acid molecules using a nucleic acid sequencer to
produce nucleic acid sequence reads;

(d) mapping, by the one or more processors, the nucleic acid sequence reads to one or
more polymorphism loci on a reference sequence;

(e) determining, using the mapped nucleic acid sequence reads and by the one or more
processors, allele counts of nucleic acid sequence reads for one or more alleles at the one or more
polymorphism loci; and

(f) quantifying, using a probabilistic mixture model and by the one or more processors,
one or more fractions of nucleic acid of the one or more contributors in the nucleic acid sample,
wherein using the probabilistic mixture model comprises applying a probabilistic mixture model
to the allele counts of nucleic acid sequence reads, and wherein the probabilistic mixture model
uses probability distributions to model the allele counts of nucleic acid sequence reads at the one
or more polymorphism loci, the probability distributions accounting for errors in the nucleic acid

sequence reads.

2. The method of claim 1, further comprising, determining, using the probabilistic mixture
model and by the one or more processors, one or more genotypes of the one or more contributors

at the one or more polymorphism loci.
3. The method of claim 1, further comprising, determining, using the one or more fractions

of nucleic acid of the one or more contributors, a risk of one contributor (a donee) rejecting a

tissue or an organ transplanted from another contributor (a donor).
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4. The method of claim 1, wherein the one or more contributors comprise two or more

contributors.

5. The method of claim 1, wherein the nucleic acid molecules comprise DNA molecules or

RNA molecules.

6. The method of claim 1, wherein the nucleic acid sample comprises nucleic acid from

zero, one, or more contaminant genomes and one genome of interest.

7. The method of claim 1, wherein the one or more contributors comprise zero, one, or more
donors of a transplant and a donee of the transplant, and wherein the nucleic acid sample

comprises a sample obtained from the donee.

8. The method of claim 1, wherein the transplant comprises an allogeneic or xenogeneic
transplant.
9. The method of claim 1, wherein the nucleic acid sample comprises a biological sample

obtained from the donee.

10. The method of claim 1, wherein the nucleic acid sample comprises a biological sample

obtained from a cell culture.

11. The method of claim 1, wherein the extracted nucleic acid molecules comprise cell-free

nucleic acid.

12. The method of claim 1, wherein the extracted nucleic acid molecules comprise cellular
DNA.
13. The method of claim 1, wherein the one or more polymorphism loci comprise one or

more biallelic polymorphism loci.
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14. The method of claim 1, wherein the one or more alleles at the one or more polymorphism

loci comprise one or more single nucleotide polymorphism (SNP) alleles.

15. The method of claim 1, wherein the probabilistic mixture model uses a single-locus
likelihood function to model allele counts at a single polymorphism locus, the single-locus
likelihood function comprising
M(nii, n2i | pri, )

wherein

ny; is the allele count of allele 1 at locus i,

n2; is the allele count of allele 2 at locus i,

pi1iis an expected fraction of allele 1 at locus 1, and

0 comprises one or more model parameters.

16. The method of claim 15, wherein p;; is modeled as a function of:

(1) genotypes of the contributors at locus i, or g; = (g1, ..., go1i), which is a vector of
copy number of allele 1 at locus 7 in contributors 1...D;

(i) read count errors resulting from the sequencing operation in (c), or 4; and

(iii) fractions of nucleic acid of contributors in the nucleic acid sample, or ff = (61, ...,

Pp), wherein D is the number of contributors.

17. The method of claim 16, wherein the contributors comprise two or more contributors, and

pri=p(g, A B)<—[(1-1) gi + A (2- gi)] /2 » B, where ¢ is vector dot product operator

18. The method of claim 17, wherein the contributors comprise two contributors, and pj; is

obtained using the p;’ values in Table 3.

19. The method of claim 16, wherein zero, one or more genotypes of the contributors are
unknown.
20. The method of claim 19, wherein (f) comprises marginalizing over a plurality of possible

combinations of genotypes to enumerate the probability parameter p ;.
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21. The method of claim 19, further comprising determining a genotype configuration at each
of the one or more polymorphism loci, the genotype configuration comprising two alleles for

each of the one or more contributors.

22. The method of claim 16, wherein the single-locus likelihood function comprise a first

binomial distribution.

23. The method of claim 22, wherein the first binomial distribution is expressed as follows:
nii ~ BN(n;, p1i)
wherein
n1; 1s an allele count of nucleic acid sequence reads for allele 1 at locus i; and

n;i is a total read count at locus 7, which equals to a total genome copy numbers #n".

24. The method of claim 23, wherein (f) comprises maximizing a multiple-loci likelihood

function calculated from a plurality of single-locus likelihood functions.

25. The method of claim 24, wherein (f) comprises:

calculating a plurality of multiple-loci likelihood values using a plurality of potential
fraction values and a multiple-loci likelihood function of the allele counts of nucleic acid
sequence reads determined in (e);

identifying one or more potential fraction values associated with a maximum multiple-
loci likelihood value; and

quantifying the one or more fractions of nucleic acid of the one or more contributors in

the nucleic acid sample as the identified potential fraction value.

26. The method of claim 24, wherein the multiple-loci likelihood function comprises:
LB, O, A 7w, ny,n)=1I; [Xgi M(nyi, n2i | p(gi, A, B), 0) < P(gi|l )]
wherein

L(p, 6, A, m; n1, ny) is the likelihood of observing allele count vectors n; and n; for alleles

1 and 2;
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p(gi, A, B) is the expected fraction or probability of observing allele 1 at locus i based on
the contributors’ genotypes g; at locus i;

P(gilr) is the prior probability of observing the genotypes g; at locus 1 given a population
allele frequency (r); and,

2gi denotes summing over a plurality of possible combinations of genotypes of the

contributors.
27. The method of claim 26, wherein the multiple-loci likelihood function comprises:
LP, A m;ny,ny)=11; [Xgi BN(nii | ni,- p(gi, 4, ) < P(gil 7)]
28. The method of claim 27, wherein the contributors comprise two contributors and the

likelihood function comprises:
LB, A m; ny, nz) =1I; 2e1i2i BN(niil ni, pri(gn, g2i, A B)) - P(gri, g2ilm)

wherein

LB, A, & ; ny1, n2) is the likelihood of observing allele count vectors n; to n; for alleles /
and 2 given parameters £ and 7 ;

p1i(gs, g2, A B) is a probability parameter, taken as p;’ from Table 3, indicating a
probability of allele / at locus i based on the two contributors’ genotypes (g1 g2:); and

P(g1:,82ilm) 1s a prior joint probability of observing the two contributors’ genotypes given

a population allele frequency (7).

29. The method of claim 28, wherein the prior joint probability is calculated using marginal

distributions P(gy; I7) and P(gzilz) that satisfy the Hardy-Weinberg equilibrium.

30. The method of claim 29, wherein the prior joint probability is calculated using genetic

relationship between the two contributors.
31. The method of claim 26, wherein the probabilistic mixture model accounts for nucleic

acid molecule copy number errors resulting from extracting the nucleic acid molecules

performed in (a), as well as the read count errors resulting from the sequencing operation in (c).
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32. The method of claim 31, wherein the probabilistic mixture model uses a second binomial
distribution to model allele counts of the extracted nucleic acid molecules for alleles at the one or

more polymorphism loci.

33. The method of claim 32, wherein the second binomial distribution is expressed as
follows:
ni"~ BN(ni", pii)
wherein
ny;" 1s an allele count of extracted nucleic acid molecules for allele / at locus i
n;" is a total nucleic acid molecule count at locus i; and

piuis a probability parameter indicating the probability of allele 7 at locus i.

34. The method of claim 33, wherein the first binomial distribution is conditioned on an

allele fraction ny;"/n;".

35. The method of claim 34, wherein the first binomial distribution is re-parameterized as
follows:
nii ~ BN(ni, n1i"/ni")

wherein

ny; 1s an allele count of nucleic acid sequence reads for allele 7 at locus i;

n;" 1s a total number of nucleic acid molecules at locus 7, which equals to a total genome
copy numbers n";

n; is a total read count at locus i; and

!

n1i"” 1s a number of extracted nucleic acid molecules for allele / at locus i.

36. The method of claim 35, wherein the probabilistic mixture model uses a first beta

distribution to approximate a distribution of n;;"/n".

37. The method of claim 36, wherein the first beta distribution has a mean and a variance that

match a mean and a variance of the second binomial distribution.
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38. The method of claim 36, wherein locus i is modeled as biallelic and the first beta
distribution is expressed as follows:
ni"/m" ~ Beta((n"-1)pn, (n"-1)p2i)
wherein
pi1iis a probability parameter indicating the probability of a first allele at locus #; and

P2iis a probability parameter indicating the probability of a second allele at locus 7.

39. The method of claim 36, wherein (f) comprises combining the first binomial distribution,
modeling sequencing read counts, and the first beta distribution, modeling extracted nucleic acid
molecule number, to obtain the single-locus likelihood function of ni; that follows a first beta-

binomial distribution.

40. The method of claim 39, wherein the first beta-binomial distribution has the form:
nii ~ BB(ni, (n"-1)-pr, (n"-1)-p2i),
or an alternative approximation:

nii~ BB(ni, n" - pri, n" - p2i).

41. The method of claim 40, wherein the multiple-loci likelihood function comprises:
LB, n", A m; n,nz) =1l [Xgi BB(nii | ni, (n"-1)-p1;, (n”-1)-p2i) * P(gil )]
wherein L(B, n", A, @ ; nn2) is the likelihood of observing allele count vectors n; and n2

for alleles / and 2 at all loci, and p1; = p(gi, 4, B), p2i = 1 — p1.

42. The method of claim 41, wherein the contributors comprise two contributors, and the
multiple-loci likelihood function comprises:
L, n", A, ny,n)=
112 51i02i BB(n1i, n2il mi, (n” -1)-p1i(gri, g2i, A, B), (n" -1)-p2i(grni, g2i, A B)) - P(g1i, g2il7)

wherein L(f, n", A, m; n;, n2) is the likelihood of observing an allele count vector for the
first allele of all loci (n;) and an allele count vector for the second allele of all loci (n2) given
parameters S, n”, A, and r;

p1i(gs, g2, A B) is a probability parameter, taken as p;’ from Table 3, indicating a

probability of allele / at locus i based on the two contributors’ genotypes (g1;, £2i);
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p2i(g1i, g2, A, B) is a probability parameter, taken as p2’ from Table 3, indicating a
probability of allele 2 at locus i based on the two contributors’ genotypes (g1 g2:); and

P(g1:,82ilm) is a prior joint probability of observing the first contributor’s genotype for the
first allele (gz;) and the second contributor’s genotype for the first allele (g2;) at locus i given a

population allele frequency (x).

43. The method of claim 35, wherein (f) comprises estimating the total extracted genome

copy number n" from a mass of the extracted nucleic acid molecules.

44, The method of claim 43, wherein the estimated total extracted genome copy number n" is

adjusted according to fragment size of the extracted nucleic acid molecules.

45. The method of claim 26, wherein the probabilistic mixture model accounts for nucleic
acid molecule number errors resulting from amplifying the nucleic acid molecules performed in

(b), as well as the read count errors resulting from the sequencing operation in (c).

46. The method of claim 45, the amplification process of (b) is modeled as follows:
X+l = Xt + Vel
wherein
x1+1 18 the nucleic acid copies of a given allele after cycle 1+ of amplification;
x 1s the nucleic acid copies of a given allele after cycle ¢ of amplification;
yi+11s the new copies generated at cycle 7+/, and it follows a binomial distribution y:+;
~BN(x;, r1+1); and

r:+1 1s the amplification rate for cycle 7+1.
47. The method of claim 45, wherein the probabilistic mixture model uses a second beta
distribution to model allele fractions of the amplified nucleic acid molecules for alleles at the one

or more polymorphism loci.

48. The method of claim 47, wherein locus i is biallelic and the second beta distribution is

expressed as follows:
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nyii/ (nii' + n2i') ~ Beta(n"-pi-pri, n"-pi-p2i)
wherein
nzi'1s an allele count of amplified nucleic acid molecules for a first allele at locus i;
n2;'1s an allele count of amplified nucleic acid molecules for a second allele at locus i;
n" is a total nucleic acid molecule count at any locus;
pi 1s a constant related to an average amplification rate r;
piiis the probability of the first allele at locus 7; and

p2iis the probability of the second allele at locus 7.

49, The method of claim 48, wherein p; is (I+r)/(1-r) / [1-(1+r)"], and r is the average

amplification rate per cycle.
50. The method of claim 48, wherein p; is approximated as (1+r)/(1-r).

51. The method of claim 48, wherein (f) comprises combining the first binomial distribution
and the second beta distribution to obtain the single-locus likelihood function for #;; that follows

a second beta-binomial distribution.

52. The method of claim 51, wherein the second beta-binomial distribution has the form:
nii ~ BB(ni, n"-pi-p1i, n"-pi-p2i)
wherein
ny; 1s an allele count of nucleic acid sequence reads for the first allele at locus i;
pi1iis a probability parameter indicating the probability of a first allele at locus i; and

P2iis a probability parameter indicating the probability of a second allele at locus 7.

53. The method of claim 52, wherein (f) comprises, by assuming the one or more

polymorphism loci have a same amplification rate, re-parameterizing the second beta-binomial

distribution as:
nii ~ BB(ni, n" -(1+r)/(1-r)pni, n"-(1+r)/(1-r)p2i)

wherein r is an amplification rate.
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54. The method of claim 53, wherein the multiple-loci likelihood function comprises:

Lp, n", r, A w; ny,nz) =11 [Xgi BB(nyi | ni, n” -(1+r)/(1-r)pri, n" -(1+r)/(1-r)-p2i) = P(gi| )]

55. The method of claim 53, wherein the contributors comprise two contributors and the
multiple-loci likelihood function comprises:
LB n",r, A, ny,n)=
12 g1ig2i [BB(nii | mi, n" (1+r)/(1-r)pri(gii, g2i A, B), 0"~ (1+r)/(1-r)p2i(gr1i, &2i, A
P))-P(g1i, gailm)]
wherein L(f, n", r, A, @ ; n;, n2) is the likelihood of observing an allele count vector for
the first allele of all loci (n7) and an allele count vector for the second allele of all loci (n2) given

parameters S, n”, r, A, and 7.

56. The method of claim 52, wherein (f) comprises, by defining a relative amplification rate
of each polymorphism locus to be proportional to a total reads of the locus, re-parameterizing the
second beta-binomial distribution as:
ni ~ BB(ni, ¢"nipr, ¢ nip2i)
wherein
c¢'1s a parameter to be optimized; and

n;is the total reads at locus 1.

57. The method of claim 56, wherein the multiple-loci likelihood function comprises:

LB, n", c', A w; ny,nz) =11l [Xgi BB(nyil n,, ¢"ni-pr, c nip2i) < P(gil 7)]

58. The method of claim 26, wherein the probabilistic mixture model accounts for nucleic
acid molecule number errors resulting from extracting the nucleic acid molecules performed in
(a) and amplifying the nucleic acid molecules performed in (b), as well as the read count errors

resulting from the sequencing operation in (c).

59. The method of claim 58, wherein the probabilistic mixture model uses a third beta
distribution to model allele fractions of the amplified nucleic acid molecules for alleles at the one

or more polymorphism loci, accounting for the sampling errors resulting from extracting the
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nucleic acid molecules performed in (a) and amplifying the nucleic acid molecules performed in

®).

60. The method of claim 59, wherein locus i is biallelic and the third beta distribution has the
form of:
ni/ (nii' + n2i') ~ Beta(n" - (1+ ri )/2 - pri, n'"- (1+ ri )/2 - p2i)

wherein

nzi'1s an allele count of amplified nucleic acid molecules for a first allele at locus i;

n2;'1s an allele count of amplified nucleic acid molecules for a second allele at locus i;

n''is a total nucleic acid molecule count;

r; 1s the average amplification rate for locus i;

piiis the probability of the first allele at locus 7; and

P2iis a probability of the second allele at locus i.

61. The method of claim 60, wherein (f) comprises combining the first binomial distribution
and the third beta distribution to obtain the single-locus likelihood function of ny; that follows a

third beta-binomial distribution.

62. The method of claim 61, wherein the third beta-binomial distribution has the form:
nii~BB(ni, n' - (1+ri )2 -pr,n" - (1+ 1 )/2 - p2i)

wherein r; is an amplification rate.

63. The method of claim 62, wherein the multiple-loci likelihood function comprises:
Lpn", r,A m; ny,n)=
Ili [Xgi BB(niilni, n" - (1+ 1 )2 pri, n" - (1+ 1 )2 - p2i) - P(gil 7)],

wherein r is an amplification rate assumed to be equal for all loci.

64. The method of claim 62, wherein the contributors comprise two contributors, and
wherein the multiple-loci likelihood function comprises:
LB, n", r,A 7, ny,n2) = i2s1iei BB(niilny, n'" - (1+ 1 )/2 - p1i(gn, g2 A B), n'" - (1+1)/2
- p2i(81i 826 A, P)) - P(g1i, g2ilm)
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wherein L(n;, nzl p, n", r, A, =) is the likelihood of observing allele counts for the first
allele vector n; and an allele count for the second allele vector n2 given parameters £, n”, r, A, and

T.

65. The method of claim 1, further comprising: (g) estimating one or more confidence
intervals of the one or more fractions of nucleic acid of the one or more contributors using the

hessian matrix of the log-likelihood using numerical differentiation.

66. The method of claim 1, wherein the mapping of (d) comprises identifying, by the one or
more processors using computer hashing and computer dynamic programing, reads among the
nucleic acid sequence reads matching any sequence of a plurality of unbiased target sequences,
wherein the plurality of unbiased target sequences comprises sub-sequences of the reference

sequence and sequences that differ from the subsequences by a single nucleotide.

67. The method of claim 66, wherein the plurality of unbiased target sequences comprises
five categories of sequences encompassing each polymorphic site of a plurality of polymorphic
sites:

(i) a reference target sequence that is a sub-sequence of the reference sequence,
the reference target sequence having a reference allele with a reference nucleotide at the
polymorphic site;

(ii) alternative target sequences each having an alternative allele with an
alternative nucleotide at the polymorphic site, the alternative nucleotide being different
from the reference nucleotide;

(ii1)) mutated reference target sequences comprising all possible sequences that
each differ from the reference target sequence by only one nucleotide at a site that is not
the polymorphic site;

(iv) mutated alternative target sequences comprising all possible sequences that
each differ from an alternative target sequence by only one nucleotide at a site that is not

the polymorphic site; and
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(v) unexpected allele target sequences each having an unexpected allele different
from the reference allele and the alternative allele, and each having a sequence different

from the previous four categories of sequences.

68. The method of claim 67, further comprising estimating a sequencing error rate A at the

variant site base on a frequency of observing the unexpected allele target sequences of (v).

69. The method of claim 67, wherein (e) comprises using the identified reads and their
matching unbiased target sequences to determine allele counts of the nucleic acid sequence reads

for the alleles at the one or more polymorphism loci.

70. The method of claim 67, wherein the plurality of unbiased target sequences comprises

sequences that are truncated to have the same length as the nucleic acid sequence reads.

71. The method of claim 67, wherein the plurality of unbiased target sequences comprises

sequences stored in one or more hash tables, and the reads are identified using the hash tables.

72. A system quantifying a nucleic acid sample comprising nucleic acid of one or more
contributors, the system comprising:

(a) a sequencer configured to (i) receive nucleic acid molecules extracted from the
nucleic acid sample, (ii) amplify the extracted nucleic acid molecules, and (iii) sequence the
amplified nucleic acid molecules under conditions that produce nucleic acid sequence reads; and

(b) a computer comprising one or more processors configured to:

map the nucleic acid sequence reads to one or more polymorphism loci on a
reference sequence;

determine, using the mapped nucleic acid sequence reads, allele counts of nucleic
acid sequence reads for one or more alleles at the one or more polymorphism loci; and

quantify, using a probabilistic mixture model, one or more fractions of nucleic
acid of the one or more contributors in the nucleic acid sample,

wherein
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using the probabilistic mixture model comprises applying a probabilistic
mixture model to the allele counts of nucleic acid sequence reads, and

the probabilistic mixture model uses probability distributions to model the
allele counts of nucleic acid sequence reads at the one or more polymorphism
loci, the probability distributions accounting for errors in the nucleic acid

sequence reads.

73. The system of claim 72, further comprising a tool for extracting nucleic acid molecules

from the nucleic acid sample.

74. The system of claim 72, wherein the probability distributions comprise a first binomial
distribution as follows:
nii ~ BN(n;, p1i)
wherein
n1; 1s an allele count of nucleic acid sequence reads for allele 1 at locus i;
n; is a total read count at locus 7, which equals to a total genome copy numbers n"; and

pi1iis a probability parameter indicating the probability of allele 1 at locus i.

75. A computer program product comprising a non-transitory machine readable medium
storing program code that, when executed by one or more processors of a computer system,
causes the computer system to implement a method of quantifying a nucleic acid sample
comprising nucleic acid of one or more contributors, said program code comprising:
code for mapping the nucleic acid sequence reads to one or more polymorphism loci on a
reference sequence;
code for determining, using the mapped nucleic acid sequence reads, allele counts of
nucleic acid sequence reads for one or more alleles at the one or more polymorphism loci; and
code for quantifying, using a probabilistic mixture model, one or more fractions of
nucleic acid of the one or more contributors in the nucleic acid sample,
wherein
using the probabilistic mixture model comprises applying a probabilistic mixture

model to the allele counts of nucleic acid sequence reads, and
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the probabilistic mixture model uses probability distributions to model the allele
counts of nucleic acid sequence reads at the one or more polymorphism loci, the

probability distributions accounting for errors in the nucleic acid sequence reads.

76. A method, implemented at a computer system that includes one or more processors and
system memory, of quantifying a nucleic acid sample comprising nucleic acid of one or more
contributors, the method comprising:

(a) receiving, by the one or more processors, nucleic acid sequence reads obtained from
the nucleic acid sample;

(b) mapping, by the one or more processors, using computer hashing and computer
dynamic programming, the nucleic acid sequence reads to one or more polymorphism loci on a
reference sequence;

(c) determining, using the mapped nucleic acid sequence reads and by the one or more
processors, allele counts of nucleic acid sequence reads for one or more alleles at the one or more
polymorphism loci; and

(d) quantifying, using a probabilistic mixture model and by the one or more processors,
one or more fractions of nucleic acid of the one or more contributors in the nucleic acid sample
and confidence of the fractions,

wherein using the probabilistic mixture model comprises applying a probabilistic mixture
model to the allele counts of nucleic acid sequence reads,

wherein the probabilistic mixture model uses probability distributions to model the allele
counts of nucleic acid sequence reads at the one or more polymorphism loci, the probability
distributions accounting for errors in the mapped nucleic acid sequence reads,

and wherein the quantifying employs (i) a computer optimization method combining
multi-iteration grid searching and a BFGS - quasi-Newton method, or an iterative weighted

linear regression, and (ii) a numerical differentiation method.
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