"R ‘ Paent.und Markenan ARV

(19DE 10 2018 005 216 A1 2019.02.21

(12) Offenlegungsschrift

(21) Aktenzeichen: 10 2018 005 216.9 (51) Int Cl.:
(22) Anmeldetag: 29.06.2018 GO6F 9/30 (2018.01)

(43) Offenlegungstag: 21.02.2019

(30) Unionsprioritat: (72) Erfinder:
15/640,533 01.07.2017 US Fleming, Kermin, Hudson, Mass., US; Glossop,
Kent, Nashua, N.H., US; Steely, Simon C. Jr.,
(71) Anmelder: Hudson, N.H., US; Sury, Samantika S., Westford,
INTEL CORPORATION, Santa Clara, Calif., US Mass., US
(74) Vertreter:
Samson & Partner Patentanwélte mbB, 80538
Miinchen, DE

Prifungsantrag gemaR § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

(54) Bezeichnung: Prozessoren, Verfahren und Systeme fiir einen konfigurierbaren, rdumlichen Beschleuniger mit
Transaktions- und Wiederholungsmerkmalen

100/}

SPEICHERSCHNITTSTELLE 102
GANZZAHL-
VERARBEITUNGS-
ELEMENT

Fe) . ZWISCHENVERBINDUNGSNETZ 104
1(IGANZZAHL ANZZAHL GANZZAHL‘ GANZZAHL] [GANZZAHL [GLerr.
PE PE KOMMA-
PE
GANZZAHL{ |GANZZAHLY [GANZZAHL{ |GANZZAHL{ |GANZZAHL{ [GANZZAHL:
PE PE PE PE PE PE GLET-
OIS (I [A Gz | o
SCHALTUNG PE PE
N
(GANZZAHL| [IN-STRUK- lGANZZAHL| | GLETT-
| iR INSTRUKTUR SPEICHER KOQAE,\AA
‘GANZZAHL’ |GANZZAHL‘ ‘GANZZAHLI @IZZAHW
GLEIT-
KOMMA-
(GANZZAHLA |GANZZAHL- IGANZZAHL GANZZAHL GANZZAHL GANZZAHL PE
(57) Zusammenfassung: Es werden Systeme, Verfahren PE PE
und Vorrichtungen bezlglich eines konfigurierbaren raumli- GANZZAHLj ‘GANZZAHL‘ ’GANZZAHLi |GANZZAHL‘ ‘GANZZAHL’ [GAszAH K%WA
chen Beschleunigers beschrieben. In einer Ausfiihrungsform PE PE
weist ein Prozessor mehrere Verarbeitungselemente auf; FANZZAHL| IGANZZAHﬂ }GANZZAHL1 IGANééAHL‘ GANZZAHLI IGANZZAHL‘ =
und ein Zwischenverbindungsnetz zwischen den mehreren KOMMA-
Verarbeitungselementen zum Empfangen einer Eingabe ei- W IG“NZZAHL GANZZAWI IG‘NZZAHL‘ ‘GANZZA“L] ﬁ““lmﬂ P
nes Datenflussgraphen, der mehrere Knoten umfasst, wobei G
4 . N KOMMUNKATIONS | |GANZZAHL| [GANZZAHL{ [GANZZAHL GANZZAHL KOMMA-
der Datenflussgraph in das Zwischenverbindungsnetz und R G PE PE o
die mehreren Verarbeitungselemente zu Uberlagern, wobei e R S)
. . . TUR: IN-STRUKTUR-SPEICHER GLET-
jeder Knoten als ein Datenflussoperator in den mehreren PE_| [spricHer KON
Verarbeitungselementen représentiert ist, und die mehreren GANZZAHLI GANZZAHL‘ lGANZZAHLl GANZZAHﬂ PE
Verarbeitungselemente eine atomare Operation durchzufiih- T
ren haben, wenn ein eingehender Operand bei den mehre- G |GANZZAHL] GANZZAHL |GANZZ—‘ IGANZZAHLI lGANZZAHﬂ Kol
PE

ren Verarbeitungselementen eingeht.

DE 10 2018 005 216 A1 2019.02.21

Beschreibung
AUSSAGE BEZUGLICH DER STAATLICH GEFORDERTEN FORSCHUNG UND ENTWICKLUNG

[0001] Diese Erfindung wurde mit Unterstitzung der Regierung unter Vertragsnummer H98230A-13-D-0124,
verliehen vom Ministerium fir Verteidigung, erstellt. Die Regierung besitzt gewisse Rechte auf diese Erfindung.

TECHNISCHES GEBIET

[0002] Die Offenbarung betrifft allgemein Elektronik, und spezifischer betrifft eine Ausfihrungsform der Offen-
barung einen konfigurierbaren rdumlichen Beschleuniger.

Hintergrund

[0003] Ein Prozessor oder Satz von Prozessoren flihrt Befehle aus einem Befehlssatz aus, z. B. der Befehls-
satzarchitektur (ISA). Der Befehlssatz ist Teil der Rechnerarchitektur beztglich der Programmierung und be-
inhaltet im Allgemeinen die nativen Datentypen, Befehle, Registerarchitektur, Adressiermodi, Speicherarchi-
tektur, Interrupt- und Ausnahmehandhabung und externe Eingabe und Ausgabe (I/O) auf. Es sei angemerkt,
dass sich der Begriff Befehl hierin auf einen Makrobefehl, z. B. einen Befehl, der dem Prozessor zur Ausfiih-
rung bereitgestellt wird, oder auf einen Mikrobefehl, z. B. einen Befehl, der aus einem Prozessor-Decodierer
resultiert, der Makrobefehle decodiert, beziehen kann.

Figurenliste

[0004] Die vorliegende Offenbarung ist beispielhaft und nicht einschrédnkend in den Figuren der beigefligten
Zeichnungen veranschaulicht, in denen ahnliche Bezugszeichen dhnliche Elemente angeben und in denen
zeigen:

Fig. 1 veranschaulicht eine Beschleuniger-Kachel gemal Ausfihrungsformen der Offenbarung;

Fig. 2 veranschaulicht einen Hardware-Prozessor, der mit einem Speicher gekoppelt ist, gemaf Ausfih-
rungsformen der Offenbarung;

Fig. 3A veranschaulicht eine Programmquelle gemaR Ausfiihrungsformen der Offenbarung;

Fig. 3B veranschaulicht einen Datenflussgraphen fiir die Programmquelle aus Fig. 3A gemal Ausfih-
rungsformen der Offenbarung;

Fig. 3C veranschaulicht einen Beschleuniger mit mehreren Verarbeitungselementen, die zum Ausfihren
des Datenflussgraphen aus Fig. 3B gemal Ausflihrungsformen der Offenbarung konfiguriert ist;

Fig. 4 veranschaulicht eine beispielhafte Ausfliihrung des Datenflussgraphen gemaf Ausfiihrungsformen
der Offenbarung;

Fig. 5 veranschaulicht eine Programmquelle gemaf Ausfiihrungsformen der Offenbarung;

Fig. 6 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen ge-
malR Ausfiihrungsformen der Offenbarung;

Fig. 7A veranschaulicht ein konfigurierbares Datenpfad-Netzwerk gemaR Ausfihrungsformen der Offen-
barung;

Fig. 7B veranschaulicht ein konfigurierbares Flusssteuerpfad-Netzwerk gemaf Ausfliihrungsformen der
Offenbarung;

Fig. 8 veranschaulicht eine Hardware-Prozessor-Kachel, umfassend einen Beschleuniger gemaf Aus-
fihrungsformen der Offenbarung;

Fig. 9 veranschaulicht ein Verarbeitungselement gemaf Ausfiihrungsformen der Offenbarung;

Fig. 10 veranschaulicht eine Abfrage-Adressdatei (RAF)-Schaltung gemaf Ausfihrungsformen der Of-
fenbarung;

Fig. 11A veranschaulicht mehrere Abfrage-Adressdatei (RAF)-Schaltungen, die zwischen mehreren Be-
schleuniger-Kacheln und mehreren Cache-Banken gemaf Ausfiihrungsformen der Offenbarung gekop-
pelt sind;

2/134

DE 10 2018 005 216 A1 2019.02.21

Fig. 11B veranschaulicht einen Transaktionsmechanismus, in dem Cache-Zeilen mit Informationen Uber
die Quelle eines Lese- oder Schreibzugriffs markiert sind, gemaf Ausfihrungsformen der Offenbarung.

Fig. 11C bis Fig. 11J veranschaulicht eine Unterstiitzung fir Backup und Wiederholung unter Verwendung
von Epochen im Cache-/Speicheruntersystem geman Ausfihrungsformen der Offenbarung.

Fig. 12 veranschaulicht einen Gleitkomma-Multiplizierer, der in drei Gebiete (Ergebnisgebiet, drei poten-
tielle Ubertraggebiete und Gebiet mit Gate) gemal Ausfiihrungsformen der Offenbarung unterteilt ist;

Fig. 13 veranschaulicht eine In-Flight-Beschleunigerkonfiguration mit mehreren Verarbeitungselementen
gemalf Ausfiihrungsformen der Offenbarung;

Fig. 14 veranschaulicht einen Speicherauszug einer zeitverschachtelten In-Flight-Extraktion gemaf Aus-
fuhrungsformen der Offenbarung;

Fig. 15 veranschaulicht eine Kompilationstoolkette fiir einen Beschleuniger gemaf Ausfiihrungsformen
der Offenbarung;

Fig. 16 veranschaulicht einen Kompilierer fiir einen Beschleuniger gemaf Ausflihrungsformen der Offen-
barung;

Fig. 17A veranschaulicht einen sequentiellen Assembliercode gemaf Ausfiihrungsformen der Offenba-
rung;

Fig. 17B veranschaulicht einen Datenfluss-Assembliercode fir den sequentiellen Assembliercode aus
Fig. 17A gemal Ausfliihrungsformen der Offenbarung;

Fig. 17C veranschaulicht einen Datenflussgraph fir den Datenfluss-Assembliercode aus Fig. 17B fir
einen Beschleuniger geman Ausfihrungsformen der Offenbarung;

Fig. 18A veranschaulicht einen C-Quellcode gemal Ausfiihrungsformen der Offenbarung;

Fig. 18B veranschaulicht einen Datenfluss-Assembliercode fir den C-Quellcode aus Fig. 18A gemaf
Ausfihrungsformen der Offenbarung;

Fig. 18C veranschaulicht einen Datenflussgraphen fiir den Datenfluss-Assembliercode aus Fig. 18B fir
einen Beschleuniger geman Ausfihrungsformen der Offenbarung;

Fig. 19A veranschaulicht einen C-Quellcode gemal Ausfiihrungsformen der Offenbarung;

Fig. 19B veranschaulicht einen Datenfluss-Assembliercode fiir den C-Quellcode aus Fig. 19A gemaf
Ausfliihrungsformen der Offenbarung;

Fig. 19C veranschaulicht einen Datenflussgraphen fir den Datenfluss-Assembliercode aus Fig. 19B fiir
einen Beschleuniger gemal Ausfiihrungsformen der Offenbarung;

Fig. 20A veranschaulicht ein Flussdiagramm gemaR Ausfiihrungsformen der Offenbarung;
Fig. 20B veranschaulicht ein Flussdiagramm gemaR Ausfiihrungsformen der Offenbarung;

Fig. 21 veranschaulicht einen Durchlaufsgraphen gegeniiber der Energie pro Operation gemaR Ausfih-
rungsformen der Offenbarung;

Fig. 22 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine lokale Konfigurationssteuerung geman Ausfihrungsformen der Offenbarung;

Fig. 23A-23C veranschaulicht eine lokale Konfigurationssteuerung, die ein Datenpfad-Netzwerk konfigu-
riert, gemaf Ausfuhrungsformen der Offenbarung;

Fig. 24 veranschaulicht eine Konfigurationssteuerung gemaf Ausfuhrungsformen der Offenbarung;

Fig. 25 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen,
ein Konfigurations-Cache und eine lokale Konfigurationssteuerung gemaf Ausfihrungsformen der Offen-
barung;

Fig. 26 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine Konfigurations- und Ausnahmehandhabungssteuerung mit einer Rekonfigurationsschaltung ge-
mal Ausfuhrungsformen der Offenbarung;

Fig. 27 veranschaulicht eine Rekonfigurationsschaltung geman Ausfihrungsformen der Offenbarung;

3/134

DE 10 2018 005 216 A1 2019.02.21

Fig. 28 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine Konfigurations- und Ausnahmehandhabungssteuerung mit einer Rekonfigurationsschaltung ge-
mal Ausfuhrungsformen der Offenbarung;

Fig. 29 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und einen Mezzanine-Ausnahmeaggregator, der mit einem Kachel-Level-Ausnahmeaggregator gemaf
Ausfiihrungsformen der Offenbarung gekoppelt ist;

Fig. 30 veranschaulicht ein Verarbeitungselement mit einem Ausnahmegenerator gemaf Ausflihrungs-
formen der Offenbarung;

Fig. 31 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine lokale Extraktionssteuerung gemaf Ausfiihrungsformen der Offenbarung;

Fig. 32A-32C veranschaulicht eine lokale Extraktionssteuerung, die ein Datenpfad-Netzwerk konfiguriert,
gemal Ausfiihrungsformen der Offenbarung;

Fig. 33 veranschaulicht eine Extraktionssteuerung gemaf Ausflihrungsformen der Offenbarung;
Fig. 34 veranschaulicht ein Flussdiagramm gemaf Ausflihrungsformen der Offenbarung;
Fig. 35 veranschaulicht ein Flussdiagramm gemaf Ausflihrungsformen der Offenbarung;

Fig. 36A ist ein Blockdiagramm, das ein allgemeines vektorfreundliches Befehlsformat und Klasse-A-
Befehlstemplates gemaR Ausfiihrungsformen der Offenbarung veranschaulicht;

Fig. 36B ist ein Blockdiagramm, welches das allgemeine vektorfreundliche Befehlsformat und Klasse-B-
Befehlstemplates davon gemaf Ausfiihrungsformen der Offenbarung veranschaulicht;

Fig. 37A ist ein Blockdiagramm, das Felder fiir die allgemeinen vektorfreundlichen Befehlsformate in
Fig. 36A und Fig. 36B gemal Ausflihrungsformen der Offenbarung veranschaulicht;

Fig. 37B ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats aus
Fig. 37A veranschaulicht, das ein Full-Opcode-Feld gemaR einer Ausfiihrungsform der Offenbarung bil-
det;

Fig. 37C ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats aus
Fig. 37A veranschaulicht, das ein Registerindex-Feld gemaR einer Ausflihrungsform der Offenbarung
bildet;

Fig. 37D ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats aus
Fig. 37A veranschaulicht, das ein Augmentationsoperationsfeld 3650 gemaR einer Ausfiihrungsform der
Offenbarung bildet;

Fig. 38 ist ein Blockdiagramm einer Registerarchitektur gemaf einer Ausfiihrungsform der Offenbarung;

Fig. 39A ist ein Blockdiagramm, das sowohl eine beispielhafte In-Reihenfolge-Pipeline als auch eine bei-
spielhafte AufRer-Reihenfolge-Ausgabe/Ausfiihrungspipeline mit Registerumbenennung gemal Ausfiih-
rungsformen der Offenbarung veranschaulicht;

Fig. 39B ist ein Blockdiagramm, das sowohl ein Ausfiihrungsbeispiel eines In-Reihenfolge-Architektur-
kerns als auch einen beispielhaften AuRer-Reihenfolge-Ausgabe/Ausfiuhrungsarchitekturkem, der in ei-
nen Prozessor aufzunehmen ist, gemaf Ausfuhrungsformen der Offenbarung veranschaulicht;

Fig. 40A ist ein Blockdiagramm eines einzelnen Prozessorkerns zusammen mit seiner Verbindung mit
On-Die-Zwischenverbindungsnetzen und mit seinem lokalen Level 2 (L2) -Cacheuntersatz gemanR Aus-
fuhrungsformen der Offenbarung;

Fig. 40B ist eine auseinander gezogene Ansicht des Teils des Prozessorkerns aus Fig. 40A gemal
Ausfiuhrungsformen der Offenbarung;

Fig. 41 ist ein Blockdiagramm eines Prozessors, der mehr als einen Kern aufweisen kann, eine integrierte
Speichersteuerung aufweisen kann und der eine integrierte Grafik gemafR Ausfiihrungsformen der Offen-
barung aufweisen kann;

Fig. 42 ist ein Blockdiagramm eines Systems gemal einer Ausfuhrungsform der vorliegenden Offenba-
rung;

Fig. 43 ist ein Blockdiagramm eines spezifischeren beispielhaften Systems gemaR einer Ausflihrungsform
der vorliegenden Offenbarung;

4/134

DE 10 2018 005 216 A1 2019.02.21

Fig. 44 zeigt ein Blockdiagramm eines zweiten spezifischeren beispielhaften Systems gemaR einer Aus-
fuhrungsform der vorliegenden Offenbarung;

Fig. 45 zeigt ein Blockdiagramm eines SoC (System-on-Chip) gemaf einer Ausfiihrungsform der vorlie-
genden Offenbarung;

Fig. 46 ist ein Blockdiagramm, das die Verwendung eines Softwarebefehlumwandlers zum Umwandeln
von binaren Befehlen in einem Quellbefehlssatz zu bindren Befehlen in einem Zielbefehlssatz gemaf
Ausfuhrungsformen der Offenbarung kontrastiert.

AUSFUHRLICHE BESCHREIBUNG

[0005] In der folgenden Beschreibung sind zahlreiche spezielle Details dargelegt. Es versteht sich jedoch,
dass Ausfiihrungsformen der Offenbarung ohne diese spezifischen Details in die Praxis umgesetzt werden
kdénnen. In anderen Fallen wurden hinlanglich bekannte Schaltungen, Strukturen und Techniken nicht im Detail
gezeigt, um das Verstandnis dieser Beschreibung nicht zu verschleiern.

[0006] Bezugnahmen in der Beschreibung auf ,eine Ausfiihrungsform®, ,Ausfiihrungsform®, ,ein Ausfiihrungs-
beispiel“ usw. geben an, dass die beschriebene Ausflihrungsform ein bestimmtes Merkmal, eine bestimmte
Struktur oder ein bestimmtes Charakteristikum aufweisen kann, wobei allerdings nicht jede Ausfiihrungsform
dieses bestimmte Merkmal, diese bestimmte Struktur oder dieses bestimmte Charakteristikum notwendiger-
weise aufweist. Dariiber hinaus beziehen sich derartige Formulierungen nicht notwendigerweise auf dieselbe
Ausfuhrungsform. Wenn ein bestimmtes Merkmal, eine bestimmte Struktur oder ein bestimmtes Charakteris-
tikum in Verbindung mit einer Ausfiihrungsform beschrieben wird, wird aullerdem angenommen, dass es im
Kenntnisbereich eines Fachmannes liegt, auf ein derartiges Merkmal, eine derartige Struktur oder ein derarti-
ges Charakteristikum in Verbindung mit anderen Ausfiihrungsformen einzuwirken, ob es nun explizit beschrie-
ben wurde oder nicht.

[0007] Ein Prozessor (z. B. mit einem oder mehreren Kernen) kann Befehle ausfihren (z. B. einen Thread
von Befehlen), um Daten zu bearbeiten, um beispielsweise arithmetische, logische oder andere Funktionen
durchzufiihren. Zum Beispiel kann Software eine Operation anfordern, und ein Hardware-Prozessor (z. B. ein
Kern oder Kerne davon) kann die Operation als Reaktion auf die Anfrage durchfiihren. Ein nicht einschranken-
des Beispiel fiir eine Operation ist eine Mischoperation, um mehrere Vektorelemente einzugeben und einen
Vektor mit mehreren Mischelementen auszugeben. In bestimmten Ausfihrungsformen wird eine Vielzahl von
Operationen mit der Ausfiihrung eines einzelnen Befehls erreicht.

[0008] Exascale-Leistung, z. B. wie vom Ministerium fiir Energie definiert, kann erfordern, dass die Gleitkom-
ma-Punktleistung auf Systemebene 10718 Gleitkomma-Operationen pro Sekunde (exaFLOPs) oder mehr in-
nerhalb eines vorgegebenen (z. B. 20 MW) Leistungsbudgets libersteigt. Bestimmte Ausfiihrungsformen hierin
sind auf einen konfigurierbaren rdumlichen Beschleuniger (CSA - Configurable Spatial Accelerator) gerichtet,
der auf Hochleistungsrechnen (HPC - High Performance Computing) abzielt. Bestimmte Ausfihrungsformen
eines CSA zielen auf die direkte Ausfliihrung eines Datenflussgraphen ab, um eine rechenintensive, jedoch
energieeffiziente rdumliche Mikroarchitektur zu erhalten, die herkdmmliche Roadmap-Architekturen weit Gber-
steigt. Im Folgenden wird eine Beschreibung der Architekturphilosophie von Ausfiihrungsformen eines CSA
und bestimmter Merkmale davon gegeben. Wie bei jeder revolutiondren Architektur kann die Programmierbar-
keit ein Risiko darstellen. Zur Abschwéachung dieses Problems wurden Ausfuhrungsformen der CSA-Architek-
tur zusammen mit einer Kompilier-Toolkette ausgestaltet, die ebenfalls unten erldutert wird.

EINLEITUNG

[0009] Exascale-Rechenziele kdnnen eine enorme Gleitkommaleistung auf Systemebene (z. B. 1 ExaFLOPs)
innerhalb eines aggressiven Leistungsbudgets (z. B. 20 MW) erfordern. Die gleichzeitige Verbesserung der
Leistung und Energieeffizienz der Programmausfihrung mit klassischen von Neumann-Architekturen ist jedoch
schwierig geworden: Auf3er-Reihenfolge-Planung, simultanes Multithreading, komplexe Registerdateien und
andere Strukturen stellen Leistung bereit, jedoch mit hohen Energiekosten. Bestimmte Ausfihrungsformen
hierin erreichen gleichzeitig die Leistungs- und Energieanforderungen. Exascale-Rechenenergie-Leistungszie-
le kénnen sowohl einen hohen Durchlauf als auch einen geringen Energieverbrauch pro Operation erfordern.
Bestimmte Ausfiihrungsformen hierin stellen dies bereit, indem sie eine gro3e Anzahl von niederkomplexen,
energieeffizienten Verarbeitungs- (z. B. Rechen-) Elementen bereitstellen, die den Steuerungsaufwand bis-
heriger Prozessorausgestaltungen weitgehend beseitigt. Geleitet von dieser Beobachtung weisen bestimmte
Ausfihrungsformen hierin einen konfigurierbaren raumlichen Beschleuniger (CSA) auf, der z. B. ein Array aus

5/134

DE 10 2018 005 216 A1 2019.02.21

Verarbeitungselementen (PEs) umfasst, die durch einen Satz von leichtgewichtigen Gegendrucknetzwerken
verbunden werden. Ein Beispiel fur eine CSA-Kachel ist in Fig. 1 dargestellt. Bestimmte Ausflihrungsformen
von Verarbeitungselementen (z. B. Rechenelementen) sind Datenflussoperatoren, z. B. eine Vielzahl von Da-
tenflussoperatoren, die nur Eingabedaten verarbeiten, wenn sowohl (i) die Eingabedaten beim Datenflussope-
rator eingegangen sind und (ii) Speicherplatz zum Speichern der Ausgabedaten verfligbar ist, weil z. B. an-
derenfalls keine Verarbeitung erfolgt. Bestimmte Ausfuhrungsformen (z. B. eines Beschleunigers oder CSA)
benutzen keinen getriggerten Befehl.

[0010] Fig. 1 veranschaulicht eine Beschleuniger-Kachel 100 gemal Ausfiihrungsformen der Offenbarung.
Die Beschleuniger-Kachel 100 kann ein Abschnitt einer gréReren Kachel sein. Die Beschleuniger-Kachel 100
fuhrt einen oder mehrere Datenflussgraphen aus. Ein Datenflussgraph kann sich im Allgemeinen auf eine ex-
plizit parallele Programmbeschreibung beziehen, die bei der Kompilierung von sequentiellen Codes entsteht.
Bestimmte Ausfuihrungsformen hierin (z. B. CSAs) ermdglichen, dass Datenflussgraphen direkt auf dem CSA-
Array konfiguriert werden, z. B. anstatt in sequentielle Befehlsstrdome umgewandelt zu werden. Die Ableitung
eines Datenflussgraphen aus einem sequentiellen Kompilierungsfluss erméglicht es Ausfiihrungsformen ei-
nes CSA, bekannte Programmiermodelle zu unterstiitzen und (z. B. ohne Verwendung einer Arbeitstabelle) ei-
nen existierenden Hochleistungsrechencode (HPC) direkt auszufiihren. Die CSA-Verarbeitungselemente (PE)
kdénnen energieeffizient sein. In Fig. 1 kann die Speicherschnittstelle 102 mit einem Speicher (z. B. Speicher
202 in Fig. 2) gekoppelt sein, um es der Beschleuniger-Kachel 100 zu ermdglichen, auf Daten des Speichers
(z. B. Off-Die) zuzugreifen (z. B. diese zu laden und/oder zu speichern). Die dargestellte Beschleuniger-Kachel
100 ist ein heterogenes Array, das aus verschiedenen Arten von PEs besteht, die tiber ein Zwischenverbin-
dungsnetz 104 miteinander gekoppelt sind. Die Beschleuniger-Kachel 100 kann eine oder mehr ganzzahlige
arithmetische PEs, arithmetische Gleitkomma-PEs, Kommunikationsschaltkreise und in-Struktur-Speicher auf-
weisen. Die Datenflussgraphen (z. B. kompilierte Datenflussgraphen) kénnen die Beschleuniger-Kachel 100
fur die Ausfiihrung Uberlagern. In einer Ausflihrungsform handhabt fiir einen bestimmten Datenflussgraphen
jede PE nur eine oder zwei Operationen des Graphen. Das PE-Array kann heterogen sein, z. B. derart, dass
kein PE die volle CSA-Datenflussarchitektur unterstiitzt und/oder eine oder mehrere PEs programmiert sind (z.
B. benutzerdefiniert), um nur einige wenige, aber hocheffiziente Operationen durchzufiihren. Bestimmte Aus-
fihrungsformen hierin ergeben somit einen Beschleuniger mit einem Array aus Verarbeitungselementen, das
im Vergleich zu Roadmap-Architekturen rechenintensiv ist und dennoch eine Erhéhung der Energieeffizienz
und Leistung in Bezug auf bestehende HPC-Angebote um etwa eine GréRRenordnung erreicht.

[0011] Die Leistungsanstiege kénnen aus der parallelen Ausfiihrung innerhalb des (z. B. dichten) CSA, wobei
jede PE gleichzeitig ausfiihren kann, z. B. wenn Eingabedaten verfugbar sind. Die Effizienzanstiege kénnen
aus der Effizienz jedes PE resultieren, z. B. wenn jede PE-Operation (z. B. Verhalten) einmal pro Konfigurati-
onsschritt (z. B. Mapping) fixiert wird und die Ausfiihrung beim lokalen Eingehen von Daten am PE erfolgt, z. B.
ohne Berlcksichtigen einer anderen Strukturaktivitat. In bestimmten Ausfihrungsformen ist ein PE ein Daten-
flussoperator (z. B. jeweils ein einzelner), z. B. ein Datenflussoperator, der nur Eingabedaten verarbeitet, wenn
sowohl (i) die Eingabedaten beim Datenflussoperator eingegangen sind als auch (ii) Speicherplatz zum Spei-
chern der Ausgabedaten verfiigbar ist, weil z. B. anderenfalls keine Verarbeitung erfolgt. Diese Eigenschaften
ermoglichen Ausflihrungsformen des CSA, paradigmaverschobene Leistungsniveaus und enorme Verbesse-
rungen in der Energieeffizienz tber eine breite Klasse bestehender Einzelstrom- und Parallelprogramme be-
reitzustellen, z. B. aller bei gleichzeitiger Beibehaltung vertrauter HPC-Programmiermodelle. Bestimmte Aus-
fihrungsformen eines CSA kdénnen auf HPC abzielen, sodass die Gleitkomma-Energieeffizienz extrem wich-
tig wird. Bestimmte Ausfiihrungsformen des CSA liefern nicht nur iberzeugende Leistungsverbesserungen
und Energieeinsparungen, sie liefern diese Vorteile auch fur bestehende HPC-Programme, die in Mainstream-
HPC-Sprachen und fir Mainstream-HPC-Frameworks geschrieben sind. Bestimmte Ausfiihrungsformen der
CSA-Architektur (z. B. unter Berlicksichtigung der Kompilierung) stellen mehrere Erweiterungen bei der direk-
ten Unterstlitzung der von modernen Kompilierern erzeugten internen Steuerdatenflussreprasentationen be-
reit. Bestimmte Ausfiihrungsformen hierin sind direkt an einen CSA-Datenfluss-Kompilierer gerichtet, der z. B.
C-, C++- und Fortran-Programmiersprachen akzeptieren kann, um auf eine CSA-Architektur abzuzielen.

[0012] Abschnitt 2 unten offenbart Ausfiihrungsformen der CSA-Architektur. Insbesondere sind neuartige
Ausfuhrungsformen der Integration von Speicher innerhalb des Datenfluss-Ausfihrungsmodells offenbart. Ab-
schnitt 3 taucht in die mikroarchitektonischen Details der Ausflihrungsformen eines CSA ein. In einer Aus-
fihrungsform ist das Hauptziel eines CSA die Unterstiitzung von vom Kompilierer erzeugten Programmen.
Abschnitt 4 unten untersucht die Ausfihrungsformen einer CSA-Kompilierungstoolkette. Die Vorteile der Aus-
fihrungsformen eines CSA werden mit anderen Architekturen bei der Ausfihrung von kompilierten Codes in
Abschnitt 5 verglichen. Schliefl3lich wird die Leistung der Ausfiihrungsformen einer CSA-Mikroarchitektur in

6/134

DE 10 2018 005 216 A1 2019.02.21

Abschnitt 6 erldutert, weitere CSA-Details werden in Abschnitt 7 erldutert und eine Zusammenfassung in Ab-
schnitt 8 bereitgestellt.

ARCHITEKTUR

[0013] Das Ziel bestimmter Ausfihrungsformen eines CSA ist das schnelle und effiziente Ausfiihren von Pro-
grammen, z. B. Programmen, die von Kompilierern erzeugt werden. Bestimmte Ausfihrungsformen der CSA-
Architektur stellen Programmierabstraktionen bereit, die den Bedarf an Kompilierertechnologien und Program-
mierparadigmen unterstitzen. Ausfihrungsformen des CSA flihren Datenflussgraphen aus, z. B. eine Pro-
grammmanifestation, welche die kompilierereigene interne Reprasentation (IR) von kompilierten Programmen
eng imitiert. In diesem Modell wird ein Programm als ein Datenflussgraph dargestellt, der aus Knoten (z. B.
Scheitelpunkten), die aus einem Satz von architektonisch definierten Datenflussoperatoren (die z. B. sowohl
Rechen- als auch Steueroperationen umschlieRen) und Réndern besteht, welche die Ubertragung von Daten
zwischen den Datenflussoperatoren représentieren. Die Ausfihrung kann durch Einfugen von Datenfluss-To-
ken (die z. B. Datenwerte sind oder reprasentieren) in den Datenflussgraph fortschreiten. Die Token kénnen
zwischen jedem Knoten (z. B. Scheitelpunkt) flielen und umgewandelt werden und z. B. eine vollstdndige
Berechnung bilden. Ein Probendatenflussgraph und seine Ableitung aus einem High-Level-Quellcode ist in
Fig. 3A-3C gezeigt, und Fig. 5 zeigt ein Beispiel der Ausfliihrung eines Datenflussgraphen.

[0014] Ausflihrungsformen der CSA sind fiir die Datenflussgrahpausfiihrung durch Bereitstellen exakt solcher
Datenfluss-Graph-Ausfiihrungsunterstitzungen konfiguriert, die durch die Kompilierer erfordert werden. In ei-
ner Ausflihrungsform ist der CSA ein Beschleuniger (z. B. ein Beschleuniger aus Fig. 2), der nicht versucht,
einige der notwendigen aber selten verwendeten Mechanismen zu suchen, die auf Allzweck-Verarbeitungs-
kernen verfugbar sind (z. B. einem Kern aus Fig. 2), wie z. B. Systemanrufe. Daher kann der CSA in dieser
Ausfihrungsform viele Codes ausflihren, aber nicht alle Codes. Im Gegenzug erzielt der CSA signifikante Leis-
tungs- und Energievorteile. Zum Aktivieren der Beschleunigung von Code, der in herkémmlich verwendeten
sequentiellen Sprachen geschrieben ist, fiihren die Ausfihrungsformen hierin auch verschiedene neuartige
Architekturmerkmale zum Unterstltzen des Kompilierers ein. Eine besondere Neuheit ist die CSA-Speicher-
behandlung, ein Gegenstand, der zuvor ignoriert oder nur dirftig angegangen wurde. Ausfiihrungsformen des
CSA sind auch eindeutig bei der Verwendung von Datenflussoperatoren, z. B. im Gegensatz zu Nachschlage-
tabellen (LUT), als ihre fundamentale Architekturschnittstelle.

[0015] Fig. 2 veranschaulicht einen Hardware-Prozessor 200, der mit einem Speicher 202 gemaf} Ausfih-
rungsformen der Offenbarung gekoppelt (z. B. damit verbunden) ist. In einer Ausfliihrungsform sind der Hard-
ware-Prozessor 200 und der Speicher 202 ein Rechnersystem 201. In bestimmen Ausfiihrungsformen sind
einer oder mehrere der Beschleuniger ein CSA gemal dieser Offenbarung. In bestimmten Ausfihrungsformen
sind einer oder mehrere der Kerne in einem Prozessor die hierin offenbarten Kerne. Der Hardware-Prozessor
200 (z. B. jeder Kern davon) kann einen Hardware-Decodierer (z. B. Decodiereinheit) und eine Hardware-Aus-
fihrungseinheit aufweisen. Der Hardware-Prozessor 200 kann Register aufweisen. Es sei angemerkt, dass
die Figuren hierin ggf. nicht alle Datenkommunikationskopplungen (z. B. Verbindungen) darstellen. Ein Durch-
schnittsfachmann wird zu schatzen wissen, dass dies gewisse Details in den Figuren nicht verschleiert. Es sei
darauf hingewiesen, dass ein Doppelpfeil in den Figuren keine Zweiwegekommunikation erfordert, z. B. kann
er eine Einwegekommunikation (z. B. zu oder von dieser Komponente oder Vorrichtung) angeben. Jede oder
alle Kombinationen von Kommunikationspfaden kénnen in bestimmten Ausfihrungsformen hierin verwendet
werden. Der dargestellte Hardware-Prozessor 200 weist mehrere Kerne (O bis N, wobei N 1 oder mehr sein
kann) und Hardware-Beschleuniger (O bis M, wobei M 1 oder mehr sein kann) gemafR Ausfihrungsformen der
Offenbarung auf. Der Hardware-Prozessor 200 (z. B. der/die Beschleuniger und/oder Kern(e) davon) kénnen
mit dem Speicher 202 (z. B. Datenspeichervorrichtung) gekoppelt sein. Der Hardware-Decodierer (z. B. des
Kerns) kann einen (z. B. einzelnen) Befehl (z. B. Makrobefehl) empfangen und den Befehl decodieren, z. B. in
Mikrobefehle und/oder Mikrooperationen. Die Hardware-Ausfiihrungseinheit (z. B. des Kerns) kann den deco-
dierten Befehl (z. B. Makrobefehl) zum Durchfiihren einer Operation oder Operationen ausfihren. Mit erneuter
Bezugnahme auf die Ausfiihrungsformen des CSA werden als nachstes die Datenflussoperatoren erlautert.

Datenflussoperatoren

[0016] Die wichtigste Architekturschnittstelle der Ausfihrungsformen des Beschleunigers (z. B. CSA) ist der
Datenflussoperator, z. B. als eine direkte Reprasentation eines Knotens in einem Datenflussgraphen. Aus
einer betrieblichen Perspektive verhalten sich die Datenflussoperatoren in einer Streaming- oder datenange-
steuerten Weise. Die Datenflussoperatoren kénnen ausfiihren, sobald ihre eingehenden Operanden verflg-
bar werden. Die CSA-Datenflussausfiihrung kann (z. B. nur) von einem stark lokalisierten Status abhangig

7/134

DE 10 2018 005 216 A1 2019.02.21

sein, der z. B. in einer hoch skalierbaren Architektur mit einem verteilten, asynchronen Ausfiihrungsmodell
resultiert. Die Datenflussoperatoren kénnen arithmetische Datenflussoperatoren aufweisen, z. B. eine oder
mehrere von Gleitkomma-Addition und - Multiplikation, Integer-Addition, Subtraktion und Multiplikation, ver-
schiedene Vergleichsformen, logische Operatoren und Verschiebung. Die Ausfuhrungsformen des CSA kon-
nen auch einen reichen Satz an Steueroperatoren aufweisen, welche die Verwaltung der Datenfluss-Token in
dem Programmgraphen stiitzen. Beispiele davon weisen einen ,Pick-“ Operator auf, der z. B. zwei oder mehr
logische Eingabekanéle zu einem einzelnen Ausgabekanal multiplext, sowie einen ,Schalt-“ Operator, der z.
B. als ein Kanal-Demultiplexer arbeitet (der z. B. einen einzelnen Kanal aus zwei oder mehreren logischen
Eingabekanalen ausgibt). Diese Operatoren kdnnen einem Kompilierer ermdglichen, Steuerparadigmen wie
bedingte Ausdrlicke zu implementieren. Bestimmte Ausflihrungsformen eines CSA kénnen einen begrenzten
Datenflussoperatorsatz (z. B. fiir eine relativ kleine Anzahl an Operationen) aufweisen, um dichte und energie-
effiziente PE-Mikroarchitekturen zu ergeben. Bestimmte Ausfihrungsformen kénnen Datenflussoperatoren fiir
komplexe Operationen aufweisen, die in HPC-Code gewohnlich sind. Die CSA-Datenflussoperator-Architektur
ist fur einsatzspezifische Erweiterungen stark anpassungsféhig. Zum Beispiel kbnnen komplexere mathema-
tische Datenflussoperatoren, z. B. trigonometrische Funktionen, in bestimmten Ausfihrungsformen zum Be-
schleunigen bestimmter mathematikintensiver HPC-Arbeitslasten einschlieBen. Auf 8hnliche Weise kann eine
neuralnetzwerkabgestimmte Erweiterung Datenflussoperatoren flr eine vektorisierte niederprazise Arithmetik
einschlielen.

[0017] Fig. 3A veranschaulicht eine Programmquelle gemaf Ausfiihrungsformen der Offenbarung. Der Pro-
grammgquellcode weist eine Multiplikationsfunktion (func) auf. Fig. 3B veranschaulicht ein Datenflussschaubild
300 fur die Programmquelle aus Fig. 3A gemal} Ausfihrungsformen der Offenbarung. Der Datenflussgraph
300 weist einen Pick-Knoten 304, Switch-Knoten 306 und Multiplikationsknoten 308 auf. Ein Puffer kann wahl-
weise entlang eines oder mehrerer Kommunikationspfade aufgenommen sein. Der dargestellte Datenfluss-
graph 300 kann eine Operation der Auswahl der Eingabe X mit Pick-Knoten 304 durchfiihren, X mit Y multi-
plizieren (z. B. Multiplikationsknoten 308) und dann das Ergebnis von der tbrigen Ausgabe des Switch-Kno-
tens 306 ausgeben. Fig. 3C veranschaulicht einen Beschleuniger (z. B. CSA) mit mehreren Verarbeitungs-
elementen 301, der zum Ausfiihren des Datenflussgraphen aus Fig. 3B gemal Ausfihrungsformen der Of-
fenbarung 301 konfiguriert ist; Insbesondere ist der Datenflussgraph 300 in das Array der Verarbeitungsele-
mente 301 Uberlagert (z. B. und die (z. B. Zwischenverbindungs-)Netzwerk(e) dazwischen), z. B. sodass je-
der Knoten des Datenflussgraphen 300 als ein Datenflussoperator in dem Array aus Verarbeitungselemen-
ten 301 reprasentiert ist. In einer Ausfihrungsform dienen eines oder mehrere der Verarbeitungselemente
in dem Array von Verarbeitungselementen 301 zum Zugriff auf den Speicher durch die Speicherschnittstelle
302). In einer Ausfiihrungsform entspricht der Pick-Knoten 304 des Datenflussgraphen 300 somit dem Pick-
Operator 304A (wird z. B. davon reprasentiert), der Switch-Knoten 306 des Datenflussgraphen 300 entspricht
also dem Schalt-Operator 306A (wird z. B. davon reprasentiert) und der Multiplizierer-Knoten 308 des Daten-
flussgraphen 300 entspricht also dem Multiplizierer-Operator 308A (wird z. B. dadurch reprasentiert). Ein wei-
teres Verarbeitungselement und/oder ein Flusssteuerpfad-Netzwerk kénnen die Steuersignale (z. B. Steuer-
Token) an den Pick-Operator 304A und den Schalt-Operator 306A bereitstellen, um die Operation in Fig. 3A
durchzufihren. In einer Ausfiihrungsform ist das Array von Verarbeitungselementen 301 zum Ausfiihren des
Datenflussgraphen 300 aus Fig. 3B vor Start der Ausfiihrung konfiguriert. In einer Ausfiihrungsform fiihrt der
Kompilierer die Umwandlung von Fig. 3A bis Fig. 3B durch. In einer Ausflihrungsform bettet die Eingabe der
Datenflussgraph-Knoten in das Array aus Verarbeitungselementen den Datenflussgraph logisch in das Array
aus Verarbeitungselementen ein, z. B. wie weiter unten besprochen, sodass der Eingabe-/Ausgabepfad zum
Erzeugen des gewlinschten Ergebnisses konfiguriert ist.

Latenzinsensitive Kanale

[0018] Kommunikationsbdgen sind die zweite Hauptkomponente des Datenflussgraphen. Bestimmte Ausfih-
rungsformen eines CSA beschreiben diese Bbgen als latenzinsensitive Kanéle, z. B. in-Reihenfolge, Gegen-
druck- (die z. B. keine Ausgabe erzeugen oder senden, bis ein Platz zum Speichern der Ausgabe vorhanden
ist), Point-to-Point-Kommunikationskanale. Wie bei den Datenflussoperatoren sind die latenzinsensitiven Ka-
nale fundamental asynchron und geben die Freiheit, viele Typen von Netzwerken zum Implementieren der
Kanale eines bestimmten Graphen zusammenzustellen. Latenzinsensitive Kanale kénnen willkirlich lange
Latenzen aufweisen und die CSA-Architektur weiterhin gewissenhaft implementieren. In bestimmten Ausfih-
rungsformen ist es jedoch ein grolRer Anreiz bezuglich der Leistung und Energie, die Latenzen so klein wie
mdglich zu machen. Abschnitt 3.2 hierin offenbart eine Netzwerk-Mikroarchitektur, in der die Datenflussgraph-
Kanale zeitverschachtelt mit nicht mehr als einem Latenzzyklus implementiert sind. Ausfiihrungsformen von
latenzinsensitiven Kanalen stellen eine kritische Abstraktionsschicht bereit, die mit der CSA-Architektur zum
Bereitstellen einer Anzahl von Laufzeitdiensten an den Anwendungsprogrammierer genutzt werden kénnen.

8/134

DE 10 2018 005 216 A1 2019.02.21

Ein CSA kann beispielsweise die latenzinsensitiven Kanale bei der Implementierung der CSA-Konfiguration
(dem Laden eines Programms auf ein CSA-Array) nutzen.

[0019] Fig. 4 veranschaulicht eine beispielhafte Ausflihrung des Datenflussgraphen 400 geman Ausfiihrungs-
formen der Offenbarung. Bei Schritt 1 kdnnen Eingabewerte (z. B. 1 fur X in Fig. 3B und Fig. 2 fir Y in Fig. 3B)
in den Datenflussgraph 400 geladen werden, um eine 1 x 2-Muliplikationsoperation durchzufihren. Einer oder
mehrere Dateneingabewerte kdnnen in der Operation (z. B. 1 fir X und 2 fur Y in Bezug auf Fig. 3B) statisch
(z. B. konstant) sein oder wahrend der Operation aktualisiert werden. Bei Schritt 2 geben ein Verarbeitungs-
element (z. B. auf einem Flusssteuerpfad-Netzwerk) oder andere Schaltungsausgaben eine Null in die Steu-
ereingabe (z. B. Mux-Steuersignal) von Pick-Knoten 404 (z. B. um eine eins von Port ,0“ zu seiner Ausgabe
zu beschaffen) und gibt eine Null zur Steuereingabe (z. B. Mux-Steuersignal) von Switch-Knoten 406 aus (z.
B. zum Bereitstellen seiner Eingabe aus Port ,0“ zu einem Ziel (z. B. einem nachgeschalteten Verarbeitungs-
element). Bei Schritt 3 wird der Datenwert 1 vom Pick-Knoten 404 (und z. B. sein Steuersignal ,0“ am Pick-
Knoten 404 verbraucht) an den Multiplizierer-Knoten 408 ausgegeben, um mit dem Datenwert von 2 bei Schritt
4 multipliziert zu werden. Bei Schritt 4 erreicht die Ausgabe des Multiplizierer-Knotens 408 den Switch-Knoten
406, was z. B. den Switch-Knoten 406 veranlasst, ein Steuersignal ,0¢ zu verbrauchen, um den Wert von 2
von Port 2 von Switch-Knoten 406 bei Schritt 5 auszugeben. Die Operation ist dann abgeschlossen. Ein CSA
kann daher dementsprechend programmiert werden, damit ein entsprechender Datenflussoperator fir jeden
Knoten die Operation in Fig. 4 durchfiihrt. Obwohl die Ausfiihrung in diesem Beispiel serialisiert ist, kdnnen
im Prinzip alle Datenfluss-Operationen parallel ausgefiihrt werden. Die Schritte werden in Fig. 4 verwendet,
um die Datenflussausfiihrung von jeder physischen mikroarchitektonischen Manifestation zu differenzieren.
In einer Ausfiihrungsform hat ein nachgeschaltetes Verarbeitungselement ein Signal an den Schalter 406 zu
senden (oder kein Bereit-Signal zu senden) (z. B. auf einem Flusssteuerpfad-Netzwerk), um die Ausgabe von
Schalter 406 aufzuhalten, z. B. bis das nachgeschaltete Verarbeitungselement fiir die Ausgabe bereit ist (z.
B. Speicherplatz aufweist).

Speicher

[0020] Datenfluss-Architekturen konzentrieren sich im Allgemeinen auf die Kommunikation und Datenmani-
pulation und beachten dem Status weniger Beachtung. Das Aktivieren von echter Software, insbesondere
Programmen, die in sequentiellen veralteten Sprachen geschrieben sind, erfordert eine bedeutende Beach-
tung der Schnittstelle mit dem Speicher. Bestimmte Ausflihrungsformen eines CSA verwenden Architektur-
speicheroperationen als ihre primare Schnittstelle zur (z. B. grof3en) statusbehafteten Speicherung. Aus der
Perspektive des Datenflussgraphen @hneln die Speicheroperationen anderen Datenfluss-Operationen, mit der
Ausnahme, dass sie den Nebeneffekt der Aktualisierung eines gemeinsam genutzten Speichers aufweisen.
Insbesondere haben Speicheroperationen von bestimmten Ausfihrungsformen hierin die gleiche Semantik
wie jeder andere Datenflussoperator, z. B. werden ,ausgefiihrt, wenn ihre Operanden, z. B. eine Adresse,
verfugbar ist und nach einiger Latenz eine Antwort erzeugt wird. Bestimmte Ausfiihrungsformen hierin entkop-
peln die Operandeneingabe explizit und resultieren in einer Ausgabe, sodass die Speicheroperatoren natirlich
zeitverschachtelt sind und das Potenzial aufweisen, viele simultan ausstehende Anforderungen zu erzeugen,
welche diese z. B. ausgezeichnet fir die Latenz- und Bandbreitencharakteristika eines Speicheruntersystems
geeignet machen. Ausflihrungsformen eines CSA stellen grundlegende Speicheroperationen wie Last bereit,
die einen Adressenkanal nimmt und einen Antwortkanal mit den Werten, die den Adressen entsprechen, und
einen Speicher flllt. Ausfihrungsformen eines CSA kdénnen auch erweiterte Operationen wie speicherinterne
Atomik- und Konsistenz-Operatoren bereitstellen. Diese Operationen kénnen eine dhnliche Semantik wie ihre
von-Neumann-Gegenstlicke aufweisen. Ausflihrungsformen eines CSA kénnen vorhandene Programme be-
schleunigen, die unter Verwendung sequentieller Sprachen wie C- und Fortran beschrieben werden. Eine Fol-
ge der Unterstlitzung dieser Sprachmodelle ist das Adressieren der Programmspeicherreihenfolge, z. B. der
seriellen Anordnung von Speicheroperationen, die typischerweise durch diese Sprachen vorgeschrieben sind.

[0021] Fig. 5 veranschaulicht eine Programmquelle (z. B. C-Code) 500 gemaf Ausfiihrungsformen der Of-
fenbarung. GemaR der Speichersemantik der C-Programmiersprache ist die Speicherkopie (memcpy) zu se-
rialisieren. Memcpy kann jedoch mit einer Ausfiihrungsform des CSA parallelisiert werden, wenn die Arrays
A und B bekanntermalRen unverbunden sind. Fig. 5 veranschaulicht ferner das Problem der Programmrei-
henfolge. Allgemein kénnen Kompilierer nicht nachweisen, dass Array A anders als Array B ist, z. B. entwe-
der fir den gleichen Wert des Index oder einen anderen Wert des Index liber den Schleifenkdrpern. Dies ist
als Zeiger- oder Speicher-Aliasing bekannt. Da Kompilierer einen statisch korrekten Code erzeugen miissen,
werden sie gewohnlich zur Serialisierung der Speicherzugriffe gezwungen. Typischerweise verwenden Kom-
pilierer, die auf sequentielle von-Neumann-Architekturen abzielen, die Befehlsreihenfolge als naturliches Mittel
zum Durchsetzen der Programmreihenfolge. Ausfiihrungsformen des CSA besitzen jedoch keine Vorstellung

9/134

DE 10 2018 005 216 A1 2019.02.21

von Befehlen oder befehlsbasierter Programmreihenfolge, wie durch einen Programmzahler definiert. In be-
stimmten Ausfiihrungsformen sind eingehende Abhangigkeits-Token, die z. B. keine architektonisch sichtbare
Information enthalten, wie alle anderen Datenfluss-Token und die Speicheroperationen kénnen nicht ausge-
fuhrt werden, bis sie einen Abhangigkeits-Token empfangen haben. In bestimmten Ausfiihrungsformen erzeu-
gen die Speicheroperationen einen ausgehenden Abhangigkeits-Token, sobald ihre Operation fir alle logisch
nachfolgenden abhangigen Speicheroperationen sichtbar ist. In bestimmten Ausfiihrungsformen gleichen die
Abhéangigkeits-Token anderen Datenfluss-Token in einem Datenflussgraph. Da Speicheroperationen z. B. in
bedingten Kontexten auftreten, kénnen die Abhangigkeits-Token auch unter Verwendung von Steueroperato-
ren manipuliert werden, wie in Abschnitt 2.1 beschrieben, z. B. wie alle anderen Token. Abhangigkeits-Token
kdnnen den Effekt der Serialisierung von Speicherzugriffen haben, z. B. dem Kompilierer eine Einrichtung zum
architektonischen Definieren der Reihenfolge von Speicherzugriffen bereitstellen.

Laufzeitdienste

[0022] Ein Hauptpunkt fiir die Beriicksichtigung der Architektur von Ausfiihrungsformen des CSA beinhaltet
die tatsachliche Ausfliihrung von Programmen auf Benutzerebene, es kann aber auch wiinschenswert sein,
verschiedene Mechanismen zu unterstltzen, die diese Ausflihrung stérken. Zu den wichtigsten zahlen Konfi-
guration (bei der ein Datenflussgraph in den CSA geladen wird), Extraktion (bei welcher der Status eines aus-
fihrenden Graphen in den Speicher verschoben wird) und Ausnahmen (in denen mathematische, weiche und
andere Arten von Fehlern in der Struktur erkannt und behandelt werden, mdéglicherweise durch eine externe
Entitat). Abschnitt 3.6 unten erlautert die Eigenschaften einer latenzinsensitiven Datenflussarchitektur einer
Ausfihrungsform eines CSA, um effiziente, stark zeitverschachtelte Implementierungen dieser Funktionen zu
ergeben. Vom Konzept her kann die Konfiguration den Status eines Datenflussgraphen in die Zwischenverbin-
dungs- und Verarbeitungselemente (z. B. Struktur) laden, z. B. im Allgemeinen von dem Speicher. Wahrend
dieses Schrittes kénnen alle Strukturen im CSA mit einem neuen Datenflussgraphen geladen werden und alle
Datenfluss-Token in diesem Graphen, z. B. als Folge einer Kontextumschaltung, leben. Die latenzinsensitive
Semantik eines CSA kann eine verteilte, asynchrone Initialisierung der Struktur erméglichen, z. B. kann sie die
Ausfuhrung unmittelbar beginnen, sobald die PEs konfiguriert sind. Unkonfigurierte PEs kénnen ihre Kanale
gegendriicken, bis sie konfiguriert werden, z. B. Kommunikationen zwischen konfigurierten und unkonfigurier-
ten Elementen verhindern. Die CSA-Konfiguration kann in einen priviligierten Status und Status auf Benutzer-
ebene partitioniert werden. Eine solche Zwei-Level-Partitionierung kann der primaren Konfiguration der Struk-
tur ermdglichen, ohne Aufrufen des Betriebssystems zu erfolgen. Wéhrend einer Extraktionsausfihrungsform
wird eine logische Sicht des Datenflussgraphen erfasst und in den Speicher festgeschrieben, z. B. durch Auf-
nehmen aller Live-Steuer- und Datenfluss-Token und Zustand in dem Graphen.

[0023] Die Extraktion kann auch eine Rolle bei der Bereitstellung von Zuverlassigkeitsgarantien durch die
Schaffung von Strukturprifpunkten spielen. Ausnahmen in einem CSA kénnen allgemein durch die gleichen
Ereignisse verursacht werden, die Ausnahmen in Prozessoren bewirken, wie z. B. illegale Operatorargumen-
te oder RAS-Ereignisse (RAS - Reliability (Zuverlassigkeit), Availability (Verfugbarkeit) und Serviceability (Be-
triebsfahigkeit). In bestimmten Ausfihrungsformen werden Ausnahmen auf dem Level der Datenflussoperato-
ren erfasst, wie z. B. durch Prifen von Argumentwerten oder durch modulare arithmetische Schemata. Nach
dem Detektieren einer Ausnahme kann ein Datenflussoperator (z. B. eine Schaltung) halten und eine Ausnah-
menachricht emittieren, die z. B. sowohl einen Operationsidentifikator als auch einige Details Uber die Natur
des Problems, das aufgetreten ist, enthéalt. In einer Ausfliihrungsform bleibt der Datenflussoperator angehalten,
bis er rekonfiguriert wurde. Die Ausnahmenachricht kann dann einem zugeordneten Prozessor (z. B. Kern) zur
Wartung kommuniziert werden, die z. B. das Extrahieren des Graphen zur Softwareanalyse einschlielen kann.

Kachel-Level-Architektur

[0024] Ausflhrungsformen der CSA-Computerarchitekturen (z. B. auf HPC und Datencenter abzielende Ver-
wendungen) sind nebeneinander angeordnet. Fig. 6 und Fig. 8 zeigen den Kachel-Level-Einsatz eines CSA.
Fig. 8 zeigt eine Voll-Kachel-Implementierung eines CSA, die z. B. ein Beschleuniger eines Prozessors mit
einem Kern sein kann. Ein Hauptvorteil dieser Architektur kann reduziertes Ausgestaltungsrisiko sein, sodass
der CSA und der Kern z. B. bei der Herstellung vollstandig entkoppelt sind. Zuséatzlich zu der Erméglichung ei-
ner besseren Komponentenwiederverwendung kann dies der Ausgestaltung der Komponenten wie dem CSA-
Cache ermdglichen, nur den CSA zu berticksichtigen, statt z. B. die strikteren Latenzanforderungen des Kerns
zu integrieren. SchlieBlich kénnen separate Kacheln die Integration des CSA mit kleinen oder groRen Kernen
ermdglichen. Eine Ausfuhrungsform des CSA erfasst die meisten vektorparellelen Arbeitslasten, sodass die
meisten vektorartigen Arbeitslasten direkt auf dem CSA laufen, aber in bestimmten Ausfiihrungsformen kénnen
die vektorartigen Befehle in dem Kern eingeschlossen sein, z. B. zum Unterstiitzen von veralteten Binaritaten.

10/134

DE 10 2018 005 216 A1 2019.02.21
MIKROARCHITEKTUR

[0025] In einer Ausfiihrungsform ist das Ziel der CSA-Mikroarchitektur das Bereitstellen einer hochqualitativen
Implementierung jedes Datenflussoperators, der durch die CSA-Architektur spezifiziert wird. Ausfiihrungsfor-
men der CSA-Mikroarchitektur sehen vor, dass jedes Verarbeitungselement der Mikroarchitektur ungefahr ei-
nem Knoten (z. B. einer Entitat) in dem Architekturdatenflussgraphen entspricht. In bestimmten Ausfiihrungs-
formen flhrt dies zu Mikroarchitekturelementen, die nicht nur kompakt sind, was zu einem dichten Berech-
nungsarray flhrt, sondern auch energieeffizient, zum Beispiel, wenn Verarbeitungselemente (PEs) sowohl ein-
fach als auch stark ungemultiplext sind, z. B. Ausfiihren eines einzelnen Datenflussoperators fiir eine Konfigu-
ration (z. B. Programmierung) des CSA ausfiihren. Um den Energie- und Implementierungsbereich weiter zu
reduzieren, kann ein CSA einen konfigurierbaren, heterogenen Strukturstil aufweisen, in dem jedes PE davon
nur einen Untersatz von Datenflussoperatoren implementiert. Periphere und unterstitzende Teilsysteme, wie
z. B. der CSA-Cache, kénnen bereitgestellt werden, um die verteilte Parallelitédt zu unterstiitzen, die in der
Haupt-CSA-Verarbeitungsstruktur selbst vorherrscht. Die Implementierung von CSA-Mikroarchitekturen kann
Datenfluss- und latenzinsensitive Kommunikationsabstraktionen verwenden, die in der Architektur vorhanden
sind. In bestimmten Ausfuihrungsformen gibt es (z. B. im Wesentlichen) eine Eins-zu-Eins-Entsprechung zwi-
schen Knoten in dem kompilierererzeugten Graphen und den Datenflussoperatoren (z. B. Datenflussoperator-
Rechenelementen) in einem CSA.

[0026] Es folgt eine Erlauterung eines beispielhaften CSA, gefolgt von einer detaillierteren Erlauterung der
Mikroarchitektur. Bestimmte Ausfuhrungsformen hierin stellen einen CSA bereit, der eine einfache Kompilie-
rung ermdglicht, z. B. im Gegensatz zu bestehenden FPGA-Kompilierern, die einen kleinen Untersatz einer
Programmiersprache (z. B. C oder C++) handhaben und viele Stunden bendtigen, um selbst kleine Program-
me zu kompilieren.

[0027] Bestimmte Ausfihrungsformen einer CSA-Architektur erlauben heterogene grobkdrnige Operationen,
wie Gleitkomma mit doppelter Genauigkeit. Programme kénnen in weniger grobkérnigen Operationen aus-
gedruckt werden, z. B. so, dass der offenbarte Kompilierer schneller lauft als herkbmmliche rdumliche Kom-
pilierer. Bestimmte Ausflihrungsformen beinhalten eine Struktur mit neuen Verarbeitungselementen, um se-
quentielle Konzepte wie programmgeordnete Speicherzugriffe zu unterstiitzen. Bestimmte Ausfliihrungsformen
implementieren Hardware, um grobkornige datenflussartige Kommunikationskanale zu unterstitzen. Dieses
Kommunikationsmodell ist abstrakt und kommt der vom Kompilierer verwendeten Steuerdatenflussreprasen-
tation sehr nahe. Bestimmte Ausflihrungsformen hierin beinhalten eine Netzwerkimplementierung, die Einzel-
zyklus-Latenzzeitkommunikationen unterstitzt, z. B. Benutzen (z. B. kleiner) PEs, die einzelne Steuerdaten-
flussoperationen unterstitzen. In bestimmten Ausfihrungsformen verbessert dies nicht nur die Energieeffizi-
enz und Leistung, sondern vereinfacht auch die Kompilierung, da der Kompilierer eine Eins-zu-eins-Abbildung
zwischen High-Level-Datenflusskonstrukten und der Struktur vornimmt. Bestimmte Ausfihrungsformen hierin
vereinfachen somit die Aufgabe des Kompilierens existierender (z. B. C-, C++- oder Fortran-) Programme zu
einem CSA (z. B. Struktur).

[0028] Die Energieeffizienz kann ein Hauptanliegen moderner Rechensysteme sein. Bestimmte Ausfiihrungs-
formen hierin stellen ein neues Schema von energieeffizienten rdumlichen Architekturen bereit. In bestimmten
Ausfihrungsformen bilden diese Architekturen eine Struktur mit einer einzigartigen Zusammensetzung aus
einer heterogenen Mischung aus kleinen, energieeffizienten, datenflussorientierten Verarbeitungselementen
(PEs) mit einem leichtgewichtigen leitungsvermittelten Kommunikationsnetzwerk (z. B. Interconnect), z. B.
mit einer geharteten Unterstitzung der Flussteuerung. Aufgrund der Energievorteile davon kann die Kombi-
nation dieser zwei Komponenten einen rdumlichen Beschleuniger (z. B. als Teil eines Rechners) bilden, der
zum Ausflihren von kompilierergenerierten parallelen Programmen in einer extrem energieeffizienten Weise
geeignet ist. Da diese Struktur heterogen ist, kdnnen bestimmte Ausfliihrungsformen an unterschiedliche An-
wendungsdomanen durch Einflihren neuer doméanenspezifischer PEs angepasst werden. Eine Struktur fir die
Hochleistungsberechnung kénnte z. B. einige Anpassungen fiir doppelte Genauigkeit, fusioniertes Multiply-
Add, enthalten, wahrend eine Struktur, die auf tiefe neuronale Netzwerke abzielt, Gleitkomma-Operationen mit
niedriger Genauigkeit beinhalten kdnnte.

[0029] Eine Ausflihrungsform eines raumlichen Architekturschemas, wie es z. B. in Fig. 6 veranschaulicht ist,
ist die Zusammensetzung von leichtgewichtigen Verarbeitungselementen (PE), die durch ein Inter-PE-Netz-
werk verbunden sind. Im Allgemeinen kénnen PEs Datenflussoperatoren umfassen, wo z. B., sobald alle Ein-
gabeoperanden bei dem Datenflussoperator eingegangen sind, einige Operationen (z. B. Mikrobefehl oder Mi-
krobefehlssatz) ausgeflihrt werden, und die Ergebnisse an nachgeschaltete Operatoren weitergeleitet werden.

11/134

DE 10 2018 005 216 A1 2019.02.21

Steuerung, Planung und Datenspeicherung kénnen daher unter den PEs verteilt sein, z. B. durch Entfernen
des Aufwands der zentralisierten Strukturen, die klassische Prozessoren dominieren.

[0030] Programme kdnnen in Datenflussgraphen umgewandelt werden, die auf die Architektur abgebildet wer-
den, indem PEs und Netzwerk konfiguriert werden, um den Steuerdatenflussgraphen des Programms auszu-
dricken. Kommunikationskanale kénnen flussgesteuert und vollstandig gegengedriickt sein, z. B. sodass die
PEs anhalten, wenn entweder die Quellkommunikationskanale keine Daten aufweisen oder die Zielkommuni-
kationskanéle voll sind. In einer Ausfuhrungsform flieBen Daten zur Laufzeit durch die PEs und Kanéle, die zum
Implementieren der Operation konfiguriert wurden (z. B. ein beschleunigter Algorithmus). Zum Beispiel kbnnen
Daten aus dem Speicher durch die Struktur eingestreamt werden und dann zuriick in den Speicher gehen.

[0031] Ausflhrungsformen einer solchen Architektur kdnnen eine bemerkenswerte Leistungseffizienz gegen-
Uber herkdmmlichen Mehrkernprozessoren erreichen: die Rechenleistung (z. B. in Form von PEs) kann einfa-
cher, energieeffizienter und umfangreicher sein als in gréReren Kernen, und die Kommunikation kann direkt
und meist kurzstreckig sein, z. B. im Gegensatz zum Auftreten Uber ein breites Vollchip-Netzwerk wie in ty-
pischen Mehrkernprozessoren. Da Ausfihrungsformen der Architektur des Weiteren extrem parallel sind, ist
eine Anzahl von leistungsféhigen Optimierungen auf Schaltungs- und Gerateebene méglich, ohne den Durch-
satz ernsthaft zu beeintrachtigen, z. B. Gerate mit niedrigem Verlust und niedriger Betriebsspannung. Diese
Lower-Level-Optimierungen kénnen gegentiber herkdbmmlichen Kernen noch gréRRere Leistungsvorteile brin-
gen. Die Kombination aus Effizienz auf Architektur-, Schaltungs- und Gerate-Level dieser Ausfliihrungsformen
ist zwingend. Ausfuihrungsformen dieser Architektur kdnnen groRere aktive Bereiche ermdglichen, wahrend
gleichzeitig die Transistordichte weiter steigt.

[0032] Ausflhrungsformen hierin bieten eine einzigartige Kombination aus Datenflussunterstitzung und Lei-
tungsvermittlung, um die Struktur kleiner, energieeffizienter zu machen und eine hdhere Aggregatleistung ge-
genuber vorherigen Architekturen bereitzustellen. FPGAs sind im Allgemeinen auf eine feinkérnige Bitmanipu-
lation abgestimmt, wahrend Ausflihrungsformen hierin auf Gleitkomma-Operationen mit doppelter Genauigkeit
in HPC-Anwendungen abgestimmt sind. Bestimmte Ausfiihrungsformen hierin kénnen einen FPGA zusétzlich
zu einem CSA gemalR dieser Offenbarung aufweisen.

[0033] Bestimmte Ausfihrungsformen hierin kombinieren ein leichtgewichtiges Netzwerk mit energieeffizien-
ten Datenflussverarbeitungselementen zum Bilden einer energieeffizienten HPC-Struktur mit hohem Durchsatz
und geringer Latenz. Dieses Netzwerk mit geringer Latenz kann den Bau von Verarbeitungselementen mit we-
niger Funktionen ermdglichen, zum Beispiel nur einen oder zwei Befehle und ggf. ein sichtbares Architektur-
register, weil es effizient ist, mehrere PE gemeinsam zu gruppieren, um ein vollstdndiges Programm zu bilden.

[0034] Bezuglich eines Prozessorkerns kénnen CSA-Ausfiihrungsformen hierin mehr Rechendichte und En-
ergieeffizienz bereitstellen. Wenn zum Beispiel PEs sehr klein sind (z. B. verglichen mit einem Kern), kann der
CSA viel mehr Operationen durchfiihren und hat viel mehr Rechenparallelitét als ein Kern, z. B. womdglich
etwa das 16-fache der Anzahl der FMAs einer Vektorverarbeitungseinheit (VPU - Vector Processing Unit).
Zum Nutzen aller dieser Rechenelemente ist die Energie pro Operation in bestimmten Ausfihrungsformen
sehr gering.

[0035] Die Energievorteile unserer Ausfiihrungsformen dieser Datenflussarchitektur sind zahlreich. Paralleli-
tat ist in Datenflussgraphen explizit und Ausfihrungsformen der CSA-Architektur verbrauchen keine oder nur
minimale Energie zur Extraktion davon, z. B. im Gegensatz zu AuRRer-Reihenfolge-Prozessoren, die jedes Mal,
wenn ein Befehl ausgefuhrt wird, die Parallelitédt neu erkennen missen. Da jedes PE in einer Ausfihrungsform
fur eine einzelne Operation verantwortlich ist, kdnnen die Registerdateien und Port-Z&hlungen klein sein, z. B.
oft nur eins, und verbrauchen daher weniger Energie als ihre Gegenstiicke im Kern. Bestimmte CSAs weisen
viele PEs auf, von denen jedes Live-Programmwerte enthalt, die den Gesamteffekt einer riesigen Registerdatei
in einer traditionellen Architektur ergeben, was die Speicherzugriffe drastisch reduziert. In Ausfliihrungsformen,
bei denen der Speicher vom Mehrfachporttyp und verteilt ist, kann ein CSA viel mehr anstehende Speicher-
anforderungen erfillen und mehr Bandbreite als ein Kern nutzen. Diese Vorteile kénnen kombiniert werden,
um einen Energiepegel pro Watt zu ergeben, der nur einen kleinen Prozentsatz der Kosten der blof3en arith-
metischen Schaltung darstellt. Zum Beispiel kann im Falle einer Integer-Multiplikation ein CSA nicht mehr als
25% mehr Energie als die zugrundeliegende Multiplikationsschaltung verbrauchen. In Bezug auf eine Ausfiih-
rungsform eines Kerns verbraucht eine Integeroperation in dieser CSA-Struktur weniger als 1/30 der Energie
pro Integeroperation.

12/134

DE 10 2018 005 216 A1 2019.02.21

[0036] Aus einer Programmierperspektive ergibt die anwendungsspezifische Formbarkeit von Ausfiihrungs-
formen der CSA-Architektur wichtige Vorteile gegenuber einer Vektorverarbeitungseinheit (VPU). Bei tradi-
tionellen, unflexiblen Architekturen miissen die Anzahl funktionaler Einheiten, wie Gleitdivision, oder die ver-
schiedenen transzendentalen mathematischen Funktionen zum Ausgestaltungszeitpunkt basierend auf einem
erwarteten Anwendungsfall gewahlt werden. In Ausfuhrungsformen der CSA-Architektur kdnnen solche Funk-
tionen basierend auf den Anforderungen jeder Anwendung (z. B. durch einen Benutzer und nicht einen Her-
steller) in der Struktur konfiguriert werden. Der Anwendungsdurchsatz kann dadurch weiter gesteigert werden.
Gleichzeitig verbessert sich die Rechendichte von Ausfliihrungsformen des CSA, indem die Verhartung solcher
Funktionen vermieden wird und stattdessen mehr Instanzen primitiver Funktionen wie Gleitmultiplikation vor-
gesehen werden. Diese Vorteile kbnnen bei HPC-Arbeitslasten von Bedeutung sein, von denen einige 75%
der Gleitkomma-Ausfihrung in transzendentalen Funktionen verbrauchen.

[0037] Bestimmte Ausfiihrungsformen des CSA stellen einen bedeutenden Fortschritt als eine datenflussori-
entierte rdumliche Architektur dar, weil z. B. die PEs dieser Offenbarung kleiner, aber auch energieeffizienter
sein kdnnen. Diese Verbesserungen kdnnen sich direkt aus der Kombination von datenflussorientierten PEs
mit einer leichtgewichtigen, leitungsvermittelten Zwischenverbindung ergeben, die zum Beispiel im Gegensatz
zu einem paketvermittelten Netzwerk eine Einzelzykluslatenz aufweist (z. B. mit einer 300% hoheren Latenz
an einem Minimum). Bestimmte Ausfihrungsformen der PEs unterstutzen die 32-Bit- oder 64-Bit-Operation.
Bestimmte Ausfihrungsformen hierin erlauben die Einfihrung neuer anwendungsspezifischer PEs, z. B. fir
Maschinenlernen oder Sicherheit, und sind keine rein homogene Kombination. Bestimmte Ausfihrungsformen
hierin kombinieren leichtgewichtige datenflussorientierte Verarbeitungselemente mit einem leichtgewichtigen
Niederlatenznetzwerk zum Bilden einer energieeffizienten Rechenstruktur.

[0038] Damit bestimmte rdumliche Architekturen erfolgreich sind, missen Programmierer sie mit relativ ge-
ringem Aufwand konfigurieren, z. B. sie gegenuber sequentiellen Kernen eine signifikante Energie- und Leis-
tungsuberlegenheit erhalten. Bestimmte Ausflihrungsformen hierin stellen einen CSA (z. B. rdumliche Struktur)
bereit, der leicht programmiert werden kann (z. B. durch einen Kompilierer), energieeffizient und hochparallel
ist. Bestimmte Ausfuhrungsformen hierin stellen ein Netzwerk (z. B. Zwischenverbindungsnetz) bereit, dass
diese drei Ziele erreicht. Aus einer Programmierbarkeitsperspektive stellen bestimmte Ausfiihrungsformen des
Netzwerks flussgesteuerte Kanale bereit, die z. B. dem Steuerdatenflussgraphen (CDFG - Control-Dataflow
Graph)-Modell der Ausfiihrung entsprechen, das in Kompilierern verwendet wird. Bestimmte Netzwerkausfiih-
rungsformen benutzen zweckgebundene leitungsvermittelte Verknipfungen, so dass die Programmleistung
sowohl von einem Menschen als auch einem Kompilierer leichter zu verstehen ist, weil die Leistung vorher-
sagbar ist. Bestimmte Netzwerkausfiihrungsformen bieten sowohl hohe Bandbreite als auch niedrige Latenz.
Bestimmte Netzwerkausfihrungsformen (z. B. statische leitungsvermittelte) stellen eine Latenz von 0 bis 1
Zyklus bereit (z. B. je nach der Ubertragungsstrecke). Bestimmte Ausfiihrungsformen stellen eine hohe Band-
breite durch paralleles Verlegen verschiedener Netzwerke bereit, z. B. in Low-Level-Metallen. Bestimmte Netz-
werkausflhrungsformen kommunizieren in Low-Level-Metallen und Uber kurze Strecken und sind somit sehr
energieeffizient.

[0039] Bestimmte Ausflihrungsformen von Netzwerken weisen eine Architekturunterstitzung fiir die Durch-
flusssteuerung auf. Zum Beispiel kdnnen in rdumlichen Beschleunigern, die aus kleinen Verarbeitungselemen-
ten (PEs) bestehen, die Kommunikationslatenz und die Bandbreite fir die Gesamtprogrammleistung bedeu-
tend sein. Bestimmte Ausfuhrungsformen hierin stellen ein leichtgewichtiges leitungsvermitteltes Netzwerk be-
reit, das die Kommunikation zwischen PEs in rdumlichen Verarbeitungsarrays, wie dem in Fig. 6 gezeigten
raumlichen Array, und den mikroarchitektonischen Steuermerkmalen, die notwendig sind, um dieses Netzwerk
zu unterstutzen, erleichtert. Bestimmte Ausfuihrungsformen eines Netzwerks ermdglichen die Konstruktion von
flussgesteuerten Punkt-zu-Punkt-Kommunikationskanalen, welche die Kommunikation der datenflussorientier-
ten Verarbeitungselemente (PEs) unterstitzen. Zusatzlich zu den Punkt-zu-Punkt-Kommunikationen kénnen
bestimmte Netzwerke hierin auch Multicast-Kommunikationen unterstutzen. Die Kommunikationskanéle kén-
nen durch statisches Konfigurieren des Netzwerks zum Bilden virtueller Schaltungen zwischen den PEs gebil-
det werden. Schaltungsumschalttechniken hierin kdnnen die Kommunikationslatenz verringern und die Netz-
werkpufferung entsprechend minimieren, was zum Beispiel sowohl zu einer hohen Leistungsféahigkeit als auch
zu einer hohen Energieeffizienz fuhrt. In bestimmten Ausfiihrungsformen eines Netzwerks kann die Inter-PE-
Latenz so niedrig wie ein Null-Zyklus sein, was bedeutet, dass das nachgeschaltete PE mit Daten im Zyklus
arbeiten kann, nachdem es erzeugt wurde. Zum Erhalten einer noch héheren Bandbreite und zum Zulassen
von mehr Programmen kann eine Vielzahl von Netzwerken parallel angeordnet sein, wie z. B. in Fig. 6 gezeigt.

[0040] Raumliche Architekturen, wie die in Fig. 6 gezeigte, kdnnen die Zusammensetzung von leichtgewich-
tigen Verarbeitungselementen sein, die durch ein Inter-PE-Netzwerk verbunden sind. Programme, die als Da-

13/134

DE 10 2018 005 216 A1 2019.02.21

tenflussgraphen angesehen werden, kdnnen auf der Architektur durch Konfigurieren der PEs und des Netz-
werks abgebildet werden. Im Allgemeinen kénnen PEs als Datenflussoperatoren konfiguriert sein und, sobald
alle Eingabeoperanden am PE eingehen, kann dann eine Operation erfolgen und das Ergebnis an die ge-
winschten nachgeschalteten PEs weitergeleitet werden. PEs kdnnen Uber zweckgebundene virtuelle Schal-
tungen kommunizieren, die durch statistisches Konfigurieren eines leitungsvermittelten Kommunikationsnetz-
werks gebildet werden. Diese virtuellen Schaltungen kénnen flussgesteuert und vollstdndig gegengedrtickt
sein, z. B. so, dass die PEs anhalten, wenn entweder die Quelle keine Daten aufweist oder der Zielspeicher-
platz voll ist. Bei Laufzeit kbnnen Daten durch die PEs flieRen und den abgebildeten Algorithmus implementie-
ren. Zum Beispiel kdnnen Daten aus dem Speicher durch die Struktur eingestreamt werden und dann zurlick
in den Speicher gehen. Ausfihrungsformen dieser Architektur kénnen eine bemerkenswerte Leistungseffizi-
enz im Vergleich zu herkdbmmlichen Mehrkernprozessoren erreichen: wenn zum Beispiel eine Berechnung in
der Form von PEs einfacher und zahlreicher ist als gréRRere Kerne und die Kommunikation direkt ist, z. B. im
Gegensatz zu einer Erweiterung des Speichersystems.

[0041] Fig. 6 veranschaulicht eine Beschleuniger-Kachel 600, umfassend ein Array von Verarbeitungsele-
menten (PEs) gemal Ausfihrungsformen der Offenbarung. Das Zwischenverbindungsnetz ist als leitungsver-
mittelte, statisch konfigurierte Kommunikationskanale dargestellt. Zum Beispiel eine Gruppe von Kanalen, die
durch einen Schalter miteinander verbunden sind (z. B. Schalter 610 in einem ersten Netzwerk und Schalter
611 in einem zweiten Netzwerk). Das erste Netzwerk und das zweite Netzwerk kdnnen getrennt oder zusam-
mengekoppelt sein. Der Schalter 610 kann z. B. einen oder mehrere der vier Datenpfade (612, 614, 616, 618)
zusammenkoppeln, z. B. wie zum Durchflihren einer Operation gemaf einem Datenflussgraphen konfiguriert.
In einer Ausfiihrungsform kann die Anzahl von Datenpfaden jede beliebige Vielzahl sein. Das Verarbeitungs-
element (z. B. Verarbeitungselement 604) kann wie hierin offenbart sein, zum Beispiel, wie in Fig. 9A. Die
Beschleuniger-Kachel 600 weist eine Speicher-/Cache-Hierarchieschnittstelle 602 auf, z. B. zum Verbinden
der Beschleuniger-Kachel 600 mit einem Speicher und/oder Cache. Ein Datenpfad (z. B. 618) kann sich zu
einer anderen Kachel erstrecken oder enden, z. B. am Rand einer Kachel. Ein Verarbeitungselement kann
einen Eingabepuffer (z. B. Puffer 606) und einen Ausgabepuffer (z. B. Puffer 608) aufweisen.

[0042] Die Operationen kénnen basierend auf der Verfiigbarkeit ihrer Eingaben und dem Status des PE aus-
gefihrt werden. Ein PE kann Operanden aus den Eingabekanalen erhalten und die Ergebnisse in Ausgabe-
kanale schreiben, auch wenn ein interner Registerstatus ebenfalls verwendet werden kann. Bestimmte Aus-
fihrungsformen hierin beinhalten ein konfigurierbares datenflussfreundliches PE. Fig. 9 zeigt ein detailliertes
Blockdiagramm eines solchen PE: dem Integer-PE. Dieses PE besteht aus verschiedenen 1/O-Puffern, einer
ALU, einem Speicherregister, einigen Befehlsregistern und einem Planer. Jeden Zyklus kann der Planer einen
Befehl fir die Ausflihrung basierend auf der Verflgbarkeit der Eingabe- und Ausgabepuffer und dem Status
des PE auswahlen. Das Ergebnis der Operation kann dann entweder in einen Ausgabepuffer oder ein Register
(z. B. lokal oder PE) geschrieben werden. Die Daten, die in einen Ausgabepuffer geschrieben werden, kénnen
zu einem nachgeschalteten PE zur weiteren Verarbeitung transportiert werden. Dieser PE-Stil kann extrem
energieeffizient sein, z. B. weil statt Daten aus einer komplexen Mehrportregisterdatei zu lesen, ein PE die
Daten aus einem Register liest. Auf ahnliche Weise konnen die Befehle direkt in einem Register gespeichert
werden, anstelle in einem virtuellen Befehls-Cache.

[0043] Befehlsregister kbnnen wahrend eines speziellen Konfigurationsschrittes eingestellt werden. Wahrend
dieses Schritts kdnnen Hilfssteuerdréhte und Zustand zusatzlich zum inter-PE-Netzwerk zum Streamen in der
Konfiguration Uber die verschiedenen PEs, welche die Struktur umfassen, verwendet werden. Als Ergebnis
der Parallelitéat kdnnen bestimmte Ausfiihrungsformen eines solchen Netzwerks eine schnelle Rekonfiguration
bereitstellen, z. B. kann ein kachelgrofl3es Netzwerk in weniger als etwa 10 Mikrosekunden konfiguriert sein.

[0044] Fig. 9 reprasentiert eine Beispielkonfiguration eines Verarbeitungselements, in dem z. B. alle Archi-
tekturelemente minimal bemessen sind. In anderen Ausfihrungsformen ist jede der Komponenten eines Ver-
arbeitungselements unabhangig bemessen, um neue PEs zu erzeugen. Zum Handhaben komplizierterer Pro-
gramme kann z. B. eine gréRere Anzahl von Befehlen eingefligt werden, die durch ein PE ausfihrbar sind.
Eine zweite Dimension der Konfigurierbarkeit ist abhangig von der PE-Arithmetik-Logik-Einheit (ALU). In Fig. 9
ist ein Integer-PE dargestellt, das Addition, Subtraktion und verschiedene logische Operationen unterstiitzen
kann. Andere Arten von PEs kdnnen durch Ersetzen unterschiedlicher Arten von Funktionseinheiten in dem PE
geschaffen werden. Ein Integer-Multiplikations-PE kann beispielsweise keine Register, einen Einzelbefehl und
einen einzigen Ausgabepuffer aufweisen. Bestimmte Ausfiihrungsformen eines PE zerlegen eine fusionier-
te Multiplikationsaddition (FMA) in separate, aber eng gekoppelte, Gleitkomma-Multiplikations- und Gleitkom-
ma-Additionseinheiten zum Verbessern der Unterstitzung von Multiply-Add-Schwerarbeitslasten. PEs werden
nachstehend erlautert.

14/134

DE 10 2018 005 216 A1 2019.02.21

[0045] Fig. 7A veranschaulicht ein konfigurierbares Datenpfad-Netzwerk 700 (z. B. von Netzwerk eins oder
Netzwerk zwei, die in Bezug auf Fig. 6 erldutert wurden) gemafl Ausflihrungsformen der Offenbarung. Das
Netzwerk 700 weist mehrere Multiplexer (z. B. Multiplexer 702, 704, 706) auf, die konfiguriert werden kénnen
(z. B. Uber zugehdrige Steuersignale), um einen oder mehrere Datenpfade (z. B. von PEs) miteinander zu
verbinden. Fig. 7B veranschaulicht ein konfigurierbares Flusssteuerpfad-Netzwerk 701 (z. B. Netzwerk eins
oder Netzwerk zwei, die in Bezug auf Fig. 6 erlautert wurden) gemaf Ausfihrungsformen der Offenbarung. Ein
Netzwerk kann ein leichtgewichtiges PE-PE-Netzwerk sein. Bestimmte Ausfiihrungsformen eines Netzwerks
kdénnen als ein Satz von zusammenfligbaren Grundelementen zum Bau von verteilten, Punkt-zu-Punkt-Daten-
kanalen gedacht sein. Fig. 7A zeigt ein Netzwerk, das zwei aktivierte Kanale aufweist, die fette schwarze Linie
und die gepunktete schwarze Linie. Der Kanal der fetten schwarzen Linie ist Multicast, z. B. wird eine einzelne
Eingabe an zwei Ausgaben gesendet. Es sei angemerkt, dass sich die Kanale an einigen Punkten innerhalb
eines einzelnen Netzwerks schneiden kénnen, selbst wenn zweckgebundene leitungsvermittelte Pfade zwi-
schen den Kanalendpunkten gebildet werden. Des Weiteren stellt diese Kreuzung keine strukturelle Gefahr
zwischen den zwei Kanalen dar, sodass jeder unabhangig und bei voller Bandbreite arbeitet.

[0046] Das Implementieren von verteilten Datenkanalen kann zwei Pfade aufweisen, wie in Fig. 7A bis Fig. 7B
veranschaulicht. Die Vorwartsverbindung, oder Datenpfad, tragt Daten von einem Erzeuger zu einem Verbrau-
cher. Multiplexer kdnnen zum Lenken von Daten und Validieren von Bits von dem Erzeuger zu dem Verbrau-
cher konfiguriert sein, z. B. wie in Fig. 7A. Im Fall von Multicast werden die Daten zu einer Vielzahl von Ver-
braucherendpunkten gelenkt. Der zweite Teil dieser Ausflihrungsform eines Netzwerks ist die Flusssteuerung
oder der Gegendruckpfad, der in Gegenrichtung des Vorwartsdatenpfads fliefl3t, z. B. wie in Fig. 7B. Die Ver-
braucherendpunkte kbnnen geltend gemacht werden, wenn sie zum Annehmen neuer Daten bereit sind. Diese
Signale kénnen dann zuriick zum Erzeuger unter Verwendung der konfigurierbaren logischen Konjunktionen
gelenkt werden, die als Flusssteuerungsfunktion in Fig. 7B gekennzeichnet sind (z. B. Rickfluss). In einer
Ausfiihrungsform kann jede Flusssteuerungsfunktionsschaltung mehrere Schalter (z. B. Muxes) aufweisen,
wie z. B. ahnlich denen aus Fig. 7A. Der Flusssteuerpfad kann zuriickkehrende Steuerdaten von dem Ver-
braucher an den Erzeuger handhaben. Konjunktionen kénnen Multicast erméglichen, wobei z. B. jeder Ver-
braucher Daten empfangen kann, bevor der Erzeuger voraussetzt, dass diese empfangen wurden. In einer
Ausfihrungsform ist ein PE ein PE, das einen Datenflussoperator wie seine Architekturschnittstelle aufweist.
Zusatzlich oder alternativ kann in einer Ausfiihrungsform ein PE eine Art von PE (z. B. in der Struktur) sein, z.
B. ein PE, das eine Befehlszweiger-, Triggerbefehl- oder Zustandsmaschinen-Architekturschnittstelle aufweist,
aber nicht darauf beschrankt ist.

[0047] Das Netzwerk kann statisch konfiguriert sein, z. B. zusatzlich zu PEs, die statisch konfiguriert sind.
Wahrend des Konfigurationsschrittes kbnnen Konfigurationsbits an jeder Netzwerkkomponente eingestellt wer-
den. Diese Bits steuern z. B. die Muxauswahl und die Flusssteuerfunktionen. Ein Netzwerk kann mehrere
Netzwerke umfassen, z. B. ein Datenpfad-Netzwerk und ein Flusssteuerungsnetzwerk. Eine Netzwerk oder
mehrere Netzwerke kénnen Pfade unterschiedlicher Breiten benutzen (z. B. einer ersten Breite und einer en-
geren oder breiteren Breite). In einer Ausflihrungsform weist ein Datenpfad-Netzwerk eine breitere (z. B. Bit-
transport) Breite auf als die Breite eines Flusssteuerpfad-Netzwerks. In einer Ausfiihrungsform weist jedes
von einem ersten Netzwerk und einem zweiten Netzwerk sein eigenes Datenpfad-Netzwerk und Flussteuer-
pfad-Netzwerk auf, z. B. Datenpfad-Netzwerk A und Flusssteuerpfad-Netzwerk A und ein breiteres Datenpfad-
Netzwerk B und ein Flusssteuerpfad-Netzwerk B.

[0048] Bestimmte Ausflihrungsformen eines Netzwerks sind pufferlos und die Daten missen sich zwischen
dem Erzeuger und Verbraucher in einem Einzelzyklus bewegen. Bestimmte Ausfiihrungsformen eines Netz-
werks sind ungebunden, das heil}t, das Netzwerk Uberspannt die gesamte Struktur. In einer Ausflihrungsform
kommuniziert ein PE mit einem anderen PE in einem Einzelzyklus. In einer Ausfiihrungsform kénnen zum
Verbessern der Routingbandbreite mehrere Netzwerke parallel zwischen die Reihen der PE gelegt werden.

[0049] Bezlglich der FPGAs haben bestimmte Ausflihrungsformen von Netzwerken hierin drei Vorteile: Be-
reich, Frequenz und Programmausdruck. Bestimmte Ausfiihrungsformen von Netzwerken arbeiten grobkérnig,
was z. B. die Anzahl an Konfigurationsbits reduziert und dadurch den Netzwerkbereich. Bestimmte Ausfih-
rungsformen von Netzwerken erhalten die Bereichsreduktion durch Implementieren der Steuerlogik direkt im
Schaltkreis (z. B. Silicium). Bestimmte Ausflihrungsformen geharteter Netzwerkimplementierungen geniel3en
gegeniber FPGA auch einen Frequenzvorteil. Aufgrund eines Bereichs- und Frequenzvorteils kann ein Leis-
tungsvorteil vorhanden sein, wenn eine geringere Spannung als Durchsatzparitat verwendet wird. Schlielich
stellen bestimmte Ausfiihrungsformen von Netzwerken bessere High-Level-Semantiken als FPGA-Drahte be-
reit, insbesondere in Bezug auf die variable Zeitsteuerung, weshalb solche bestimmten Ausfiihrungsformen
leichter durch die Kompilierer anzuzielen sind. Bestimmte Ausfiihrungsformen von Netzwerken hierin kénnen

15/134

DE 10 2018 005 216 A1 2019.02.21

als ein Satz von zusammensetzbaren Grundelementen zum Bau von verteilten, Punkt-zu-Punkt-Datenkanélen
gedacht sein.

[0050] In bestimmten Ausflihrungsformen kann eine Multicast-Quelle ihre Daten erst dann geltend machen,
wenn ein Bereit-Signal von jeder Senke empfangen wurde. Daher kdnnen ein zusétzliches Konjunktions- und
Steuerbit in dem Multicastfall benutzt werden.

[0051] Wie bestimmte PEs kann das Netzwerk statistisch konfiguriert sein. Wahrend dieses Schrittes werden
Konfigurationsbits an jeder Netzwerkkomponente eingestellt. Diese Bits steuern z. B. die Muxauswahl und die
Flusssteuerungsfunktion. Der Vorwartspfad unseres Netzwerks erfordert, dass einige Bits ihre Muxe schwin-
gen. In dem in Fig. 7A gezeigten Beispiel werden vier Bits pro Hop erfordert: die Ost- und West-Muxe benutzen
jeweils ein Bit, wahrend die sudlich gebundenen Muxe zwei Bits benutzen. In dieser Ausfliihrungsform kénnen
vier Bits fur den Datenpfad benutzt werden, es kdnnen aber 7 Bits fiir die Flusssteuerungsfunktion benutzt
werden (z. B. in dem Flusssteuerpfad-Netzwerk). Andere Ausfiihrungsformen kénnen mehr Bits benutzen, z.
B., wenn ein CSA ferner eine Nord-Sud-Richtung benutzt. Die Flusssteuerungsfunktion kann ein Steuerbit fir
jede Richtung benutzen, aus welcher die Flusssteuerung kommen kann. Dies kann das Einstellen der Sensiti-
vitat der Flusssteuerungsfunktion statisch ermdglichen. Die Tabelle 1 unten fasst die Boolsche Algebra-Imple-
mentierung der Flusssteuerungsfunktion fir das Netzwerk in Fig. 7B zusammen, wobei die Konfigurationsbits
in GrolRbuchstaben aufgefihrt sind. In diesem Beispiel werden sieben Bits benutzt.

Tabelle 1 Flussimplementierung

readyToEast (EAST_WEST_SENSITIVE+readyFromWest) * (EAST_SOUTH_SENSITIVE+ready-
FromSouth)

readyToWest (WEST_EAST_SENSITIVE+readyFromEast) * (WEST_SOUTH_SENSITIVE+ready-
FromSouth)

readyToNorth (NORTH_WEST_SENSITIVE+readyFromWest) * (NORTH_EAST_SENSITIVE+rea-
dyFromEast) * (NORTH_SOUTH_SENSITIVE+readyFromSouth)

[0052] Fr die dritte Flusssteuerungsbox von links in Fig. 7B sind EAST_WEST_SENSITIVE (ost-west-sensi-
tiv) und NORTH_SOUTH_SENSITIVE (nord-sld-sensitiv) als Satz dargestellt, um die Flusssteuerung fir Ka-
nale in fetter Linie bzw. gestrichelter Linie zu implementieren.

[0053] Fig. 8 veranschaulicht eine Hardware-Prozessor-Kachel, 800 umfassend einen Beschleuniger 802 ge-
maR Ausfiihrungsformen der Offenbarung. Der Beschleuniger 802 kann ein CSA gemal dieser Offenbarung
sein. Die Kachel 800 weist mehrere Cache-Banke (z. B. Cache-Bank 808) auf. Abfrageadressdatei (RAF)-
Schaltungen 810 kénnen aufgenommen sein, z. B. wie unten in Abschnitt 3.2 erldutert. ODI kann sich auf eine
On-Die-Zwischenverbindung beziehen, z. B. eine Zwischenverbindung, die sich Uber den gesamten Chip er-
streckt, der alle Kacheln miteinander verbindet. OTI kann sich auf eine On-Tile-Zwischenverbindung beziehen,
die sich z. B. Uber eine Kachel erstreckt, die z. B. die Cache-Bénke auf der Kachel miteinander verbindet.

Verarbeitungselemente

[0054] In bestimmten Ausflhrungsformen weist ein CSA ein Array aus heterogenen PEs auf, in denen die
Struktur aus verschiedenen Typen von PEs zusammengesetzt ist, von denen jedes nur einen Untersatz von
Datenflussoperatoren implementiert. Rein beispielhaft zeigt Fig. 9 eine provisionale Implementierung eines
PE, das einen breiten Satz von Integer- und Steueroperationen implementieren kann. Andere PEs, einschliel3-
lich solcher, die eine Gleitkomma-Addition, Gleitkomma-Multiplikation, Pufferung und bestimmte Steueropera-
tionen aufweisen, kdnnen einen dhnlichen Implementierungsstil aufweisen, z. B. mit der angemessenen (Da-
tenflussoperator)-Schaltung, welche die ALU ersetzt. PEs (z. B. Datenflussoperatoren) eines CSA kénnen vor
dem Beginn der Ausfiihrung zum Implementieren einer bestimmten Datenfluss-Operation von einem der Sat-
ze, die das PE unterstitzt, konfiguriert (z. B. programmiert) werden. Eine Konfiguration kann eines oder zwei
Steuerworter umfassen, die einen Opcode spezifizieren, der die ALU steuert, die verschiedenen Multiplexer
innerhalb des PE lenkt und den Datenfluss in die PE-Kanéle hinein und aus diesen heraus betétigt. Die Daten-
flussoperatoren kénnen durch Mikrocodieren dieser Konfigurationsbits implementiert werden. Das dargestellte
Integer-PE 900 in Fig. 9 ist als Einzelstufen-Logik-Pipeline, die von oben nach unten flie3t, organisiert. Daten
treten von einem eines Satzes lokaler Netzwerke ein, in denen sie in einem Eingabepuffer zur nachfolgenden
Operation registriert werden. Jedes PE kann eine Anzahl von breiten, datenausgerichteten und schmalen,
steuerungsausgerichteten Kanalen unterstiitzen. Die Anzahl der vorgesehenen Kanéle kann basierend auf der

16/134

DE 10 2018 005 216 A1 2019.02.21

PE-Funktionalitat variieren, jedoch weist eine Ausfihrungsform eines ganzzahlorientierten PE 2 breite und 1-2
schmale Eingabe- und Ausgabekanale auf. Obwohl das Integer-PE als eine Einzelzyklus-Pipeline implemen-
tiert ist, kbnnen andere Wahlen flir das Pipelinenetz benutzt werden. Multiplikations-PEs kdnnen z. B. eine
Mehrzahl von Pipelinestufen aufweisen.

[0055] Die PE-Ausfiihrung kann im Datenflussstil voranschreiten. Basierend auf dem Konfigurationsmikro-
code kann der Planer den Status der Eintritts- und Austrittspuffer des PE untersuchen und, wenn alle Einga-
ben fir die konfigurierte Operation eingegangen sind und der Austrittspuffer der Operation verfiigbar ist, die
tatsachliche Ausfiihrung der Operation durch einen Datenflussoperator (z. B. auf der ALU) inszenieren. Der
resultierende Wert kann in dem konfigurierten Austrittspuffer platziert werden. Ubertragungen zwischen dem
Austrittspuffer eines PE und dem Eintrittspuffer eines anderen PE kdnnen asynchron auftreten, wenn eine
Pufferung verfiigbar wird. In bestimmten Ausfiihrungsformen sind die PEs derart ausgestattet, dass mindes-
tens eine Datenfluss-Operation pro Zyklus abgeschlossen wird. In Abschnitt 2 ist der Datenflussoperator als
primitive Operationen umschlielRend erlautert, wie z. B. Add, Xor oder Pick. Bestimmte Ausflihrungsformen
kdénnen Vorteile bei Energie, Bereich, Leistung und Latenz bereitstellen. In einer Ausflihrungsform kénnen mit
einer Erweiterung zu einem PE-Steuerpfad, mehr fusionierte Kombinationen ermdglicht werden. In einer Aus-
fuhrungsform betragt die Breite der Verarbeitungselemente 64 Bits, z. B. fir die starke Nutzung der Doppel-
prazision-Gleitkomma-Berechnung in HPC und zum Unterstitzen der 64-Bit-Speicher-Adressierung.

Kommunikationsnetzwerke

[0056] Ausflihrungsformen der CSA-Mikroarchitektur stellen eine Hierarchie von Netzwerken bereit, die zu-
sammen eine Implementierung der architektonischen Abstraktion latenzinsensitiver Kanale Gber mehrere Kom-
munikationsmafstébe bereitstellen. Das niedrigste Level der CSA-Kommunikationshierarchie kann das lokale
Netzwerk sein. Das lokale Netzwerk kann ein statisch leitungsvermitteltes sein, das z. B. die Konfigurationsre-
gister zum Schwingen eines oder mehrerer Multiplexer in dem lokalen Netzwerkdatenpfad zum Bilden fester
elektrischer Pfade zwischen kommunizierenden PEs verwendet. In einer Ausflihrungsform wird die Konfigura-
tion des lokalen Netzwerkes einmal pro Datenflussgraph eingestellt, z. B. gleichzeitig mit der PE-Konfigurati-
on. In einer Ausflihrungsform optimiert die statische Leitungsvermittiung die Energie, z. B. wenn eine grol3e
Mehrheit (evtl. grofRer als 95%) des CSA-Kommunikationsverkehrs das lokale Netzwerk kreuzt. Ein Programm
kann Begriffe aufweisen, die in einer Mehrzahl von Ausdriicken verwendet werden. Zum Optimieren in diesem
Fall stellen Ausfiihrungsformen hierin eine Hardwareunterstitzung fur Multicast innerhalb des lokalen Netz-
werks bereit. Mehrere verschiedene lokale Netzwerke kdnnen zusammengefasst werden, um Routingkanéle
zu bilden, die z. B. verschachtelt (als ein Gitter) zwischen Reihen und Spalten der PEs sind. Als eine Opti-
mierung kénnen mehrere verschiedene Netzwerke zum Tragen von Steuerungs-Token aufgenommen sein.
Im Vergleich mit einer FPGA-Zwischenverbindung kann ein lokales CSA-Netzwerk an der Granularitat des
Datenpfads geleitet werden und ein weiterer Unterschied kann die CSA-Behandlung der Steuerung sein. Eine
Ausfuhrungsform eines lokalen CSA-Netzwerks ist explizit flussgesteuert (z. B. gegengedrickt). Zum Beispiel
muss ein CSA fir jeden Vorwarts-Datenpfad und Multiplexer-Satz einen Rickwartsfluss-Flusssteuerpfad be-
reitstellen, der physisch mit dem Vorwarts-Datenpfad gepaart ist. Die Kombination der zwei mikroarchitektoni-
schen Pfade kann eine Punkt-zu-Punkt-Implementierung der latenzinsensitiven Kanalabstraktion mit niedriger
Latenz, niedriger Energie und niedrigem Bereich bereitstellen. In einer Ausfuhrungsform sind die Flusssteue-
rungsleitungen eines CSA fiir das Benutzerprogramm nicht sichtbar, kdnnen jedoch durch die Architektur in
Betrieb des Benutzerprogramms manipuliert werden. Zum Beispiel kdnnen die in Abschnitt 2.2 beschriebenen
Ausnahmehandhabungsmechanismen erreicht werden, indem Flusssteuerungsleitungen bei der Erkennung
eines Ausnahmezustands in einen Zustand ,nicht vorhanden® gezogen werden. Diese Aktion kann nicht nur die
Teile der Pipeline, die an der fehlerhaften Berechnung beteiligt sind, elegant anhalten, sondern kann auch den
Maschinenzustand, der zu der Ausnahme geflihrt hat, bewahren, z. B. flir eine Diagnoseanalyse. Die zweite
Netzwerkschicht, z. B. das Mezzanine-Netzwerk, kann ein gemeinsam genutztes paketvermitteltes Netzwerk
sein. Das Mezzanine-Netzwerk (z. B. das Netzwerk, das schematisch durch die gestrichelte Box in Fig. 22 dar-
gestellt ist) kann allgemeinere Kommunikationen mit gréRerer Reichweite auf Kosten von Latenz, Bandbreite
und Energie bereitstellen. In gut gerouteten Programmen kann die meiste Kommunikation in dem lokalen Netz-
werk stattfinden, weshalb die Mezzanine-Netzwerkbereitstellung im Vergleich betrachtlich reduziert wird, zum
Beispiel kann sich jedes PE mit mehreren lokalen Netzwerken verbinden, aber der CSA nur einen Mezzanine-
Endpunkt pro logischer Nachbarschaft der PEs bereitstellen. Da das Mezzanine tatsachlich ein gemeinsam
genutztes Netzwerk ist, kann jedes Mezzanine-Netzwerk mehrere logisch unabhangige Kanéle tragen und
z. B. mit einer Vielzahl von virtuellen Kanalen versehen sein. In einer Ausfiihrungsform ist die Hauptfunktion
des Mezzanine-Netzwerks die Bereitstellung von Weitbereichskommunikationen zwischen PEs und zwischen
PEs und Speicher. Zusatzlich zu dieser Kapazitat kann das Mezzanine-Netzwerk auch ein Laufzeitunterstit-
zungsnetzwerk betreiben, durch das z. B. verschiedene Dienste auf die komplette Struktur auf benutzerpro-

17/134

DE 10 2018 005 216 A1 2019.02.21

grammtransparente Weise zugreifen. In dieser Eigenschaft kann der Mezzanine-Endpunkt als eine Steuerung
fur seine lokale Nachbarschaft dienen, z. B. wéhrend der CSA-Konfiguration. Zum Bilden der Kanéle, die eine
CSA-Kachel uberbricken, kénnen drei Teilkandle und zwei lokale Netzwerkkanale (die Verkehr zu und von
einem einzelnen Kanal in dem Mezzanine-Netzwerk tragen) benutzt werden. In einer Ausfihrungsform wird
ein Mezzanine-Kanal benutzt, z. B. ein Mezzanine- und zwei lokale = 3 Netzwerk-Hops insgesamt.

[0057] Die Zusammensetzbarkeit von Kanalen tber Netzwerkschichten hinweg kann auf Higher-Level-Netz-
werkebenen an den Inter-Tile-, Inter-Die- und Fabric-Granularitaten erweitert werden.

[0058] Fig. 9 veranschaulicht Verarbeitungselement 900 gemaR Ausfihrungsformen der Offenbarung. In ei-
ner Ausfuhrungsform wird das Betriebskonfigurationsregister 919 wahrend der Konfiguration (z. B. Abbildung)
geladen und spezifiziert die bestimmte Operation (oder Operationen), die dieses Verarbeitungs- (z. B. Rechen-
) Element durchfiihren soll. Die Aktivitdt von Register 920 kann durch diese Operation (eine Ausgabe von Mux
916, die z. B. durch den Planer 914 gesteuert wird) gesteuert werden. Der Planer 914 kann eine Operation
oder Operationen des Verarbeitungselements 900 planen, zum Beispiel, wenn Eingabedaten und die Steuer-
eingabe eintreffen. Der Steuereingabepuffer 922 ist mit dem lokalen Netzwerk 902 verbunden (z. B. kann das
lokale Netzwerk 902 ein Datenpfad-Netzwerk wie in Fig. 7A und ein Flusssteuerpfad-Netzwerk wie in Fig. 7B
aufweisen) und wird mit einem Wert geladen, wenn er eintrifft (wenn z. B. das Netzwerk ein/mehrere Datenbit/
s und eines/mehrere giiltige Bit/s aufweist). Der Steuerausgabepuffer 932, der Datenausgabepuffer 934 und/
oder der Datenausgabepuffer 936 kdnnen eine Ausgabe des Verarbeitungselements 900 empfangen, z. B.
wie durch die Operation (eine Ausgabe des Mux 916) gesteuert. Das Zustandsregister 938 kann immer dann
geladen werden, wenn die ALU 918 ausgefiihrt wird (wird auch durch die Ausgabe von Mux 916 gesteuert).
Die Daten in dem Steuereingabepuffer 922 und Steuerausgabepuffer 932 kdnnen ein Einzelbit sein. Der Mux
921 (z. B. Operand A) und Mux 923 (z. B. Operand B) kénnen Quelleingaben sein.

[0059] Angenommen, die Operation dieses Verarbeitungs- (z. B. Rechen-) Elements ist (oder beinhaltet) zum
Beispiel, was als ein Pick in Fig. 3B bezeichnet wird. Das Verarbeitungselement 900 muss dann die Daten
entweder von dem Dateneingabepuffer 924 oder dem Dateneingabepuffer 926 auswahlen, z. B. um zu Da-
tenausgabepuffer 934 (z. B. Standard) oder Datenausgabepuffer 936 zu gehen. Das Steuerbit in 922 kann
daher eine 0 angeben, wenn es von dem Dateneingabepuffer 924 ausgewahlt wird oder 1, wenn es von dem
Dateneingabepuffer 926 ausgewahlt wird.

[0060] Angenommen, die Operation dieses Verarbeitungs- (z. B. Rechen-) Elements ist (oder beinhaltet) zum
Beispiel, was als ein Switch (Schalter) in Fig. 3B bezeichnet wird. Das Verarbeitungselement 900 muss dann
die Daten zum Datenausgabepuffer 934 oder dem Datenausgabepuffer 936 ausgeben, z. B. vom Datenein-
gabepuffer 924 (z. B. Standard) oder Dateneingabepuffer 926. Das Steuerbit in 922 kann daher eine 0 ange-
ben, wenn es zum Datenausgabepuffer 934 ausgegeben wird oder 1, wenn es zum Datenausgabepuffer 936
ausgegeben wird.

[0061] Eine Vielzahl von Netzwerken (z. B. Zwischenverbindungen) kann mit einem Verarbeitungselement
verbunden sein, z. B. die (Eingabe-) Netzwerke 902, 904, 906 und (Ausgabe-) Netzwerke 908, 910, 912. Die
Verbindungen kdnnen Schalter sein, wie z. B. in Bezug auf Fig. 7A und Fig. 7B erlautert. In einer Ausfuh-
rungsform weist jedes Netzwerk zwei Unternetzwerke (oder zwei Kanale auf dem Netzwerk) auf, z. B. eines
fur das Datenpfad-Netzwerk aus Fig. 7A und eines fir das Flusssteuer- (z. B. Gegendruck-) Pfadnetzwerk aus
Fig. 7B. Als ein Beispiel ist das lokale Netzwerk 902 (z. B. als Steuerungszwischenverbindung eingerichtet)
als mit dem Steuereingabepuffer 922 geschaltet (z. B. verbunden) dargestellt. In dieser Ausfihrungsform kann
ein Datenpfad (z. B. ein Netzwerk wie in Fig. 7A) den Steuereingabewert (z. B. Bit oder Bits) (z. B. ein Steuer-
Token) tragen, und der Flusssteuerpfad (z. B. das Netzwerk) kann das Gegendrucksignal (z. B. Gegendruck-
oder Nicht-Gegendruck-Token) von dem Steuereingabepuffer 922 tragen, um z. B. dem vorgeschalteten Er-
zeuger (z. B. PE) anzuzeigen, dass ein neuer Steuereingabewert nicht in den Steuereingabepuffer 922 zu
laden (z. B. senden) ist, bis das Gegendrucksignal angibt, dass Platz in dem Steuereingabepuffer 922 fiir den
neuen Steuereingabewert (z. B. von einer Steuerausgabepuffer des vorgeschalteten Erzeugers) vorhanden ist.
In einer Ausfiihrungsform kann der neue Steuereingabewert nicht in den Steuereingabepuffer 922 eintreten,
bis sowohl (i) der vorgeschaltete Erzeuger das Gegendrucksignal ,Platz verfligbar von dem ,Steuereingabe*“-
Puffer 922 empfangt, als auch (ii) der neue Steuereingabewert von dem vorgeschalteten Erzeuger gesendet
wird, und dies z. B. das Verarbeitungselement 900 anhalt, bis dies geschieht (und Platz in dem bzw. den Ziel-
ausgabepuffer(n) verfigbar ist).

[0062] Der Dateneingabepuffer 924 und der Dateneingabepuffer 926 kénnen in dhnlicher Weise arbeiten, z.
B. ist das lokale Netzwerk 904 (z. B. als eine Datenzwischenverbindung (im Gegensatz zur Steuerung) einge-

18/134

DE 10 2018 005 216 A1 2019.02.21

richtet) als mit dem Dateneingabepuffer 924 geschaltet (z. B. verbunden) dargestellt. In dieser Ausfiihrungs-
form kann ein Datenpfad (z. B. ein Netzwerk wie in Fig. 7A) den Dateneingabewert (z. B. Bit oder Bits) (z. B.
ein Datenfluss-Token) tragen, und der Flusssteuerpfad (z. B. das Netzwerk) kann das Gegendrucksignal (z. B.
Gegendruck- oder Nicht-Gegendruck-Token) von dem Dateneingabepuffer 924 tragen, um z. B. dem vorge-
schalteten Erzeuger (z. B. PE) anzuzeigen, dass ein neuer Dateneingabewert nicht in den Dateneingabepuffer
924 zu laden (z. B. senden) ist, bis das Gegendrucksignal angibt, dass Platz in dem Steuereingabepuffer 924
fir den neuen Dateneingabewert (z. B. von einer Datenausgabepuffer des vorgeschalteten Erzeugers) vor-
handen ist. In einer Ausfiihrungsform kann der neue Dateneingabewert nicht in den Dateneingabepuffer 924
eintreten, bis sowohl (i) der vorgeschaltete Erzeuger das Gegendrucksignal ,Platz verfiigbar® von dem ,Daten-
eingabe“-Puffer 924 empfangt, als auch (ii) der neue Dateneingabewert von dem vorgeschalteten Erzeuger
gesendet wird, und dies z. B. das Verarbeitungselement 900 anhalt, bis dies geschieht (und Platz in dem bzw.
den Zielausgabepuffer(n) verfiigbar ist). Ein Steuerausgabewert und/oder Datenausgabewert kénnen in ihren
jeweiligen Ausgabepuffern (z. B. 932, 934, 936) angehalten werden, bis ein Gegendrucksignal anzeigt, dass
Platz in dem Eingabepuffer fiir das bzw. die nachgeschalteten Verarbeitungselemente verfiigbar ist.

[0063] Ein Verarbeitungselement 900 kann von der Ausfiihrung abgehalten werden, bis seine Operanden (z.
B. ein Steuereingabewert und sein bzw. seine entsprechender/n Dateneingabewert oder -werte) empfangen
werden und/oder bis Platz in dem/den Ausgabepuffer(n) des Verarbeitungselements 900 fiir Daten vorhanden
ist, die durch die Ausfiihrung der Operation fiir diese Operanden zu erzeugen sind.

Speicherschnittstelle

[0064] Die Abfrageadressdatei- (RAF) Schaltung, von der eine vereinfachte Version in Fig. 10 gezeigt ist,
kann fir die Ausfiihrung von Speicheroperationen verantwortlich sein und dient als Vermittler zwischen der
CSA-Struktur und der Speicherhierarchie. Als solche kann die Hauptaufgabe der Mikroarchitektur der RAF
darin bestehen, das AulRer-Reihenfolge-Speichersubsystem mit der In-Reihenfolge-Semantik der CSA-Struk-
tur zu rationalisieren. In dieser Eigenschaft kann die RAF-Schaltung mit Abschlusspuffern ausgestattet sein,
z. B. warteschlangenahnlichen Strukturen, welche die Speicherantworten neu ordnen und diese zur Struktur
in der Anforderungsreihenfolge zuriickflihren. Die zweite Hauptfunktionalitat der RAF-Schaltung kann darin
bestehen, Unterstiitzung in Form einer Adressumsetzung und eines Seitenwanderers bereitzustellen. Einge-
hende virtuelle Adressen kénnen unter Verwendung eines kanalassoziativen Adressenlibersetzungspuffers
(Translation Lookaside Puffer - TLB) in physische Adressen umgesetzt werden. Zum Bereitstellen einer brei-
ten Speicherbandbreite kann jede CSA-Kachel eine Vielzahl von RAF-Schaltungen aufweisen. Wie bei den
verschiedenen PEs der Struktur kbnnen die RAF-Schaltungen in einem Datenflussstil durch Priifen auf Ver-
fugbarkeit der Eingabeargumente und Ausgabepufferung, wenn notwendig, vor dem Auswahlen eines Spei-
cherbetriebs zur Ausfiihrung betrieben werden. Im Gegensatz zu einigen PEs wird die RAF-Schaltung jedoch
zwischen mehreren verschiedenen gemeinsam angeordneten Speicheroperationen gemultiplext. Eine gemul-
tiplexte RAF-Schaltung kann zum Minimieren des Bereichs oberhalb ihrer verschiedenen Subkomponenten
verwendet werden, z. B. zum gemeinsamen Nutzen des Accelerator Cache Interface (ACI) -Ports (ausfiihrli-
cher in Abschnitt 3.4 beschrieben), der gemeinsam genutzten Virtualspeicher (SVM)-Support-Hardware, Mez-
zanine-Netzwerkschnittstelle und anderen Hardware-Verwaltungseinrichtungen. Es kann jedoch einige Pro-
grammeigenschaften geben, die diese Wahl motivieren. In einer Ausflihrungsform muss ein (z. B. giltiger)
Datenflussgraph den Speicher in einem gemeinsam genutzten virtuellen Speichersystem abfragen. Speicher-
latenzgebundene Programme, wie z. B. Graph-Traversierungen, kénnen viele getrennte Speicheroperationen
benutzen, um die Speicherbandbreite aufgrund des speicherabhangigen Steuerflusses zu sattigen. Obwonhl
jede RAF gemultiplext sein kann, kann ein CSA eine Vielzahl (z. B. zwischen 8 und 32) RAFs bei einer Kachel-
Granularitat aufweisen, um eine adaquate Bandbreite bereitzustellen. RAFs kénnen mit dem Rest der Struktur
Uber sowohl das lokale Netzwerk als auch Mezzanine-Netzwerk kommunizieren. Wenn die RAFs gemultiplext
sind, kann jede RAF mit mehreren verschiedenen Ports in dem lokalen Netzwerk vorgesehen sein. Diese Ports
kénnen als minimallatenter, hochdeterministischer Pfad zum Speicher zur Verwendung durch latenzsensitive
oder Hochbandbreiten-Speicheroperationen dienen. Zusatzlich kann eine RAF mit einem Mezzanine-Endpunkt
vorgesehen sein, der z. B. einen Speicherzugriff auf Laufzeitdienste und entfernte Benutzerebenen-Speicher-
zugangseinrichtungen bereitstellt.

[0065] Fig. 10 veranschaulicht eine Abfrage-Adressdatei (RAF)-Schaltung 1000 gemafR Ausfiihrungsformen
der Offenbarung. In einer Ausfihrungsform kann zur Zeit der Konfiguration die Speicherlast- und -speiche-
roperationen, die in einem Datenflussgraphen waren, in Registern 1010 spezifiziert werden. Die Bégen zu
diesen Speicheroperationen in den Datenflussgraphen kénnen dann mit den Eingabewarteschlangen 1022,
1024 und 1026 verbunden werden. Die Bégen aus diesen Speicheroperationen missen somit die Abschluss-
puffer 1028, 1030 oder 1032 verlassen. Abhangigkeits-Token (die einzelne Bits sein kénnen) kommen in die

19/134

DE 10 2018 005 216 A1 2019.02.21

Warteschlangen 1018 und 1020. Abhangigkeits-Token mussen die Warteschlange 1016 verlassen. Der Ab-
hangigkeits-Tokenzahler 1014 kann eine kompakte Reprasentation einer Warteschlange sein und eine Anzahl
von Abhangigkeits-Token, die fir eine vorgegebene Eingabewarteschlange verwendet werden, nachverfolgen.
Wenn die Abhangigkeits-Tokenzahler 1014 gesattigt sind, kdnnen keine zusétzlichen Abhangigkeits-Token flir
neue Speicheroperationen generiert werden. Entsprechend kann eine Speicherordnungsschaltung (z. B. eine
RAF in Fig. 11A) das Planen neuer Speicheroperationen anhalten, bis die Abhangigkeits-Tokenzahler 1014
ungesattigt werden.

[0066] Als ein Beispiel fiir eine Last geht eine Adresse in der Warteschlange 1022 ein, die der Planer 1012 mit
einer Last in 1010 in Ubereinstimmung bringt. Ein Abschlusspufferslot fiir diese Last wird in der Reihenfolge
zugeordnet, in der die Adresse eingegangen ist. Unter der Voraussetzung, dass diese bestimmte Last in dem
Graphen keine spezifizierten Abhangigkeiten aufweist, werden die Adresse und der Abschlusspufferslot durch
den Planer (z. B. durch die Anweisung durch den Speicher 1042) aus dem Speichersystem gesendet. Wenn
das Ergebnis zum Mux 1040 zuriickkehrt (schematisch dargestellt), wird dieses in dem Abschlusspuffersiot,
das dieser spezifiziert, gespeichert (z. B. wenn es den Zielslot vollstdndig entlang durch das Speichersystem
getragen hat). Der Abschlusspuffer sendet die Ergebnisse zuriick in das lokale Netzwerk (z. B. lokales Netz-
werk 1002, 1004, 1006 oder 1008), in der Reihenfolge, in der die Adressen eingegangen sind.

[0067] Die Speicher kénnen ahnlich sein, aul’er dass sowohl die Adresse als auch die Daten eingehen mis-
sen, bevor irgendeine Operation an das Speichersystem ausgesendet wird.

Cache

[0068] Datenflussgraphen kénnen eine Profusion von Anfragen (z. B. Wortgranularitat) parallel erzeugen. Da-
her stellen bestimmte Ausfihrungsformen des CSA in Cache-Untersystem mit ausreichender Bandbreite be-
reit, um den CSA zu bedienen. Eine stark gestapelte Cache-Mikroarchitektur, wie sie beispielsweise in Fig. 11A
gezeigt ist, kann benutzt werden. Fig. 11A veranschaulicht eine Schaltung 1100 mit mehreren Abfrage-Adress-
datei (RAF)-Schaltungen (z. B. RAF-Schaltung (1)), die zwischen mehreren Beschleuniger-Kacheln (1108,
1110, 1112, 1114) und mehreren Cache-Banken (z. B. Cache-Bank 1102) gemal Ausfiihrungsformen der Of-
fenbarung gekoppelt sind. In einer Ausfihrungsform kann die Anzahl der RAFs und Cache-Béanke in einem
Verhaltnis von entweder 1:1 oder 1:2 sein. Cache-Banke kénnen volle Cache-Zeilen enthalten (z. B. im Gegen-
satz zur gemeinsamen Nutzung durch Wort), wobei jede Zeile genau eine Heimat im Cache hat. Cache-Zeilen
kénnen Uber eine Pseudozufallsfunktion auf Cache-Banke abgebildet werden. Der CSA kann das SVM-Modell
zur Integration mit anderen gekachelten Architekturen tibernehmen. Bestimmte Ausflihrungsformen weisen
ein ACI-Netzwerk (ACI - Accelerator Cache Interconnect, Beschleuniger-Cache-Zwischenverbindung), das die
RAFs mit den Cache-Banken verbindet. Dieses Netzwerk kann die Adresse und Daten zwischen den RAFs
und dem Cache Ubertragen. Die ACI-Topologiekann eine kaskadierte Crossbar sein, z. B. als ein Kompromiss
zwischen Latenz- und Implementierungskomplexitat.

[0069] Fig. 11B veranschaulicht einen Transaktionsmechanismus, in dem Cache-Zeilen mit Informationen
Uber die Quelle eines Lese- oder Schreibzugriffs markiert sind, gemaf Ausfiihrungsformen der Erfindung. Da
Lese- und Schreibgerate verteilt sind, werden Satze von Lese- und Schreibgeraten in Transaktionsklassen
gruppiert, die keinen Transaktionsfehlschlag induzieren. Die Struktur initiiert und beendet Transaktionen durch
eine Sondernachricht.

[0070] Fig. 11B zeigt die Architektur auf Systemebene der Transaktionsschnittstelle. Zu der Kompilationszeit
werden Speicherzugriffsstreams mit einem bestimmten Transaktionsidentifizierer in Zusammenhang gebracht.
Dies ermdglicht, dass grolRere Teile der Struktur an derselben Transaktion arbeiten. Zur Laufzeit beginnen
Transaktionen durch Senden einer Nachricht zu der Transaktionssteuerung, die die Transaktion als aktiv mar-
kiert. Nachfolgende Abfragen von den Transaktionszugangseinrichtungen werden als mit der aktiven Trans-
aktion im Cache in Zusammenhang gebracht markiert.

[0071] Die Transaktion wird durch Senden einer anderen Nachricht zu der Steuerung abgeschlossen, die
Markierungsbits im Cache I6scht. Wenn keine Konflikte aufgetreten sind, wird die Transaktion erfolgreich ab-
geschlossen und die Struktur wird informiert. Wenn jedoch ein Konflikt aufgetreten ist, wird die Struktur Gber
einen Fehlschlag informiert. Jegliche Cache-Aktualisierungen werden zuriickgesetzt, um den Zustand vor der
Transaktion wiederherzustellen.

20/134

DE 10 2018 005 216 A1 2019.02.21

[0072] Optional wird bei einem Fehlschlag eine Software aufgerufen, um den potentiellen Konflikt zu reparie-
ren. Die Software kann reagieren, indem eine weniger parallele Version des Programms, zum Beispiel eine
sequenzielle Version auf einem Kern zu dem Punkt eines vorherigen sicheren Prifpunkts, ausgefihrt wird.

[0073] In Ausflhrungsformen schlief3t dieser Mechanismus einen Begriff von Checkpointing und eine Benach-
richtigung Uber den Teil der Struktursoftware ein. Die Struktur beginnt einen Prifpunkt und fahrt mit der Aus-
fihrung fort. Zum Ende der Transaktion muss die Struktur moglicherweise den Speicher synchronisieren, zum
Beispiel durch das Ausgeben von Speicher-Fences. Eine Erweiterung des Basismechanismus schlief3t ein
Uberwachen der Festschreibung von transaktionsbezogenen Aktivitaten in der Hardware ein.

[0074] Von einem Transaktionsmechanismus gemal Ausfiihrungsformen der Erfindung kann gewlinscht sein,
dass er atomare Operationen unterstiitzt, die Operationen sind, in denen ein Speicherort gelesen wird, der
Wert modifiziert wird und dann der neue Wert zurtick in denselben Speicherort gespeichert wird. Dies wird
»-atomar* durchgefihrt, was bedeuten soll, dass kein anderer Agent, der am Speicher agiert, auch denselben
Lesewert zum Bearbeiten verwenden kann. Sie missen entweder einen vorherigen Wert oder den resultieren-
den Wert dieser atomaren Aktion verwenden. Mit anderen Worten, wenn mehrere Agenten jeweils versuchen,
einen Speicherort zu inkrementieren, dann wird jeder der individuellen Werte nur durch einen Agenten, der
am Speicher agiert, erzeugt.

[0075] Da Arithmetik an Datenwerten in der CSA-Struktur durchgefuhrt wird, ermdéglicht diese Losung, dass
die Modifikation an dem Datenwertteil der atomaren Operation in der rdumlichen Struktur stattfindet. Ausfih-
rungsformen kénnen einschliel3en:

» Ausgeben einer Ladeoperation zu dem Cache, die anzeigt, dass eine atomare Operation an den Daten
an dem spezifizierten Ort initiiert wird. Der Wert der Daten wird zusammen mit einem Signal, das anzeigt,
ob eine atomare Operation erfolgreich initiiert wurde oder nicht, zurtickgeleitet. Eine atomare Operation
konnte nicht erfolgreich initiiert werden, wenn eine andere atomare Operation durch einen anderen Agen-
ten, der am Speicher agiert, schon im Gange ist.

* Annehmen, dass die atomare Operation initiiert wurde, dann werden die Daten durch die geeigneten
Rechenelemente im Graphen modifiziert.

» Ausgeben einer Speicheroperation zu dem Cache mit den modifizierten Daten. Diese Speicheroperation
ist eine bedingte Speicherung, die nur erfolgreich sein wird, wenn der Speicherort fir die gesamte Zeit-
spanne von der Ladung zur Speicherung unter der Cache-Koharenzsteuerung des CSA-Cache gestanden
hat. Wenn er unter der Steuerung steht, dann wird die Speicherung durchgefiihrt und eine Erfolgsangabe
wird zuriickgeliefert, andernfalls wird eine Speicherungsfehlschlagangabe zuriickgeliefert.

[0076] Gemal diesem Ansatz wird eine Sperre-im-Gange-Adresse an jeder Cache-Bank im Cache gehalten.
Sie wird als frei analysiert, wenn die anféngliche atomare Ladeoperation auftritt und dann geschrieben wird,
sodass sie durch die atomare Ladung gehalten wird. Sie wird durch eine beliebige Cache-Operation, die in den
Cache schreibt, oder eine beliebige Operation, die die Cache-Zeile aus dem Cache entfernt, sodass sie durch
einen Agenten geschrieben wird, untersucht. Wenn eines dieser beiden Ereignisse stattfindet, dann wird der
Sperre-im-Gange-Adressen-Latch ungltig gemacht. Die resultierende atomare Speicherung wird fehlschla-
gen, wenn ein anderes Schreibgerat fir den Ort in der Zwischenzeit zwischen dem Eintreffen der atomaren
Ladung und dem Eintreffen der atomaren Speicherung erschienen ist. Es sei zu beachten, dass das Sperre-
im-Gange-Adressregister auch ein Timeout aufweisen wird.

[0077] Fig. 11C bis Fig. 11J veranschaulicht eine Unterstitzung fir Backup und Wiederholung unter Verwen-
dung von Epochen im Cache-/Speicheruntersystem gemaf Ausfiihrungsformen der Erfindung. In konventio-
nellen Computer-Pipelines, die einen Befehlszeiger zum Anzeigen eines Strings von Befehlen verwenden, gibt
es typischerweise ein Zeitfenster, das von der Initiierung der Arbeit an einem Befehl bis zur Zurlickziehung ei-
nes Befehls live gehalten werden. In dem Fenster befinden sich viele Befehle in-flight. Wahrend dieses Fens-
ters kann die Pipeline immer zu einem beliebigen Live-Befehl im Fenster zuriickgesetzt werden, und dies wird
fur Ereignisse wie Zweigpradiktionsfehler und andere spekulative Aktionen, die korrekt erneut ausgefiihrt wer-
den mussen, durchgefiihrt. Es gibt jedoch weder einen zentralen Steuermechanismus mit Graphausfiihrung
noch eine Befehlszeigerangabe, damit eine Erzeugung fir ein Arbeitsfenster ermdglicht wird. Ein Backup-An-
satz, der zweckmalig ist, periodisch Speicherausziige zu erstellen, die einen Zeitpunkt bei der Ausfiihrung
des Graphen reprasentieren und zu denen zurlickgesetzt werden kann. Die Zeit von einem solchen Speicher-
auszug zum nachsten wird in dieser Offenbarung eine ,Epoche” genannt. Ausfiihrungsformen der Erfindung
schlieRen Mechanismen ein, die in der Cache-Hierarchie durchgefiihrt werden, um die Ausflihrung mit Spei-
cherausziigen und die Fahigkeit zum Unterstiitzen eines Backups zu dem jlingsten Speicherauszug zu unter-

21/134

DE 10 2018 005 216 A1 2019.02.21

stitzen. Ein Ansatz mit gestaffelter Extraktion kann in Verbindung mit dem Erstellen von Speicherausziigen
in der rdumlichen Struktur verwendet werden.

[0078] Die Unterstiitzung fir die Ausfiihrung von Epochen im Cache-/Speichersystem kann einschlie3en:
» Akkumulieren von Speicherschreibzugriffen, die seit der Initierung der Epoche aufgetreten sind.

» Bewahren der alten Werte (Datenwert, der zum Start der Epoche vorhanden war), sodass in dem Fall,
dass das System zum Start der Epoche zuriickgesetzt werden muss, alle urspriinglichen Datenwerte
verflgbar sind.

« Steuern der Sichtbarkeit von Anderungen an Speicherdatenwerten in der Mitte einer Epoche von sichtbar
fur alle anderen Agenten im Cache-Koharenzsystem.

+ Erhalten der Erlaubnis, die eindeutige Kopie einer Zeile zu besitzen, vom Koharenzprotokoll wéhrend
der Ausfiihrung der Epoche.

« Am Ende einer Epoche, Sichtbarmachen aller Anderungen, die in der Epoche auftraten, fiir alle Agenten
in einer atomaren Aktion.

[0079] Fig. 11C zeigt den Plan, wie eine Epochenunterstiitzung im Cache-/Speichersystem erreicht werden
kann. Neue Werte werden in Cache-Eintrdgen akkumuliert, wahrend alte Werte, die vor dem Start der Epoche
vorhanden waren, als sich im Speicher befindlich garantiert werden. Falls eine Riicksetzung zum Start der
Epoche erforderlich ist, werden alle neuen Werte unglltig gemacht. Wenn eine erfolgreiche Bewegung zur
nachsten Epoche stattfindet, werden dem Cache-Kohéarenzprotokoll alle neuen Werte als sichtbar deklariert.
Bei Fig. 11C werden beispielsweise in Schritt C1 alle neu erstellten Werte W1 im Cache CA gehalten, wahrend
Epoche n+1 ausgefihrt wird. Falls eine Ricksetzung bendtigt wird, werden beispielsweise alle Werte der Epo-
che n+1 ausgeldscht, um die Werte der Epoche n verfiigbar zu machen. AnschlieRend folgt das Ubergehen zu
Epoche n+2, umfassend Sichtbarmachen aller erzeugten Werte der Epoche n+1 fiir das Cache Koharenzpro-
tokoll, Starten des Akkumulierens von erzeugten Werten der Epoche n+2 in den Cache CA und, wie bendtigt,
Verschieben der Werte der Epoche n+1 in den Speicher SP. Fur jene geschriebenen Werte W2 die zum Start
der Epoche n+1 live waren und nicht im Cache CA verbleiben kdnnen, folgt gemal Schritt C2, Sicherstellen,
dass eine Kopie im Speicher SP ist.

[0080] Das Cache-Koharenzprotokoll kann drei Operationen zum Unterstlitzen der Epochenausfiihrung ein-
schlieRen. Die erste derartige Operation (Speicherabgleich-Schreibzugriff) ist ein Verfahren des Sicherstellens,
dass der Speicherwert mit einem im Cache gehaltenen Wert Gbereinstimmt, wie in Fig. 11D gezeigt. Diese
Operation andert einen Cache-Koharenzzustand nicht; sie stellt lediglich sicher, dass die Daten aus einem
Cache-Eintrag in den Speicher geschrieben werden.

Bei Fig. 11D wird beispielsweise der Speicher SP an den Cache-Wert ,Speicherableich-Schreibzugriff* ange-
passt und der Cache-Zustand unverandert belassen und die Tag Verzeichnisse T unverandert belassen. Dies
stellt im Wesentlichen nur eine Buchflihrungsoperation dar, wobei das Bezugszeichen D1 eine Zeile in Besitz
im Cache veranschaulicht. In unseren gegenwartigen Protokollen wiirde diese neue Option unter Verwendung
eines Zugmodells implementiert werden (Anfragen zum Verschieben, Warten auf eine Zuganfrage).

[0081] Die zweite Protokolloperation (Besitzfreigabe-Keine-Daten) ist ein Verfahren zum Freigeben des Be-
sitzes einer Zeile und Spezifizieren, dass die Speicherkopie der gegenwartige zu verwendende Wert ist, wie
in Fig. 11E gezeigt. Diese Operation andert den Cache-Koharenzsteuerzustand im Tag-Verzeichnis, sodass
er nicht zu dem Cache als den Ort zum Erhalten von Daten zeigt, sondern sie stattdessen aus dem Speicher
zu bekommen.

Bei Fig. 11E wird beispielsweise der Besitz der Zeile abgegeben, ohne Daten bereitzustellen (nachfolgende
Anforderer wiirden eine Speicherkopie verwenden; ,Besitzfreigabe-Keine-Daten). Das Tag-Verzeichnis T ent-
fernt nur den Datensatz der gecachten Zeile in Besitz, daher ist der Speicher jetzt der Bereitsteller von Daten,
wobei das Bezugszeichen E1 eine Zeile in Besitz im Cache veranschaulicht. Dies liegt sehr nahe an einer
Operation einer ,sauberen Raumung* in unseren gegenwartigen Protokollen.

[0082] Die dritte Operation, in Fig. 1F veranschaulicht, ist die Fahigkeit, auf eine Untersuchung, die in diesem
Cache nach Daten sucht, zu reagieren und anzuzeigen, dass es keine Daten gibt, und stattdessen die Spei-
cherkopie zu erhalten. Da es gewlinscht ist, die Epochen auf eine atomare Art und Weise auszufiihren, sodass
fur jeden Beobachter entweder die gesamten Epochenénderungen stattgefunden haben oder keine Anderun-
gen stattgefunden haben, wird durch diese Operation eine Weise des Handhabens von Untersuchungen von
anderen Beobachtern bereitgestellt.

22/134

DE 10 2018 005 216 A1 2019.02.21

Fig. 11F veranschaulicht die Fahigkeit, einer Untersuchung U zu sagen, dass der Cache CA tats&chlich nicht
die Daten, die man haben will, aufweist, und stattdessen die Kopie im Speicher SP verwendet, wobei das
Bezugszeichen F1 eine Zeile in Besitz im Cache veranschaulicht. In gegenwartigen Protokollen wiirde dies eine
RSPI-Antwort sein. In Laufbedingung mit einem ,Speicherabgleich-Schreibzugriff* wirde die Untersuchung
entweder den noch nicht aus dem Cache CA gezogenen Wert verwenden oder den RSPl empfangen und den
Wert aus dem Speicher SP holen.

[0083] Ein zuséatzlicher Cache-Zustand, in Fig. 11G veranschaulicht, kann zum Unterscheiden zwischen ko-
harenten Zeilen in Besitz gegenliber spekulativen Zeilen in Besitz bereitgestellt werden. Diese Metadaten in
Cache-Koharenzprotokoll-Unterstiitzungsstrukturen unterscheiden nicht zwischen den beiden unterschiedli-
chen Besitz-Zustédnden und zeichnen nur auf, dass dieser Cache der Besitzer der Zeile ist.

Fig. 11G veranschaulicht daher zwei Zustande Z1 und Z2 im Cache CA, aber beide sind der in-Besitz-Zustand,
soweit es das Tag-Verzeichnis betrifft, wobei Zustand Z1 der ,Spekulativ in Besitz* Zustand und Zustand Z2
der ,in Besitz“ Zustand ist.

[0084] Als Nachstes, um die Epochenunterstitzung zu veranschaulichen, zeigt Fig. 11H einen Schreibzugriff
von der raumlichen Struktur in den Cache, wie in Fig. 11 H gezeigt. Wenn der Schreibzugriff auf eine speku-
lative Zeile in Besitz trifft, dann wird die Zeile aktualisiert. Wenn der Schreibzugriff eine regulare Zeile in Besitz
trifft, dann wird zuerst mit einer ,Speicherabgleich-Schreibzugriff“-Operation veranlasst, dass die Zeile mit dem
Speicher Gbereinstimmt. Dann wird die Zeile zu spekulativ in Besitz und aktualisiert abgeandert. Wenn der
Schreibzugriff keine In-Besitz-Version der Zeile findet, dann wird dem Cache-Koharenzprotokoll eine ,Anfra-
ge fur den Besitz‘(RFO)-Anweisung gesendet. Beim Empfang der Fillung und somit des Besitzes der Zeile
wird die Quelle der Fillung untersucht. Wenn sie vom Speicher kam, dann ist der Speicher schon auf dem
neuesten Stand und es wird keine ,Speicherabgleich-Schreibzugriff‘-Anweisung ausgegeben. Wenn sie nicht
vom Speicher kam, dann wird eine ,Speicherabgleich-Schreibzugriff“-Anweisung ausgegeben. Danach wird
die Zeile zu spekulativ in Besitz und aktualisiert abgeéandert.

[0085] Es sei zu beachten, dass, wenn die Schreibanfrage den Cache verfehlt und eine Zeile im Cache zu-
weisen muss, es Platz fur die neue Zeile geben muss, ohne eine spekulative Zeile zu raumen. Ein Ansatz
zum Handhaben von diesem besteht darin, dass, wenn die Zuweisung fir die letzte Zeile im Satz ist, der nicht
spekulativ in Besitz ist, dann ein Epochenende deklariert wird und der Transfer von sowohl der rdumlichen
Struktur als auch des Cache zur nachsten Epoche initiiert wird. Eine beliebige Schwelle wiirde zum Initiieren
des nachsten Speicherauszugs funktionieren.

[0086] Fig. 11H veranschaulicht mehrere Schritte, zuerst, Finden einer Zeile in Besitz oder Erhalten von einer,
falls notwendig (RFO) H1, zweitens, Durchfiihren eines ,Speicherabgleich-Schreibzugriffs“ von urspriinglichen
Daten in dem Speicher und drittens, Abandern des Cache-Zustands zu ,spekulativ in Besitz“ und Durchfiihren
des Schreibzugriffs SZ. Es sei zu beachten, dass, wenn erforderlich, RFO und Fullung aus Speicher kommen,
~Speicherabgleich-Schreibzugriff* nicht durchgefiihrt werden muss. Wenn die Zeile schon ,spekulativ in Be-
sitz* ist, dann folgt nur Durchfiihren H2 des Schreibzugriffs SZ. Die néachste Aktion ist der Ubergang von einer
Epoche zur nachsten. Die Cache-Koharenzprotokoll-Metadaten in den Tag-Verzeichnissen zeichnen auf, dass
dieser Cache alle Zeilen besitzt, die in dieser Epoche geschrieben werden. Daher wird eine Flash-Anderungs-
operation durchgefiihrt, um den Koharenzzustand zu andern, der im Cache fiir alle Zeilen, die spekulativ in
Besitz oder nur in Besitz sind, aufgezeichnet ist, wie in Fig. 111 gezeigt. Keine Aktion wird durch die Cache-
Koharenz-Metadaten bendtigt, die sich in den Tag-Verzeichnissen befinden.

Fig. 111 veranschaulicht im Endeffekt eine Flash-Loschoperation, die alle ,spekulativ in Besitz“-Zustande zu
»in Besitz* andert, d.h. alle Schreibzugriffe SZ sind jetzt fir das Cache-Koharenzprotokoll sichtbar 11.

[0087] Die letzte Aktion bei der Unterstiitzung der Epochenausfiihrung ist ein Mechanismus zum Zuriicksetzen
der Cache-/Speicherhierarchie zu dem Punkt des jingsten Epochenstarts (dem Speicherauszug). Dies ist in
Fig. 11J veranschaulicht. Der Ansatz besteht darin, alle spekulativen Zeilen in Besitz ungultig zu machen.
Dies kann mit einer Flash-Léschoperation durchgefiihrt werden. Nun, obwohl die Cache-Koharenz-Metadaten
diese Zeilen als durch diesen Cache zu besitzend aufzeichnen, wenn eine Untersuchung stattfindet, besteht
die Antwort darin, die Daten im Speicher zu finden.

[0088] Fig. 11J zeigt eine zuséatzliche Leistungsverbesserung, die zwei ungultige Zeilentypen bendtigen wur-
de, eine reguldre ungultige Zeile und eine Flash-unglltig gemachte Zeile. Beide wirden als unglltige Zeilen
behandelt werden, mit der Ausnahme eines Demon, der lauft und den Cache nach Flash-ungiltig gemachten
Zeilen durchkammt. Wenn diese gefunden werden, wird er ,Besitzfreigabe-Keine-Daten“-Anweisungen aus-
geben, um sicherzustellen, dass die Cache-Koharenz-Metadaten aufzeichnen, dass der Speicher der Ort ist,

23/134

DE 10 2018 005 216 A1 2019.02.21

um die Daten zu erhalten, und nicht dieser Cache. Diese Zeilen wiirden dann zu dem reguldren ungultigen
Zustand geandert werden.

Wir kénnen alle ,spekulativ in Besitz*-Zeilen Flash-ungiltig machen und das RSPI-Merkmal zum Saubern
jeglicher Kommunikation von anderen Beobachtern verwenden, was sie zwingen wird, die Speicherkopie zu
bekommen. Wenn die Struktur eine Zeile erneut bertihren will, muss sie eine RFO zu dem Kohéarenzsystem
ausgeben, das die Daten aus dem Speicher holen wird. Eine zusétzliche Leistungsverbesserung kénnte sein,
zwei ungultige Zustande aufzuweisen und einen Demon herumlaufen zu lassen und jegliche Flash-ungultig
gemachte Zeilen in wahrlich ungultige Zeilen sauber zu réumen.

Gleitkomma-Unterstiitzung

[0089] Bestimmte HPC-Anwendungen sind durch ihre Bedarf an einer signifikanten Gleitkomma-Bandbreite
gekennzeichnet. Um diesen Bedarf zu erfiillen, kdnnen Ausfiihrungsformen eines CSA mit einer Vielzahl (z.
B. jeweils zwischen 128 und 256) von Gleitkomma-Additions- und Multiplikations-PEs bereitgestellt werden, z.
B. in Abhéngigkeit von der Kachelkonfiguration. Ein CSA kann einige andere erweiterte Genauigkeitsmodi be-
reitstellen, z. B. zum Vereinfachen der Mathematikbibliothek-Implementierung. CSA-Gleitkomma-PEs kdnnen
sowohl einzelne als auch doppelte Genauigkeit unterstiitzen, aber PEs mit geringerer Genauigkeit kbnnen die
Maschinenlern-Arbeitslasten unterstitzen. Ein CSA kann eine um eine Gré3enordnung héhere Gleitkomma-
Leistung als ein Prozessorkern bereitstellen. In einer Ausfuhrungsform wird zusétzlich zur Erhéhung der Gleit-
komma-Bandbreite die Energie, die in Gleitkomma-Operationen verbraucht wird, reduziert, um alle Gleitkom-
ma-Einheiten zu versorgen. Zum Reduzieren von Energie kann ein CSA selektiv die Bits niedriger Ordnung der
Gleitkomma-Multiplizierer-Anordnung durchschalten. Bei der Untersuchung des Verhaltens der Gleitkomma-
Arithmetik beeinflussen die Bits niedriger Ordnung des Multiplikationsarrays oft nicht das endgiiltige, gerundete
Produkt. Fig. 12 veranschaulicht einen Gleitkomma-Multiplizierer 1200, der in drei Gebiete (Ergebnisgebiet,
drei potentielle Ubertraggebiete (1202, 1204, 1206) und Gebiet mit Gate) gemaR Ausfiihrungsformen der Of-
fenbarung unterteilt ist. In bestimmten Ausfiihrungsformen beeinflusst das Ubertraggebiet wahrscheinlich das
Ergebnisgebiet, und es ist unwahrscheinlich, dass das Gebiet mit Gate das Ergebnisgebiet beeinflusst. Bei der
Betrachtung eines Gebiets mit Gate aus g Bits kann der maximale Ubertrag wie folgt sein:

19 i1
carrygy SZ—Q%IZ

S S L

<Y—->—+

129 129

<g-1

Wenn bei diesem maximalen Ubertrag das Ergebnis des Ubertragsgebiets kleiner als 2c - g ist, wobei das
Ubertraggebiet ¢ Bits breit ist, kann das Gebiet mit Gate ignoriert werden, da es das Ergebnisgebiet nicht be-
einflusst. Das Erhdhen von g bedeutet, dass es wahrscheinlicher ist, dass das Gebiet mit Gate bendétigt wird,
wahrend das Erhdhen von ¢ bedeutet, dass das Gebiet mit Gate bei zufalliger Annahme unbenutzt bleibt und
deaktiviert werden kann, um einen Energieverbrauch zu vermeiden. In Ausflihrungsformen eines CSA-Gleit-
komma-Multiplikations-PE wird ein zweistufiger Pipeline-Ansatz benutzt, bei dem zuerst das Ubertraggebiet
bestimmt wird und dann das Gebiet mit Gate bestimmt wird, wenn festgestellt wird, dass dies das Ergebnis
beeinflusst. Wenn mehr Information tiber den Kontext der Multiplikation bekannt ist, stimmt ein CSA die GroRle
des Gebiets mit Gate aggressiver ab. Bei einer FMA kann das Multiplikationsergebnis zu einem Akkumulator
addiert werden, der oft viel gréRer als jeder der Multiplikanden ist. In diesem Fall kann der Addend-Exponent
vor der Multiplikation beobachtet werden, und die CSDA kann das Gebiet mit Gate entsprechend einstellen.
Eine Ausfiihrungsform des CSA weist ein Schema auf, in dem ein Kontextwert, der das Mindestergebnis einer
Berechnung bindet, zugehdrigen Multiplizierern bereitgestellt wird, um Minimum-Energie-Gating-Konfiguratio-
nen auszuwahlen.

Laufzeitdienste

[0090] In einer bestimmten Ausfiihrungsform weist ein CSA eine heterogene und verteilte Struktur auf, und
folglich miissen Laufzeitdienst-Implementierungen mehrere Arten von PEs in einer parallelen und verteilten
Weise aufnehmen. Obwohl Laufzeitdienste in einem CSA kritisch sein kénnen, kénnen sie im Vergleich zur
Berechnung auf Benutzerebene infrequent sein. Bestimmte Implementierungen konzentrieren sich daher auf
das Uberlagern von Diensten (iber Hardwareressourcen. Zur Erreichung dieser Ziele kénnen CSA-Laufzeit-
dienste als eine Hierarchie angegeben werden, wobei z. B. jede Schicht einem CSA-Netzwerk entspricht.
Auf Kachel-Level kann eine einzelne nach auRen weisende Steuerung Dienstbefehle an einen zugeordneten

24/134

DE 10 2018 005 216 A1 2019.02.21

Kern mit der CSA-Kachel akzeptieren oder senden. Eine Kachel-Level-Steuerung kann dazu dienen, regionale
Steuerungen an den RAFs zu koordinieren, z. B. unter Verwendung des ACI-Netzwerks. Im Gegenzug kdnnen
regionale Steuerungen lokale Steuerungen an bestimmten Mezzanine-Stopps im Netzwerk koordinieren. Auf
dem untersten Level kénnen dienstspezifische Mikroprotokolle Uber das lokale Netzwerk ausgefiihrt werden,
z. B. wahrend eines speziellen Modus, der durch die Mezzanine-Steuerung gesteuert wird. Die Mikroprotokolle
kénnen zulassen, dass jedes PE (z. B. PE-Klasse nach Typ) mit dem Laufzeitdienst gemaR eigenem Bedarf
interagiert. Die Parallelitat ist somit in dieser hierarchischen Organisation implizit und Operationen auf gerings-
tem Level kbnnen gleichzeitig stattfinden. Diese Parallelitét kann die Konfiguration einer CSA-Kachel zwischen
Hunderten von Nanosekunden bis einigen Mikrosekunden erméglichen, z. B. abhangig von der Konfigurati-
onsgréRe und ihrem Speicherplatz in der Speicherhierarchie. Ausfihrungsformen des CSA nutzen somit die
Eigenschaften von Datenflussgraphen, um die Implementierung jedes Laufzeitdienstes zu verbessern. Eine
Hauptbeobachtung ist, dass Laufzeitdienste mdglicherweise nur eine legale logische Ansicht des Datenfluss-
graphen bewahren missen, z. B. einen Zustand, der durch eine gewisse Reihenfolge von Ausfiihrungen des
Datenflussoperators erzeugt werden kann. Dienste brauchen im Allgemeinen keine temporare Ansicht des
Datenflussgraphen garantieren, z. B. den Zustand eines Datenflussgraphen in einem CSA zu einem spezifi-
schen Zeitpunkt. Dies kann es dem CSA ermdglichen, die meisten Laufzeitdienste auf verteilte, zeitverschach-
telte und parallele Weise durchzufihren, z. B. unter der Voraussetzung, dass der Dienst abgestimmt ist, um
die logische Ansicht des Datenflussgraphen zu bewahren. Das lokale Konfigurationsmikroprotokoll kann ein
paketbasiertes Protokoll sein, das dem lokalen Netzwerk Uberlagert ist. Konfigurationsziele kénnen in einer
Konfigurationskette organisiert sein, die z. B. in der Mikroarchitektur festgelegt ist. Strukturziele (z. B. PE-Ziele)
kdénnen einzeln konfiguriert werden, z. B. unter Verwendung eines einzigen zuséatzlichen Registers pro Ziel,
um eine verteilte Koordination zu erreichen. Zum Starten der Konfiguration kann eine Steuerung ein Aul3er-
Band-Signal ansteuern, das alle Strukturziele in seiner Nachbarschaft in einen nicht konfigurierten, pausier-
ten Zustand versetzt und Multiplexer in dem lokalen Netzwerk zu einer vordefinierten Konformation schwingt.
Wenn die Strukturziele (z. B. PE-Ziele) konfiguriert sind, d. h. sie vollstandig ihr Konfigurationspaket empfan-
gen, kénnen sie ihre Konfigurations-Mikroprotokoll-Register setzen und das unmittelbar nachfolgende Ziel (z.
B. PE), das als nachstes konfiguriert wird, unter Verwendung des nachfolgenden Pakets mitteilen. Es gibt
keine Beschrénkung fur die Grol3e eines Konfigurationspakets, und Pakete kénnen eine dynamisch variable
Lange aufweisen. Zum Beispiel kdnnen PEs, die konstante Operanden konfigurieren, ein Konfigurationspaket
aufweisen, das verlangert wird, um das konstante Feld (z. B. X und Y in Fig. 3B - Fig. 3C) aufzuweisen. Fig. 13
veranschaulicht eine in-Flight-Konfiguration eines Beschleunigers 1300 mit mehreren Verarbeitungselemen-
ten (z. B. PEs 1302, 1304, 1306, 1308) gemal’ Ausfiihrungsformen der Offenbarung. Nach der Konfiguration
kénnen die PEs den Gegenstand der Datenflusseinschrankungen ausfiihren. Kanale, die unkonfigurierte PEs
beinhalten, kénnen jedoch durch die Mikroarchitektur deaktiviert werden, z. B. verhindern, dass undefinierte
Operationen stattfinden. Diese Eigenschaften erméglichen Ausfiihrungsformen eines CSA das verteilte Initia-
lisieren und Ausfihren ohne jegliche zentralisierte Steuerung. Aus einem unkonfigurierten Zustand kann die
Konfiguration vollstandig parallel stattfinden, z. B. in vielleicht nur 200 Nanosekunden. Aufgrund der verteilten
Initialisierung von Ausfiihrungsformen eines CSA kénnen PEs jedoch aktiv werden, zum Beispiel Anforderun-
gen an den Speicher senden, lange bevor die gesamte Struktur konfiguriert ist. Die Extraktion kann ahnlich
wie die Konfiguration ablaufen. Das lokale Netzwerk kann angepasst werden, um Daten von jeweils einem Ziel
gleichzeitig zu extrahieren, und es werden Zustandsbits verwendet, um eine verteilte Koordination zu errei-
chen. Ein CSA kann die Extraktion so steuern, dass sie nicht-destruktiv ist, d. h. nach Abschluss der Extraktion
ist jedes extrahierbare Ziel in seinen Ausgangszustand zurtickgekehrt. In dieser Implementierung kann der
gesamte Zustand in dem Ziel in einem abtastungsahnlichen Ausgangsregister, das an das lokale Netzwerk
gebunden ist, zirkuliert werden. Es kann jedoch eine In-Place-Extraktion erreicht werden, indem neue Pfade
auf der Registeriibertragungsebene (RTL) eingefligt werden oder bestehende Leitungen verwendet werden,
um die gleichen Funktionen mit geringerem Aufwand bereitzustellen. Wie bei der Konfiguration wird die hier-
archische Extraktion parallel dazu erreicht.

[0091] Fig. 14 veranschaulicht einen Speicherauszug 1400 einer zeitverschachtelten in-Flight-Extraktion ge-
maR Ausflihrungsformen der Offenbarung. In einigen Verwendungsféllen der Extraktion, wie Checkpointing,
ist die Latenz moglicherweise kein Problem, solange der Strukturdurchsatz beibehalten wird. In diesen Fallen
kann die Extraktion auf zeitverschachtelt erfolgen. Diese Anordnung, die in Fig. 14 gezeigt ist, erlaubt es dem
groten Teil der Struktur, weiter auszufilhren, wahrend ein schmales Gebiet fiir die Extraktion deaktiviert ist.
Konfiguration und Extraktion kénnen koordiniert und zusammengesetzt werden, um eine Umschaltung im zeit-
verschachtelten Kontext zu erreichen. Ausnahmen kdnnen sich qualitativ von der Konfiguration und Extrakti-
on darin unterscheiden, indem sie nicht zu einem spezifischen Zeitpunkt auftreten, sondern irgendwo in der
Struktur zu jedem Zeitpunkt wahrend der Laufzeit. Dementsprechend kann das Ausnahme-Mikroprotokoll in
einer Ausflhrungsform nicht dem lokalen Netzwerk Uberlagert werden, das zur Laufzeit durch das Benutzer-
programm belegt ist, und benutzt sein eigenes Netzwerk. Ausnahmen sind jedoch von Natur aus selten und

25/134

DE 10 2018 005 216 A1 2019.02.21

insensitiv gegeniber Latenz und Bandbreite. Daher verwenden bestimmte Ausfiihrungsformen des CSA ein
paketvermitteltes Netzwerk, um Ausnahmen zu dem lokalen Mezzanine-Stopp zu Ubertragen, wo sie z. B. in
der Diensthierarchie nach oben weitergeleitet werden (wie z. B. in Fig. 29). Pakete in dem lokalen Ausnahme-
Netzwerk kdnnen extrem klein sein. In vielen Fallen reicht eine PE-Identifikation (ID) von nur zwei bis acht Bits
als ein vollstandiges Paket aus, da z. B. der CSA eine eindeutige Ausnahmekennung erzeugen kann, wenn
das Paket die Ausnahmediensthierarchie durchlauft. Ein solches Schema kann wiinschenswert sein, weil es
auch den Bereichsaufwand zum Erzeugen von Ausnahmen an jedem PE reduziert.

KOMPILIERUNG

[0092] Die Fahigkeit, in Hochsprachen geschriebene Programme in einem CSA zu kompilieren, kann fiir die
Ubernahme in der Branche von entscheidender Bedeutung sein. Dieser Abschnitt gibt einen allgemeinen Uber-
blick iber Kompilierungsstrategien fur Ausfihrungsformen eines CSA. Zunachst wird ein CSA-Softwareframe-
work vorgeschlagen, das die gewiinschten Eigenschaften einer idealen Toolkette fir die Produktionsqualitat
veranschaulicht. Danach wird ein Prototyp-Kompilierer-Framework erldutert. Dann wird eine ,,Control-to-Data-
flow-Conversion (Steuerung-zu-Datenfluss-Umwandlung)“ besprochen, z. B. um gewohnlichen sequentiellen
Steuerflusscode in CSA-Datenfluss-Assembliercode umzuwandeln.

Beispiel Produktionsframework

[0093] Fig. 15 veranschaulicht eine Kompilierungs-Toolkette 1500 fiir einen Beschleuniger gemafl Ausfih-
rungsformen der Offenbarung. Diese Toolkette kompiliert Hochsprachen (wie C, C ++ und Fortran) in eine
Kombination aus Host-Code- (LLVM) - Zwischenreprasentation (IR) fur die spezifischen Gebiete, die beschleu-
nigt werden sollen. Der CSA-spezifische Teil dieser Kompilierungs-Toolkette verwendet LLVM IR als Eingabe,
optimiert und kompiliert diese IR in eine CSA-Assembly, z. B. durch Hinzufligen einer geeigneten Pufferung
auf latenzinsensitiven Kanalen fur die Leistung. Anschlieend platziert und routet er die CSA-Assembly auf der
Hardware-Struktur und konfiguriert die PEs und das Netzwerk fur die Ausflhrung. In einer Ausfihrungsform
unterstutzt die Toolkette die CSA-spezifische Kompilierung als Just-in-Time (JIT), wobei potentielle Laufzeit-
rickmeldungen von tatsachlichen Ausfiihrungen einbezogen werden. Eine der wichtigsten Ausgestaltungsei-
genschaften des Frameworks ist die Kompilierung von (LLVM) IR fir den CSA anstelle der Verwendung einer
héheren Sprache als Eingabe. Wahrend ein Programm, das in einer hGheren Programmiersprache geschrie-
ben wurde, die speziell fir den CSA ausgestaltet wurde, maximale Leistung und/oder Energieeffizienz errei-
chen kann, kann die Ubernahme neuer Hochsprachen oder Programmier-Frameworks in der Praxis aufgrund
der Schwierigkeit der Umwandlung existierender Codegrundlagen langsam sein. Die Verwendung von (LLVM)
IR als Eingabe ermoglicht vielen existierenden Programmen, mdglicherweise auf einem CSA ausgeflhrt zu
werden, ohne dass z. B. eine neue Sprache geschaffen werden muss oder das Frontend neuer Sprachen, die
auf dem CSA ausgefuhrt werden sollen, signifikant zu modifizieren.

Prototyp-Kompilierer

[0094] Fig. 16 veranschaulicht einen Kompilierer 1600 fur einen Beschleuniger gemaf Ausfihrungsformen
der Offenbarung. Der Kompilierer 1600 konzentriert sich anfanglich auf die vorzeitige Kompilierung von C und
C++ durch das Frontend (z. B. Clang). Zum Kompilieren von (LLVM) IR implementiert der Kompilierer ein
CSA-Backend-Ziel in LLVM mit drei Hauptstufen. Zuerst verringert das CSA-Back-End LLVM IR zu einem ziel-
spezifischen Maschinenbefehl fir die sequentielle Einheit, welche die meisten CSA-Operationen kombiniert
mit einer herkdmmlichen RISC-artigen Steuerungsflussarchitektur (z. B. mit Verzweigungen und einem Pro-
grammzahler) implementiert. Die sequentielle Einheit in der Toolkette kann sowohl fir Kompilierer als auch fir
Anwendungsentwickler eine nitzliche Hilfe sein, da sie eine stufenweise Transformation eines Programms von
einem Steuerungsfluss (CF) zu einem Datenfluss (DF) ermdglicht, z. B. durch gleichzeitiges Umwandeln eines
Codeabschnitts von Steuerfluss zu Datenfluss und zur Validierung der Programmkorrektheit. Die sequentielle
Einheit kann auch ein Modell zur Handhabung von Code bereitstellen, der nicht in das raumliche Array passt.
Danach wandelt der Kompilierer diesen Steuerfluss in Datenflussoperatoren (z. B. Code) fiir den CSA um. Die-
se Phase wird nachstehend in Abschnitt 4.3 beschrieben. Dann kann das CSA-Back-End seine eigenen Opti-
mierungsschritte auf den Datenfluss-Operationen ausfiihren. Schlief3lich kann der Kompilierer die Befehle in
einem CSA-Assemblierformat ausgeben. Dieses Assemblierformat wird als Eingabe fiir Tools der spaten Stufe
verwendet, welche die Datenfluss-Operationen auf der tatsachlichen CSA-Hardware platzieren und routen.

26/134

DE 10 2018 005 216 A1 2019.02.21

Control-to-Dataflow-Umwandlung

[0095] Ein wichtiger Teil des Kompilierers kann in dem Control-to-Dataflow-Umwandlungs-Durchlauf oder kurz
Dataflow-Umwandlungs-Durchlauf implementiert sein. Dieser Durchlauf nimmt eine Funktion ein, die in der
Steuerflussform dargestellt ist, z. B. ein Steuerflussgraph (CFG) mit sequentiellen Maschinenbefehlen, die
auf virtuellen Registern arbeiten, und wandelt sie in eine Datenflussfunktion um, die konzeptionell ein Graph
von Datenfluss-Operationen (Befehlen) ist, der durch latenzinsensitive Kanéle (LICs) verbunden wird. Dieser
Abschnitt gibt eine High-Level-Beschreibung dieses Durchlaufs und beschreibt, wie er in bestimmten Ausfih-
rungsformen Speicheroperationen, Verzweigungen und Schleifen konzeptionell behandelt.

Geradliniger Code

[0096] Fig. 17A veranschaulicht einen sequentiellen Assembliercode 1702 gemaR Ausfihrungsformen der
Offenbarung. Fig. 17B veranschaulicht einen Datenfluss-Assembliercode 1704 fiir den sequentiellen Assem-
bliercode 1702 aus Fig. 17A gemal Ausfihrungsformen der Offenbarung. Fig. 17C veranschaulicht einen
Datenflussgraphen 1706 fir den Datenfluss-Assembliercode 1704 aus Fig. 17B fir einen Beschleuniger ge-
maf Ausflihrungsformen der Offenbarung.

[0097] Zun&chst ist der einfache Fall der Umwandlung eines geradlinigen Codes zu Datenfluss in Betracht zu
ziehen. Der Datenfluss-Umwandlungsdurchlauf kann einen Basisblock aus sequentiellem Code umwandeln,
wie z. B. den Code aus Fig. 17A in CSA-Assembliercode, wie in Fig. 17B gezeigt. Vom Konzept her reprasen-
tiert die CSA-Anordnung in Fig. 17B den Datenflussgraphen aus Fig. 17C. In diesem Beispiel wird jeder se-
quentielle Befehl in eine ibereinstimmende CSA-Assembly libersetzt. Die .lic-Angaben (z. B. fur Daten) dekla-
rieren latenzinsensitive Kanale, die den virtuellen Registern im sequentiellen Code (z. B. Rdata) entsprechen.
In der Praxis kann die Eingabe in den Datenfluss-Umwandlungsdurchlauf in nummerierten virtuellen Registern
erfolgen. Der Klarheit halber verwendet dieser Abschnitt beschreibende Registernamen. Es sei zu beachten,
dass Lade- und Speicheroperationen in dieser Ausfihrungsform in der CSA-Architektur unterstiitzt werden,
so dass viel mehr Programme ausgefiihrt werden kénnen als in einer Architektur, die nur reinen Datenfluss
unterstutzt. Da der sequentielle Code, der in den Kompilierer eingegeben wird, in SSA-Form (Single Static As-
signment - Einzelstatikzuweisung) vorliegt, kann der Control-to-Dataflow-Durchlauf fir einen einfachen Basis-
block jede virtuelle Registerdefinition in die Erzeugung eines Einzelwertes auf einem latenzinsensitiven Kanal
umwandeln. Die SSA-Form ermdglicht eine Vielzahl von Verwendungen einer einzelnen Definition eines virtu-
ellen Registers, wie z. B. in Rdata2. Zur Unterstitzung dieses Modells, unterstitzt der CSA-Assembliercode
eine Vielzahl von Verwendungen derselben LIC (z. B. data2), wobei der Simulator implizit die erforderlichen
Kopien der LICs erzeugt. Ein Hauptunterschied zwischen sequentiellem Code und Datenflusscode liegt in der
Behandlung von Speicheroperationen. Der Code in Fig. 17A ist vom Konzept her seriell, was bedeutet, dass
die load32 (Id32) von addr3 nach dem st32 von addr erfolgen sollte, falls sich die addr- und addr3-Adressen
Uberschneiden.

Verzweigungen

[0098] Zum Konvertieren von Programmen mit einer Vielzahl von Basisblocken und Bedingtheiten in dem
Datenfluss generiert der Kompilierer spezielle Datenflussoperatoren, um die Verzweigungen zu ersetzen. Ge-
nauer verwendet der Kompilierer Schaltoperatoren, um ausgehende Daten am Ende eines Basisblocks in dem
urspriinglichen CFG zu steuern, und Operatoren zum Auswahlen von Werten aus dem angemessenen einge-
henden Kanal am Anfang eines Basisblocks auszusuchen. Als ein konkretes Beispiel betrachte man den Code
und den entsprechenden Datenflussgraphen aus Fig. 18A - Fig. 18C, die bedingt einen Wert von y basierend
auf verschiedenen Eingaben berechnen: a, i, x und n. Nach dem Berechnen des Verzweigungsbedingungs-
tests verwendet der Datenflusscode einen Switch-Operator (siehe z. B. Fig. 3B - Fig. 3C), der den Wert in
Kanal x zu Kanal xF steuert, wenn der Test 0 ist, oder Kanal xT, wenn der Test 1 ist. Ahnlich wird ein Pick-
Operator (siehe z. B. Fig. 3B - Fig. 3C) verwendet, um den Kanal yF an y zu senden, wenn der Test 0 ist,
oder den Kanal yT an y zu senden, wenn der Test 1 ist. In diesem Beispiel stellt sich heraus, dass, obwohl der
Wert von a nur in der wahren Verzweigung der Bedingung verwendet wird, der CSA einen Switch-Operator
aufweisen muss, der diese lenkt, um aT zu kanalisieren, wenn der Test 1 ist, und den Wert verbraucht (frisst),
wenn der Test 0 ist. Letzterer Fall wird durch das Einstellen der falschen Eingabe des Schalters als %ign
ausgedriickt. Es ist méglicherweise nicht richtig, Kanal a direkt mit dem wahren Pfad zu verbinden, da in den
Fallen, in denen die Ausfiihrung tatsachlich den falschen Pfad nimmt, dieser Wert von ,a“ im Graphen (brig
bleibt, was zu einem inkorrekten Wert von a flr die nachste Ausfiihrung der Funktion flihrt. Dieses Beispiel
hebt die Eigenschaft der Steueraquivalenz hervor, einer Haupteigenschaft in Ausfihrungsformen der korrekten
Datenflussumwandlung.

27/134

DE 10 2018 005 216 A1 2019.02.21

[0099] Steuerdquivalenz: Man betrachte einen Single-Entry-Single-Exit-Steuerflussgraphen G mit zwei Basis-
blécken A und B. A und B sind steueraquivalent, wenn alle vollstdndigen Steuerflusspfade durch G A und B
die gleiche Anzahl von Malen besuchen.

[0100] LIC-Ersetzung: In einem Steuerflussgraphen G wird angenommen, dass eine Operation im Basisblock
A ein virtuelles Register x definiert, und eine Operation im Basisblock B, der x verwendet. Dann kann eine
korrekte Control-to-Dataflow-Transformation x durch einen latenzinsensitiven Kanal nur dann ersetzen, wenn
A und B steueraquivalent sind. Die Steuerdquivalenz-Beziehung trennt die Basisblocke eines CFG in starke
steuerungsabhangige Gebiete. Fig. 18A veranschaulicht einen C-Quellcode 1802 gemal’ Ausfliihrungsformen
der Offenbarung. Fig. 18B veranschaulicht einen Datenfluss-Assembliercode 1804 fiir den C-Quellcode 1802
aus Fig. 18A gemal Ausfiihrungsformen der Offenbarung. Fig. 18C veranschaulicht einen Datenflussgraphen
1806 fur den Datenfluss-Assembliercode 1804 aus Fig. 18B flr einen Beschleuniger gemal Ausfiihrungsfor-
men der Offenbarung. In dem Beispiel aus Fig. 18 A-18C sind der Basisblock vor und nach den Bedingungen
steueraquivalent miteinander, aber die Basisblocke in dem wahren und falschen Pfad befinden sich jeweils in
ihrem eigenen Steuerabhangigkeitsgebiet. Ein korrekter Algorithmus zum Umwandeln eines CFG in einen Da-
tenfluss besteht darin, dass der Kompilierereinsatz (1) schaltet, um die Nichtiibereinstimmung in der Ausfiih-
rungsfrequenz fir jeden Wert zu kompensieren, der zwischen Basisblocken flie3t, die nicht steueraquivalent
sind, und (2) zu Beginn der Basisbldcke aussucht, um aus beliebigen eingehenden Werten in einem Basisblock
zu wahlen. Das Erzeugen der geeigneten Steuersignale fir diese Picks und Switches kann der Schlisselteil
der Datenflussumwandlung sein.

Schleifen (Loops)

[0101] Eine weitere wichtige Klasse der CFGs bei der Datenflussumwandlung sind CFGs fiir Single-Entry-
Single-Exit-Schleifen, eine herkdmmliche Form von Schleife, die in (LLVM) IR generiert wird. Diese Schleifen
kdnnen nahezu azyklisch sein, mit Ausnahme eines einzelnen Randes vom Ende der Schleife zuriick zu einem
Schleifenkopfblock. Der Datenfluss-Umwandlungsdurchlauf kann dieselbe High-Level-Strategie zum Umwan-
deln von Schleifen wie Verzweigungen verwenden, z. B. flgt er Switches am Ende der Schleife ein, um Wer-
te aus der Schleife zu leiten (entweder auRerhalb des Schleifenaustritts oder um den hinteren Rand herum
zum Beginn der Schleife) und fligt Picks zu Beginn der Schleife ein, um zwischen anfanglichen Werten, die in
die Schleife eintreten, und Werten, die durch den hinteren Rand kommen, zu wahlen. Fig. 19A veranschau-
licht einen C-Quellcode 1902 gemaly Ausfiihrungsformen der Offenbarung. Fig. 19B veranschaulicht einen
Datenfluss-Assembliercode 1904 fiir den C-Quellcode 1902 aus Fig. 19A gemal Ausfiihrungsformen der Of-
fenbarung. Fig. 19C veranschaulicht einen Datenflussgraphen 1906 fir den Datenfluss-Assembliercode 1904
aus Fig. 19B fir einen Beschleuniger gemafR Ausfiihrungsformen der Offenbarung. Fig. 19A-19C zeigen C-
und CSA-Assembliercode fiir eine beispielhafte Do-While-Schleife, die Werte zu einer Schleifeninduktionsva-
riable i zuaddiert, sowie den entsprechenden Datenflussgraphen. Fir jede Variable, welche die Schleife (i und
Summe) vom Konzept her umkreist, hat dieser Graph ein entsprechendes Pick-/Switch-Paar, das den Fluss
dieser Werte steuert. Es sei zu beachten, dass dieses Beispiel auch ein Pick-/Switch-Paar zum Schalten des
Wertes n um die Schleife verwendet, obgleich n schleifeninvariant ist. Diese Wiederholung von n ermdglicht
die Umwandlung des virtuellen Registers von n in eine LIC, da sie die Ausflihrungsfrequenzen zwischen einer
begrifflichen Definition von n aufierhalb der Schleife und der einen oder mehreren Verwendungen von n inner-
halb der Schleife in Einklang bringt. Im Allgemeinen werden fir eine korrekte Datenflussumwandlung Regis-
ter, die live-in in einer Schleife sind, fir jede lteration innerhalb des Schleifenkdrpers einmal wiederholt, wenn
das Register in eine LIC umgewandelt wird. In ahnlicher Weise miissen Register, die innerhalb einer Schlei-
fe aktualisiert werden, live-out der Schleife verbraucht werden, z. B. mit einem eindeutigen Abschlusswert,
der aus der Schleife gesendet wird. Schleifen fiihren eine Falte in den Datenfluss-Umwandlungsprozess ein,
namlich indem die Steuerung fiir eine Wahl an der Oberseite der Schleife und der Schalter firr die Unterseite
der Schleife versetzt sind. Wenn z. B. die Schleife in Fig. 18A drei lterationen ausfihrt und beendet, sollte die
Steuerung fir die Wahl 0, 1, 1 sein, wahrend die Steuerung fiir den Schalter 1, 1, 0 sein sollte. Diese Steuerung
wird durch Starten des Auswahlkanals mit einer anfanglichen zusatzlichen 0 implementiert, wenn die Funktion
in Zyklus 0 beginnt (der in der Assembly durch die Direktiven .value 0 und .avail 0 spezifiziert wird) und dann
der Ausgabeschalter in den Picker kopiert. Es sei zu beachten, dass die letzte 0 in dem Umschalter eine ab-
schlieBende 0 in dem Picker wiederherstellt, sodass der Abschlusszustand des Datenflussgraphen garantiert
mit dem anfénglichen Zustand ibereinstimmt.

[0102] Fig. 20A veranschaulicht ein Flussdiagramm 2000 gemaR Ausfiihrungsformen der Offenbarung. Der
dargestellte Fluss 2000 beinhaltet Decodieren eines Befehls mit einem Decodierer eines Kerns eines Prozes-
sors in einen decodierten Befehl 2002; Ausfiihren des decodierten Befehls mit einer Ausfiihrungseinheit des
Kerns des Prozessors zum Durchfiihren einer ersten Operation 2004; Empfangen einer Eingabe eines Da-

28/134

DE 10 2018 005 216 A1 2019.02.21

tenflussgraphen, der mehrere Knoten 2006 umfasst; Uberlagern des Datenflussgraphen iiber mehrere Verar-
beitungselemente des Prozessors und ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungs-
elementen des Prozessors, wobei jeder Knoten einen Datenflussoperator in den mehreren Verarbeitungsele-
menten 2008 reprasentiert; und Durchflihren einer zweiten Operation des Datenflussgraphen mit dem Zwi-
schenverbindungsnetz und den mehreren Verarbeitungselementen durch einen jeweiligen eingehenden Ope-
randensatz, der an jedem der Datenflussoperatoren der mehreren Verarbeitungselemente 2010 eingeht.

[0103] Fig. 20B veranschaulicht ein Flussdiagramm 2001 gemaR Ausfiihrungsformen der Offenbarung. Der
dargestellte Fluss 2001 beinhaltet das Empfangen einer Eingabe eines Datenflussgraphen, umfassend mehre-
re Knoten 2003; und Uberlagern des Datenflussgraphen iber mehrere Verarbeitungselemente eines Prozes-
sors, eines Datenpfad-Netzwerks zwischen die mehreren Verarbeitungselemente und eines Flusssteuerpfad-
Netzwerks zwischen die mehreren Verarbeitungselemente, wobei jeder Knoten als ein Datenflussoperator in
den mehreren Verarbeitungselementen 2005 reprasentiert ist.

[0104] In einer Ausfihrungsform schreibt der Kern einen Befehl in eine Speicherwarteschlange und ein CSA
(z. B. die mehreren Verarbeitungselemente) tiberwacht die Speicherwarteschlange und beginnt mit der Aus-
fihrung, wenn der Befehl gelesen wird. In einer Ausfiihrungsform fuhrt der Kern einen ersten Teil eines Pro-
gramms aus, und ein CSA (z. B. die mehreren Verarbeitungselemente) flihrt einen zweiten Teil des Programms
aus. In einer Ausfuhrungsform vollzieht der Kern andere Arbeit, wahrend der CSA seine Operationen ausfihrt.

CSA-Vorteile

[0105] In bestimmten Ausfihrungsformen stellt die CSA-Architektur und - Mikroarchitektur tiefgreifende Vor-
teile in Bezug auf Energie, Leistung und Benutzerfreundlichkeit gegeniiber Roadmap-Prozessorarchitekturen
und FPGAs bereit. In diesem Abschnitt werden diese Architekturen mit Ausfihrungsformen des CSA vergli-
chen und die Uberlegenheit des CSA beim Beschleunigen von parallelen Datenflussgraphen in Bezug auf je-
den davon hervorgehoben.

Prozessoren

[0106] Fig. 21 veranschaulicht einen Graphen von Durchsatz vs. Energie pro Operation 2100 gemal Aus-
fihrungsformen der Offenbarung. Wie in Fig. 21 gezeigt, sind kleine Kerne im Allgemeinen energieeffizien-
ter als grof3e Kerne, und bei einigen Arbeitslasten kann dieser Vorteil durch héhere Kernzahlen in absolute
Leistung umgesetzt werden. Die CSA-Mikroarchitektur befolgt diese Beobachtungen bis ihnrem Abschluss und
entfernt (z. B. die meisten) energieraubenden Steuerstrukturen, die mit von-Neumann-Architekturen in Zusam-
menhang gebracht werden, einschliellich des gréten Teils der befehlsseitigen Mikroarchitektur. Durch Ent-
fernen dieser allgemeinen Aufwendungen und Implementieren einfacher Einzeloperations-PEs erhalten Aus-
fihrungsformen eines CSA ein dichtes, effizientes rdumliches Array. Im Gegensatz zu kleinen Kernen, die
normalerweise ziemlich seriell sind, kann ein CSA seine PEs gruppieren, z. B. Uber das leitungsvermittelte
lokale Netzwerk, um explizit parallele aggregierte Datenflussgraphen zu bilden. Das Ergebnis ist Leistung in
nicht nur parallelen Anwendungen, sondern auch in seriellen Anwendungen. Im Gegensatz zu Kernen, die
fur Leistung in Bezug auf Flache und Energie teuer bezahlen, ist ein CSA in seinem nativen Ausflihrungsmo-
dell bereits parallel. In bestimmten Ausfiihrungsformen erfordert ein CSA weder Spekulation, um die Leistung
zu erhdhen, noch muss er wiederholt Parallelitat aus einer sequentiellen Programmdarstellung extrahieren,
wodurch zwei der Hauptenergieverbraucher in von Neumann-Architekturen vermieden werden. Die meisten
Strukturen in Ausfihrungsformen eines CSA sind verteilt, klein und energieeffizient, im Gegensatz zu den
zentralisierten, volumindsen, energiehungrigen Strukturen, die in Kernen zu finden sind. Zu berticksichtigen
sei der Fall von Registern im CSA: jedes PE kann einige wenige (z. B. 10 oder weniger) Speicherregister auf-
weisen. Allein genommen, kdnnen diese Register effizienter als herkdbmmliche Registerdateien sein. Zusam-
mengefasst kdnnen diese Register die Wirkung einer grof3en, strukturinternen Registerdatei bereitstellen. Als
ein Ergebnis vermeiden Ausfiihrungsformen eines CSA die meisten Stapelverschiittungen und -fiillungen, die
bei klassischen Architekturen auftreten, und brauchen gleichzeitig weniger Energie pro Statuszugriff. Selbst-
verstandlich kénnen die Anwendungen weiter auf den Speicher zugreifen. In Ausflihrungsformen eines CSA
sind Speicherzugriffsanfrage und -antwort architektonisch entkoppelt, wodurch Arbeitslasten ermdglicht wer-
den, die viele weitere ausstehende Speicherzugriffe pro Einheit Bereich und Energie beibehalten. Diese Ei-
genschaft bietet eine wesentlich héhere Leistung fiir cachegebundene Arbeitslasten und reduziert den Bereich
und die Energie, die zum Sattigen des Hauptspeichers in speichergebundenen Arbeitslasten bendtigt werden.
Ausfihrungsformen eines CSA legen neue Formen der Energieeffizienz frei, die in nichtvon-Neumann-Archi-
tekturen einzigartig sind. Eine Folge des Ausfiihrens einer einzelnen Operation (z. B. eines Befehls) an einem
(z. B. den meisten) PEs ist eine reduzierte Operandenentropie. Im Fall einer Inkrementierungsoperation kann

29/134

DE 10 2018 005 216 A1 2019.02.21

jede Ausfuhrung zu einer Handvoll Umschaltmdglichkeiten auf der Schaltungsebene und einem geringen En-
ergieverbrauch fihren, ein Fall, der in Abschnitt 6.2 im Detail untersucht wird. Demgegenuber sind von Neu-
mann-Architekturen gemultiplext, was zu einer héheren Anzahl von Bitibergangen fihrt. Der asynchrone Stil
von Ausfihrungsformen eines CSA ermdéglicht auch mikroarchitektonische Optimierungen, wie die in Abschnitt
3.5 beschriebenen Gleitkomma-Optimierungen, die in eng geplanten Kern-Pipelines schwierig zu realisieren
sind. Da PEs relativ einfach sein kénnen und ihr Verhalten in einem bestimmten Datenflussgraphen statisch
bekannt ist, kbnnen Takt-Gating- und Power-Gating-Techniken effektiver angewendet werden als in gréberen
Architekturen. Der Graphenausfihrungsstil, die kleine Gré3e und die Formbarkeit von Ausfihrungsformen der
CSA-PEs und dem Netzwerk erméglichen zusammen den Ausdruck vieler Arten von Parallelitat: Befehls-, Da-
ten-, Pipeline-, Vektor-, Speicher-, Thread- und Aufgabenparallelitdt kdnnen alle implementiert werden. Zum
Beispiel kann in Ausflihrungsformen eines CSA eine Anwendung arithmetische Einheiten verwenden, um ei-
nen hohen Grad an Adressbandbreite bereitzustellen, wahrend eine andere Anwendung dieselben Einheiten
zur Berechnung verwenden kann. In vielen Fallen kénnen mehrere Arten von Parallelitdt kombiniert werden,
um noch mehr Leistung zu erzielen. Viele wichtige HPC-Operationen kénnen sowohl repliziert als auch in
Pipelines ausgefuhrt werden, was zu Leistungszugewinne von Gré3enordnung fuhrt. Im Gegensatz dazu op-
timieren von-Neumann-Kerne typischerweise einen von den Architekten sorgfaltig gewahlten Parallelitatsstil,
was zu einem Versagen der Erfassung aller wichtigen Anwendungskerne fiihrt. So wie Ausfluihrungsformen
eines CSA viele Formen von Parallelitat zeigen und erleichtern, wird keine bestimmte Form von Parallelitat
vorgeschrieben oder, schlimmer noch, ist keine bestimmte Subroutine in einer Anwendung vorhanden, um
von dem CSA zu profitieren. Viele Anwendungen, einschlieBlich Einzel-Stream-Anwendungen, kénnen sowohl
Leistungs- als auch Energievorteile von Ausfiihrungsformen eines CSA erhalten, z. B. sogar dann, wenn sie
ohne Modifikation kompiliert werden. Dies kehrt den langen Trend um, dass ein signifikanter Programmierauf-
wand erforderlich ist, um einen wesentlichen Leistungsgewinn in Einzel-Stream-Anwendungen zu erzielen.
Tatsé&chlich erhalten Ausfiihrungsformen eines CSA in einigen Anwendungen mehr Leistung von funktionell
aquivalenten, aber weniger ,modernen® Codes als von ihren verschachtelten zeitgentssischen Cousins, die
gefoltert wurden, um Vektoranweisungen zu erzielen.

Vergleich zwischen CSA-Ausfihrungsformen und FGPAs

[0107] Die Wahl der Datenflussoperatoren als grundlegende Architektur von Ausfliihrungsformen eines CSA
unterscheidet diese CSAs von einem FGPA, und insbesondere ist der CSA als Uiberlegener Beschleuniger
fur HPC-Datenflussgraphen, die aus traditionellen Programmiersprachen stammen. Die Datenflussoperatoren
sind grundlegend asynchron. Dies ermdglicht Ausfiihrungsformen eines CSA nicht nur eine grof3e Freiheit bei
der Implementierung in der Mikroarchitektur, sondern ermoglicht auch die einfache und pragnante Aufnahme
abstrakter Architekturkonzepte. Zum Beispiel nehmen Ausfiihrungsformen eines CSA naturlich viele Speicher-
Mikroarchitekturen auf, die im Wesentlichen asynchron sind, mit einer einfachen Lade-Speicher-Schnittstelle.
Man braucht nur einen FPGA DRAM-Controller zum Schatzen des Unterschieds in der Komplexitat zu untersu-
chen. Ausfihrungsformen eines CSA nutzen Asynchronitédt auch, um schnellere und vollstandiger ausgestatte-
te Laufzeitdienste wie Konfiguration und Extraktion bereitzustellen, von denen angenommen wird, dass sie vier
bis sechs Gréfienordnungen schneller sind als ein FPGA. Durch Verengen der Architekturschnittstelle ermdg-
lichen Ausflhrungsformen eines CSA die Steuerung der meisten Zeitsteuerpfade auf Mikroarchitekturebene.
Dies ermdglicht Ausfihrungsformen eines CSA bei einer viel hdheren Frequenz als der allgemeinere Steue-
rungsmechanismus zu arbeiten, der in einem FPGA geboten wird. In dhnlicher Weise sind Takt und Reset, die
fur FPGAs architektonisch grundlegend sein kénnen, im CSA mikroarchitektonisch, wodurch zum Beispiel ihre
Unterstiitzung als programmierbare Einheiten tberflissig wird. Die Datenflussoperatoren kénnen grétenteils
grobkdérnig sein. Indem nur grobe Operatoren behandelt werden, verbessern Ausflihrungsformen eines CSA
sowohl die Dichte der Struktur als auch ihren Energieverbrauch: Der CSA fihrt Operationen direkt aus, anstelle
sie mit Nachschlagetabellen zu emulieren. Eine zweite Konsequenz der Grobkdrnigkeit ist eine Vereinfachung
des Platzier- und Routingproblems. CSA-Datenflussgraphen sind viele GréRenordnungen kleiner als FPGA-
Netzlisten, und Platzier- und Routingzeit sind in Ausflihrungsformen eines CSA gleichfalls reduziert. Die signi-
fikanten Unterschiede zwischen den Ausfiihrungsformen eines CSA und eines FPGA machen den CSA als
Beschleuniger Uberlegen, z. B. fir Datenflussgraphen, die aus traditionellen Programmiersprachen stammen.

AUSWERTUNG

[0108] Beim CSA handelt es sich um eine neuartige Computerarchitektur, die im Vergleich zu Roadmap-Pro-
zessoren ein enormes Potential zur Bereitstellung von Leistungs- und Energievorteilen innehat. Man betrachte
den Fall des Berechnens einer einzelnen ausgreifenden Adresse zum Durchlaufen eines Arrays. Dieser Fall
kann in HPC-Anwendungen wichtig sein, die z. B. einen bedeutenden Integer-Aufwand bei der Berechnung
von Adress-Offsets verbringen. Bei der Adressberechnung und insbesondere bei der ausgreifenden Adress-

30/134

DE 10 2018 005 216 A1 2019.02.21

berechnung ist ein Argument konstant und das andere variiert nur geringfiigig pro Berechnung. Daher wer-
den in den meisten Fallen nur eine Handvoll Bits pro Zyklus umgeschaltet. Tatséchlich kann gezeigt werden,
dass unter Verwendung einer Ableitung, die den in Abschnitt 3.5 beschriebenen gebundenen Gleitkomma-
Ubertragsbits gleicht, durchschnittlich weniger als zwei Bits Eingabe pro Berechnung fiir eine Schrittberech-
nung umschalten, wodurch die Energie um 50% gegentiber einer zufalligen Umschaltverteilung reduziert wird.
Wirde ein zeitgemultiplexter Ansatz verwendet, gingen viele dieser Energieeinsparungen verloren. In einer
Ausfuhrungsform erzielt der CSA eine ungefahr 3-fache Energieeffizienz gegenuber eines Kerns und erzielt
einen 8-fachen Leistungszugewinn. Die Parallelitdtszugewinne, die durch Ausfihrungsformen eines CSA er-
reicht werden, konnen zu reduzierten Programmlaufzeiten fihren, was zu einer verhédltnismaligen wesentli-
chen Reduktion der Verlustenergie fuhrt. Auf PE-Ebene sind die Ausfihrungsformen eines CSA extrem ener-
gieeffizient. Eine zweite wichtige Frage fur den CSA ist, ob der CSA eine angemessene Menge an Energie auf
Kachel-Level verbraucht. Da Ausfiihrungsformen eines CSA jedes Gleitkomma-PE in der Struktur bei jedem
Zyklus ausiben kdnnen, dient er als eine verniinftige Obergrenze fir den Energie- und Leistungsverbrauch,
sodass z . B. der gréfite Teil der Energie in Gleitkomma-Multiplikation und -Addition geht.

WEITERE CSA-DETAILS
[0109] Dieser Abschnitt bespricht weitere Details zur Konfiguration und Ausnahmehandhabung.
Mikroarchitektur zum Konfigurieren eines CSA

[0110] Dieser Abschnitt offenbart Beispiele zum Konfigurieren eines CSA (z. B. Struktur), wie diese Konfigu-
ration schnell erreicht werden kann und wie der Ressourcenaufwand der Konfiguration minimiert werden kann.
Die schnelle Konfiguration der Struktur kann bei der Beschleunigung kleiner Teile eines grélReren Algorithmus
und folglich bei der Erweiterung der Anwendbarkeit eines CSA von herausragender Bedeutung sein. Der Ab-
schnitt offenbart ferner Merkmale, die Ausfuhrungsformen eines CSA die Programmierung mit Konfigurationen
unterschiedlicher Lange ermoglichen.

[0111] Ausflhrungsformen eines CSA (z. B. Struktur) kénnen sich von herkdmmlichen Kernen dadurch un-
terscheiden, dass sie einen Konfigurationsschritt verwenden, in dem (z. B. grol3e) Teile der Struktur vor der
Programmausfihrung mit einer Programmkonfiguration geladen werden. Ein Vorteil der statischen Konfigura-
tion kann sein, dass sehr wenig Energie zur Laufzeit der Konfiguration verbraucht wird, z. B. im Gegensatz zu
sequentiellen Kernen, die Energie fir fast jeden Zyklus zum Abrufen von Konfigurationsinformationen (eines
Befehls) verbrauchen. Der bisherige Nachteil der Konfiguration besteht darin, dass es sich um einen grobkor-
nigen Schritt mit einer mdglicherweise groflen Latenz handelt, was eine Untergrenze fir die GréRRe des Pro-
gramms darstellt, die aufgrund der Kosten der Kontextumschaltung in der Struktur beschleunigt werden kann.
Diese Offenbarung beschreibt eine skalierbare Mikroarchitektur zum schnellen Konfigurieren eines rdumlichen
Arrays in einer verteilten Art und Weise, die z. B. die bisherigen Nachteile vermeidet.

[0112] Wie oben erldutert, kann ein CSA leichtgewichtige Verarbeitungselemente aufweisen, die durch ein
Inter-PE-Netzwerk verbunden sind. Programme, die als Steuerdatenflussgraphen angesehen werden, werden
dann auf die Architektur abgebildet, indem die konfigurierbaren Strukturelemente (CFEs) konfiguriert werden,
z. B. PEs und die Zwischenverbindungs (Struktur) -Netze. Im Allgemeinen kénnen PEs als Datenflussopera-
toren konfiguriert sein und, sobald alle Eingabeoperanden am PE eingetroffen sind, kann eine Operation statt-
finden und die Ergebnisse an ein weiteres PE oder PEs zum Verbrauch oder Ausgabe weitergeleitet werden.
PEs kénnen tiber zweckgebundene virtuelle Schaltungen kommunizieren, die durch statistisches Konfigurieren
eines leitungsvermittelten Kommunikationsnetzwerks gebildet werden. Diese virtuellen Schaltungen kdnnen
flussgesteuert und vollstdndig gegengedrickt sein, z. B. so, dass die PEs anhalten, wenn entweder die Quel-
le keine Daten aufweist oder der Zielspeicherplatz voll ist. Bei Laufzeit kénnen Daten durch die PEs flieRen
und den abgebildeten Algorithmus implementieren. Zum Beispiel kénnen Daten aus dem Speicher durch die
Struktur eingestreamt werden und dann zurick in den Speicher gehen. Eine solche rdumliche Architektur kann
eine bemerkenswerte Leistungseffizienz im Vergleich zu herkbmmlichen Mehrkernprozessoren erreichen: die
Berechnung, in der Form von PEs kann einfacher und zahlreicher als gréfere Kerne sein und die Kommuni-
kation direkt sein, z. B. im Gegensatz zu einer Erweiterung des Speichersystems.

[0113] Ausflhrungsformen eines CSA brauchen keine (z. B. softwaregesteuerte) Paketvermittlung verwen-
den, z. B. Paketvermittlung, die eine erhebliche Softwareunterstitzung zur Ausfiihrung erfordert, welche die
Konfiguration verlangsamt. Ausfihrungsformen eines CSA weisen eine AuRer-Band-Signalisierung in dem
Netzwerk (z. B. von nur zwei bis drei Bits, abhangig von dem unterstitzten Merkmalssatz) und eine Topologie
mit fester Konfiguration auf, um den Bedarf an einer signifikanten Softwareunterstiutzung zu vermeiden.

31/134

DE 10 2018 005 216 A1 2019.02.21

[0114] Ein Hauptunterschied zwischen Ausfiihrungsformen eines CSA und dem Ansatz, der in FPGAs ver-
wendet wird, besteht darin, dass ein CSA-Ansatz ein breites Datenwort verwenden kann, verteilt ist und Me-
chanismen aufweist, um Programmdaten direkt aus dem Speicher abzurufen. Ausfihrungsformen eines CSA
kdnnen im Interesse der Bereichseffizienz keine JTAG-artigen Einzelbitkommunikationen verwenden, weil dies
z. B. Millisekunden bendétigt, um eine grolRe FPGA-Struktur vollstandig zu konfigurieren.

[0115] Ausflhrungsformen eines CSA beinhalten ein verteiltes Konfigurationsprotokoll und eine Mikroarchi-
tektur, um dieses Protokoll zu unterstiitzen. Anfangs kann sich der Konfigurationsstatus im Speicher befin-
den. Mehrere (z. B. verteilte) lokale Konfigurationssteuerungen (Boxes) (LCCs) kénnen Teile des Gesamtpro-
gramms in ihr lokales Gebiet der rdumlichen Struktur streamen, z. B. unter Verwendung einer Kombination
aus einem kleinen Satz von Steuersignalen und dem Netzwerk mit Struktur. Statuselemente kénnen an jedem
CFE verwendet werden, um Konfigurationsketten zu bilden, z. B. um einzelnen CFEs zu erméglichen, sich
ohne globale Adressierung selbst zu programmieren.

[0116] Ausflihrungsformen eines CSA weisen eine spezifische Hardwareunterstiitzung fir die Bildung von
Konfigurationsketten auf, z. B. keine Software, die diese Ketten dynamisch auf Kosten einer zunehmenden
Konfigurationszeit erstellt. Ausfihrungsformen eines CSA sind nicht rein paketvermittelt und weisen zusatz-
liche AulRer-Band-Steuerdrahte (z. B. wird die Steuerung nicht durch den Datenpfad gesendet, was zusatzli-
che Zyklen erfordert, um diese Information abzutasten und diese Information zu reserialisieren) auf. Ausfih-
rungsformen eines CSA verringern die Konfigurationslatenz durch Festlegen der Konfigurationsreihenfolge
und durch Bereitstellen einer expliziten AuRer-Band-Steuerung (z. B. um mindestens einen Faktor von zwei),
wahrend die Netzwerkkomplexitat nicht wesentlich zunimmt.

[0117] Ausflihrungsformen eines CSA verwenden keinen seriellen Mechanismus zur Konfiguration, bei dem
Daten Bit fur Bit unter Verwendung eines JTAG-artigen Protokolls in die Struktur gestreamt werden. Ausfuh-
rungsformen eines CSA benutzen einen grobkdrnigen Strukturansatz. In bestimmten Ausflihrungsformen ist
das Hinzufligen einiger Steuerdrahte oder Zustandselemente zu einer 64- oder 32-Bit-orientierten CSA-Struk-
tur kostenglnstiger als das Hinzufiigen derselben Steuermechanismen zu einer 4- oder 6-Bit-Struktur.

[0118] Fig. 22 veranschaulicht eine Beschleuniger-Kachel 2200, umfassend ein Array von Verarbeitungsele-
menten (PE) und eine lokale Konfigurationssteuerung (2202, 2206) gemaf} Ausfihrungsformen der Offenba-
rung. Jedes PE, jede Netzwerksteuerung und jeder Schalter kdnnen konfigurierbare Strukturelemente (CFEs)
sein, die z. B. durch Ausfuhrungsformen der CSA-Architektur konfiguriert (z. B. programmiert) werden.

[0119] Ausflhrungsformen eines CSA weisen Hardware auf, die eine effiziente, verteilte Konfiguration mit
niedriger Latenzzeit fur eine heterogene raumliche Struktur bereitstellt. Dies kann gemaf vier Techniken er-
reicht werden. Zuerst wird eine Hardwareentitat, die lokale Konfigurationssteuerung (LCC - Local Configuration
Controller) benutzt, wie in Fig. 22 - Fig. 24. Eine LCC kann einen Stream aus Konfigurationsinformation aus
einem (z. B. virtuellen) Speicher abrufen. Zweitens kann ein Konfigurationsdatenpfad enthalten sein, der z.
B. so breit wie die urspriingliche Breite der PE-Struktur ist und der die PE-Struktur Gberlagern kann. Drittens
kénnen neue Steuersignale in der PE-Struktur empfangen werden, die den Konfigurationsprozess durchfih-
ren. Viertens kdnnen Zustandselemente an jedem konfigurierbaren Endpunkt angeordnet sein (z. B. in einem
Register), die den Status benachbarter CFEs verfolgen, so dass sich jedes CFE ohne zusatzliche Steuersi-
gnale eindeutig selbst konfigurieren kann. Diese vier mikroarchitektonischen Merkmale kénnen einem CSA
das Konfigurieren von Ketten seiner CFEs ermoglichen. Zum Erhalten einer geringen Konfigurationslatenz
kann die Konfiguration durch Bilden vieler LCCs und CFE-Ketten partitioniert werden. Zur Konfigurationszeit
kénnen diese unabhangig voneinander arbeiten, um die Struktur parallel zu laden, z. B. um die Latenz dras-
tisch zu reduzieren. Als ein Ergebnis dieser Kombinationen kénnen Strukturen, die unter Verwendung von
Ausfuhrungsformen eines CSA-Architektur konfiguriert sind, vollstédndig konfiguriert sein (z. B. in Hunderten
von Nanosekunden). Im Folgenden wird der Betrieb der verschiedenen Komponenten von Ausflihrungsformen
eines CSA-Konfigurationsnetzwerks detailliert beschrieben.

[0120] Fig. 23A-23C veranschaulicht eine lokale Konfigurationssteuerung 2302, die ein Datenpfad-Netzwerk
gemal Ausfihrungsformen der Offenbarung konfiguriert. Das dargestellte Netzwerk weist mehrere Multiplexer
(z. B. Multiplexer 2306, 2308, 2310) auf, die konfiguriert werden kénnen (z. B. iber zugehdrige Steuersignale),
um einen oder mehrere Datenpfade (z. B. von PEs) miteinander zu verbinden. Fig. 23A veranschaulicht das
Netzwerk 2300 (z. B. Struktur), das fiir eine bisherige Operation oder Programm konfiguriert (z. B. eingestellt)
wurde. Fig. 23B zeigt die lokale Konfigurationssteuerung 2302 (die z. B. eine Netzwerkschnittstellenschaltung
2304 zum Senden und/oder Empfangen von Signalen aufweist), die ein Konfigurationssignal abtastet und das
lokale Netzwerk auf eine Standardkonfiguration (z. B. wie dargestellt) setzt, die es der LCC erlaubt, Konfigu-

32/134

DE 10 2018 005 216 A1 2019.02.21

rationsdaten an alle konfigurierbaren Strukturelemente (CFEs), z. B. Muxe, zu senden. Fig. 23C veranschau-
licht die LCC-Abtast-Konfigurationsinformation tber das Netzwerk, wobei CFEs in einer vorbestimmten (z. B.
siliciumdefinierten) Sequenz konfiguriert werden. In einer Ausfliihrungsform kann die Operation unverziglich
beginnen, wenn die CFEs konfiguriert werden. In einer anderen Ausfiihrungsform warten die CFEs mit dem
Beginn der Operation, bis die Struktur vollstédndig konfiguriert ist (z. B. wie durch den Konfigurationsterminator
(z. B. Konfigurationsterminator 2504 und Konfigurationsterminator 2508 in Fig. 25) fir jede lokale Konfigurati-
onssteuerung signalisiert). In einer Ausfiihrungsform erhalt die LCC die Steuerung Uber die Netzwerkstruktur
durch Senden einer Sondernachricht oder Ansteuern eines Signals. Er tastet dann Konfigurationsdaten (z. B.
Uber eine Periode mehrerer Zyklen) zu den CFEs in der Struktur ab. In diesen Figuren sind die Multiplexer-
netzwerke Analoga des ,Schalters (oder Switches)®, der in bestimmten Figuren gezeigt ist (z. B. Fig. 6).

Lokale Konfigurationssteuerung

[0121] Fig. 24 veranschaulicht eine (z. B. lokale) Konfigurationssteuerung 2402 gemaf Ausfihrungsformen
der Offenbarung. Eine lokale Konfigurationssteuerung (LCC - Local Configuration Controller) kann die Hard-
wareentitat sein, die fiir das Laden der lokalen Teile (z. B. in einem Untersatz einer Kachel oder auf andere Wei-
se) des Strukturprogramms, das Interpretieren dieser Programmteile und dann das Laden dieser Programm-
teile in die Struktur verantwortlich ist, indem sie das angemessene Protokoll auf den verschiedenen Konfigu-
rationsdrahten ansteuert. In dieser Eigenschaft kann die LCC ein spezieller sequentieller Mikrocontroller sein.

[0122] Die LCC-Operation kann beginnen, wenn ein Zeiger zu einem Codesegment empfangen wird. Je nach
der LCC-Mikroarchitektur kann dieser Zeiger (z. B. im Zeigerregister 2406 gespeichert) entweder Gber ein
Netzwerk (z. B. von innerhalb des CSA (Struktur) selbst) oder liber einen Speichersystemzugriff auf die LCC
kommen. Bei Empfangen eines solchen Zeigers entzieht die LCC optional den relevanten Status von ihrem
Teil der Struktur fur den Kontextspeicher und fahrt dann fort, den Teil der Struktur, fiir den sie verantwortlich ist,
sofort zu rekonfigurieren. Das von der LCC geladene Programm kann eine Kombination von Konfigurations-
daten fir die Struktur- und Steuerbefehle fir die LCC sein, die z. B. leicht codiert sind. Wenn die LCC in den
Programmabschnitt streamt, kann sie das Programm als einen Befehlsstream interpretieren und die geeignete
codierte Aktion ausfuihren, um die Struktur zu konfigurieren (z. B. zu laden).

[0123] Zwei unterschiedliche Mikroarchitekturen fiir die LCC sind in Fig. 22 gezeigt, wobei z. B. eine oder
beide in einem CSA benutzt werden. Die erste setzt die LCC 2202 als Speicherschnittstelle. In diesem Fall
kann die LCC direkte Anforderungen an das Speichersystem zum Laden von Daten stellen. Im zweiten Fall ist
die LCC 2206 auf einem Speichernetzwerk angeordnet, in dem sie Anforderungen an den Speicher nur indirekt
stellen kann. In beiden Fallen bleibt die logische Operation der LCC unverandert. In einer Ausfihrungsform
wird eine LCC Uber das zu ladende Programm informiert, beispielsweise durch einen Satz von (z. B. OS-
sichtbaren) Steuerstatusregistern, die verwendet werden, um einzelne LCCs liber neue Programmzeiger usw.
zu informieren.

Zusatzliche AuRer-Band-Steuerkanale (z. B. Drahte)

[0124] In bestimmten Ausflihrungsformen verlasst sich die Konfiguration auf 2 bis 8 zusatzliche Aul3er-Band-
Steuerkanale, um die Konfigurationsgeschwindigkeit wie unten definiert zu verbessern. Zum Beispiel kann
die Konfigurationssteuerung 2402 die folgenden Steuerkanale aufweisen, z. B. den CFG_START Steuerkanal
2408, den CFG_VALID Steuerkanal 2410 und den CFG_DONE Steuerkanal 2412, wobei Beispiele von jedem
einzelnen in der nachstehenden Tabelle 2 besprochen sind.

Tabelle 2 Steuerkanale

CFG_START Asserted at beginning of configuration. Sets configuration state at
each CFE and sets the configuration bus.

CFG_VALID Denotes validity of values on configuration bus.

CFG_DONE Optional. Denotes completion of the configuration of a particular CFE.

This allows configuration to be short circuited in case a CFE does not
require additional configuration

[0125] Im Allgemeinen kann die Handhabung von Konfigurationsinformation dem Implementierer eines be-
stimmten CFE Uberlassen werden. Zum Beispiel kann ein auswahlbares Funktions-CFE eine Vorkehrung zum

33/134

DE 10 2018 005 216 A1 2019.02.21

Setzen von Registern unter Verwendung eines existierenden Datenpfads aufweisen, wahrend eine festes
Funktions-CFE einfach ein Konfigurationsregister einstellen kann.

[0126] Aufgrund der langen Drahtverzégerungen beim Programmieren langer CFE-Satze kann das CFG_
VALID Signal als eine Takt-/Latch-Aktivierung fur die CFE-Komponenten behandelt werden. Da dieses Signal
als ein Takter verwendet wird, betragt in einer Ausfiihrungsform der Arbeitszyklus der Leitung héchstens 50%.
Als Ergebnis wird der Konfigurationsdurchsatz in etwa halbiert. Optional kann ein zweites CFG_VALID Signal
hinzugefugt werden, um eine kontinuierliche Programmierung zu ermdglichen.

[0127] In einer Ausflhrungsform wird nur CFG_START strikt an eine unabhangige Kopplung (z. B. Draht)
kommuniziert, zum Beispiel kénnen CFG_VALID und CFG_DONE Uber andere Netzwerkkopplungen Uberla-
gert werden.

Wiederverwendung von Netzwerkressourcen

[0128] Zum Reduzieren des Konfigurationsaufwands nutzen bestimmte Ausfiihrungsformen eines CSA die
vorhandene Netzwerkinfrastruktur zur Kommunikation von Konfigurationsdaten. Eine LCC kann sowohl eine
Chipebenen-Speicherhierarchie als auch Strukturebenen-Kommunikationsnetzwerke zum Bewegen von Da-
ten vom Speicher in die Struktur verwenden. Als Ergebnis tragt die Konfigurationsinfrastruktur in bestimmten
Ausfihrungsformen eines CSA nicht mehr als 2% zum gesamten Strukturbereich und zur Gesamtleistung bei.

[0129] Die Wiederverwendung von Netzwerkressourcen in bestimmten Ausfliihrungsformen eines CSA kann
ein Netzwerk dazu veranlassen, einige Hardwareunterstitzung fur einen Konfigurationsmechanismus zu er-
langen. Leitungsvermittelte Netzwerke von Ausflihrungsformen eines CSA bewirken, dass eine LCC ihre Mul-
tiplexer auf eine spezifische Weise fir die Konfiguration setzt, wenn das Signal ,CFG_START* angegeben
wird. Paketvermittelte Netzwerke erfordern keine Erweiterung, obwohl LCC-Endpunkte (z. B. Konfigurations-
terminatoren) eine spezifische Adresse in dem paketvermittelten Netzwerk verwenden. Die Netzwerkwieder-
verwendung ist optional und einige Ausfiihrungsformen finden ggf. eigens vorgesehene Konfigurationsbusse
angemessener.

Per-CFE-Status

[0130] Jedes CFE kann ein Bit halten, das angibt, ob es konfiguriert wurde oder nicht (siehe z. B. Fig. 13).
Dieses Bit kann deaktiviert werden, wenn das Konfigurationsstartsignal angesteuert wird, und dann aktiviert
werden, sobald das bestimmte CFE konfiguriert wurde. In einem Konfigurationsprotokoll sind die CFEs ange-
ordnet, um Ketten mit dem CFE-Konfigurationsstatussbit zu bilden, das die Topologie der Kette bestimmt. Ein
CFE kann das Konfigurationsstatussbit des unmittelbar angrenzenden CFE lesen. Wenn dieses benachbar-
te CFE konfiguriert ist und das derzeitige CFE nicht konfiguriert ist, kann das CFE bestimmen, dass samtli-
che derzeitigen Konfigurationsdaten auf das derzeitige CFE abzielen. Wenn das ,CFG_DONE"-Signal aktiviert
wird, kann das CFE sein Konfigurationsbit setzen, z. B. vorgeschaltete CFEs zum Konfigurieren aktivieren. Als
ein Basisfall fir den Konfigurationsprozess kann ein Konfigurations-Terminator (z. B. Konfigurations-Termina-
tor 2204 fir LCC 2202 oder Konfigurations-Terminator 2208 fir LCC 2206 in Fig. 22), der bestatigt, dass er
konfiguriert ist, am Ende einer Kette aufgenommen werden.

[0131] CFE-intern kann dieses Bit zum Ansteuern der flusssteuerbereiten Signale verwendet werden. Wenn
zum Beispiel das Konfigurationsbit deaktiviert wird, kbnnen Netzwerksteuersignale automatisch auf einen Wert
geklemmt werden, der verhindert, dass Daten flieBen, wahrend innerhalb der PEs keine Operationen oder
andere Aktionen geplant werden.

Behandeln von Konfigurationspfaden mit hoher Verzégerung

[0132] Eine Ausflihrungsform einer LCC kann ein Signal Giber eine lange Distanz, z. B. durch viele Multiplexer
und mit vielen Lasten, treiben. Daher kann es fiur ein Signal schwierig sein, an einem entfernten CFE inner-
halb eines kurzen Taktzyklus einzugehen. In bestimmten Ausfihrungsformen sind die Konfigurationssignale
in einer bestimmten Division (z. B. einem Bruchteil von) der Haupttaktfrequenz (z. B. CSA), um eine digitale
Zeitdisziplin bei der Konfiguration sicherzustellen. Die Taktteilung kann in einem AufRer-Band-Signalisierungs-
protokoll benutzt werden und erfordert keine Modifikation des Haupttaktbaums.

34/134

DE 10 2018 005 216 A1 2019.02.21

Sicherstellen des konsistenten Strukturverhaltens wéhrend der Konfiguration

[0133] Da bestimmte Konfigurationsschemata verteilt sind und aufgrund von Programm- und Speichereffekten
eine nicht-deterministische Zeitsteuerung aufweisen, kdnnen verschiedene Teile der Struktur zu unterschied-
lichen Zeiten konfiguriert werden. Als ein Ergebnis stellen bestimmte Ausfihrungsformen eines CSA Mecha-
nismen bereit, um eine inkonsistente Operation zwischen konfigurierten und unkonfigurierten CFEs zu verhin-
dern. Allgemein wird Konsistenz als eine Eigenschaft angesehen, die von den CFEs selbst gefordert und bei-
behalten wird, z. B. unter Verwendung des internen CFE-Zustands. Wenn ein CFE z. B. in einem unkonfigu-
rierten Status ist, kann es beanspruchen, dass seine Eingabepuffer voll sind und dass seine Ausgabe ungliltig
ist. Beim Konfigurieren werden diese Werte auf den wahren Status der Puffer eingestellt. Da gentigend von
der Struktur aus der Konfiguration kommt, kénnen diese Techniken den Beginn der Operation zulassen. Dies
hat den Effekt der weiteren Reduktion der Kontext-Switching-Latenz, z. B. wenn Speicheranfragen mit langer
Latenz friih ausgegeben werden.

Konfiguration mit variabler Breite

[0134] Unterschiedliche CFEs kdénnen unterschiedliche Konfigurationswortbreiten aufweisen. Bei kleineren
CFE-Konfigurationswortern kdnnen die Implementierer die Verzdégerung kompensieren, indem sie CFE-Kon-
figurationslasten Uber die Netzwerkleitungen gleichmaRig zuweisen. Zum Ausgleichen der Ladung von Netz-
werkleitungen ist eine Mdglichkeit, Konfigurationsbits verschiedenen Abschnitten von Netzwerkleitungen zuzu-
weisen, um die Nettoverzégerung auf einen einzigen Draht zu begrenzen. Breite Datenwdrter kénnen durch Se-
rialisierungs-/Deserealisierungstechniken gehandhabt werden. Diese Entscheidungen kénnen auf einer Per-
Fabric-Basis getroffen werden, um das Verhalten eines spezifischen CSA (z. B. Struktur) zu optimieren. Die
Netzwerksteuerung (z. B. eine oder mehrere von Netzwerksteuerung 2210 und Netzwerksteuerung 2212 kén-
nen mit jeder Doméne (z. B. Untersatz) des CSA (z. B. Struktur) kommunizieren, um z. B. Konfigurationsinfor-
mationen an eine oder mehrere LCCs zu senden.

Mikroarchitektur fir die Niederlatenz-Konfiguration eines CSA und
zum rechtzeitigen Abrufen von Konfigurationsdaten fur einen CSA

[0135] Ausfluhrungsformen eines CSA kdnnen ein energieeffizientes und leistungsstarkes Mittel sein, um Be-
nutzeranwendungen zu beschleunigen. Bei der Beriicksichtigung, ob ein Programm (z. B. ein Datenflussgraph
davon) erfolgreich durch einen Beschleuniger beschleunigt werden kann, kénnen sowohl die Zeit zum Konfi-
gurieren des Beschleunigers als auch die Zeit zum Ausfihren des Programms in Betracht gezogen werden.
Wenn die Laufzeit kurz ist, kann die Konfigurationszeit eine grof3e Rolle bei der Bestimmung der erfolgreichen
Beschleunigung spielen. Um die Doméane von beschleunigbaren Programmen zu maximieren, wird daher in
einigen Ausfuhrungsformen die Konfigurationszeit so kurz wie méglich gemacht. Einer oder mehrere Konfigu-
rations-Caches koénnen in einem CSA enthalten sein, z. B. derart, dass der Speicher mit hoher Bandbreite und
niedriger Latenz eine schnelle Rekonfiguration ermdglicht. Im Folgenden wird eine Beschreibung verschiede-
ner Ausfiihrungsformen eines Konfigurations-Caches gegeben.

[0136] In einer Ausflihrungsform greift wahrend der Konfiguration die Konfigurationshardware (z. B. LCC) op-
tional auf den Konfigurations-Cache zu, um neue Konfigurationsinformationen zu erhalten. Der Konfigurations-
Cache kann entweder als ein traditioneller adressbasierter Cache oder in einem OS-verwalteten Modus ar-
beiten, in dem Konfigurationen in dem lokalen Adressraum gespeichert sind und durch Bezugnahme auf die-
sen Adressraum adressiert werden. Wenn sich der Konfigurationsstatus in dem Cache befindet, dann missen
in bestimmten Ausflihrungsformen keine Anforderungen an den Sicherungsspeicher gestellt werden. In be-
stimmten Ausflihrungsformen ist dieser Konfigurations-Cache von samtlichen (z. B. Lower-Level) gemeinsam
genutzten Caches in der Speicherhierarchie getrennt.

[0137] Fig. 25 veranschaulicht eine Beschleuniger-Kachel 2500, umfassend ein Array von Verarbeitungsele-
menten, ein Konfigurations-Cache (z. B. 2518 oder 2520) und eine lokale Konfigurationssteuerung (z. B. 2502
oder 2506) gemal Ausfiihrungsformen der Offenbarung. In einer Ausfiihrungsform ist der Konfigurations-Ca-
che 2514 mit der lokalen Konfigurationssteuerung 2502 gemeinsam angeordnet. In einer Ausflihrungsform be-
findet sich der Konfigurations-Cache 2518 in der Konfigurationsdoméne der lokalen Konfigurationssteuerung
2506, z. B. mit einer ersten Doméane, die am Konfigurations-Terminator 2504 endet, und einer zweiten Doma-
ne, die am Konfigurations-Terminator 2508 endet. Ein Konfigurations-Cache kann es einer lokalen Konfigura-
tionssteuerung ermdglichen, wahrend der Konfiguration auf den Konfigurations-Cache Bezug zu nehmen, z.
B. in der Hoffnung, einen Konfigurationsstatus mit einer niedrigeren Latenz als einen Bezug auf den Speicher

35/134

DE 10 2018 005 216 A1 2019.02.21

zu erhalten. Ein Konfigurations-Cache (Speicher) kann entweder dediziert sein oder kann als ein Konfigurati-
onsmodus eines strukturinternen Speicherelements, z. B. des lokalen Caches 2516, zugénglich sein.
Cachemodi

1. Demand Caching - In diesem Modus arbeitet das Konfigurations-Cache als true Cache. Die Konfigura-
tionssteuerung gibt adressbasierte Anfragen aus, die auf Tags im Cache Uberpruft werden. Fehler werden
in den Cache geladen und kénnen dann wéahrend einer zukiinftigen Neuprogrammierung erneut referen-
ziert werden.

2. In-Fabric Storage (Scratchpad) Caching - In diesem Modus empféngt der Konfigurations-Cache einen
Verweis auf eine Konfigurationssequenz in seinem eigenen kleinen Adressraum und nicht im gréReren
Adressraum des Hosts. Dies kann die Speicherdichte verbessern, da der Teil des Caches, der zum Spei-
chern von Tags verwendet wird, stattdessen zum Speichern der Konfiguration verwendet werden kann.

[0138] In bestimmten Ausflihrungsformen kann ein Konfigurations-Cache die Konfigurationsdaten darin vor-
geladen aufweisen, z. B. entweder durch externe Richtung oder interne Richtung. Dies kann die Reduktion der
Latenz zum Laden von Programmen ermdglichen. Bestimmte Ausfiuihrungsformen hierin stellen eine Schnitt-
stelle zu einem Konfigurations-Cache bereit, die das Laden eines neuen Konfigurationsstatus in den Cache
erlaubt, z. B. selbst wenn eine Konfiguration bereits in der Struktur 1duft. Die Initiierung dieser Ladung kann
entweder von einer internen oder externen Quelle erfolgen. Ausfiihrungsformen des Vorlademechanismus re-
duzieren die Latenz weiter, indem sie die Latenz der Cacheladung von dem Konfigurationspfad entfernen.
Pre-Fetching-Modi

1. Explicit Prefetching - Ein Konfigurationspfad wird mit einem neuen Befehl augmentiert, ConfigurationCa-
chePrefetch. Statt der Programmierung der Struktur bewirkt dieser Befehl lediglich das Laden der rele-
vanten Programmkonfiguration in einen Konfigurations-Cache, ohne die Struktur zu programmieren. Da
dieser Mechanismus auf der vorhandenen Konfigurationsinfrastruktur pendelt, wird er sowohl innerhalb
der Struktur als auch extern offengelegt, z. B. fir Kerne und andere Entitaten, die auf den Speicherraum
zugreifen.

2. Implicit prefetching -Eine globale Konfigurationssteuerung kann einen Prefetch-Pradiktor beibehalten
und diesen verwenden, um das explizite Vorladen zu einem Konfigurations-Cache, z. B. automatisch, zu
initiieren.

Hardware zur schnellen Rekonfiguration eines CSA als Reaktion auf eine Ausnahme

[0139] Bestimmte Ausfuhrungsformen eines CSA (z. B. eine rdumliche Struktur) weisen grol3e Mengen eines
Befehls- und Konfigurationsstatus auf, der z. B. wahrend des Betriebs des CSA weitgehend statisch ist. Da-
her kann der Konfigurationsstatus anfallig fur weiche Fehler sein. Die schnelle und fehlerfreie Wiederherstel-
lung dieser weichen Fehler kann fur die langfristige Zuverldssigkeit und Leistung von rdumlichen Systemen
entscheidend sein.

[0140] Bestimmte Ausfuhrungsformen hierin stellen eine schnelle Konfigurationswiederherstellungsschleife
bereit, bei der z. B. Konfigurationsfehler erkannt und Teile der Struktur sofort rekonfiguriert werden. Bestimmte
Ausfuhrungsformen hierin weisen eine Konfigurationssteuerung auf, z. B. mit Merkmalen zur Umprogrammie-
rung der Zuverlassigkeit, Verfligbarkeit und Wartungsfreundlichkeit (RAS). Bestimmte Ausfiihrungsformen des
CSA weisen einen Schaltkreis fur eine Hochgeschwindigkeitskonfiguration, eine Fehlerberichterstattung und
eine Paritatsprifung innerhalb der rdumlichen Struktur auf. Unter Verwendung einer Kombination dieser drei
Merkmale und optional eines Konfigurations-Cache kann sich eine Konfigurations-/Ausnahmehandhabungs-
schaltung von weichen Fehlern in der Konfiguration erholen. Nach der Erkennung kénnen weiche Fehler zu
einem Konfigurations-Cache ubertragen werden, der eine sofortige Rekonfiguration der Struktur initiiert (z. B.
dieses Teils). Bestimmte Ausflhrungsformen stellen eine dedizierte Rekonfigurationsschaltung bereit, die z.
B. schneller ist als jede Ldsung, die indirekt in die Struktur implementiert wurde. In bestimmten Ausfiihrungs-
formen kooperieren die co-lokalisierte Ausnahme- und Konfigurationsschaltung, um die Struktur bei der Kon-
figurationsfehlererkennung neu zu laden.

[0141] Fig. 26 veranschaulicht eine Beschleuniger-Kachel 2600, umfassend ein Array von Verarbeitungsele-
menten und eine Konfigurations- und Ausnahmehandhabungssteuerung (2602, 2606) mit einer Rekonfigura-
tionsschaltung (2618, 2622) gemafl Ausfihrungsformen der Offenbarung. In einer Ausfihrungsform sendet,
wenn ein PE einen Konfigurationsfehler durch seine lokalen RAS-Merkmale erkennt, es eine Nachricht (z. B.
einen Konfigurationsfehler oder einen Rekonfigurationsfehler) durch seinen Ausnahmegenerator an die Kon-
figurations- und Ausnahmehandhabungssteuerung (z. B. 2602 oder 2606). Bei Empfang dieser Nachricht in-

36/134

DE 10 2018 005 216 A1 2019.02.21

itiiert die Konfigurations- und Ausnahmehandhabungssteuerung (z. B. 2602 oder 2606) die co-lokalisierte Re-
konfigurationsschaltung (z. B. 2618 oder 2622), um den Konfigurationsstatus neu zu laden. Die Konfigurati-
ons-Mikroarchitektur geht weiter und Iadt (z. B. nur) den Konfigurationsstatus neu, und in bestimmten Ausfih-
rungsformen nur den Konfigurationsstatus fir das PE, das den RAS-Fehler meldet. Nach Abschluss der Re-
konfiguration kann die Struktur die normale Operation wieder aufnehmen. Zum Verringern der Latenz kann
der Konfigurationsstatus, der von der Konfigurations- und Ausnahmehandhabungssteuerung (z. B. 2602 oder
2606) verwendet wird, aus einem Konfigurations-Cache bezogen werden. Als ein Basisfall fir den Konfigura-
tions- und Rekonfigurationsprozess kann ein Konfigurations-Terminator (z. B. Konfigurations-Terminator 2604
fur die Konfigurations- und Ausnahmehandhabungssteuerung 2602 oder Konfigurations-Terminator 2608 fir
die Konfigurations- und Ausnahmehandhabungssteuerung 2606 in Fig. 26), der bestatigt, dass er konfiguriert
(oder rekonfiguriert) ist, am Ende einer Kette aufgenommen werden.

[0142] Fig. 27 veranschaulicht eine Rekonfigurationsschaltung 2718 gemal Ausfihrungsformen der Offen-
barung. Die Rekonfigurationsschaltung 2718 weist ein Konfigurationsstatusregister 2720 auf, um den Konfigu-
rationsstatus (oder einen Zeiger darauf) zu speichern.

Hardware fir eine strukturinitiierte Rekonfiguration eines CSA

[0143] Einige Teile einer Anwendung, die auf ein CSA (z. B. raumliches Array) abzielen, kdnnen infrequent
laufen oder kdnnen sich gegenseitig mit anderen Teilen des Programms ausschliefien. Zum Sparen von Fla-
che und zum Verbessern der Leistung und/oder Reduzieren von Energie, kann es nutzlich sein, Teile der
raumlichen Struktur zwischen mehreren verschiedenen Teilen des Programm-Datenflussgraphen zeitzumulti-
plexen. Bestimmte Ausfiihrungsformen hierin weisen eine Schnittstelle auf, durch die ein CSA (z. B. Uber das
raumliche Programm) anfordern kann, dass ein Teil der Struktur umprogrammiert wird. Die kann dem CSA
ermoglichen, sich gemal dem dynamischen Steuerfluss selbst zu verandern. Bestimmte Ausfiihrungsformen
hierin erlauben eine strukturinitiierte Rekonfiguration (z. B. Umprogrammierung). Bestimmte Ausfiihrungsfor-
men hierin stellen einen Satz fir Schnittstellen zum Triggern der Konfiguration von innerhalb der Struktur be-
reit. In einigen Ausfihrungsformen gibt ein PE eine Rekonfigurationsanfrage basierend auf einer Entscheidung
in dem Programmdatenflussgraphen aus. Diese Anfrage kann durch ein Netzwerk zu unserer neuen Konfigu-
rationsschnittstelle gehen, wo sie die Rekonfiguration triggert. Sobald die Rekonfiguration abgeschlossen ist,
kann eine Nachricht optional zuriickgeleitet werden, die den Abschluss mitteilt. Bestimmte Ausfihrungsformen
eines CSA stellen somit ein Programm (z. B. Datenflussgraph) bereit, das sich an die Rekonfigurationskapa-
zitat richtet.

[0144] Fig. 28 veranschaulicht eine Beschleuniger-Kachel 2800, umfassend ein Array von Verarbeitungs-
elementen und eine Konfigurations- und Ausnahmehandhabungssteuerung 2806 mit einer Rekonfigurations-
schaltung 2818, gemaf Ausfiihrungsformen der Offenbarung. Hier gibt ein Teil der Struktur eine Anforderung
zur (Re-) Konfiguration an eine Konfigurationsdoméane aus, z. B. der Konfigurations- und Ausnahmehandha-
bungssteuerung 2806 und/oder Rekonfigurationsschaltung 2818. Die Domane (re)konfiguriert sich selbst, und
wenn die Anforderung erfiillt ist, gibt die Konfigurations- und Ausnahmehandhabungssteuerung 2806 und/oder
die Rekonfigurationsschaltung 2818 eine Antwort an die Struktur aus, um die Struktur dariiber zu informie-
ren, dass die (Re-) Konfiguration abgeschlossen ist. In einer Ausflihrungsform deaktivieren die Konfigurations-
und Ausnahmehandhabungssteuerung 2806 und/oder die Rekonfigurationsschaltung 2818 die Kommunikati-
on wahrend der Zeit, in der die (Re-) Konfiguration lauft, sodass das Programm wahrend der Operation keine
Konsistenzprobleme aufweist.

Konfigurationsmodi

[0145] Configure-by-address - In diesem Modus fordert die Struktur das Laden von Konfigurationsdaten von
einer bestimmten Adresse direkt an.

[0146] Configure-by-reference - In diesem Modus fordert die Struktur das Laden einer neuen Konfiguration an,
z. B. durch eine vorbestimmte Referenz-ID. Dies kann die Bestimmung des zu ladenden Codes vereinfachen,
da der Speicherort des Codes abstrahiert wurde.

Konfigurieren einer Vielzahl von Doméanen
[0147] Ein CSA kann eine Higher-Level-Konfigurationssteuerung aufweisen, um einen Multicast-Mechanis-

mus zu unterstitzen, um Konfigurationsanforderungen (z. B. Gber ein Netzwerk, das durch die gestrichelte Box
angezeigt wird) an mehrere (z. B. verteilte oder lokale) Konfigurationssteuerungen zu tbertragen. Dies kann

37/134

DE 10 2018 005 216 A1 2019.02.21

ermoglichen, dass eine einzelne Konfigurationsanforderung Uber gréRere Teile der Struktur repliziert werden
kann, z. B. durch Triggern einer breiteren Rekonfiguration.

Ausnahmeaggregatoren

[0148] Bestimmte Ausfiihrungsformen eines CSA kdnnen auch eine Ausnahme erfahren (z. B. eine Ausnah-
mebedingung), z. B. einen Gleitkomma-Underflow. Bei Auftreten dieser Bedingungen kann ein spezieller Hand-
ler aufgerufen werden, um das Programm entweder zu korrigieren oder es zu beenden. Bestimmte Ausfih-
rungsformen hierin stellen eine Architektur auf Systemebene zum Handhaben von Ausnahmen in rdumlichen
Strukturen bereit. Da bestimmte raumliche Strukturen die Bereichseffizienz hervorheben, minimieren die Aus-
fuhrungsformen hierin die Gesamtflache und stellen gleichzeitig einen allgemeinen Ausnahmemechanismus
bereit. Bestimmte Ausfihrungsformen hierin stellen eine Niederbereichseinrichtung zum Signalisieren von au-
Rergewodhnlichen Zustédnden bereit, die innerhalb eines CSA (z. B. einem raumlichen Array) auftreten. Be-
stimmte Ausfiihrungsformen hierin stellen ein Schnittstellen- und Signalisierungsprotokoll zum Ubermitteln sol-
cher Ausnahmen sowie eine PE-Ebenen-Ausnahmesemantik bereit. Bestimmte Ausfihrungsformen hierin sind
dedizierte Ausnahmehandhabungskapazitaten, und erfordern z. B. keine explizite Handhabung durch den Pro-
grammierer.

[0149] Eine Ausfihrungsform eines CSA-Ausnahmearchitektur besteht aus vier Teilen, die z. B. in den Fig. 29
bis Fig. 30 gezeigt sind. Diese Teile kénnen in einer Hierarchie angeordnet sein, in der Ausnahmen von dem
Erzeuger und schlieRlich bis zu dem Kachel-Level-Ausnahmeaggregator (z. B. Handler) flieRen, der sich mit
einem Ausnahmebediner, z. B. einem Kern, treffen kann. Die vier Teile kdnnen Folgende sein:

1. PE-Ausnahmegenerator
2. Lokales Ausnahme-Netzwerk
3. Mezzanine-Ausnahmeaggregator

4. Kachel-Level-Ausnahmeaggregator

[0150] Fig. 29 veranschaulicht eine Beschleuniger-Kachel 2900, umfassend ein Array von Verarbeitungsele-
menten und einen Mezzanine-Ausnahmeaggregator 2902, der mit einem Kachel-Level-Ausnahmeaggregator
2904 gemal Ausfihrungsformen der Offenbarung gekoppelt ist. Fig. 30 veranschaulicht ein Verarbeitungs-
element 3000 mit einem Ausnahmegenerator 3044 gemaR Ausfihrungsformen der Offenbarung.

PE-Ausnahmegenerator

[0151] Das Verarbeitungselement 3000 kann beispielsweise das Verarbeitungselement 900 aus Fig. 9 auf-
weisen, wobei dhnliche Nummern ahnliche Komponenten sind, z. B. das lokale Netzwerk 902 und das loka-
le Netzwerk 3002. Das zusatzliche Netzwerk 3013 (z. B. Kanal) kann ein Ausnahme-Netzwerk sein. Ein PE
kann eine Schnittstelle zu einem Ausnahme-Netzwerk implementieren (z. B. Ausnahme-Netzwerk 3013 (z.
B. Kanal) in Fig. 30). Zum Beispiel zeigt Fig. 30 die Mikroarchitektur einer solchen Schnittstelle, wobei das
PE einen Ausnahme-Erzeuger 3044 aufweist (z. B. zum Initiieren einer endlichen Ausnahmestatusmaschine
(FSM) 3040, um ein Ausnahmepaket (z. B. BOXID 3042) an das Ausnahme-Netzwerk auszugeben. BOXID
3042 kann ein eindeutiger Identifizierer fir eine Ausnahmeerzeugungsentitat (z. B. ein PE oder eine Box) in
einem lokalen Ausnahme-Netzwerk sein. Wenn eine Ausnahme erkannt wird, misst der Ausnahmegenerator
3044 das Ausnahme-Netzwerk und tastet BOXID ab, wenn das Netzwerk als frei befunden wird. Ausnahmen
kénnen durch viele Bedingungen verursacht werden, z. B. arithmetische Fehler, fehlgeschlagener ECC-Priif-
einschaltzustand usw., aber nicht darauf beschrankt. Es kann jedoch auch sein, dass eine Ausnahmedaten-
flussoperation mit der Idee von Unterstiitzungskonstrukten wie Unterbrechungspunkten eingefiihrt wird.

[0152] Die Initiierung der Ausnahme kann entweder explizit, durch die Ausfliihrung eines vom Programmierer
eingegebenen Befehls, oder implizit, wenn eine gehartete Fehlerbedingung (z. B. ein Gleitkomma-Underflow)
erkannt wird, stattfinden. Bei einer Ausnahme kann das PE 3000 in einen Wartezustand eintreten, in dem es
darauf wartet, von dem eventuellen Ausnahme-Handler bedient zu werden, z. B. auBerhalb des PE 3000. Die
Inhalte des Ausnahmepakets hdngen von der Implementierung des bestimmten PE ab, wie unten beschrieben.

Lokales Ausnahme-Netzwerk

[0153] Ein (z. B. lokales) Ausnahme-Netzwerk lenkt Ausnahmepakete vom PE 3000 zum Mezzanine-Ausnah-
me-Netzwerk. Das Ausnahme-Netzwerk (z. B. 3013) kann ein serielles paketvermitteltes Netzwerk sein, das

38/134

DE 10 2018 005 216 A1 2019.02.21

aus einem (z. B. einzelnen) Steuerdraht und einem oder mehreren Datendréhten besteht, z. B. in einer Ring-
oder Baumtopologie organisiert ist, z. B. fur einen PE-Untersatz. Jedes PE kann einen (z. B. Ring-)Stopp im (z.
B. lokalen) Ausnahme-Netzwerk aufweisen, in dem es z. B. entscheiden kann, Nachrichten in das Ausnahme-
Netzwerk einzuspeisen.

[0154] PE-Endpunkte, die ein Ausnahmepaket einspeisen missen, kénnen ihren lokalen Ausnahme-Netz-
werkaustrittspunkt beobachten. Wenn das Steuersignal ,besetzt” anzeigt, muss das PE warten, um mit dem
Einspeisen seines Pakets zu beginnen. Wenn das Netzwerk nicht besetzt ist, d. h. der nachgeschaltete Stopp
kein Paket zum Weiterleiten aufweist, geht das PE zum Beginn der Einspeisung uber.

[0155] Netzwerkpakete kénnen von variabler oder fester Lange sein. Jedes Paket kann mit einem Feld einer
festen Langenkopfzeile beginnen, die das Quell-PE des Pakets identifiziert. Danach kann eine variable Anzahl
von PE-spezifischen Feldern folgen, die Informationen enthalten, einschlielich Fehlercodes, Datenwerte oder
andere nitzliche Statusinformationen.

Mezzanine-A usnahmeaggregator

[0156] Der Mezzanine-Ausnahmeaggregator 2904 ist dafir verantwortlich, ein lokales Ausnahme-Netzwerk
zu grofReren Paketen zu assemblieren und sie an den Kachel-Level-Ausnahmeaggregator 2902 zu senden.
Der Mezzanine-Ausnahmeaggregator 2904 kann das lokale Ausnahmepaket mit seiner eigenen eindeutigen
ID voranstellen, z. B. um sicherzustellen, dass Ausnahmenachrichten unzweideutig sind. Der Mezzanine-Aus-
nahmeaggregator 2904 kann eine Schnittstelle mit einem speziellen virtuellen Nur-Ausnahme-Kanal im Mez-
zanine-Netzwerk aufweisen, die z. B. die Stillstandfreiheit der Ausnahmen sicherstellen.

[0157] Der Mezzanine-Ausnahmeaggregator 2904 kann auch direkt bestimmte Ausnahmeklassen bedienen.
Eine Konfigurationsanforderung von der Struktur kann z. B. aus dem Mezzanine-Netzwerk unter Verwendung
von Caches bedient werden, die fur den Mezzanine-Netzwerkstopp lokal sind.

Kachel-Level-Ausnahmeaggregator

[0158] Die letzte Stufe des Ausnahmesystems ist der Kachel-Level-Ausnahmeaggregator 2902. Der Kachel-
Level-Ausnahmeaggregator 2902 ist verantwortlich fiir das Sammeln von Ausnahmen aus den verschiedenen
Mezzanine-Level-Ausnahmeaggregatoren (z. B. 2904) und fir das Weiterleiten davon an die geeignete Ser-
vice-Hardware (z. B. Kern). Daher kann der Kachel-Level-Ausnahmeaggregator 2902 einige interne Tabellen
und Steuerungen aufweisen, um bestimmte Nachrichten Handler-Routinen zuzuordnen. Diese Tabellen kén-
nen entweder direkt oder mit einer kleinen Statusmaschine indiziert werden, um bestimmte Ausnahmen zu
lenken.

[0159] Wie der Mezzanine-Ausnahmeaggregator kann der Kachel-Level-Ausnahmeaggregator einige Aus-
nahmeanforderungen bedienen. Beispielsweise kann er die Umprogrammierung eines Grof3teils der PE-Struk-
tur als Reaktion auf eine spezifische Ausnahme initiieren.

Extraktionssteuerungen

[0160] Bestimmte Ausfihrungsformen eines CSA weisen eine oder mehrere Extraktionssteuerungen zum Ex-
trahieren von Daten aus der Struktur auf. Nachstehend werden Ausflihrungsformen erlautert, wie diese Extrak-
tion schnell vonstatten gehen kann und wie der Ressourcenaufwand der Konfiguration minimiert werden kann.
Die Datenextraktion kann fir solche wichtigen Aufgaben wie Ausnahmehandhabung und Kontextumschaltung
benutzt werden. Bestimmte Ausfihrungsformen hierin extrahieren Daten aus einer heterogenen raumlichen
Struktur durch Einfihren von Merkmalen, die extrahierbare Strukturelemente (EFEs) (z. B. PEs, Netzwerk-
steuerungen und/oder Schalter) mit variablen und dynamisch variablen Mengen des zu extrahierenden Status
zulassen.

[0161] Ausflihrungsformen eines CSA beinhalten ein verteiltes Datenextraktionsprotokoll und eine Mikroar-
chitektur, um dieses Protokoll zu unterstiitzen. Bestimmte Ausfiihrungsformen eines CSA beinhalten eine Viel-
zahl von lokalen Extraktionssteuerungen (LECs), die Programmdaten aus ihrem lokalen Gebiet der rdumlichen
Struktur unter Verwendung einer Kombination aus einem (z. B. kleinen) Satz von Steuersignalen und dem von
der Struktur bereitgestellten Netzwerk streamen. Zustandselemente kdnnen an jedem extrahierbaren Struk-
turelement (EFE) verwendet werden, um Extraktionsketten zu bilden, z. B. um einzelnen EFEs zu erlauben,
sich ohne globale Adressierung selbst zu extrahieren.

39/134

DE 10 2018 005 216 A1 2019.02.21

[0162] Ausflihrungsformen eines CSA verwenden kein lokales Netzwerk, um Programmdaten zu extrahieren.
Ausfuhrungsformen eines CSA weisen eine spezifische Hardware-Unterstitzung (z. B. eine Extraktionssteue-
rung) fur die Bildung von z. B. Extraktionsketten auf, und verlassen sich nicht auf Software, um diese Ketten
dynamisch zu erstellen, z. B. auf Kosten der Extraktionszeit. Ausfuhrungsformen eines CSA sind nicht rein
paketvermittelt und weisen zusatzliche Auller-Band-Steuerdrahte (z. B. wird die Steuerung nicht durch den
Datenpfad gesendet, was zuséatzliche Zyklen zum Abtasten und Reserialisieren dieser Information erfordert)
auf. Ausfihrungsformen eines CSA verringern die Extraktionslatenz durch Festlegen der Extraktionsreihen-
folge und durch Bereitstellen einer expliziten Aufer-Band-Steuerung (z. B. um mindestens einen Faktor von
zwei), wahrend die Netzwerkkomplexitat nicht wesentlich zunimmt.

[0163] Ausflihrungsformen eines CSA verwenden keinen seriellen Mechanismus zur Datenextraktion, bei der
Daten Bit fur Bit unter Verwendung eines JTAG-artigen Protokolls in die Struktur gestreamt werden. Ausfuh-
rungsformen eines CSA benutzen einen grobkdrnigen Strukturansatz. In bestimmten Ausflihrungsformen ist
das Hinzufligen einiger Steuerdrahte oder Zustandselemente zu einer 64- oder 32-Bit-orientierten CSA-Struk-
tur kostenglnstiger als das Hinzufiigen derselben Steuermechanismen zu einer 4- oder 6-Bit-Struktur.

[0164] Fig. 31 veranschaulicht eine Beschleuniger-Kachel 3100, umfassend ein Array von Verarbeitungsele-
menten und eine lokale Extraktionssteuerung (3102, 3106) gemal Ausfihrungsformen der Offenbarung. Je-
des PE, jeder Netzwerkcontroller und jeder Schalter kbnnen extrahierbare Strukturelemente (EFEs) sein, die
z. B. durch Ausfiuihrungsformen der CSA-Architektur konfiguriert (z. B. programmiert) werden.

[0165] Ausflihrungsformen eines CSA weisen Hardware auf, die eine effiziente, verteilte Extraktion mit niedri-
ger Latenzzeit aus einer heterogenen rdumlichen Struktur bereitstellt. Dies kann gemaR vier Techniken erreicht
werden. Zuerst wird eine Hardwareentitat, die lokale Extraktionssteuerung (LEC - Local Extraction Controller)
benutzt, wie in Fig. 31 - Fig. 33. Eine LEC kann Befehle von einem Host (z. B. einem Prozessorkern) anneh-
men, z. B. einen Datenstream aus dem rdumlichen Array extrahieren, und diese Daten zurtick in den virtuel-
len Speicher zur Uberpriifung durch den Host schreiben. Zweitens kann ein Extraktionsdatenpfad enthalten
sein, der z. B. so breit wie die urspriingliche Breite der PE-Struktur ist und der tber die PE-Struktur Gberlagert
sein kann. Drittens kénnen neue Steuersignale in der PE-Struktur empfangen werden, die den Extraktions-
prozess anleiten. Viertens kénnen Zustandselemente an jedem konfigurierbaren Endpunkt angeordnet sein
(z. B. in einem Register), die den Status benachbarter EFEs verfolgen, so dass jedes EFE ohne zusatzliche
Steuersignale seinen Status eindeutig exportiert. Diese vier mikroarchitektionischen Merkmale kénnen einem
CSA das Extrahieren von Daten aus Ketten der EFEs ermdglichen. Um eine geringe Datenextraktionslatenz
zu erhalten, kdnnen bestimmte Ausfiihrungsformen das Extraktionsproblem durch Einschlielen mehrerer (z.
B. vieler) LECs und EFE-Ketten in die Struktur partitionieren. Zur Extraktion kdnnen diese unabhéngig von-
einander arbeiten, um die Struktur unabhangig zu extrahieren, z. B. um die Latenz drastisch zu reduzieren.
Als ein Ergebnis dieser Kombinationen kann ein CSA ein vollstandige Statusabbild (z. B. in Hunderten von
Nanosekunden) durchfiihren.

[0166] Fig. 32A-32C veranschaulichen eine lokale Extraktionssteuerung 3202, die ein Datenpfad-Netzwerk
gemal Ausfiihrungsformen der Offenbarung konfigurieren. Das dargestellte Netzwerk weist mehrere Multiple-
xer (z. B. Multiplexer 3206, 3208, 3210) auf, die konfiguriert werden kdénnen (z. B. iber zugehdrige Steuersi-
gnale), um einen oder mehrere Datenpfade (z. B. von PEs) miteinander zu verbinden. Fig. 32A veranschaulicht
das Netzwerk 3200 (z. B. Struktur), das fiir eine bisherige Operation oder Programm konfiguriert (z. B. einge-
stellt) wurde. Fig. 32B zeigt die lokale Extraktionssteuerung 3202 (die beispielsweise eine Netzwerkschnitt-
stellenschaltung 3204 zum Senden und/oder Empfangen von Signalen aufweist), die ein Extraktionssignal ab-
tastet und alle von der LEC gesteuerten PEs in den Extraktionsmodus eingibt. Das letzte PE in der Extrakti-
onskette (oder ein Extraktions-Terminator) kann die Extraktionskanale (z. B. Bus) mastern und Daten entwe-
der gemaR (1) Signalen von der LEC oder (2) intern erzeugten Signalen (z. B. von einem PE) senden. Nach
Abschluss kann ein PE sein Abschlussflag setzen und z. B. dem nachsten PE das Extrahieren seiner Daten
ermdglichen. Fig. 32C zeigt, dass das am weitesten entfernte PE den Extraktionsprozess abgeschlossen hat
und als Ergebnis sein Extraktionszustandsbit oder -bits gesetzt hat, die z. B. die Muxe in das benachbarte
Netzwerk schwingen, um es dem nachsten PE zu ermdglichen, mit dem Extraktionsprozess zu beginnen. Das
extrahierte PE kann seine normale Operation wieder aufnehmen. In einigen Ausflihrungsformen kann das PE
deaktiviert bleiben, bis eine andere Aktion unternommen wird. In diesen Figuren sind die Multiplexernetzwerke
Analoga des ,Schalters (oder Switches)®, der in bestimmten Figuren gezeigt ist (z. B. Fig. 6).

[0167] Die Folgenden Abschnitte beschreiben die Operation der verschiedenen Komponenten von Ausfiih-
rungsformen eines Extraktionsnetzwerks.

40/134

DE 10 2018 005 216 A1 2019.02.21

Lokale Extraktionssteuerung

[0168] Fig. 33 veranschaulicht eine Extraktionssteuerung 3302 gemaf Ausfihrungsformen der Offenbarung.
Eine lokale Extraktionssteuerung (Local Extraction Controller, LEC) kann die Hardwareentitét sein, die dafir
verantwortlich ist, Extraktionsbefehle zu akzeptieren, den Extraktionsprozess mit den EFEs zu koordinieren
und/oder extrahierte Daten z. B. in einem virtuellen Speicher zu speichern. In dieser Eigenschaft kann die LEC
ein sequentieller Spezialzweck-Mikrocontroller sein.

[0169] Die LEC-Operation kann beginnen, wenn sie einen Zeiger auf einen Puffer (z. B. im virtuellen Speicher)
empfangt, in den der Strukturstatus und optional ein Befehl geschrieben wird, wie stark die Struktur extrahiert
werden wird. Je nach der LEC-Mikroarchitektur kann dieser Zeiger (z. B. im Zeigerregister 3304 gespeichert)
entweder Uber ein Netzwerk oder Uber einen Speichersystemzugriff auf die LEC gelangen. Wenn sie einen
solchen Zeiger (z. B. Befehl) empfangt, geht die LEC zum Extraktionsstatus von dem Teil der Struktur, fir den
sie verantwortlich ist. Die LEC kann diese extrahierten Daten aus der Struktur in den Puffer streamen, der
durch den externen Anrufer bereitgestellt wird.

[0170] Zwei unterschiedliche Mikroarchitekturen fir die LEC sind in Fig. 31 gezeigt. Die erste platziert die
LEC 3102 an der Speicherschnittstelle. In diesem Fall kann die LEC direkte Anfragen an das Speichersystem
zum Schreiben von extrahierten Daten stellen. Im zweiten Fall ist die LEC 3106 auf einem Speichernetzwerk
angeordnet, in dem sie Anforderungen an den Speicher nur indirekt stellen kann. In beiden Fallen kann die
logische Operation der LEC unverandert bleiben. In einer Ausfiihrungsform werden die LECs Giber den Wunsch
informiert, Daten aus der Struktur zu extrahieren, beispielsweise durch einen Satz von (z. B. OS-sichtbaren)
Steuerstatusregistern, die verwendet werden, um einzelne LECs Uiber neue Befehle zu informieren.

Zusatzliche AuRer-Band-Steuerkanale (z. B. Drahte)

[0171] In bestimmten Ausflihrungsformen verlasst sich die Extraktion auf 2 bis 8 zusatzliche Aulier-Bandsi-
gnale, um die Konfigurationsgeschwindigkeit wie unten definiert zu verbessern. Durch die LEC angesteuerte
Signale kénnen als LEC markiert sein. Durch EFE (z. B. PE) angesteuerte Signale kénnen als EFE bezeich-
net werden. Die Konfigurationssteuerung 3302 kann die folgenden Steuerkanale aufweisen, z. B. den LEC_
EXTRACT Steuerkanal 3406, LEC_START Steuerkanal 3308, LEC_STROBE Steuerkanal 3310 und den EFE_
COMPLETE Steuerkanal 3312, wobei Beispiele von jedem einzelnen in Tabelle 3 unten besprochen sind.

TABELLE 3: Extraktionskanéle

LEC_EXTRACT Optional signal asserted by the LEC during extraction process. Lo-
wering this signal causes normal operation to resume.

LEC_START Signal denoting start of extraction, allowing setup of local EFE state

LEC_STROBE Optional strobe signal for controlling extraction related state machines
at EFEs. EFEs may generate this signal internally in some implemen-
tations.

EFE_COMPLETE Optional signal strobed when EFE has completed dumping state. This

helps LEC identify the completion of individual EFE dumps.

[0172] Im Allgemeinen kann die Handhabung der Extraktion dem Implementierer eines bestimmten EFE tber-
lassen werden. Zum Beispiel kann ein auswahlbares Funktions-EFE eine Vorkehrung zum Abbilden von Re-
gistern unter Verwendung eines existierenden Datenpfads aufweisen, wahrend eine festes Funktions-EFE ein-
fach einen Multiplexer aufweisen kann.

[0173] Aufgrund der langen Drahtverzégerungen beim Programmieren langer EFE-Satze kann das LEC_
STROBE Signal als eine Takt-/Latch-Aktivierung fur die EFE-Komponenten behandelt werden. Da dieses Si-
gnal als ein Takter verwendet wird, betragt in einer Ausfihrungsform der Arbeitszyklus der Leitung héchstens
50%. Als Ergebnis wird der Extraktionsdurchsatz in etwa halbiert. Optional kann ein zweites LEC_STROBE
Signal hinzugefligt werden, um eine kontinuierliche Extraktion zu ermdglichen.

[0174] In einer Ausfihrungsform wird nur LEC_START strikt an eine unabhangige Kopplung (z. B. Draht)
kommuniziert, zum Beispiel kbnnen Steuerkanale Uber ein existierendes Netzwerk Uberlagert werden.

41/134

DE 10 2018 005 216 A1 2019.02.21

Wiederverwendung von Netzwerkressourcen

[0175] Zum Reduzieren des Datenextraktionsaufwands nutzen bestimmte Ausfiihrungsformen eines CSA die
vorhandene Netzwerkinfrastruktur zur Kommunikation von Extraktionsdaten. Eine LEC kann sowohl eine Chi-
pebenen-Speicherhierarchie als auch Strukturebenen-Kommunikationsnetzwerke zum Bewegen von Daten
von der Struktur in den Speicher nutzen. Als Ergebnis tragt die Extraktionsinfrastruktur in bestimmten Ausfuh-
rungsformen eines CSA nicht mehr als 2% zur gesamten Strukturflaiche und zur Gesamtleistung bei.

[0176] Die Wiederverwendung von Netzwerkressourcen in bestimmten Ausfliihrungsformen eines CSA kann
ein Netzwerk dazu veranlassen, einige Hardwareunterstiitzung fiir ein Extraktionsprotokoll aufzuweisen. Lei-
tungsvermittelte Netzwerke erfordern von bestimmten Ausflihrungsformen eines CSA, dass eine LEC ihre Mul-
tiplexer auf eine spezifische Weise fir die Konfiguration setzt, wenn das Signal ,LEC_START" bestatigt wird.
Paketvermittelte Netzwerke erfordern keine Erweiterung, obwohl LEC-Endpunkte (z. B. Extraktions-Termina-
toren) eine spezifische Adresse in dem paketvermittelten Netzwerk verwenden. Die Netzwerkwiederverwen-
dung ist optional und einige Ausfiihrungsformen finden ggf. eigens vorgesehene Konfigurationsbusse ange-
messener.

Per EFE-Status

[0177] Jedes EFE kann ein Bit halten, das angibt, ob es seinen Status exportiert hat oder nicht. Dieses Bit
kann deaktiviert werden, wenn das Konfigurationsstartsignal angesteuert wird, und dann aktiviert werden, so-
bald das bestimmte EFE die Extraktion beendet hat. In einem Extraktionsprotokoll sind die EFEs angeordnet,
um Ketten mit dem EFE-Extraktionszustandsbit zu bilden, das die Topologie der Kette bestimmt. Ein EFE kann
das Extraktionszustandsbit des unmittelbar angrenzenden EFE lesen. Wenn dieses benachbarte EFE sein
Extraktionsbit gesetzt hat und das aktuelle EFE dies nicht tut, kann das EFE bestimmen, dass es den Extrak-
tionsbus besitzt. Wenn ein EFE seinen letzten Datenwert abbildet, kann es das Signal ,EFE_DONE* ansteuern
und sein Extraktionsbit setzen, z. B. indem es vorgeschaltete EFEs die Konfiguration fir die Extraktion ermdg-
licht. Das Netzwerk benachbart des EFE kann dieses Signal beobachten und auch seinen Status einstellen,
um den Ubergang zu bewéltigen. Als ein Basisfall fiir den Extraktionsprozess kann ein Extraktions-Terminator
(z. B. Extraktions-Terminator 3104 fir LEC 3102 oder Extraktions-Terminator 3108 fir LEC 3106 in Fig. 22),
der bestétigt, dass die Extraktion abgeschlossen ist, am Ende einer Kette enthalten sein.

[0178] EFE-intem kann dieses Bit zum Ansteuern der flusssteuerungsbereiten Signale verwendet werden.
Wenn zum Beispiel das Extraktionsbit deaktiviert wird, kbnnen Netzwerksteuersignale automatisch auf einen
Wert geklemmt werden, der verhindert, dass Daten flieRen, wéhrend innerhalb der PEs keine Operationen
oder andere Aktionen geplant werden.

Behandeln von Pfaden mit hoher Verzégerung

[0179] Eine Ausfihrungsform einer LEC kann ein Signal Gber eine lange Distanz, z. B. durch viele Multiple-
xer und mit vielen Lasten, ansteuern. Daher kann es fur ein Signal schwierig sein, an einem entfernten EFE
innerhalb eines kurzen Taktzyklus einzugehen. In bestimmten Ausfuihrungsformen sind die Extraktionssignale
in einer bestimmten Division (z. B. einem Bruchteil von) der Haupttaktfrequenz (z. B. CSA), um eine digitale
Zeitdisziplin bei der Extraktion sicherzustellen. Die Taktteilung kann in einem Auf3er-Band-Signalisierungspro-
tokoll benutzt werden und erfordert keine Modifikation des Haupttaktbaums.

Sicherstellen des konsistenten Strukturverhaltens wahrend der Extraktion

[0180] Da bestimmte Extraktionsschemata verteilt sind und aufgrund von Programm- und Speichereffekten
eine nicht-deterministische Zeitsteuerung aufweisen, kénnen verschiedene Elemente der Struktur zu unter-
schiedlichen Zeiten extrahiert werden. Wahrend des Ansteuerns von LEC_EXTRACT kénnen alle Netzwerk-
flusssignale logisch niedrig angesteuert werden, z. B. durch Einfrieren der Operation eines bestimmten Seg-
ments der Struktur.

[0181] Ein Extraktionsprozess kann nicht destruktiv sein. Daher kann ein Satz von PEs als operational be-
trachtet werden, sobald die Extraktion abgeschlossen wurde. Eine Erweiterung eines Extraktionsprotokolls
kann den PEs ermdglichen, nach der Extraktion deaktiviert zu werden. Alternativ wird die beginnende Konfi-
guration wahrend des Extraktionsprozesses in Ausfihrungsformen einen dhnlichen Effekt haben.

42/134

DE 10 2018 005 216 A1 2019.02.21
Einzel-PE-Extraktion

[0182] In einigen Fallen kann es zweckmalRig sein, ein einzelnes PE zu extrahieren. In diesem Fall kann ein
optionales Adresssignal als Teil des Beginns des Extraktionsprozesses angesteuert werden. Dies kann dem
fur die Extraktion angezielten PE ermdglichen, direkt aktiviert zu werden. Sobald dieses PE extrahiert wurde,
kann der Extraktionsprozess durch das Absenken des LEC_EXTRACT Signals enden. Auf diese Weise kann
ein einzelnes PE selektiv extrahiert werden, z. B. durch die lokale Extraktionssteuerung.

Handhaben des Extraktionsgegendrucks

[0183] In einer Ausfiihrungsform, in der die LEC extrahierte Daten in den Speicher schreibt (z. B. zum Nach-
verarbeiten z. B. in Software), kann sie Gegenstand einer begrenzten Speicherbandbreite sein. In dem Fall,
dass die LEC ihre Pufferkapazitat erschopft oder erwartet, ihre Pufferkapazitat zu erschépfen, kann sie das
Abtasten des LEC_STROBE Signals anhalten, bis das Pufferproblem gel6st ist.

[0184] Es sei zu beachten, dass in bestimmten Figuren (z. B. Fig. 22, Fig. 25, Fig. 26, Fig. 28, Fig. 29 und
Fig. 31) Kommunikationen schematisch dargestellt sind. In bestimmten Ausfuhrungsformen entstehen diese
Kommunikationen Uber das (z. B. Interconnect-) Netzwerk.

Flussdiagramme

[0185] Fig. 34 veranschaulicht ein Flussdiagramm 3400 gemaR Ausfihrungsformen der Offenbarung. Der
dargestellte Fluss 3400 beinhaltet das Decodieren eines Befehls mit einem Decodierer eines Kerns eines Pro-
zessors in einen decodierten Befehl 3402; Ausfiihren des decodierten Befehls mit einer Ausfihrungseinheit
des Kerns des Prozessors zum Durchflihren einer ersten Operation 3404; Empfangen einer Eingabe eines
Datenflussgraphen, der mehrere Knoten 3406 umfasst; Uberlagern des Datenflussgraphen (iber ein Array aus
Verarbeitungselementen des Prozessors, wobei jeder Knoten als Datenflussoperator in dem Array von Verar-
beitungselementen 3408 reprasentiert ist; und Durchfihren einer zweiten Operation des Datenflussgraphen
mit dem Array aus Verarbeitungselementen, wenn ein eingehender Operandensatz an dem Array aus Verar-
beitungselementen 3410 eingeht.

[0186] Fig. 35 veranschaulicht ein Flussdiagramm 3500 gemal Ausfiihrungsformen der Offenbarung. Der
dargestellte Fluss 3500 beinhaltet das Decodieren eines Befehls mit einem Decodierer eines Kerns eines
Prozessors in einen decodierten Befehl 3502; Ausfiihren des decodierten Befehls mit einer Ausflihrungsein-
heit des Kerns des Prozessors zum Durchfiihren einer ersten Operation 3504; Empfangen einer Eingabe ei-
nes Datenflussgraphen, der mehrere Knoten 3506 umfasst; Uberlagern des Datenflussgraphen iiber mehre-
re Verarbeitungselemente des Prozessors und ein Zwischenverbindungsnetz zwischen den mehreren Verar-
beitungselementen des Prozessors, wobei jeder Knoten einen Datenflussoperator in den mehreren Verarbei-
tungselementen 3508 reprasentiert; und Durchfiihren einer zweiten Operation des Datenflussgraphen mit dem
Zwischenverbindungsnetz und den mehreren Verarbeitungselementen, wenn ein eingehender Operandensatz
bei den mehreren Verarbeitungselementen 3510 eingeht.

KURZDARSTELLUNG

[0187] Supercomputing auf der ExaFLOP-Skala kann eine Herausforderung im Hochleistungsrechnen sein,
eine Herausforderung, die von konventionellen von Neumann-Architekturen wahrscheinlich nicht erfllt wird.
Zum Erreichen von ExaFLOPs stellen Ausfiihrungsformen eines CSA ein heterogenes raumliches Array bereit,
das auf die direkte Ausfiihrung von (z. B. vom Kompilierer erzeugten) Datenflussgraphen abzielt. Zusatzlich
zu dem Auslegen der Architekturprinzipien von Ausfiihrungsformen eines CSA beschreibt und bewertet das
Vorstehende auch Ausfiihrungsformen eines CSA, der eine Leistung und Energie von mehr als dem 10-fa-
chen gegenlber existierenden Produkten zeigte. Kompilierererzeugter Code kann bedeutende Leistungs- und
Energiezugewinne gegenlber Roadmap-Architekturen haben. Als eine heterogene, parametrische Architektur
kénnen Ausflihrungsformen eines CSA leicht an alle Computeranwendungen angepasst werden. Zum Beispiel
kénnte eine mobile Version von CSA auf 32 Bits abgestimmt sein, wahrend ein auf maschinelles Lernen fokus-
siertes Array eine signifikante Anzahl von vektorisierten 8-Bit-Multiplikationseinheiten aufweisen kénnte. Die
Hauptvorteile von Ausfiihrungsformen eines CSA sind eine hohe Leistung und eine extreme Energieeffizienz,
Eigenschaften, die fiir alle Formen des Rechnens von Supercomputing und Rechenzentrum bis zum Internet
der Dinge relevant sind.

43/134

DE 10 2018 005 216 A1 2019.02.21

[0188] In einer Ausflihrungsform weist ein Prozessor mehrere Verarbeitungselemente auf; und ein Zwischen-
verbindungsnetz zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe eines Da-
tenflussgraphen, umfassend mehrere Knoten, wobei der Datenflussgraph in das Zwischenverbindungsnetz
und die mehreren Verarbeitungselemente zu Uberlagern ist, wobei jeder Knoten als ein Datenflussoperator in
den mehreren Verarbeitungselementen reprasentiert ist, und die mehreren Verarbeitungselemente eine ato-
mare Operation durchzufiihren haben, wenn ein eingehender Operand bei den mehreren Verarbeitungsele-
menten eingeht.

[0189] Ein Verarbeitungselement der Vielzahl von Verarbeitungselementen kann die Ausfiihrung anhalten,
wenn ein Gegendrucksignal von einem nachgeschalteten Verarbeitungselement anzeigt, dass kein Speicher
in dem nachgeschalteten Verarbeitungselement fir eine Ausgabe des Verarbeitungselements verflgbar ist.
Der Prozessor kann ein Flusssteuerpfad-Netzwerk zum Ubertragen des Gegendrucksignals gemaR dem Da-
tenflussgraphen aufweisen. Ein Datenfluss-Token kann bewirken, dass eine Ausgabe von einem Datenfluss-
operator, der das Datenfluss-Token empfangt, zu einem Eingabepuffer eines bestimmten Verarbeitungsele-
ments der mehreren Verarbeitungselemente gesendet wird. Die atomare Operation kann einen Speicherzugriff
beinhalten, und die mehreren Verarbeitungselemente umfassen einen Speicherzugriffs-Datenflussoperator,
der den Speicherzugriff nicht durchzuflihren hat, bis er ein Speicherabhéngigkeits-Token von einem logisch
vorherigen Datenflussoperator empfangt. Die mehreren Verarbeitungselemente kénnen einen ersten Typ von
Verarbeitungselement und einen zweiten, unterschiedlichen Typ von Verarbeitungselement aufweisen.

[0190] In einer Ausflihrungsform beinhaltet ein Prozessor mehrere Verarbeitungselemente; ein Zwischenver-
bindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Datenflussgraphen
zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenverbindungsnetz und
die mehreren Verarbeitungselemente zu Gberlagern ist, wobei jeder Knoten als ein Datenflussoperator in den
mehreren Verarbeitungselementen reprasentiert ist und die mehreren Verarbeitungselemente eine Operation
durchzuflihren haben, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen ein-
geht; und eine Transaktionssteuerung, um mehrere Speicherzugriffe zu gruppieren, die mit der Operation in
Zusammenhang stehen.

[0191] Die Transaktionssteuerung kann die mehreren Speicherzugriffe in eine Transaktion durch Markieren,
mit einem Transaktionsidentifizierer, einer Cache-Zeile, die durch die Operation zu modifizieren ist, gruppie-
ren. Eine erste Nachricht kann zu der Transaktionssteuerung in Verbindung mit einem Start der Transaktion
gesendet werden. Eine zweite Nachricht kann zu der Transaktionssteuerung in Verbindung mit einem Ende der
Transaktion gesendet werden. Die Transaktionssteuerung kann den Transaktionsidentifizierer als Reaktion auf
die zweite Nachricht aus der Cache-Zeile 16schen. Die mehreren Speicherzugriffe kdnnen einen Lesezugriff
durch ein erstes der mehreren Verarbeitungselemente einschlieRen. Die mehreren Speicherzugriffe kdnnen
einen Schreibzugriff durch ein zweites der mehreren Verarbeitungselemente einschlielen. Das erste und das
zweite der mehreren Verarbeitungselemente sind unterschiedliche Verarbeitungselemente. Das erste und das
zweite der mehreren Verarbeitungselemente sind das gleiche Verarbeitungselement.

[0192] In einer Ausflihrungsform beinhaltet ein Prozessor mehrere Verarbeitungselemente; ein Zwischenver-
bindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Datenflussgraphen
zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenverbindungsnetz und
die mehreren Verarbeitungselemente zu Uberlagern ist, wobei jeder Knoten als ein Datenflussoperator in den
mehreren Verarbeitungselementen reprasentiert ist und die mehreren Verarbeitungselemente eine Operation
durchzuflihren haben, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen ein-
geht; und einen Cache, wobei der Cache in einem Speicheruntersystem einzuschliel3en ist, das Speicherun-
tersystem auch einen Speicher einzuschlief3en hat, in dem mehrere alte Datenwerte zu speichern sind, um
eine Ausflihrung vom Start einer Epoche zu wiederholen, wobei die Epoche die Operation einzuschlielen hat.

[0193] Der erste der mehreren alten Datenwerte kann bis zum Ende der Epoche im Speicher bewahrt wer-
den, als Reaktion darauf, dass ein entsprechender neuer Datenwert in einer Zeile des Cache durch eines der
mehreren Verarbeitungselemente gespeichert wird. Der neue Datenwert kann von einem Schreibzugriff von
einem der mehreren Verarbeitungselemente sein. Der erste der mehreren alten Datenwerte kann gemaf ei-
nem Cache-Koharenzprotokoll bewahrt werden.

[0194] In einer Ausfiihrungsform kann ein Verfahren beinhalten Empfangen eines Eingangs eines Datenfluss-
graphen, der mehrere Knoten umfasst; Uberlagern des Datenflussgraphen in mehrere Verarbeitungselemente
des Prozessors und ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen des Pro-
zessors, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen reprasentiert

44/134

DE 10 2018 005 216 A1 2019.02.21

ist; Durchflhren einer Operation des Datenflussgraphen mit dem Zwischenverbindungsnetz und den mehreren
Verarbeitungselementen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen
eingeht; und Bewahren mehrerer alter Datenwerte in einem Speicher whrend einer Epoche, wobei die Epoche
ein Schreiben eines neuen Datenwerts von einem der mehreren Verarbeitungselemente einschlief3t, wobei der
neue Wert einem der mehreren alten Datenwerte entspricht.

[0195] Das Verfahren kann auch beinhalten Erhalten, durch einen Cache gemaf einem Cache-Kohéarenzpro-
tokoll, des Besitzes einer Cache-Zeile, in die der neue Datenwert zu speichern ist. Das Verfahren kann auch
beinhalten, als Reaktion auf das Bestimmen, dass die Cache-Zeile koharent in Besitz des Cache ist, Schrei-
ben der Cache-Zeile in den Speicher. Das Verfahren kann auch beinhalten Aktualisieren der Cache-Zeile zu
dem neuen Wert nach dem Schreiben der Cache-Zeile in den Speicher. Das Verfahren kann auch beinhalten
Andern der Cache-Zeile von kohérent in Besitz zu spekulativ in Besitz nach dem Schreiben der Cache-Zeile
in den Speicher. Das Verfahren kann auch beinhalten, als Reaktion auf das Bestimmen, dass die Cache-Zeile
spekulativ in Besitz des Cache ist, Aktualisieren der Cache-Zeile zu dem neuen Wert, ohne ein Schreiben der
Zeile in den Speicher.

[0196] In einer anderen Ausflihrungsform umfasst ein Verfahren Empfangen einer Eingabe eines Datenfluss-
graphen umfassend mehrere Knoten; Uberlagern des Datenflussgraphen liber mehrere Verarbeitungselemen-
te des Prozessors und eines Zwischenverbindungsnetzes zwischen den mehreren Verarbeitungselementen
des Prozessors, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen re-
prasentiert ist; und Durchflihren einer atomaren Operation des Datenflussgraphen mit dem Zwischenverbin-
dungsnetz und den mehreren Verarbeitungselementen durch einen jeweiligen eingehenden Operandensatz,
der an jedem der Datenflussoperatoren der mehreren Verarbeitungselemente eingeht. Das Verfahren kann das
Anhalten der Ausfiihrung durch ein Verarbeitungselement der mehreren Verarbeitungselemente beinhalten,
wenn ein Gegendrucksignal von einem nachgeschalteten Verarbeitungselement anzeigt, dass kein Speicher in
dem nachgeschalteten Verarbeitungselement fir eine Ausgabe des Verarbeitungselements verfligbar ist. Das
Verfahren kann das Senden des Gegendrucksignals auf einem Flusssteuerpfad-Netzwerk gemaf dem Daten-
flussgraphen beinhalten. Ein Datenfluss-Token kann bewirken, dass eine Ausgabe von einem Datenflussope-
rator, der das Datenfluss-Token empfangt, zu einem Eingabepuffer eines bestimmten Verarbeitungselements
der mehreren Verarbeitungselemente gesendet wird. Das Verfahren kann umfassen, dass kein Speicherzu-
griff ausgeflhrt wird, bis ein Speicherabhangigkeits-Token von einem logisch vorherigen Datenflussoperator
empfangen wird, wobei die atomare Operation den Speicherzugriff umfasst und die mehreren Verarbeitungs-
elemente einen Speicherzugriffs-Datenflussoperator umfassen. Das Verfahren kann das Bereitstellen eines
ersten Typs von Verarbeitungselement und eines zweiten, unterschiedlichen Typs von Verarbeitungselement
beinhalten.

[0197] In noch einer anderen Ausflihrungsform weist eine Vorrichtung ein Datenpfad-Netzwerk zwischen meh-
reren Verarbeitungselementen auf; und ein Flusssteuerpfad-Netzwerk zwischen den mehreren Verarbeitungs-
elementen, wobei das Datenpfad-Netzwerk und das Flusssteuerpfad-Netzwerk eine Eingabe eines Datenfluss-
graphen empfangen missen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Datenpfad-Netz-
werk und das Flusssteuerpfad-Netzwerk und die mehreren Verarbeitungseinheiten zu tberlagern ist, wobei
jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen reprasentiert ist, und die
mehreren Verarbeitungselemente eine atomare Operation durch einen jeweiligen eingehenden Operandensatz
durchzuflhren haben, der an jedem der Datenflussoperatoren der mehreren Verarbeitungselemente eingeht.
Das Flusssteuerpfad-Netzwerk kann Gegendrucksignale zu mehreren Datenflussoperatoren gemaf dem Da-
tenflussgraphen tragen. Ein Datenfluss-Token, das auf dem Datenpfad-Netzwerk zu einem Datenflussoperator
gesendet wurde, kann bewirken, dass eine Ausgabe von dem Datenflussoperator, der an einen Eingabepuffer
eines bestimmten Verarbeitungselements der mehreren Verarbeitungselemente auf dem Datenpfad-Netzwerk
gesendet wird. Das Datenpfad-Netzwerk kann ein statisches leitungsvermitteltes Netzwerk sein, um den jewei-
ligen Eingabeoperandensatz gemal® dem Datenflussgraphen zu jedem der Datenflussoperatoren zu tragen.
Das Flusssteuerpfad-Netzwerk kann ein Gegendrucksignal gemalt dem Datenflussgraphen von einem nach-
geschalteten Verarbeitungselement tibertragen, um anzuzeigen, dass kein Speicher in dem nachgeschalteten
Verarbeitungselement fiir eine Ausgabe des Verarbeitungselements verflgbar ist. Mindestens ein Datenpfad
des Datenpfad-Netzwerks und mindestens ein Flusssteuerpfad des Flussteuerpfad-Netzwerks kénnen eine
kanalisierte Schaltung mit Gegendrucksteuerung bilden. Das Flusssteuerpfad-Netzwerk kann mindestens zwei
der mehreren Verarbeitungselemente zeitverschachteln.

[0198] In einer weiteren Ausfiihrungsform beinhaltet ein Verfahren das Empfangen einer Eingabe eines Da-

tenflussgraphen, umfassend mehrere Knoten; und Uberlagern des Datenflussgraphen {iber mehrere Verarbei-
tungselemente eines Prozessors, eines Datenpfad-Netzwerks zwischen die mehreren Verarbeitungselemente

45/134

DE 10 2018 005 216 A1 2019.02.21

und eines Flusssteuerpfad-Netzwerk zwischen die mehreren Verarbeitungselemente, wobei jeder Knoten als
ein Datenflussoperator in den mehreren Verarbeitungselementen repréasentiert ist. Das Verfahren kann das
Tragen des Gegendrucksignals mit dem Flusssteuerpfad-Netzwerk zu mehreren Datenflussoperatoren gemaf
dem Datenflussgraphen beinhalten. Das Verfahren kann das Senden eines Datenfluss-Token auf dem Daten-
pfad-Netzwerk beinhalten, um zu bewirken, dass eine Ausgabe von dem Datenflussoperator an einen Einga-
bepuffer eines bestimmten Verarbeitungselements der mehreren Verarbeitungselemente auf dem Datenpfad-
Netzwerk gesendet wird. Das Verfahren kann das Einstellen mehrerer Schalter des Datenpfad-Netzwerks und/
oder mehrerer Schalter des Flusssteuerpfad-Netzwerks zum Tragen des jeweiligen Eingabeoperandensatzes
zu jedem der Datenflussoperatoren gemafR dem Datenflussgraphen beinhalten, wobei das Datenpfad-Netz-
werk ein statisches leitungsvermitteltes Netzwerk ist. Das Verfahren kann das Ubertragen eines Gegendruck-
signals mit dem Flusssteuerpfad-Netzwerk gemal dem Datenflussgraphen von einem nachgeschalteten Ver-
arbeitungselement beinhalten, um anzuzeigen, dass kein Speicher in dem nachgeschalteten Verarbeitungs-
element flr eine Ausgabe des Verarbeitungselements verfiigbar ist. Das Verfahren kann das Bilden einer ka-
nalisierten Schaltung mit Gegendrucksteuerung mit mindestens einem Datenpfad des Datenpfad-Netzwerks
und mindestens einem Flusssteuerpfad des Flussteuerpfad-Netzwerks beinhalten.

[0199] In noch einer anderen Ausfiihrungsform weist ein Prozessor mehrere Verarbeitungselemente auf; und
eine Netzwerkeinrichtung zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe
eines Datenflussgraphen, umfassend mehrere Knoten, wobei der Datenflussgraph in die Netzwerkeinrichtung
und die mehreren Verarbeitungseinheiten tberlagert wird, wobei jeder Knoten als ein Datenflussoperator in
den mehreren Verarbeitungselementen reprasentiert ist, und die mehreren Verarbeitungselemente eine ato-
mare Operation durch einen jeweiligen eingehenden Operandensatz durchzuflihren haben, der an jedem der
Datenflussoperatoren der mehreren Verarbeitungselemente eingeht.

[0200] In einer weiteren Ausfihrungsform weist eine Vorrichtung eine Datenpfad-Einrichtung zwischen meh-
reren Verarbeitungselementen auf; und eine Flusssteuerpfad-Einrichtung zwischen den mehreren Verarbei-
tungselementen, wobei die Datenpfad-Einrichtung und die Flusssteuerpfad-Einrichtung eine Eingabe eines
Datenflussgraphen zu empfangen haben, der mehrere Knoten umfasst, wobei der Datenflussgraph in die Da-
tenpfad-Einrichtung und die Flusssteuerpfad-Einrichtung und die mehreren Verarbeitungseinheiten zu Gberla-
gern ist, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen reprasentiert
ist, und die mehreren Verarbeitungselemente eine atomare Operation durch einen jeweiligen eingehenden
Operandensatz durchzuflihren haben, der an jedem der Datenflussoperatoren der mehreren Verarbeitungs-
elemente eingeht.

[0201] In einer Ausflihrungsform weist ein Prozessor ein Array aus Verarbeitungselementen zum Empfangen
einer Eingabe eines Datenflussgraphen, der mehrere Knoten umfasst, auf, wobei der Datenflussgraph in das
Array aus Verarbeitungselementen zu tiberlagern ist, wobei jeder Knoten flir einen Datenflussoperator in dem
Array aus Verarbeitungselementen steht, und das Array aus Verarbeitungselementen eine atomare Operati-
on durchzufiuihren hat, wenn ein eingehender Operandensatz am Array aus Verarbeitungselementen eingeht.
Das Array aus Verarbeitungselementen kann die zweite Operation nicht durchfiihren, bis der eingehende Ope-
randensatz an dem Array aus Verarbeitungselementen eingeht und der Speicher in dem Array aus Verarbei-
tungselementen zur Ausgabe der atomaren Operation verfligbar ist. Das Array aus Verarbeitungselementen
kann ein Netzwerk (oder einen oder mehrere Kanéle) aufweisen, um die Datenfluss-Tokens und Steuertokens
zu mehreren Datenflussoperatoren zu tragen. Die atomare Operation kann einen Speicherzugriff aufweisen,
und das Array aus Verarbeitungselementen kann einen Speicherzugriff-Datenflussoperator aufweisen, der den
Speicherzugriff nicht durchzuflihren hat, bis er ein Speicherabhangigkeits-Token von einem logisch vorherigen
Datenflussoperator empfangt. Jedes Verarbeitungselement kann nur eine oder zwei Operationen des Daten-
flussgraphen durchfiihren.

[0202] In einer weiteren Ausfiihrungsform beinhaltet ein Verfahren das Empfangen einer Eingabe eines Da-
tenflussgraphen, der mehrere Knoten umfasst; Uberlagern des Datenflussgraphen iiber ein Array aus Verar-
beitungselementen des Prozessors, wobei jeder Knoten als ein Datenflussoperator in dem Array von Verarbei-
tungselementen reprasentiert ist; und Durchfiihren einer atomaren Operation des Datenflussgraphen mit dem
Array aus Verarbeitungselementen, wenn ein eingehender Operandensatz an dem Array aus Verarbeitungs-
elementen eingeht. Das Array aus Verarbeitungselementen kann die atomare Operation nicht durchfuhren,
bis der eingehende Operandensatz an dem Array aus Verarbeitungselementen eingeht und der Speicher in
dem Array aus Verarbeitungselementen zur Ausgabe der atomaren Operation verfligbar ist. Das Array aus
Verarbeitungselementen kann ein Netzwerk aufweisen, das die Datenfluss-Tokens und Steuertokens zu meh-
reren Datenflussoperatoren tragt. Die atomare Operation kann einen Speicherzugriff aufweisen, und das Ar-
ray aus Verarbeitungselementen kann einen Speicherzugriff-Datenflussoperator, der den Speicherzugriff nicht

46/134

DE 10 2018 005 216 A1 2019.02.21

durchfiihren darf, bis er ein Speicherabhangigkeits-Token von einem logisch vorherigen Datenflussoperator
empfangt, aufweisen. Jedes Verarbeitungselement kann nur eine oder zwei Operationen des Datenflussgra-
phen durchfihren.

[0203] In noch einer anderen Ausflihrungsform veranlasst ein nichtflichtiges maschinenlesbares Medium,
das Code speichert, der, wenn er von einer Maschine ausgefuhrt wird, die Maschine veranlasst, ein Verfah-
ren durchzufihren, aufweisend das Empfangen einer Eingabe eines Datenflussgraphen, der mehrere Knoten
umfasst; Uberlagern des Datenflussgraphen (iber ein Array aus Verarbeitungselementen des Prozessors, wo-
bei jeder Knoten als ein Datenflussoperator in dem Array von Verarbeitungselementen reprasentiert ist; und
Durchfuhren einer atomaren Operation des Datenflussgraphen mit dem Array aus Verarbeitungselementen,
wenn ein eingehender Operandensatz an dem Array aus Verarbeitungselementen eingeht. Das Array des
Verarbeitungselements darf die atomare Operation nicht durchfiihren, bis der eingehende Operandensatz an
dem Array aus Verarbeitungselementen eingeht und der Speicher in dem Array aus Verarbeitungselementen
zur Ausgabe der zweiten Operation verflgbar ist. Das Array aus Verarbeitungselementen kann ein Netzwerk
aufweisen, das die Datenfluss-Tokens und Steuertokens zu mehreren Datenflussoperatoren trégt. Die atoma-
re Operation kann einen Speicherzugriff aufweisen, und das Array aus Verarbeitungselementen kann einen
Speicherzugriff-Datenflussoperator, der den Speicherzugriff nicht durchfiihren darf, bis er ein Speicherabhan-
gigkeits-Token von einem logisch vorherigen Datenflussoperator empfangt, aufweisen. Jedes Verarbeitungs-
element kann nur eine oder zwei Operationen des Datenflussgraphen durchfiihren.

[0204] In einer weiteren Ausfuhrungsform weist ein Prozessor Einrichtungen zum Empfangen einer Eingabe
eines Datenflussgraphen, der mehrere Knoten umfasst, auf, wobei der Datenflussgraph in die Einrichtung zu
Uberlagern ist, wobei jeder Knoten fiir einen Datenflussoperator in der Einrichtung steht, und die Einrichtung
eine atomare Operation durchzufuhren hat, wenn ein eingehender Operandensatz an der Einrichtung eingeht.

[0205] In einer Ausfihrungsform weist ein Prozessor einen Kern mit einem Decodierer zum Decodieren eines
Befehls in einem decodierten Befehl und eine Ausfiihrungseinheit zum Ausflihren des decodierten Befehls zum
Durchfuhren einer ersten Operation; mehrere Verarbeitungselemente; und ein Zwischenverbindungsnetzwerk
zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe eines Datenflussgraphen,
umfassend mehrere Knoten, auf, wobei der Datenflussgraph in das Zwischenverbindungsnetzwerk und die
mehreren Verarbeitungselemente zu tberlagern ist, wobei jeder Knoten als ein Datenflussoperator in den meh-
reren Verarbeitungselementen reprasentiert ist, und die mehreren Verarbeitungselemente eine zweite Opera-
tion durchzuflhren haben, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen
eingeht, wobei die zweite Operation eine atomare Operation ist. Der Prozessor kann ferner mehrere Konfigu-
rationssteuerungen umfassen, wobei jede Konfigurationssteuerung mit einem jeweiligen Untersatz der meh-
reren Verarbeitungselemente gekoppelt ist und jede Konfigurationssteuerung Konfigurationsinformation aus
dem Speicher zu laden und eine Kopplung des jeweiligen Untersatzes der mehreren Verarbeitungselemente
gemal der Konfigurationsinformation zu veranlassen hat. Der Prozessor kann mehrere Konfigurations-Caches
enthalten, und jede Konfigurationssteuerung ist mit einem jeweiligen Konfigurations-Cache gekoppelt, um die
Konfigurationsinformation fur den jeweiligen Untersatz der mehreren Verarbeitungselemente abzurufen. Die
erste Operation, die durch die Ausflihrungseinheit durchgefiihrt wird, kann Konfigurationsinformation in jeden
der mehreren Konfigurations-Caches abrufen. Jede der mehreren Konfigurationssteuerungen kann eine Re-
konfigurationsschaltung aufweisen, um bei Empfang einer Konfigurationsfehlermeldung von dem mindestens
einen Verarbeitungselement eine Rekonfiguration fiir mindestens ein Verarbeitungselement des jeweiligen Un-
tersatzes von Verarbeitungselementen zu veranlassen. Jede der mehreren Konfigurationssteuerungen kann
eine Rekonfigurationsschaltung aufweisen, um bei Empfang einer Rekonfigurationsanforderungsnachricht ei-
ne Rekonfiguration des jeweiligen Untersatzes der mehreren Verarbeitungselemente zu veranlassen und die
Kommunikation mit dem jeweiligen Untersatz der mehreren Verarbeitungselemente zu deaktivieren, bis die
Rekonfiguration abgeschlossen ist. Der Prozessor kann mehrere Ausnahmeaggregatoren enthalten, und jeder
Ausnahmeaggregator ist mit einem jeweiligen Untersatz der mehreren Verarbeitungselemente gekoppelt, um
Ausnahmen von dem jeweiligen Untersatz der mehreren Verarbeitungselemente zu sammeln und die Ausnah-
men an den Kern zum Bedienen weiterzuleiten. Der Prozessor kann mehrere Extraktionssteuerungen aufwei-
sen, wobei jede Extraktionssteuerung mit einem jeweiligen Untersatz der mehreren Verarbeitungselemente
gekoppelt ist und jede Extraktionssteuerung veranlassen muss, dass Statusdaten aus dem jeweiligen Unter-
satz der mehreren Verarbeitungselemente in dem Speicher gespeichert werden.

[0206] In einer weiteren Ausflihrungsform beinhaltet ein Verfahren das Decodieren eines Befehls mit einem
Decodierer eines Kerns eines Prozessors in einen decodierten Befehl; Ausfihren des decodierten Befehls mit
einer Ausfihrungseinheit des Kerns des Prozessors zum Durchfiihren einer ersten Operation; Empfangen ei-
ner Eingabe eines Datenflussgraphen, der mehrere Knoten umfasst; Uberlagern des Datenflussgraphen (iber

47/134

DE 10 2018 005 216 A1 2019.02.21

mehrere Verarbeitungselemente des Prozessors und eines Zwischenverbindungsnetzes zwischen den meh-
reren Verarbeitungselementen des Prozessors, wobei jeder Knoten als ein Datenflussoperator in den meh-
reren Verarbeitungselementen reprasentiert ist; und Durchfiihren einer zweiten Operation des Datenflussgra-
phen mit dem Zwischenverbindungsnetz und den mehreren Verarbeitungselementen, wenn ein eingehender
Operandensatz bei den mehreren Verarbeitungselementen eingeht, wobei die zweite Operation eine atomare
Operation ist.

[0207] Das Verfahren kann das Laden von Konfigurationsinformationen aus dem Speicher flr jeweilige Unter-
satze der mehreren Verarbeitungselemente und das Veranlassen der Kopplung fur jeden jeweiligen Untersatz
der mehreren Verarbeitungselemente gemal der Konfigurationsinformation beinhalten. Das Verfahren kann
das Abrufen der Konfigurationsinformation fiir den jeweiligen Untersatz der mehreren Verarbeitungselemente
von einem jeweiligen Konfigurations-Cache mehrerer Konfigurations-Caches beinhalten. Die erste Operation,
die durch die Ausfiihrungseinheit durchgeflihrt wird, kann das Abrufen von Konfigurationsinformation in jedem
der mehreren Konfigurations-Caches sein. Das Verfahren kann bei Empfang einer Konfigurationsfehlermel-
dung von dem mindestens einen Verarbeitungselement das Veranlassen einer Rekonfiguration fiir mindestens
ein Verarbeitungselement des jeweiligen Untersatzes von Verarbeitungselementen beinhalten. Das Verfahren
kann bei Empfang einer Rekonfigurationsanforderungsnachricht das Veranlassen einer Rekonfiguration des
jeweiligen Untersatzes der mehreren Verarbeitungselemente und das Deaktivieren der Kommunikation mit
dem jeweiligen Untersatz der mehreren Verarbeitungselemente bis Abschluss der Rekonfiguration beinhalten.
Das Verfahren kann das Sammeln von Ausnahmen aus einem jeweiligen Untersatz der mehreren Verarbei-
tungselemente; und das Weiterleiten der Ausnahmen zum Kern fur die Bedienung beinhalten. Das Verfahren
kann das Veranlassen, dass Statusdaten von einem jeweiligen Untersatz der mehreren Verarbeitungselemen-
te in dem Speicher gespeichert werden, beinhalten.

[0208] In noch einer anderen Ausflihrungsform veranlasst ein nichtflichtiges maschinenlesbares Medium,
das Code speichert, der, wenn er von einer Maschine ausgefihrt wird, die Maschine veranlasst, ein Verfahren
durchzuflihren, aufweisend das Decodieren eines Befehls mit einem Decodierer eines Kerns eines Prozessors
in einen decodierten Befehl; Ausfihren des decodierten Befehls mit einer Ausfihrungseinheit des Kerns des
Prozessors zum Durchfiihren einer ersten Operation; Empfangen einer Eingabe eines Datenflussgraphen, der
mehrere Knoten umfasst; Uberlagern des Datenflussgraphen iiber mehrere Verarbeitungselemente des Pro-
zessors und eines Zwischenverbindungsnetzes zwischen den mehreren Verarbeitungselementen des Prozes-
sors, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen reprasentiert ist;
und Durchfiihren einer zweiten Operation des Datenflussgraphen mit dem Zwischenverbindungsnetz und den
mehreren Verarbeitungselementen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungs-
elementen eingeht, wobei die zweite Operation eine atomare Operation ist. Das Verfahren kann das Laden von
Konfigurationsinformationen aus dem Speicher fir jeweilige Untersatze der mehreren Verarbeitungselemente
und das Veranlassen der Kopplung fir jeden jeweiligen Untersatz der mehreren Verarbeitungselemente ge-
mal der Konfigurationsinformation beinhalten. Das Verfahren kann das Abrufen der Konfigurationsinformation
fur den jeweiligen Untersatz der mehreren Verarbeitungselemente von einem jeweiligen Konfigurations-Ca-
che mehrerer Konfigurations-Caches beinhalten. Die erste Operation, die durch die Ausfihrungseinheit durch-
gefiihrt wird, kann das Abrufen von Konfigurationsinformation in jedem der mehreren Konfigurations-Caches
sein. Das Verfahren kann bei Empfang einer Konfigurationsfehlermeldung von dem mindestens einen Verar-
beitungselement das Veranlassen einer Rekonfiguration fur mindestens ein Verarbeitungselement des jeweili-
gen Untersatzes von Verarbeitungselementen beinhalten. Das Verfahren kann bei Empfang einer Rekonfigu-
rationsanforderungsnachricht das Veranlassen einer Rekonfiguration des jeweiligen Untersatzes der mehreren
Verarbeitungselemente und das Deaktivieren der Kommunikation mit dem jeweiligen Untersatz der mehreren
Verarbeitungselemente bis Abschluss der Rekonfiguration beinhalten. Das Verfahren kann das Sammeln von
Ausnahmen aus einem jeweiligen Untersatz der mehreren Verarbeitungselemente; und das Weiterleiten der
Ausnahmen zum Kern zur Bedienung beinhalten. Das Verfahren kann das Veranlassen, dass Statusdaten
von einem jeweiligen Untersatz der mehreren Verarbeitungselemente in dem Speicher gespeichert werden,
beinhalten.

[0209] In einer weiteren Ausfiihrungsform weist ein Prozessor mehrere Verarbeitungselemente auf; und ei-
ne Einrichtung zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe eines Da-
tenflussgraphen, umfassend mehrere Knoten, wobei der Datenflussgraph in die Einrichtung und die mehre-
ren Verarbeitungseinheiten zu tberlagern ist, wobei jeder Knoten als ein Datenflussoperator in den mehreren
Verarbeitungselementen reprasentiert ist, und die mehreren Verarbeitungselemente eine atomare Operation
durchzuflihren, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen eingeht.

48/134

DE 10 2018 005 216 A1 2019.02.21

[0210] In noch einer weiteren Ausflihrungsform umfasst eine Vorrichtung ein Datenspeichergerat, das Code
speichert, der, wenn er durch einen Hardware-Prozessor ausgefiihrt wird, veranlasst, dass der Hardware-
Prozessor jedes hierin offenbarte Verfahren durchfuhrt. Eine Vorrichtung kann wie eine in der detaillierten
Beschreibung beschriebene sein. Ein Verfahren kann wie ein in der ausfihrlichen Beschreibung beschriebenes
sein.

[0211] In einer weiteren Ausflihrungsform veranlasst ein nichtflichtiges maschinenlesbares Medium, das
Code speichert, der, wenn er von einer Maschine ausgefiihrt wird, die Maschine veranlasst, ein Verfahren
durchzuflihren, das jedes beliebige hierin offenbarte Verfahren umfasst.

[0212] Ein Befehlssatz (z. B. zur Ausfiihrung durch den Kern) kann eines oder mehrere Befehlsformate auf-
weisen. Ein gegebenes Befehlsformat kann verschiedene Felder (z. B. Anzahl an Bits, Ort von Bits) definie-
ren, um unter anderem die auszufiihrende Operation (z. B. Opcode) und den/die Operand(en), an dem/denen
die Operation durchzufuhren ist, und/oder (ein) andere(s) Datenfeld(er) (z. B. Maske) zu spezifizieren. Man-
che Befehlsformate sind durch die Definition von Befehlstemplates (oder Subformaten) weiter aufgeschlis-
selt. Zum Beispiel kénnen die Befehlstemplates eines gegebenen Befehlsformats so definiert sein, dass sie
unterschiedliche Untersatze der Felder des Befehlsformats aufweisen (die enthaltenen Felder sind typischer-
weise in der gleichen Reihenfolge, aber wenigstens manche weisen unterschiedliche Bitpositionen auf, weil
weniger Felder enthalten sind), und/oder so definiert sein, dass sie ein gegebenes Feld aufweisen, das un-
terschiedlich interpretiert wird. Dementsprechend wird jeder Befehl einer ISA unter Verwendung eines gege-
benen Befehlsformats (und, falls definiert, in einem gegebenen der Befehlstemplates jenes Befehlsformats)
ausgedrickt und beinhaltet jeder Felder zum Spezifizieren der Operation und der Operanden. Zum Beispiel
weist ein beispielhafter ADD-Befehl einen speziellen Opcode und ein Befehlsformat auf, das ein Opcode-Feld
zum Spezifizieren dieses Opcodes und ein Operandenfeld zum Auswahlen von Operanden (Quelle 1/Ziel und
Quelle 2) beinhaltet; und ein Auftreten dieses ADD-Befehls in einem Befehlsstrom wird spezielle Inhalte in den
Operandenfeldern aufweisen, die spezielle Operanden auswahlen. Ein Satz von SIMD-Erweiterungen, die als
Advanced Vector Extensions (AVX) (AVX1 und AVX2) bezeichnet werden und das Vektorerweiterungs (VEX)
-Codierschema verwenden, wurde herausgegeben und/oder verdffentlicht (siehe z. B. Intel® 64 und IA-32 Ar-
chitectures Software Developer's Manual, Juni 2016; und siehe Intel® Architecture Instruction Set Extensions
Programming Reference, Februar 2016).

Beispielhafte Befehlsformate

[0213] Ausflhrungsformen des/der hier beschrieben Befehls/Befehle kbnnen in verschiedenen Formaten um-
gesetzt werden. AuRerdem sind beispielhafte Systeme, Architekturen und Pipelines unten ausfiihrlich beschrie-
ben. Ausfiihrungsformen des/der Befehls/Befehle kénnen auf solchen Systemen, Architekturen und Pipelines
ausgeflihrt werden, sind aber nicht auf jene ausfihrlich beschriebenen beschrankt.

Allgemeines vektorfreundliches Befehlsformat

[0214] Ein Vektorfreundliches Befehlsformat ist ein Befehlsformat, das flr Vektorbefehle geeignet ist (z. B.
gibt es gewisse Felder, die fiir Vektoroperationen spezifisch sind). Obgleich Ausfihrungsformen beschrieben
sind, bei denen sowohl Vektor- als auch Skalaroperationen durch das vektorfreundliche Befehlsformat unter-
stitzt werden, verwenden alternative Ausfihrungsformen nur Vektoroperationen durch das vektorfreundliche
Befehlsformat.

[0215] Fig. 36A -Fig. 36B sind Blockdiagramme, die ein allgemeines vektorfreundliches Befehlsformat und
Befehlstemplates davon gemal Ausfiuhrungsformen der Offenbarung veranschaulichen. Fig. 36A ist ein Block-
diagramm, das ein allgemeines vektorfreundliches Befehlsformat und Klasse-A-Befehlstemplates gemaf Aus-
fuhrungsformen der Offenbarung veranschaulicht; wahrend Fig. 36B ein Blockdiagramm ist, welches das all-
gemeine vektorfreundliche Befehlsformat und Klasse-B-Befehlstemplates gemal Ausfiihrungsformen der Of-
fenbarung veranschaulicht. Speziell ein allgemeines vektorfreundliches Befehlsformat 3600, fir das Klasse-
A- und Klasse-B-Befehlstemplates definiert sind, die beide Befehlstemplates ohne Speicherzugriff 3605 und
Befehlstemplates mit Speicherzugriff 3620 beinhalten. Der Ausdruck allgemein in dem Zusammenhang des
vektorfreundlichen Befehlsformats verweist darauf, dass das Befehlsformat nicht an irgendeinen speziellen
Befehlssatz gebunden ist.

[0216] Wenngleich Ausfihrungsformen der Offenbarung beschrieben werden, in denen das vektorfreundliche

Befehlsformat Folgendes unterstitzt: eine 64-Byte-Vektoroperandenldnge (oder -gréfle) mit 32-Bit- (4-Byte)
oder 64-Bit- (8-Byte-) Datenelementbreiten (oder -gréRen) (weshalb ein 64-Byte-Vektor aus entweder 16 dop-

49/134

DE 10 2018 005 216 A1 2019.02.21

pelwortgroRen Elementen oder alternativ 8 vierwortgrol3en Elementen besteht); eine 64-Byte-Vektoroperan-
denlénge (oder -gréf3e) mit 16 Bit (2 Byte) oder 8 Bit (1 Byte) Datenelementbreiten (oder -gréen); eine 32-
Byte-Vektoroperandenlénge (oder -gréf3e) mit 32 Bit (4 Byte), 64 Bit (8 Byte), 16 Bit (2 Byte) oder 8 Bit (1
Byte) Datenelementbreiten (oder -gréRen); und eine 16-Byte-Vektoroperandenldnge (oder -gré3e) mit 32 Bit
(4 Byte), 64 Bit (8 Byte), 16 Bit (2 Byte) oder 8 Bit (1 Byte) Datenelementbreiten (oder -grél3en); kénnen alter-
native Ausfiihrungsformen mehr, weniger und/oder unterschiedliche VektoroperandengréfRen (z. B. 256 Byte-
Vektoroperanden) mit mehr, weniger oder unterschiedlichen Datenelementbreiten (z. B. 128 Bit (16 Byte) Da-
tenelementbreiten) unterstitzen.

[0217] Die Klasse-A-Befehlstemplates aus Fig. 36A weisen auf: 1) innerhalb der Befehlstemplates ohne Spei-
cherzugriff 3605 ist ein Befehlstemplate fiir eine Vollrundungssteuerungsoperation ohne Speicherzugriff 3610
und ein Befehlstemplate fir eine Datentransformationsoperation ohne Speicherzugriff 3610 gezeigt; und 2)
innerhalb der Befehlstemplates mit Speicherzugriff 3620 ist ein temporares Speicherzugriffsbefehlstemplate
3625 und ein nicht temporéares Speicherzugriffsbefehlstemplate 3630 gezeigt. Die Klasse-B-Befehlstemplates
aus Fig. 36B weisen auf: 1) innerhalb der Befehlstemplates ohne Speicherzugriff 3605 ist ein Befehlstem-
plate flir eine Schreibmaskensteuerung-Teilrundungssteuerungsoperation ohne Speicherzugriff 3612 und ein
Befehlstemplate fir eine Schreibmaskensteuerung-VSIZE-Operation mit Speicherzugriff 3610 gezeigt; und 2)
innerhalb der Befehlstemplates mit Speicherzugriff 3620 ist ein Speicherzugriffsschreibmaskensteuerungsbe-
fehlstemplate 3627 gezeigt.

[0218] Das allgemeine vektorfreundliche Befehlsformat 3600 weist die folgenden Felder auf, die unten in der
in Fig. 36A bis Fig. 36B aufgelisteten Reihenfolge veranschaulicht sind.

[0219] Formatfeld 3640 - ein spezieller Wert (ein Befehlsformatkennungswert) in diesem Feld identifiziert das
vektorfreundliche Befehlsformat und dementsprechend Vorkommnisse von Befehlen in dem vektorfreundlichen
Befehlsformat in Befehlsstromen eindeutig. Von daher ist dieses Feld in dem Sinn optional, dass es nicht fir
einen Befehlssatz bendtigt wird, der nur das allgemeine vektorfreundliche Befehlsformat aufweist.

[0220] Basisoperationsfeld 3642 - sein Inhalt unterscheidet verschiedene Basisoperationen.

[0221] Registerindexfeld 3644 - sein Inhalt spezifiziert die Orte der Quellen- und Zieloperanden, seien sie in
Registern oder in einem Speicher, direkt oder durch Adressenerzeugung. Diese beinhalten eine ausreichende
Anzahl an Bits, um N Register aus einer PxQ(z. B. 32x512, 16x128, 32x1024, 64%1024)-Registerbank aus-
zuwahlen. Wahrend bei einer Ausfiihrungsform N bis zu drei Quellen- und ein Zielregister sein kann, kénnen
alternative Ausfihrungsformen mehr oder weniger Quellen- und Zielregister unterstitzen (k6nnen z. B. bis
zu zwei Quellen unterstitzen, wobei eine dieser Quellen auch als das Ziel wirkt, kénnen bis zu drei Quellen
unterstitzen, wobei eine dieser Quellen auch als das Ziel wirkt, kdnnen bis zu zwei Quellen und ein Ziel un-
terstitzen).

[0222] Modifiziererfeld 3646 - sein Inhalt unterscheidet das Auftreten von Befehlen im allgemeinen Vektorbe-
fehlsformat, die den Speicherzugriff spezifizieren, von denen, die dies nicht tun; das heil’t, zwischen Befehl-
templates ohne Speicherzugriff 3605 und Befehlstemplates mit Speicherzugriff 3620. Speicherzugriffsopera-
tionen lesen und/oder schreiben in die Speicherhierarchie (in manchen Fallen Schreiben der Quellen- und/oder
Zieladressen unter Verwendung von Werten in Registern), wahrend Operationen ohne Speicherzugriff dies
nicht tun (z. B. sind die Quelle und die Ziele Register). Wahrend bei einer Ausfiihrungsform dieses Feld auch
zwischen unterschiedlichen Arten des Durchfiihrens von Speicheradressenberechnungen wahit, kénnen alter-
native Ausfihrungsformen mehr, weniger oder unterschiedliche Arten zum Durchfiihren von Speicheradres-
senberechnungen unterstitzen.

[0223] Erganzungsoperationsfeld 3650 - sein Inhalt unterscheidet zwischen einer Vielzahl verschiedener Ope-
rationen, die zusatzlich zu der Basisoperation durchzufiihren sind. Dieses Feld ist kontextspezifisch. In einer
Ausfiihrungsform der Offenbarung ist dieses Feld in ein Klassenfeld 3668, ein Alphafeld 3652 und ein Betafeld
3654. Das Erganzungsoperationsfeld 3650 ermdglicht, dass gemeinsame Gruppen von Operationen in einem
einzigen Befehl statt in 2, 3 oder 4 Befehlen durchgefihrt werden.

[0224] Skalierungsfeld 3660 - sein Inhalt ermdglicht die Skalierung des Inhalts des Indexfelds fiir eine Spei-
cheradressenerzeugung (z. B. firr eine Adressenerzeugung, die 25kaerns * |ndex + Basis verwendet).

[0225] Verschiebungsfeld 3662A- sein Inhalt wird als Teil der Speicheradressenerzeugung verwendet (z. B.
fur eine Adressenerzeugung, die 25keuns * Index + Basis + Verschiebung).

50/134

DE 10 2018 005 216 A1 2019.02.21

[0226] Verschiebungsfaktorfeld 3662B (man beachte, dass die Nebeneinanderstellung des Verschiebungs-
felds 3662A direkt Gber dem Verschiebungsfaktorfeld 3662B anzeigt, dass das eine oder das andere verwen-
det wird) - sein Inhalt wird als Teil der Adressenerzeugung verwendet; er spezifiziert einen Verschiebungsfak-
tor, der durch die GréRRe eines Speicherzugriffs (N) zu skalieren ist - wobei N die Anzahl der Bytes im Speicher-
zugriff ist (z. B. fir eine Adressenerzeugung, die 25%@euns * [ndex + Basis + skalierte Verschiebung). Redun-
dante Bits niedriger Ordnung werden ignoriert und daher wird der Inhalt des Verschiebungsfaktorfelds mit der
SpeicheroperandengesamtgréRe (N) multipliziert, um die abschlieBende Verschiebung zu erzeugen, die beim
Berechnen einer effektiven Adresse zu verwenden ist. Der Wert von N wird durch die Prozessorhardware zur
Laufzeit basierend auf dem vollstadndigen Opcode-Feld 3674 (das hierin spater beschrieben wird) und dem Da-
tenmanipulationsfeld 3654C bestimmt. Das Verschiebungsfeld 3662A und das Verschiebungsfaktorfeld 3662B
sind optional in dem Sinne, dass sie nicht fiir Befehltemplates ohne Speicherzugriff 3605 verwendet werden
und/oder unterschiedliche Ausfihrungsformen kénnen nur eines oder keines der beiden implementieren.

[0227] Datenelementbreitenfeld 3664 - sein Inhalt unterscheidet, welche von einer Anzahl an Datenelement-
breiten zu verwenden ist (bei manchen Ausfiihrungsformen fiir alle Befehle; bei anderen Ausfiihrungsformen
fir nur manche der Befehle). Dieses Feld ist in dem Sinne optional, dass es nicht benétigt wird, falls nur ei-
ne Datenelementbreite unterstitzt wird und/oder Datenelementbreiten unterstiitzt werden, die einen gewissen
Aspekt der Opcodes verwenden.

[0228] Schreibmaskenfeld 3670 - sein Inhalt steuert auf einer Basis je Datenelementposition, ob die Daten-
elementposition in dem Zielvektoroperanden das Ergebnis der Basisoperation und der Erganzungsoperati-
on reflektiert. Klasse-A-Befehlstemplates unterstiitzen Zusammenlegungsschreibmaskierung, wahrend Klas-
se-B-Befehlstemplates sowohl Zusammenlegungs- als auch Nullungsschreibmaskierung unterstitzen. Beim
Zusammenlegen ermdglichen Vektormasken, dass jeder Satz von Elementen im Ziel wahrend der Ausfih-
rung einer Operation (spezifiziert durch die Basisoperation und die Augmentationsoperation) vor Aktualisie-
rungen geschitzt wird; in einer anderen Ausfiihrungsform, dass der alte Wert jedes Elements des Ziels be-
wahrt wird, wenn das entsprechende Maskenbit eine 0 aufweist. Demgegeniiber ermdglichen Nullungsvektor-
masken, dass jeder Satz von Elementen im Ziel wahrend der Ausfiihrung einer Operation (spezifiziert durch
die Basisoperation und die Augmentationsoperation) genullt wird; in einer anderen Ausfiihrungsform, dass ein
Element des Ziels auf 0 gesetzt wird, wenn das entsprechende Maskenbit einen 0-Wert aufweist. Ein Untersatz
dieser Funktion ist die Fahigkeit, die Vektorlange der ausgefihrten Operation zu steuern (d. h. die Spanne
der Elemente, die modifiziert werden, von der ersten bis zur letzten); es ist jedoch nicht notwendig, dass die
Elemente, die modifiziert werden, konsekutiv sind. Somit erlaubt das Schreibmaskenfeld 3670 Teilvektorope-
rationen, einschliel3lich Lade-, Speicher-, Arithmetik-, Logikoperationen usw. Wahrend Ausflihrungsformen der
Offenbarung beschrieben werden, in denen der Inhalt des Schreibmaskenfelds 3670 eines aus einer Anzahl
von Schreibmaskenregistern auswahlt, welche die zu verwendende Schreibmaske (und somit der Inhalt des
Schreibmaskenfelds 3670 indirekt die auszufiihrende Maskierung identifiziert) enthalt, ermdglichen alternative
Ausfiihrungsformen stattdessen oder zusatzlich, dass der Inhalt des Maskenschreibfelds 3670 direkt die aus-
zufiihrende Maskierung spezifiziert.

[0229] Unmittelbarfeld 3672 - sein Inhalt ermdglicht die Spezifikation eines Unmittelbaren. Dieses Feld ist in
dem Sinne optional, dass es bei einer Implementierung des allgemeinen vektorfreundlichen Formats, das einen
Unmittelbaren nicht unterstitzt, nicht vorhanden ist und bei Befehlen, die keinen Unmittelbaren verwenden,
nicht vorhanden ist.

[0230] Klassenfeld 3668 - sein Inhalt unterscheidet zwischen unterschiedlichen Klassen von Befehlen. Mit Be-
zug auf Fig. 36A-B wahlen die Inhalte dieses Feldes zwischen Klasse A- und Klasse B-Befehlen. In Fig. 36A-B
werden gerundete Eckenquadrate zum Anzeigen verwendet, dass ein spezifischer Wert in einem Feld (z. B.
Klasse A 3668A bzw. Klasse B 3668B fiir das Klassenfeld 3668 in Fig. 36A-B) vorhanden ist.

Befehlstemplates der Klasse A

[0231] Im Fall der Klasse-A-Befehlstemplates ohne Speicherzugriff 3605wird das Alphafeld 3652 als ein RS-
Feld 3652A interpretiert, dessen Inhalt unterscheidet, welche der unterschiedlichen Augmentationsoperations-
typen auszufihren sind (z. B. Rundung 3652A.1 und Datentransformation 3652A.2 sind jeweils fir die Run-
dungstypoperation ohne Speicherzugruff 3610 und den Transformationstypoperations-Befehlstemplates ohne
Speicherzugriff 3615 spezifiziert), wahrend das Betafeld 3654 unterscheidet, welche der Operationen des spe-
zifizierten Typs durchzufiihren sind. In den Befehlstemplates ohne Speicherzugriff 3605 sind das Skalierungs-
feld 3660, das Verschiebungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B nicht vorhanden.

51/134

DE 10 2018 005 216 A1 2019.02.21

Befehlstemplates ohne Speicherzugriff - Vollrundungssteuertypoperation

[0232] In dem Befehlstemplate der Vollrundungssteuerungstypoperation ohne Speicherzugriff 3610 wird das
Betafeld 3654 als ein Rundungssteuerfeld 3654A interpretiert, dessen Inhalt(e) eine statische Rundung bereit-
stellt/en. Wahrend in den beschriebenen Ausflihrungsformen der Offenbarung das Rundungssteuerungsfeld
3654A ein Feld 3656 zur Unterdriickung aller Gleitkomma-Ausnahmen (SAE) und ein Rundungsoperations-
steuerfeld 3658 aufweist, kdnnen alternative Ausfihrungsformen beide Konzepte in das gleiche Feld codieren/
unterstitzen oder nur eines oder das andere dieser Konzepte/Felder aufweisen (z. B. nur das Rundungsope-
rationssteuerfeld 3658 aufweisen).

[0233] SAE-Feld 3656 - sein Inhalt unterscheidet, ob die Ausnahmeereignisberichte deaktiviert werden oder
nicht; wenn der SAE-Feld 3656-Inhalt anzeigt, dass die Unterdriickung aktiviert ist, gibt eine gegebener Befehl
keine Art von Gleitkomma-Ausnahmeflag an und ruft keinen Gleitkomma-Ausnahmehandler auf.

[0234] Rundungsoperationssteuerfeld 3658 - sein Inhalt unterscheidet, welche einer Gruppe von Rundungs-
operationen durchzufiihren ist (z. B. Aufrunden, Abrunden, Runden zu Null und Runden zum Nachsten). Dem-
entsprechend erméglicht das Rundungssteuerfeld 3658 das Andern des Rundungsmodus auf einer Basis je
Befehl. In einer Ausfiihrungsform der Offenbarung, in der ein Prozessor ein Steuerregister zum Spezifizieren
von Rundungsmodi aufweist, Gbergeht der Rundungsoperationssteuerfeld 3650-Inhalt diesen Registerwert.

Befehlstemplates ohne Speicherzugriff - Datentransformationstypoperation

[0235] In der Befehlstemplate-Datentransformationstypoperation ohne Speicherzugriff 3615 wird das Betafeld
3654 als ein Datentransformationsfeld 3654B interpretiert, dessen Inhalt unterscheidet, welche einer Anzahl
von Datentransformationen auszufiihren ist (z. B. keine Datentransformation, Swizzle, Broadcast).

[0236] Im Fall eines A-Klasse-Befehltemplates mit Speicherzugriff 3620 wird das Alphafeld 3652 als Rau-
mungshinweisfeld 3652B interpretiert, dessen Inhalt unterscheidet, welcher der Rdumungshinweise zu ver-
wenden ist (in Fig. 36A, werden Temporar 3652B.1 und Nicht-Temporar 3652B.2 jeweils fir das temporare
Befehlstemplate mit Speicherzugriff 3625 und das nicht nicht temporare Befehlstemplate mit Speicherzugriff
3630 spezifiziert, wahrend das Betafeld 3654 als Datenmanipulationsfeld 3654C interpretiert wird, dessen In-
halt unterscheidet, welche einer Anzahl von Datenmanipulationsoperationen (auch als Primitive bekannt) aus-
zufiihren ist (z. B. keine Manipulation; Broadcast; Aufwartsumwandlung einer Quelle; und Abwartsumwandlung
eines Ziels). Die Befehlstemplates mit Speicherzugriff 3620 weisen das Skalierungsfeld 3660, das Verschie-
bungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B auf.

[0237] Vektorspeicherbefehle flihren Vektorladen aus dem und Vektorspeichern in den Speicher mit Umwand-
lungsunterstiitzung durch. Wie bei regularen Vektorbefehlen Ubertragen Vektorspeicherbefehle Daten von
dem/in den Speicher auf eine datenelementweise Art, wobei die Elemente, die tatsachlich tbertragen werden,
durch die Inhalte der Vektormaske diktiert werden, die als die Schreibmaske ausgewahlt wird.

Speicherzugriffsbefehlstemplates - Temporal
[0238] Temporale Daten werden wahrscheinlich bald genug wiederverwendet, um von Caching zu profitieren.
Dies ist jedoch ein Hinweis und verschiedene Prozessoren kdnnen ihn auf verschiedene Weisen, einschlief3lich
vollstdndigen Ignorierens des Hinweises, implementieren.
Speicherzugriffsbefehlstemplates - Nichttemporal
[0239] Nichttemporale Daten werden wahrscheinlich nicht bald genug wiederverwendet, um von einem Ca-
ching in dem 1.-Level-Cache zu profitieren und sollten Prioritat zum Ausraumen erhalten. Dies ist jedoch ein
Hinweis und verschiedene Prozessoren kdénnen ihn auf verschiedene Weisen, einschlieRlich vollstandigen
Ignorierens des Hinweises, implementieren.
Befehlstemplates der Klasse B
[0240] Im Fall der Klasse-B-Befehlstemplates wird das Alphafeld 3652 als ein Schreibmaskensteuerfeld (Z)

3652C interpretiert, dessen Inhalt unterscheidet, ob die durch das Schreibmaskenfeld 3670 gesteuerte Schreib-
maskierung eine Zusammenlegung oder eine Nullung sein sollte.

52/134

DE 10 2018 005 216 A1 2019.02.21

[0241] Im Fall der Klasse-B-Befehlstemplates ohne Speicherzugriff 3605 wird ein Teil des Betafelds 3654 als
ein RL-Feld 3657A interpretiert, dessen Inhalt unterscheidet, welche der unterschiedlichen Augmentations-
operationstypen auszufiihren sind (z. B. Rundung 3657A.1 und Vektorlange (VSIZE) 3657A.2 sind jeweils fir
das Befehlstemplate der Schreibmaskensteuerungs-Teilrundungstypoperation ohne Speicherzugriff 3612 und
das Befehlstemplate fur die Schreibmaskensteuerungs-VSIZE-Typoperation ohne Speicherzugriff 3617 spe-
zifiziert), wahrend der Rest des Betafelds 3654 unterscheidet, welche der Operationen des spezifizierten Typs
durchzuflihren sind. In den Befehlstemplates ohne Speicherzugriff 3605 sind das Skalierungsfeld 3660, das
Verschiebungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B nicht vorhanden.

[0242] In dem Befehlstemplate der Schreibmaskensteuerungs-Teilrundungssteuertypoperation ohne Spei-
cherzugriff 3610 wird der Rest des Beta-Feldes 3654 als ein Rundungsoperationsfeld 3659A interpretiert, und
der Ausnahmeereignisbericht deaktiviert (ein gegebener Befehl meldet keine Art von Gleitkomma-Ausnahme-
Flag und I6st keinen Gleitkomma-Ausnahme-Handler aus).

[0243] Rundoperationssteuerfeld 3659A - ebenso wie das Rundungsoperationssteuerfeld 3658 unterscheidet
sein Inhalt, welche von einer Gruppe von Rundungsoperationen auszufiihren ist (z. B. Aufrunden, Abrunden,
Runden zu Null und Runden zum Nachsten). Daher erlaubt das Rundungsoperationssteuerfeld 3659A das
Verandern des Rundungsmodus auf einer Basis je Befehl. In einer Ausflihrungsform der Offenbarung, in der
ein Prozessor ein Steuerregister zum Spezifizieren von Rundungsmodi aufweist, Gbergeht der Inhalt des Run-
dungsoperationssteuerfelds 3650 diesen Registerwert.

[0244] In dem Befehlstemplate Schreibmaskensteuerungs-VSIZE-Typoperation 3617 wird der Rest des Be-
tafelds 3654 als ein Vektorlangenfeld 3659B interpretiert, dessen Inhalt unterscheidet, welche einer Anzahl
von Datenvektorlangen auszufihren ist (z. B. 128, 256 oder 512 Byte).

[0245] Im Fall eines Klasse-B-Befehlstemplates mit Speicherzugriff 3620 wird ein Teil des Betafeldes 3654 als
ein Broadcast-Feld 3657B interpretiert, dessen Inhalt unterscheidet, ob die Datenmanipulationsoperation des
Broadcast-Typs auszuflihren ist oder nicht, wahrend der Rest des Betafeldes 3654 als das Vektorlangenfeld
3659B interpretiert wird. Die Befehlstemplates mit Speicherzugriff 3620 weisen das Skalierungsfeld 3660, das
Verschiebungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B auf.

[0246] Mit Bezug auf das allgemeine vektorfreundliche Befehlsformat 3600 ist ein Voll-Opcode-Feld 3674
einschlieBlich des Formatfelds 3640, des Basisoperationsfelds 3642 und des Datenelementbreitenfelds 3664
gezeigt. Wahrend eine Ausfiuihrungsform gezeigt ist, bei der das Voll-Opcode-Feld 3674 alle dieser Felder
beinhaltet, beinhaltet das Voll-Opcode-Feld 3674 bei Ausfiihrungsformen, die nicht alle von ihnen unterstitzen,
weniger als alle dieser Felder. Das Voll-Opcode-Feld 3674 stellt den Operationscode (Opcode) bereit.

[0247] Das Erganzungsoperationsfeld 3650, das Datenelementbreitenfeld 3664 und das Schreibmaskenfeld
3670 ermoglichen, dass diese Merkmale auf Basis je Befehl in dem allgemeinen vektorfreundlichen Befehls-
format spezifiziert werden.

[0248] Die Kombination aus Schreibmaskenfeld und Datenelementbreitenfeld erschafft insofern typisierte Be-
fehle, als dass sie ermdglicht, dass die Maske basierend auf unterschiedlichen Datenelementbreiten ange-
wandt wird.

[0249] Die verschiedenen Befehlstemplates, die innerhalb von Klasse A und Klasse B gefunden werden, sind
in verschiedenen Situationen vorteilhaft. In einigen Ausfuhrungsformen der Offenbarung kénnen unterschied-
liche Prozessoren oder unterschiedliche Kerne innerhalb eines Prozessors nur Klasse A, nur Klasse B oder
beide Klassen unterstitzen. Zum Beispiel kann ein Hochleistungs-Allzweck-Aufier-Reihenfolge-Kern, der fir
allgemeine Rechenzwecke gedacht ist, nur Klasse B unterstitzen, ein Kern, der primar fur Grafik- und/oder
wissenschaftliches (Durchsatz-) Berechnung gedacht ist, nur Klasse A unterstitzen, und ein Kern, der fir bei-
de gedacht ist, beide unterstitzen (natirlich ist ein Kern, der eine Mischung aus Templates und Befehlen
von beiden Klassen, aber nicht allen Templates und Befehlen von beiden Klassen aufweist, innerhalb des
Geltungsbereichs der Offenbarung). AuRerdem kann ein einziger Prozessor mehrere Kerne beinhalten, von
denen alle die gleiche Klasse unterstitzen oder bei denen unterschiedliche Kerne eine unterschiedliche Klasse
unterstiitzen. Zum Beispiel kann in einem Prozessor mit separaten Grafik- und Mehrzweckkernen einer der
Grafikkerne, der primar fir Grafik- und/oder wissenschaftliches Rechnen gedacht ist, nur Klasse A unterstut-
zen, wahrend einer oder mehrere der Mehrzweckkerne Hochleistungs-Allzweckkerne mit AuRer-Reihenfolge-
Ausfuhrung und Registerumbenennung sein kdnnen, die fur Allzweck-Berechnung gedacht sind, die nur Klas-
se B unterstlitzen. Ein anderer Prozessor, der keinen separaten Grafikkern aufweist, kann einen oder mehrere

53/134

DE 10 2018 005 216 A1 2019.02.21

allgemeine In-Reihenfolge- oder AuRer-Reihenfolge-Kerne aufweisen, die sowohl Klasse A als auch Klasse B
unterstitzen. Naturlich kénnen Merkmale aus einer Klasse auch in der anderen Klasse in unterschiedlichen
Ausfihrungsformen der Offenbarung implementiert sein. Programme, die in einer héheren Sprache geschrie-
ben sind, wirden in eine Vielzahl unterschiedlicher ausflhrbarer Formen gelegt werden (z. B. just-in-time-
kompiliert oder statisch kompiliert), die Folgendes beinhalten: 1) eine Form, die nur Befehle der Klasse(n) ent-
halt, die durch den Zielprozessor zur Ausflihrung unterstiitzt wird/werden; oder 2) eine Form mit alternativen
Routinen, die unter Verwendung unterschiedlicher Kombinationen der Befehle aller Klassen geschrieben sind
und einen Steuerflusscode aufweisen, der die auszufihrenden Routinen basierend auf den Befehlen auswahilt,
die von dem Prozessor unterstiitzt werden, der gerade den Code ausfihrt.

Beispielhaftes spezielles vektorfreundliches Befehlsformat

[0250] Fig. 37 ist ein Blockdiagramm, das ein beispielhaftes spezifisches vektorfreundliches Befehlsformat
gemal Ausfihrungsformen der Offenbarung veranschaulicht. Fig. 37 zeigt ein spezifisches vektorfreundliches
Befehlsformat 3700, das in dem Sinne spezifisch ist, dass es den Ort, die Gréle, die Interpretation und Rei-
henfolge von Feldern sowie Werten von manchen dieser Felder spezifiziert. Das spezielle vektorfreundliche
Befehlsformat 3700 kann verwendet werden, um den x86-Befehlssatz zu erweitern, und dementsprechend
sind manche der Felder jenen, die in dem existierenden x86-Befehlssatz und einer Erweiterung davon (z. B.
AVX) verwendet werden, ahnlich oder die gleichen wie diese. Das Format bleibt konsistent mit dem Prafixco-
dierungsfeld, Real-Opcode-Byte-Feld, MOD-R/M-Feld, SIB-Feld, Verschiebungsfeld und den Unmittelbarfel-
dern des existierenden x86-Befehlssatzes mit Erweiterungen. Die Felder aus Fig. 36, in welche die Felder aus
Fig. 37 abgebildet werden, sind veranschaulicht.

[0251] Es versteht sich, dass, obwohl Ausfiihrungsformen der Offenbarung unter Bezugnahme auf das spe-
zifische vektorfreundliche Befehlsformat 3700 in dem Kontext des allgemeinen vektorfreundlichen Befehlsfor-
mats 3600 zu Veranschaulichungszwecken beschrieben sind, die Offenbarung nicht auf das spezifische vek-
torfreundliche Befehlsformat 3700 beschrankt ist, sofern nicht anderweitig beansprucht. Zum Beispiel beab-
sichtigt das allgemeine vektorfreundliche Befehlsformat 3600 eine Vielzahl mdglicher GréRen fiir die verschie-
denen Felder, wahrend das spezielle vektorfreundliche Befehlsformat 3700 als Felder mit speziellen GréRRen
aufweisend gezeigt ist. Wenngleich ein spezifisches Beispiel das Datenelementbreitenfeld 3664 als ein Ein-
Bit-Feld in dem spezifischen vektorfreundlichen Befehlsformat 3700 veranschaulicht, ist die Offenbarung nicht
darauf beschrankt (das heifit, das allgemeine vektorfreundliche Befehlsformat 3600 berlicksichtigt andere Gro-
3en des Datenelementbreitenfelds 3664).

[0252] Das allgemeine vektorfreundliche Befehlsformat 3600 weist die folgenden Felder auf, die unten in der
in Fig. 37A aufgelisteten Reihenfolge veranschaulicht sind.

[0253] EVEX-Prafix (Bytes 0-3) 3702 - ist in einer Vier-Bit-Form codiert.

[0254] Formatfeld 3640 (EVEX Byte 0, Bits [7: 0]) - das erste Byte (EVEX Byte 0) ist das Formatfeld 3640
und enthalt 0x62 (der eindeutige Wert, der zum Unterscheiden des vektorfreundlichen Befehlsformats in einer
Ausfiihrungsform der Offenbarung verwendet wird).

[0255] Die zweiten bis vierten Bytes (EVEX-Bytes 1-3) beinhalten eine Anzahl an Bitfeldern, die eine spezielle
Fahigkeit bereitstellen.

[0256] REX-Feld 3705 (EVEX Byte 1, Bits [7-5]) - besteht aus einem EVEX.R-Bitfeld (EVEX Byte 1, Bit [7]
-R), EVEX.X-Bitfeld (EVEX Byte 1, Bit [6]-X), und 3657BEX Byte 1, Bit [5]-B). Die EVEX.R-, EVEX.X- und
EVEX.B-Bitfelder stellen die gleiche Funktionalitat wie die entsprechenden VEX-Bitfelder bereit und sind unter
Verwendung einer Einerkomplementform codiert, d. h. ZMMO ist als 1111B codiert, ZMM15 ist als 0000B
codiert. Andere Felder der Befehle codieren die unteren drei Bits der Registerindices wie in der Technik bekannt
(rrr, xxx und bbb), so dass Rrrr, Xxxx und Bbbb durch Hinzufligen von EVEX.R, EVEX.X und EVEX.B gebildet
werden kénnen.

[0257] REX'-Feld 3610 - dies ist der erste Teil des REX'-Felds 3610 und ist das EVEX.R"-Bitfeld (EVEX-
Byte 1, Bit [4] - R'), das verwendet wird, um entweder die oberen 16 oder die unteren 16 des erweiterten
32-Register-Satzes zu codieren. In einer Ausfihrungsform der Offenbarung wird dieses Bit zusammen mit
anderen, wie unten angegeben, in einem bitinvertierten Format gespeichert, um sich (in dem bekannten x86
32-Bit-Modus) von dem BOUND-Befehl zu unterscheiden, dessen reales Opcode-Byte 62 ist, aber akzeptiert
im MOD R/M-Feld (unten beschrieben) nicht den Wert 11 im MOD-Feld; alternative Ausfihrungsformen der

54/134

DE 10 2018 005 216 A1 2019.02.21

Offenbarung speichern dies und die anderen angezeigten Bits in dem invertierten Format nicht. Ein Wert von
1 wird verwendet, um die unteren 16 Register zu codieren. Mit anderen Worten wird R'Rrrr durch Kombinieren
von EVEX.R', EVEX.R und des anderen RRR von anderen Feldern gebildet.

[0258] Opcode-Map-Feld 3715 (EVEX-Byte 1, Bits [3:0] - mmmm) - sein Inhalt codiert ein impliziertes fiihren-
des Opcode-Byte (OF, OF 38 oder OF 3).

[0259] Datenelementbreitenfeld 3664 (EVEX-Byte 2, Bit [7] - W) - wird durch die Notation EVEX.W reprasen-
tiert. EVEX.W wird verwendet, um die Granularitat (Gr63e) des Datentyps (entweder 32-Bit-Datenelemente
oder 64-Bit-Datenelemente) zu definieren.

[0260] EVEX.vvv 3720 (EVEX-Byte 2, Bits [6:3]-vvvv) - die Rolle von EVEX.vvvv kann das Folgende beinhal-
ten: 1) EVEX.vvvv codiert den ersten Quellregisteroperanden, der in invertierter (Is-Komplement-) Form spe-
zifiziert ist und fir Befehle mit 2 oder mehr Quelloperanden giiltig ist; 2) EVEX.vvvv codiert den Zielregister-
operanden, der fur bestimmte Vektorverschiebungen in Is-Komplementform spezifiziert ist; oder 3) EVEX.vvvv
codiert keinen Operanden, das Feld ist reserviert und sollte 1111b enthalten. Dementsprechend codiert das
EVEX.vvvv-Feld 3720 die 4 Bits niedriger Ordnung des ersten Quellenregisterspezifikationssymbols, die in in-
vertierter (Einerkomplement) Form gespeichert werden. In Abhangigkeit von dem Befehl wird ein zuséatzliches
verschiedenes EVEX-Bitfeld verwendet, um die SpezifikationssymbolgréRe auf 32 Register zu erweitern.

[0261] EVEX.U 3668 Klassenfeld (EVEX-Byte 2, Bit [2]-U) - falls EVEX.U = 0, gibt es Klasse A oder EVEX.UO
an; falls EVEX.U = 1, gibt es Klasse B oder EVEX.U1 an.

[0262] Préfixcodierungsfeld 3725 (EVEX-Byte 2, Bits [1:0]-pp) - stellt zusatzliche Bits fur das Basisoperations-
feld bereit. Zusatzlich zu dem Bereitstellen einer Unterstitzung fur die veralteten SSE-Befehle in dem EVEX-
Prafix-Format weist dies auch den Vorteil des Kompaktierens des SIMD-Préfixes auf (statt ein Byte zum Aus-
driicken des SIMD-Préfixes zu bendtigen, bendtigt das EVEX-Préfix nur 2 Bit). In einer Ausfiihrungsform wer-
den zum Unterstltzen der veralteten SSE-Befehle, die ein SIMD-Préfix (66H, F2H, F3H) sowohl im veralteten
Format als auch im EVEX-Préfixformat verwenden, diese veralteten SIMD-Préfixe in das SIMD-Préfix-Codier-
feld codiert; und zur Laufzeit werden sie in das veraltete SIMD-Préafix expandiert, bevor sie der PLA des Deco-
dierers bereitgestellt werden (so kann die PLA sowohl das veraltete als auch das EVEX-Format dieser veralte-
ten Befehle ohne Modifikation ausfuhren). Obwohl neuere Befehle den Inhalt des EVEX-Préfixcodierungsfeld
direkt als eine Opcode-Erweiterung verwenden kénnten, erweitern bestimmte Ausfiihrungsformen zur Konsis-
tenz auf eine ahnliche Weise, erlauben aber, dass unterschiedliche Bedeutungen durch diese veralteten SIMD-
Préfixe spezifiziert werden. Eine alternative Ausflihrungsform kann den PLA umgestalten, um die 2-Bit-SIMD-
Préafixcodierungen zu unterstiitzen, und benétigt dementsprechend die Erweiterung nicht.

[0263] Alphafeld 3652 (EVEX-Byte 3, Bit [7]-EH; auch bekannt als EVEX.EH, EVEX.rs, EVEX.RL, EVEX.-
Schreibmaskensteuerung und EVEX.N; ebenfalls mit a veranschaulicht) - wie zuvor beschrieben ist dieses
Feld kontextspezifisch.

[0264] Betafeld 3654 (EVEX-Byte 3, Bits [6: 4]-SSS, auch bekannt als EVEX.s, o EVEX.r, o EVEX.rr1, EVEX.
LLO, EVEX.LLB; auch veranschaulicht mit B3f) - wie zuvor beschrieben, ist dieses Feld kontextspezifisch.

[0265] REX'-Feld 3610 - dies ist der Rest des REX'-Felds und ist das EVEX.V'-Bitfeld (EVEX-Byte 3, Bit [3] -
V"), das verwendet werden kann, um entweder die oberen 16 oder die unteren 16 des erweiterten 32-Register-
Satzes zu codieren. Dieses Bit wird in bitinvertiertem Format gespeichert. Ein Wert von 1 wird verwendet,
um die unteren 16 Register zu codieren. Mit anderen Worten wird V'VVVV durch Kombinieren von EVEX.V',
EVEX.vvvv gebildet.

[0266] Schreibmaskenfeld 3670 (EVEX-Byte 3, Bits [2:0]-kkk) - sein Inhalt spezifiziert den Index eines Regis-
ters in den Schreibmaskenregistern, wie zuvor beschrieben wurde. In einer Ausfihrungsform der Offenbarung
hat der spezifische Wert EVEX.kkk = 000 ein spezielles Verhalten, das impliziert, dass keine Schreibmaske
fir den bestimmten Befehl verwendet wird (dies kann auf eine Vielzahl von Arten einschlief3lich der Verwen-
dung einer fur alle Einsen fest verdrahteten Schreibmaske oder Hardware, welche die Maskierungshardware
umgeht, implementiert werden).

[0267] Real-Opcode-Feld 3730 (Byte 4) ist auch als das Opcode-Byte bekannt. Ein Teil des Opcodes ist in
diesem Feld spezifiziert.

55/134

DE 10 2018 005 216 A1 2019.02.21

[0268] MOD-R/M-Feld 3740 (Byte 5) beinhaltet MOD-Feld 3742, Reg-Feld 3744 und R/M-Feld 3746. Wie zu-
vor beschrieben, unterscheidet der Inhalt des MOD-Felds 3742 zwischen Operationen mit Speicherzugriff und
Operationen ohne Speicherzugriff. Die Rolle des Reg-Felds 3744 kann in zwei Situationen zusammengefasst
werden: Codieren von entweder dem Zielregisteroperanden oder einem Quellenregisteroperanden oder als
eine Opcode-Erweiterung behandelt werden und nicht zum Codieren irgendeines Befehlsoperanden verwen-
det werden. Die Rolle des R/M-Felds 3746 kann das Folgende beinhalten: Codieren des Befehlsoperanden,
der eine Speicheradresse referenziert, oder Codieren von entweder dem Zielregisteroperanden oder einem
Quellenregisteroperanden.

[0269] Byte fur Skalierung, Index, Basis (SIB) (Byte 6) - Wie zuvor beschrieben, wird der Inhalt des Skalie-
rungsfelds 3650 fir eine Speicheradressenerzeugung verwendet. SIB.xxx 3754 und SIB.bbb 3756 - auf die
Inhalte dieser Felder wurde zuvor mit Bezug auf die Registerindices Xxxx und Bbbb Bezug genommen.

[0270] Verschiebungsfeld 3662A (Bytes 7-10) - wenn das MOD-Feld 3742 10 enthalt, sind die Bytes 7-10
das Verschiebungsfeld 3662A, und es funktioniert genauso wie die veraltete 32-Bit-Verschiebung (disp32) und
funktioniert auf Bytegranularitat.

[0271] Verschiebungsfaktorfeld 3662B (Byte 7) - wenn das MOD-Feld 3742 01 enthalt, ist Byte 7 das Ver-
schiebungsfaktorfeld 3662B. Der Ort dieses Felds ist der gleiche wie jener der veralteten 8-Bit-Verschiebung
(disp8) des X86-Befehlssatzes, die auf Bytegranularitat funktioniert. Da disp8 vorzeichenerweitert ist, kann es
nur zwischen -128 und 127 Bytes Offsets adressieren; in Bezug auf 64-Byte-Cache-Zeilen verwendet disp8 8
Bits, die auf nur vier wirklich nitzliche Werte eingestellt werden kénnen -128, -64, 0 und 64; da oft ein gréf3erer
Bereich bendtigt wird, wird disp32 verwendet; disp32 bendtigt jedoch 4 Bytes. Im Gegensatz zu disp8 und disp
32 ist das Verschiebungsfaktorfeld 3662B eine Neuinterpretation von disp8; bei Verwendung des Verschie-
bungsfaktorfelds 3662B wird die tatsdchliche Verschiebung durch den Inhalt des Verschiebungsfaktorfeldes
mit der GréRRe des Speicheroperandenzugriffs (N) multipliziert. Die Verschiebung wird als disp8*N bezeichnet.
Dies reduziert die durchschnittliche Befehlslange (es wird ein einzelnes Byte fiir die Verschiebung verwendet,
aber mit einem viel grofieren Bereich). Eine solche komprimierte Verschiebung basiert auf der Annahme, dass
die effektive Verschiebung ein Vielfaches der Granularitat des Speicherzugriffs ist, und daher die redundanten
Bits niedriger Ordnung des Adressenoffsets nicht codiert zu werden brauchen. Mit anderen Worten ersetzt
das Verschiebungsfaktorfeld 3662B die veraltete x86-Befehlssatz-8-Bit-Verschiebung. Somit ist das Verschie-
bungsfaktorfeld 3662B auf die gleiche Weise wie eine x86-Befehlssatz-8-Bit-Verschiebung (also keine Ande-
rungen in den ModRM/SIB-Codierregeln) mit der einzigen Ausnahme codiert, dass disp8 zu disp8*N Uberladen
ist. Mit anderen Worten gibt es keine Anderungen in den Codierungsregeln oder Codierungslangen, sondern
nur in der Interpretation des Verschiebungswertes durch Hardware (die die Verschiebung mit der Grée des
Speicheroperanden skalieren muss, um einen byteweisen Adressenversatz zu erhalten). Unmittelbarfeld 3672
arbeitet wie zuvor beschrieben.

Voll-Opcode-Feld

[0272] Fig. 37B ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats
3700 veranschaulicht, das ein Voll-Opcode-Feld 3674 gemal einer Ausfiihrungsform der Offenbarung aus-
macht. Speziell beinhaltet das Voll-Opcode-Feld 3674 das Formatfeld 3640, das Basisoperationsfeld 3642 und
das Datenelementbreiten(W)-Feld 3664. Das Basisoperationsfeld 3642 beinhaltet das Prafixcodierungsfeld
3725, das Opcode-Map-Feld 3715 und das Real-Opcode-Feld 3730.

Registerindexfeld

[0273] Fig. 37C ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats
3700 veranschaulicht, das ein Registerindexfeld 3644 gemal einer Ausflihrungsform der Offenbarung aus-
macht. Speziell beinhaltet das Registerindexfeld 3644 das REX-Feld 3705. das REX'-Feld 3710, das M.DR/
M.reg-Feld 3744, das MODR/M.r/m-Feld 3746, das VVVV-Feld 3720, das xxx-Feld 3754 und das bbb-Feld
3756.

Erweiterungsoperationsfeld
[0274] Fig. 37D ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats
3700 veranschaulicht, das ein Augmentationsoperationsfeld 3650 gemaf einer Ausflihrungsform der Offenba-

rung ausmacht. Wenn das Feld 3668 der Klasse (U) 0 enthalt, bedeutet es EVEX.UO (Klasse A 3668A); wenn
es 1 enthalt, bedeutet dies EVEX.U1 (Klasse B 3668B). Wenn U=0 ist und das MOD-Feld 3742 11 enthalt

56/134

DE 10 2018 005 216 A1 2019.02.21

(was eine Nicht-Speicherzugriffsoperation bedeutet), wird das Alphafeld 3652 (EVEX-Byte 3, Bit [7]-EH) als
das rs-Feld 3652A interpretiert. Wenn das rs-Feld 3652A eine 1 enthalt (gerundet 3652A.1), wird das Betafeld
3654 (EVEX-Byte 3, Bits [6:4]-SSS) als das Rundungssteuerfeld 3654A interpretiert. Das Rundungssteuerfeld
3654A enthalt ein Ein-Bit-SAE-Feld 3656 und ein Zwei-Bit-Rundungsoperationsfeld 3658. Wenn das rs-Feld
3652A eine 0 enthalt (Datentransformation 3652A.2), wird das Betafeld 3654 (EVEX-Byte 3, Bits [6:4]-SSS)
als ein Drei-Bit-Datentransformationsfeld 3654B interpretiert. Wenn U=0 ist und das MOD-Feld 3742 00, 01
oder 10 enthalt (was eine Speicherzugriffsoperation bedeutet), wird das Alphafeld 3652 (EVEX-Byte 3, Bit [7]
- EH) als das Rdumungshinweis (EH) -Feld 3652B interpretiert und das Betafeld 3654 (EVEX-Byte 3, Bits [6:
4]- SSS) wird als ein 3-Bit-Datenmanipulationsfeld 3654C interpretiert.

[0275] Wenn U=1 ist, wird das Alphafeld 3652 (EVEX-Byte 3, Bit [7]-EH) als das Schreibmaskensteuerfeld
(Z) 3652C interpretiert. Wenn U=1 ist und das MOD-Feld 3742 11 (was eine Nicht-Speicherzugriffsoperation
bedeutet) enthélt, wird ein Teil des Betafelds 3654 (EVEX-Byte 3, bit [4]- S;) als das RL-Feld 3657A interpre-
tiert; wenn es eine 1 (gerundet 3657A.1) enthalt, wird der Rest des Betafelds 3654 (EVEX-Byte 3, Bit [6-5]-
S,_4) als das Rundungsoperationsfeld 3659A interpretiert, wahrend, wenn das RL-Feld 3657A eine 0 (VSIZE
3657.A2) enthalt, der Rest des Betafelds 3654 (EVEX-Byte 3, bit [6-5]- S,_¢) als das Vektorlangenfeld 3659B
(EVEX-Byte 3, bit [6-5]- L,_g) interpretiert wird. Wenn U=1 ist und das MOD-Feld 3742 00, 01 oder 10 enthalt
(was eine Speicherzugriffsoperation bedeutet), wird das Beta-Feld 3654 (EVEX-Byte 3, Bits [6: 4] - SSS) als
Vektorlangenfeld 3659B (EVEX-Byte 3, Bit [6-5] - L) und das Broadcastfeld 3657B (EVEX-Byte 3, Bit [4] -
B) interpretiert.

Beispielhafte Registerarchitektur

[0276] Fig. 38 ist ein Blockdiagramm einer Registerarchitektur 3800 gemal einer Ausfiihrungsform der Of-
fenbarung. Bei der veranschaulichten Ausflihrungsform gibt es 32 Vektorregister 3810, die 512 Bit breit sind;
diese Register werden als zmmO bis zmm31 bezeichnet. Die 256 Bit niedriger Ordnung der unteren 16 zmm-
Register werden auf Register ymmO0-16 Gberlagert. Die 128 Bit niedriger Ordnung der unteren 16 zmm-Regis-
ter (die 128 Bit niedriger Ordnung der ymm-Register) werden auf Register xmmO0-15 iberlagert. Das spezielle
vektorfreundliche Befehlsformat 3700 arbeitet auf diesen Uberlagerten Registerbédnken, wie in den Tabellen
unten veranschaulicht ist.

Anpassbare Vektorlange Klasse Operationen Register
Befehlstemplates, die kein A (3610, 3615, zmm-Register (die Vektorlange betragt 64
Vektorlangenfeld 3659B auf- | Fig. 36A; | 3625, 3630 Byte)
weisen U=0)
B (3612 zmm-Register (die Vektorlange betragt 64
Fig. 36B; Byte)
u=1)
Befehlstemplates, die ein B (3617,3627 zmm-, ymm- oder xmm-Register (die Vek-
Vektorlangenfeld 3659B auf- | Fig. 36B; torlange betragt 64 Byte, 32 Byte oder 16
weisen u=1) Byte), abhangig von dem Vektorlangenfeld
3659B

[0277] Mit anderen Worten wahlt das Vektorlangenfeld 3659B zwischen einer maximalen Lange und einer
oder mehreren anderen kiirzeren Langen aus, wobei jede solche kiirzere Lange die Halfte der Lange der
vorhergehenden Lange ist; und Befehlstemplates ohne das Vektorlangenfeld 3659B arbeiten bei maximaler
Vektorlange. Ferner arbeiten die Klasse-B-Befehlstemplates des speziellen vektorfreundlichen Befehlsformats
3700 bei einer Ausfihrungsform an gepackten oder skalaren Single/Double-Precision-Gleitkommadaten und
gepackten oder skalaren Integerdaten. Skalare Operationen sind Operationen, die an der Datenelementposi-
tion niedrigster Ordnung in einem zmm-/ymm-/xmm-Register ausgefihrt werden; die Datenelementpositionen
héherer Ordnung bleiben entweder gleich wie vor dem Befehl oder werden in Abhangigkeit von der Ausfih-
rungsform auf Null gesetzt.

[0278] Schreibmaskenregister 3815 - bei der veranschaulichten Ausfiihrungsform gibt es 8 Schreibmasken-
register (kO bis k7), jeweils mit einer Grof3e von 64 Bit. Bei einer alternativen Ausflihrungsform weisen die
Schreibmaskenregister 3815 eine GrofRe von 16 Bit auf. Wie zuvor beschrieben, kann in einer Ausfihrungs-
form der Offenbarung das Vektormaskenregister kO nicht als eine Schreibmaske verwendet werden; wenn
die Codierung, die normalerweise kO angeben wirde, fir eine Schreibmaske verwendet wird, wahlt sie eine

57/134

DE 10 2018 005 216 A1 2019.02.21

festverdrahtete Schreibmaske von OxFFFF aus, wodurch die Schreibmaskierung fir diesen Befehl wirksam
deaktiviert wird.

[0279] Mehrzweckregister 3825 - bei der veranschaulichten Ausflihrungsform gibt es sechzehn 64-Bit-Mehr-
zweckregister, die zusammen mit den existierenden x86-Adressierungsmodi zum Adressieren von Speicher-
operanden verwendet werden. Diese Register werden mit den Namen RAX, RBX, RCX, RDX, RBP, RSI, RDI,
RSP und R8 bis R15 bezeichnet.

[0280] Skalare Gleitkommastapel-Registerdatei (x87-Stapel) 3845, auf der die MMXgepackte ganzzahlige fla-
che Registerdatei 3850 aliasiert ist - in der dargestellten Ausflihrungsform ist der x87-Stapel ein Stapel mit acht
Elementen, der zur Durchfiihrung von skalaren Gleitkomma-Operationen auf 32/64/80-Bit-Gleitkommadaten
unter Verwendung der x87-Befehlssatzerweiterung verwendet wird; wahrend die MMX-Register verwendet
werden, um Operationen an gepackten 64-Bit-Integerdaten durchzuflihren, sowie um Operanden fir manche
Operationen zu halten, die zwischen den MMX- und XMM-Registern durchgefiihrt werden.

[0281] Alternative Ausflihrungsformen der Offenbarung verwenden breitere oder engere Register. Auflerdem
kénnen alternative Ausfiihrungsformen mehr, weniger oder andere Registerdateien oder Register verwenden.

Beispielhafte Kernarchitekturen, Prozessoren und Computerarchitekturen

[0282] Prozessorkerne kdénnen auf verschiedene Arten, fiir verschiedene Zwecke und in unterschiedlichen
Prozessoren implementiert werden. Beispielsweise kdnnen Implementierungen solcher Kerne Folgendes be-
inhalten: 1) einen Allzweck-In-Reihenfolge-Kern, der zur Allzweckberechnung gedacht ist; 2) ein Hochleis-
tungs-Allzweck-AulRer-Reihenfolge-Kern, der zur Allzweckberechnung gedacht ist; 3) ein Spezialzweck-Kern,
der primér zur Grafik- und/oder wissenschaftlichen (Durchsatz-) Berechnung gedacht ist. Implementierungen
unterschiedlicher Prozessoren kénnen Folgendes beinhalten: 1) eine CPU, die einen oder mehrere Allzweck-
In-Reihenfolge-Kerne, die zur Allzweckberechnung gedacht sind, und/oder einen oder mehrere Allzweck-Au-
Rer-Reihenfolge-Kerne, die zur Allzweckberechnung gedacht sind; und 2) einen Koprozessor, der einen oder
mehrere Spezialzweck-Kerne aufweist, die primér fur Grafik und/oder Wissenschaft (Durchsatz) gedacht sind.
Solche unterschiedlichen Prozessoren flihren zu unterschiedlichen Computersystemarchitekturen, die Folgen-
des beinhalten kénnen: 1) den Koprozessor auf einem separaten Chip von der CPU; 2) den Koprozessor auf
einem separaten Die im gleichen Gehause wie die CPU; 3) den Koprozessor auf dem gleichen Die wie die CPU
(in welchem Fall solch ein Koprozessor manchmal als eine Spezialzwecklogik bezeichnet wird, wie eine inte-
grierte Grafik- und/oder wissenschaftliche (Durchsatz-) Logik oder als Spezialzweckkerne); und 4) ein System-
On-Chip, das auf dem gleichen Die die beschriebene CPU aufweist (die manchmal als der bzw. die Anwen-
dungskerne oder Anwendungsprozessoren, der oben beschriebene Koprozessor und zusatzliche Funktionen
bezeichnet wird). Beispielhafte Kernarchitekturen sind als Nachstes beschrieben, gefolgt von Beschreibungen
beispielhafter Prozessoren und Computerarchitekturen.

Beispielhafte Kernarchitekturen
In-Reihenfolge- und Auf3er-Reihenfolge-Kern-Blockdiagramm

[0283] Fig. 39A ist ein Blockdiagramm, das sowohl eine beispielhafte In-Reihenfolge-Pipeline als auch ei-
ne beispielhafte AuRRer-Reihenfolge-Ausgabe/Ausfihrungspipeline mit Registerumbenennung gemaf Ausfih-
rungsformen der Offenbarung veranschaulicht; Fig. 39B ist ein Blockdiagramm, das sowohl ein Ausfiihrungs-
beispiel eines In-Reihenfolge-Architekturkerns als auch einen beispielhafte Aul3er-Reihenfolge-Ausgabe/Aus-
fuhrungsarchitekturkern, der in einem Prozessor enthalten sein soll, gemafi Ausfihrungsformen der Offenba-
rung veranschaulicht. Die Boxen mit durchgezogener Linie aus Fig. 39A-B veranschaulichen eine In-Reihen-
folge-Pipeline und einen In-Reihenfolge-Kern, wahrend die optionale Addition der gestrichelten Boxen die Re-
gisterumbenennung, Auler-Reihenfolge-Ausgabe/Ausfiihrungspipeline und -kern veranschaulicht. Unter der
Annahme, dass der In-Reihenfolge-Aspekt eine Untersatz des Aufer-Reihenfolge-Aspekts ist, wird der AulRer-
Reihenfolge-Aspekt beschrieben.

[0284] In Fig. 39A weist eine Prozessorpipeline 3900 eine Abrufstufe 3902, eine Langendecodierstufe 3904,
eine Decodierstufe 3906, eine Zuweisungsstufe 3908, eine Umbenennungsstufe 3910, eine Planungsstufe
(auch bekannt als Versende- oder Ausgabestufe) 3912, eine Register-Lese-/Speicher-Lese-Stufe 3914, eine
Ausfihrungsstufe 3916, eine Rickschreib-/Speicher-Schreib-Stufe 3918, eine Ausnahmehandhabungsstufe
3922 und eine Festschreibungsstufe 3924 auf.

58/134

DE 10 2018 005 216 A1 2019.02.21

[0285] Fig. 39B zeigt den Prozessorkern 3990, der eine Frontend-Einheit 3930 aufweist, die mit einer Ausfih-
rungs-Engine-Einheit 3950 gekoppelt ist, und beide mit einer Speichereinheit 3970 gekoppelt sind. Der Kern
3990 kann ein RISC-Kern (RISC: Reduced Instruction Set Computing -Berechnung mit reduziertem Befehls-
satz), ein CISC-Kern (CISC: Complex Instruction Set Computing - Berechnung mit komplexem Befehlssatz),
ein VLIW-Kern (VLIW: Very Long Instruction Word - sehr langes Befehlswort) oder ein hybrider oder alternati-
ver Kerntyp sein. Als noch eine andere Option kann der Kern 3990 ein Spezialkern, wie etwa zum Beispiel ein
Netz- oder Kommunikationskern, eine Kompression-Engine, ein Koprozessorkern, ein GPGPU-Kern (GPGPU:
General Purpose Computing Graphics Processing Unit - Vielzweck-Berechnung-Grafikverarbeitung-Einheit)
oder dergleichen sein.

[0286] Die Frontend-Einheit 3930 beinhaltet eine Zweigpradiktionseinheit 3932, die mit einer Befehls-Cache-
einheit 3934 gekoppelt ist, die mit einem Ubersetzungspuffer (TLB: Translation Lookaside Buffer) 3936 gekop-
peltist, der mit einer Befehlsabrufeinheit 3938 gekoppelt ist, die mit einer Decodierungseinheit 3940 gekoppelt
ist. Die Decodierungseinheit 3940 (oder der Decodierer oder Decodierereinheit) kann Befehle decodieren (z. B.
Makrobefehle) und als eine Ausgabe eine oder mehrere Mikrooperationen, Mikrocode-Eintrittspunkte, Mikro-
befehle, andere Befehle oder andere Steuersignale erzeugen, die von den urspriinglichen Befehlen decodiert
werden oder die in anderer Weise davon reflektiert werden oder von diesen abgeleitet sind. Die Decodierungs-
einheit 3940 kann unter Verwendung zahlreicher verschiedener Mechanismen implementiert werden. Beispie-
le fur geeignete Mechanismen schliel3en ein, sind aber nicht beschrankt auf, Nachschlagetabellen, Hardware-
Implementierungen, programmierbare Logik-Arrays (PLAs), Mikrocode-Nur-Lese-Speicher (ROMs) usw. In ei-
ner Ausfihrungsform enthalt der Kern 3990 einen Mikrocode-ROM oder ein anderes Medium, das Mikrocode
fur bestimmte Makrobefehle speichert (z. B. in der Decodierungseinheit 3940 oder anderweitig in der Front-
End-Einheit 3930). Die Decodierungseinheit 3940 ist mit einer Umbenennung/Zuordnung-Einheit 3952 in der
Ausfiihrung-Engine-Einheit 3950 gekoppelt.

[0287] Die Ausfiihrung-Engine-Einheit 3950 beinhaltet die Umbenennung/Zuordnung-Einheit 3952, die mit ei-
ner Zurlickzieheinheit 3954 und einem Satz aus einer oder mehreren Planereinheit(en) 3956 gekoppelt ist.
Die Planereinheit(en) 3956 reprasentiert/en eine beliebige Anzahl unterschiedlicher Planer, einschlief3lich Re-
servierungsstationen, zentraler Instruktionsfenster usw. Die Planereinheit(en) 3956 ist (sind) mit der/den phy-
sikalischen Registerdatei(en) -Einheit(en) 3958 gekoppelt. Jede der physikalischen Registerdatei(en)-Einhei-
ten 3958 représentiert eine oder mehrere physische Registerdateien, von denen verschiedene einen oder
mehrere unterschiedliche Datentypen speichern, wie zum Beispiel skalare Integer, skalare Gleitkommazahl,
gepackte Integer, gepackte Gleitkommazahl, Vektorzahl, Vektor-Gleitkomma, Status (z. B. ein Befehlszeiger,
der die Adresse des nachsten auszufihrenden Befehls ist) usw. In einer Ausfiihrungsform umfasst die physi-
kalische Registerdatei(en)-Einheit 3958 eine Vektorregistereinheit, eine Schreibmaskenregistereinheit und ei-
ne Skalarregistereinheit. Diese Registereinheiten kdnnen Architekturvektorregister, Vektormaskenregister und
Mehrzweckregister bereitstellen. Die physikalische(n) Registereinheit(en) 3958 wird (werden) von der Riick-
halteeinheit 3954 Uberlappt, um verschiedene Wege zu veranschaulichen, wie Registerumbenennung und
AuRer-Reihenfolge-Ausfilhrung implementiert werden kénnen (z. B. unter Verwendung eines oder mehrerer
Neuordnungspuffer und Auslagerungsregisterdatei(en); Verwenden einer oder mehrerer zukinftiger Dateien,
eines oder mehrerer Verlaufspuffer und einer oder mehrerer Auslagerungsregisterdateien; Verwenden einer
Registerkarte und eines Registerpools; usw.). Die Zuriickzieheinheit 3954 und die physische(n) Registerbank
(en)einheit(en) 3958 sind mit dem (den) Ausfiihrungscluster(n) 3960 gekoppelt. Das/die Ausfiihrungscluster
3960 beinhaltet/beinhalten einen Satz aus einer oder mehreren Ausflihrungseinheiten 3962 und einen Satz
aus einer oder mehreren Speicherzugriffseinheiten 3964. Die Ausfihrungseinheiten 3962 kénnen verschie-
dene Operationen (z. B. Verschiebungen, Addition, Subtraktion, Multiplikation) und an verschiedenen Typen
von Daten (z. B. Skalargleitkomma, gepackter Integer, gepacktes Gleitkomma, Vektorinteger, Vektorgleitkom-
ma) durchfihren. Wahrend manche Ausfiihrungsformen eine Anzahl an Ausfliihrungseinheiten beinhalten kon-
nen, die fir spezielle Funktionen oder Satze von Funktionen dediziert sind, kbnnen andere Ausfihrungsfor-
men nur eine Ausfuhrungseinheit oder mehrere Ausflhrungseinheiten, die alle Funktionen durchfiihren, be-
inhalten. Die Planereinheit(en) 3956, die physische(n) Registerbank(en)einheit(en) 3958 und das (die) Aus-
fuhrungscluster 3960 sind als mdglicherweise mehrere gezeigt, weil gewisse Ausfiihrungsformen getrennte
Pipelines fiir gewisse Typen von Daten/Operationen erschaffen (z. B. eine Skalarinteger-Pipeline, eine Skalar-
gleitkomma-/Gepackter-Integer-/Gepacktes-Gleitkomma-/Vektorinteger-/Vektorgleitkomma-Pipeline und/oder
eine Speicherzugriff-Pipeline, die jeweils ihre/n eigene/n Planereinheit, physische Registerbank(en)einheit und/
oder Ausfiihrungscluster aufweisen - und im Fall einer getrennten Speicherzugriff-Pipeline sind gewisse Aus-
fuhrungsformen implementiert, bei denen nur der Ausfihrungscluster dieser Pipeline die Speicherzugriffsein-
heit(en) 3964 aufweist). Es versteht sich auch, dass, wenn getrennte Pipelines verwendet werden, eine oder
mehrere dieser Pipelines eine AuRer-Reihenfolge-Ausgabe/Ausfiihrung und der Rest In-Reihenfolge sein kdn-
nen.

59/134

DE 10 2018 005 216 A1 2019.02.21

[0288] Der Satz von Speicherzugriffseinheiten 3964 ist mit der Speichereinheit 3970 gekoppelt, die eine Da-
ten-TLB-Einheit 3972 beinhaltet, die mit einer Datencacheeinheit 3974 gekoppelt ist, die mit einer Level-2(L2)
-Cache-Einheit 3976 gekoppelt ist. Bei einem Ausflihrungsbeispiel kdnnen die Speicherzugriffseinheiten 3964
eine Ladeeinheit, eine Adressenspeichereinheit und eine Datenspeichereinheit beinhalten, von denen jede
mit der Daten-TLB-Einheit 3972 in der Speichereinheit 3970 gekoppelt ist. Die Befehlscacheeinheit 3934 ist
ferner mit einer Level-2(L2)-Cache-Einheit 3976 in der Speichereinheit 3970 gekoppelt. Die L2-Cache-Einheit
3976 ist mit einem oder mehreren anderen Leveln eines Caches und schlussendlich mit einem Hauptspeicher
verbunden.

[0289] Beispielsweise kann die beispielhafte Registerumbenennung-Auller-Reihenfolge-Ausgabe/Ausfih-
rung-Kern-Architektur die Pipeline 3900 wie folgt implementierten: 1) der Befehlsabruf 3938 fiihrt den Abruf
und die Langendecodierungsstufen 3902 und 3904 durch; 2) die Decodierungseinheit 3940 fihrt die Deco-
dierungsstufe 3906 durch; 3) die Umbenennung/Zuweisung-Einheit 3952 fiihrt die Zuweisungsstufe 3908 und
Umbenennungsstufe 3910 durch; 4) die Planereinheit(en) 3956 fiihrt (fihren) die Planungsstufe 3912 durch; 5)
die physische Registerdateieinheit(en) 3958 und die Speichereinheit 3970 fiihren die Register-Lese-/Speicher-
Lese-Stufe 3914 durch; die Ausfiihrungscluster 3960 fiihren die Ausfliihrungsstufe 3916 durch; 6) die Speiche-
reinheit 3970 und die eine oder mehreren physischen Registerdateieinheiten 3958 fiihren die Rickschreibe-/
Speicher-Schreib-Stufe 3918 durch; 7) verschiedene Stufen kénnen an der Ausnahmehandhabungsstufe 3922
beteiligt sein; und 8) die Auslagerungseinheit 3954 und die eine oder mehreren physischen Registerdateiein-
heiten 3958 flihren die Festschreibungsstufe 3924 durch.

[0290] Der Kern 3990 kann einen oder mehrere Befehlssatze unterstiitzen (z. B. den x86-Befehlssatz (mit ei-
nigen Erweiterungen, die mit neueren Versionen hinzugefiigt wurden), den MIPS-Befehlssatz von MIPS Tech-
nologies aus Sunnyvale, CA, den ARM-Befehlssatz (mit optionalen zusatzlichen Erweiterungen wie NEON) von
ARM Holdings aus Sunnyvale, CA), einschliellich der hierin beschriebenen Befehle. Bei einer Ausfiihrungs-
form beinhaltet der Kern 3990 eine Logik zum Unterstitzen einer Gepackte-DatenBefehlssatzerweiterung (z.
B. AVX1, AVX2), wodurch ermdglicht wird, dass die Operationen, die durch viele Multimediaanwendungen
verwendet werden, unter Verwendung gepackter Daten durchgefiihrt werden.

[0291] Es versteht sich, dass der Kern Multithreading (Ausfiihren von zwei oder mehr parallelen Satzen von
Operationen oder Threads) unterstitzen kann und dies auf vielfaltige Weisen vornehmen kann, einschlief3lich
Zeitscheiben-Multithreading, Simultan-Multithreading (wobei ein einziger physischer Kern einen logischen Kern
fir jeden der Threads bereitstellt, die der physische Kern simultan im Multithreading behandelt), oder eine
Kombination davon (z. B. Zeitscheiben-Abruf und -Decodierung und simultanes Multithreading danach, wie
etwa bei der Hyperthreading-Technologie von Intel®).

[0292] Wahrend eine Registerumbenennung in dem Zusammenhang einer AufRer-Reihenfolge-Ausfiihrung
beschrieben ist, versteht es sich, dass eine Registerumbenennung in einer In-Reihenfolge-Architektur verwen-
det werden kann. Wahrend die veranschaulichte Ausfilhrungsform des Prozessors auch getrennte Befehls-
und Datencacheeinheiten 3934/3974 und eine geteilte L2-Cache-Einheit 3976 beinhaltet, kdnnen alternative
Ausfiihrungsformen einen einzigen internen Cache fir sowohl Befehle als auch Daten aufweisen, wie etwa
zum Beispiel einen internen Level-1(L1)-Cache oder mehrere Level eines internen Caches. Bei manchen Aus-
fihrungsformen kann das System eine Kombination eines internen Caches und eines externen Caches, der
extern zu dem Kern und/oder dem Prozessor ist, beinhalten. Alternativ dazu kann der gesamte Cache extern
zu dem Kern und/oder dem Prozessor sein.

Spezielle beispielhafte In-Reihenfolge-Kernarchitektur

[0293] Fig. 40A-B zeigen ein Blockdiagramm einer spezifischeren beispielhaften In-Reihenfolge-Kernarchi-
tektur, wobei der Kern einer von mehreren Logikblécken (einschlieflich anderer Kerne desselben Typs und/
oder unterschiedlichen Typs) in einem Chip sein wiirde. Die Logikblécke kommunizieren durch ein Zwischen-
verbindungsnetz mit hoher Bandbreite (z. B. ein Ringnetz) mit, in Abhangigkeit von der Anwendung, einer fes-
ten Funktionslogik, Speicher-E/A-Schnittstellen und anderer notwendiger E/A-Logik.

[0294] Fig. 40A ist ein Blockdiagramm eines einzelnen Prozessorkerns zusammen mit seiner Verbindung mit
On-Die-Zwischenverbindungsnetzen 4002 und mit seinem lokalen Untersatz des Level 2 (L2) -Caches 4004
gemal Ausfihrungsformen der Offenbarung. In einer Ausfiihrungsform unterstitzt eine Befehlsdecodierungs-
einheit 4000 den x86-Befehlssatz mit einer gepackten Datenbefehlssatzerweiterung. Ein L1-Cache 4006 er-
mdglicht Zugriffe mit geringer Latenz auf einen Cachespeicher in die Skalar- und Vektoreinheiten. Wahrend in
einer Ausfiihrungsform (zur Vereinfachung der Ausgestaltung) eine Skalareinheit 4008 und eine Vektoreinheit

60/134

DE 10 2018 005 216 A1 2019.02.21

4010 separate Registersatze (jeweils Skalarregister 4012 und Vektorregister 4014) verwenden und Daten, die
dazwischen Ubertragen werden, in den Speicher geschrieben und dann aus einem Level 1 (L1)-Cache 4006
zurlickgelesen werden, kénnen alternative Ausfiihrungsformen der Offenbarung einen anderen Ansatz ver-
wenden (z. B. einen Einzelregistersatz verwenden oder einen Kommunikationspfad aufweisen, der die Uber-
tragung von Daten zwischen den zwei Registerdateien ermdglicht, ohne dass diese geschrieben und zuriick-
gelesen werden).

[0295] Die lokale Untersatz des L2-Caches 4004 ist Teil eines globalen L2-Caches, der in getrennte lokale
Teilsatze, einen pro Prozessorkern, unterteilt ist. Jeder Prozessorkern weist einen direkten Zugriffspfad auf
seine eigene lokale Untersatz des L2-Caches 4004 auf. Daten, die durch einen Prozessorkern gelesen werden,
werden in seiner L2-Cache-Untersatz 4004 gespeichert und auf sie kann schnell parallel zu anderen Prozes-
sorkernen, die auf ihre eigenen lokalen L2-Cache-Teilséatze zugreifen, zugegriffen werden. Daten, die durch
einen Prozessorkern geschrieben werden, werden in seiner eigenen L2-Cache-Untersatz 4004 gespeichert
und werden bei Bedarf aus anderen Teilsdtzen ausgerdumt. Das Ringnetz stellt eine Koharenz fiir geteilte
Daten sicher. Das Ringnetz ist bidirektional, um zu ermdglichen, dass Agenten, wie etwa Prozessorkerne, L2-
Caches und andere Logikblécke, miteinander innerhalb des Chips kommunizieren. Jeder Ringdatenpfad ist
pro Richtung 1012 Bit breit.

[0296] Fig. 40B ist eine auseinander gezogene Ansicht des Teils des Prozessorkerns in Fig. 40A gemaf
Ausfuhrungsformen der Offenbarung; Fig. 40B weist einen LI-Datencache 4006A auf, der Teil des L1-Cache
4004 ist, sowie mehr Details im Hinblick auf die Vektoreinheit 4010 und die Vektorregister 4014. Speziell ist
die Vektoreinheit 4010 eine 16-breite Vektorverarbeitungseinheit (VPU: Vector Processing Unit) (siehe die 16-
breite ALU 4028), die Integer- und/oder Single-Precision-Gleit- und/oder Double-Precision-Gleitbefehle aus-
fuhrt. Die VPU unterstiitzt das Swizzling von Registereingaben mit der Swizzle-Einheit 4020, die numerische
Umwandlung mit den numerischen Umwandlungseinheiten 4022A-B und die Replikation mit der Replikations-
einheit 4024 auf der Speichereingabe. Schreibmaskenregister 4026 ermdglichen eine Vorhersage resultieren-
der Vektorschreibvorgange.

[0297] Fig. 41 ist ein Blockdiagramm eines Prozessors 4100, der mehr als einen Kern aufweisen kann, ei-
ne integrierte Speichersteuerung aufweisen kann und der eine integrierte Grafik gemaf Ausflihrungsformen
der Offenbarung aufweisen kann. Die durchgezogenen Boxen in Fig. 41 veranschaulichen einen Prozessor
4100 mit einem einzelnen Kern 4102A, einem Systemagenten 4110, einem Satz von einer oder mehreren
Busssteuerungseinheiten 4116, wahrend die optionale Hinzunahme der gestrichelten Boxen einen alternativen
Prozessor 4100 mit mehreren Kernen 4102A-N, einen Satz aus einer oder mehreren integrierten Speicher-
steuereinheit 4114 in der Systemagenteneinheit 4110 und eine Spezialzwecklogik 4108 veranschaulicht.

[0298] Dementsprechend kénnen unterschiedliche Implementierungen des Prozessors 4100 Folgendes be-
inhalten: 1) eine CPU mit der Spezialzwecklogik 410, die eine integrierte Grafik- und/oder wissenschaftliche
(Durchsatz-) Logik ist (die einen oder mehrere Kerne aufweisen kann), und die Kerne 4102A-N, die einer oder
mehrere Mehrzweckkerne sind (z. B. Allzweck-In-Reihenfolge-Kerne, Allzweck-AulRer-Reihenfolge-Kerne, ei-
ne Kombination aus den zwei); 2) einen Koprozessor mit den Kernen 4102A-N, die eine grof3e Anzahl von
Spezialzweckkernen sind, die primar fur Grafik und/oder Wissenschaft (Durchsatz) gedacht sind; und 3) einen
Koprozessor mit den Kernen 4102A-N, der eine gro3e Anzahl aus Allzweck-In-Reihenfolge-Kernen ist. Dem-
entsprechend kann der Prozessor 4100 ein Mehrzweckprozessor, ein Koprozessor oder Spezialprozessor,
wie etwa ein Netz- oder Kommunikationsprozessor, eine Kompression-Engine, ein Grafikprozessor, GPGPU
(Mehrzweckgrafikverarbeitungseinheit), ein Hochdurchsatz-MIC-Koprozessor (MIC: Many Integrated Core -
viele integrierte Kerne) (der 30 oder mehr Kerne beinhaltet), ein eingebetteter Prozessor oder dergleichen sein.
Der Prozessor kann auf einem oder mehreren Chips implementiert sein. Der Prozessor 4100 kann Teil eines
oder mehrerer Substrate, die eine beliebige einer Anzahl an Prozesstechnologien verwenden, wie etwa zum
Beispiel BICMOS, CMOS oder NMOS, sein und/oder auf solchen implementiert sein.

[0299] Die Speicherhierarchie beinhaltet ein oder mehrere Levels eines Caches innerhalb der Kerne, eine
Menge aus einem oder mehreren geteilten Cacheeinheiten 4106 und einen (nicht gezeigten) externen Spei-
cher, der mit dem Satz aus integrierten Speichersteuereinheiten 4114 gekoppelt ist. Die Menge geteilter Ca-
che-Einheiten 4106 kann einen oder mehrere Mid-Level-Caches, wie etwa Level 2 (L2), Level 3 (L3), Level 4
(L4) oder andere Level eines Caches, einen Last-Level-Cache (LLC) und/oder Kombinationen davon beinhal-
ten. Wahrend bei einer Ausfihrungsform eine ringbasierte Zwischenverbindungseinheit 4112 die integrierte
Grafiklogik 4108, die Menge geteilter Cacheeinheiten 4106 und die Systemagentenheinheit 4110/integrierte
Speichersteuereinheit(en) 4114 miteinander verbindet, kdnnen alternative Ausflihrungsformen eine beliebige
Anzahl wohlbekannter Techniken zum Zwischenverbinden solcher Einheiten verwenden. Bei einer Ausfih-

61/134

DE 10 2018 005 216 A1 2019.02.21

rungsform wird eine Koharenz zwischen einer oder mehreren Cacheeinheiten 4106 und Kernen 4102-A-N
beibehalten.

[0300] In einigen Ausfiihrungsformen kénnen einer oder mehrere der Kerne 4102A-N multithreadingfahig sein.
Der Systemagent 4110 enthalt die Komponenten, welche die Kerne 4102A-N koordinieren und betreiben. Die
Systemagenteinheit 4110 kann beispielsweise eine Leistungssteuereinheit (PCU) und eine Anzeigeeinheit auf-
weisen. Die PCU kann eine Logik und Komponenten sein oder aufweisen, die zum Regeln des Leistungszu-
stands der Kerne 4102A-N und der integrierten Grafiklogik 4108 bendtigt werden. Die Anzeigeeinheit dient
dem Ansteuern einer oder mehrerer extern verbundener Anzeigen.

[0301] Die Kerne 4102A-N konnen hinsichtlich des Architekturbefehlssatzes homogen oder heterogen sein;
das heil’t, zwei oder mehr der Kerne 4102A-N kénnen den gleichen Befehlssatz ausflihren, wahrend andere
nur einen Untersatz dieses Befehlssatzes oder einen anderen Befehlssatz ausfiihren kénnen.

Beispielhafte Computerarchitekturen

[0302] Fig. 42-45 sind Blockdiagramme beispielhafter Computerarchitekturen. Andere Systemgestaltungen
und Konfigurationen, die in der Technik fiir Laptops, Desktops, Handheld PCs, persénliche digitale Assistenten,
technische Workstations, Server, Netzwerkvorrichtungen, Netzwerk-Hubs, Switches, eingebettete Prozesso-
ren, digitale Signalprozessoren (DSPs), Grafikvorrichtungen, Videospielvorrichtungen, Set-Top-Boxes, Mikro-
controller, Mobiltelefone, portable Medienabspieler, tragbare Vorrichtungen und verschiedene andere elektro-
nische Vorrichtungen bekannt sind, sind ebenfalls geeignet. Allgemein ist eine grol3e Vielzahl an Systemen
oder elektronischen Vorrichtungen, die zum Einbinden eines Prozessors und/oder einer anderen Ausfiihrungs-
logik, wie hier offenbart, fahig sind, allgemein geeignet.

[0303] Mit Bezug auf Fig. 42 ist ein Blockdiagramm eines Systems 4200 gemaR einer Ausfliihrungsform der
vorliegenden Offenbarung gezeigt. Das System 4200 kann einen oder mehrere Prozessoren 4210, 4215 be-
inhalten, die mit einem Steuer-Hub 4220 gekoppelt sind. In einer Ausfihrungsform weist der Steuerungs-Hub
4220 einen Grafikspeicher-Steuerungs-Hub (GMCH) 4290 und einen Eingabe/Ausgabe-Hub (IOH) 4250 auf
(die sich auf separaten Chips befinden kénnen); der GMCH 4290 weist Speicher- und Grafiksteuerungen auf,
mit denen ein Speicher 4240 und ein Koprozessor 4245 verbunden sind; der IOH 4250 koppelt Eingabe/Aus-
gabe (I/0) -Gerate 4260 mit dem GMCH 4290. Alternativ dazu sind eine oder beide der Speicher- und Gra-
fiksteuerungen in dem Prozessor integriert (wie hierin beschrieben), der Speicher 4240 und der Koprozessor
4245 sind direkt mit dem Prozessor 4210 gekoppelt und der Steuerungs-Hub 4220 ist in einem einzigen Chip
mit dem IOH 4250 integriert. Der Speicher 4240 kann ein Kompilierermodul 4240A aufweisen, z. B. zum Spei-
chern von Code, der beim Ausflihren davon einen Prozessor veranlasst, jedes Verfahren dieser Offenbarung
durchzuflihren.

[0304] Die optionale Natur zusatzlicher Prozessoren 4215 ist in Fig. 42 mit gestrichelten Linien gekennzeich-
net. Jeder Prozessor 4210, 4215 kann einen oder mehrere hier beschriebene Verarbeitungskerne beinhalten
und kann irgendeine Version des Prozessors 4100 sein.

[0305] Der Speicher 4240 kann zum Beispiel dynamischer Direktzugriffsspeicher (DRAM: Direct Random Ac-
cess Memory), Phasenwechselspeicher (PCM: Phase Change Memory) oder eine Kombination von den beiden
sein. Fur wenigstens eine Ausfuihrungsform kommuniziert der Steuer-Hub 4220 mit dem(den) Prozessor(en)
4210, 4215 Uber einen Multi-Drop-Bus, wie etwa einen Front-Side-Bus (FSB), eine Punkt-zu-Punkt-Schnitt-
stelle, wie etwa QuickPath-Interconnect (QPI) oder eine dhnliche Verbindung 4295.

[0306] Bei einer Ausflihrungsform ist der Koprozessor 4245 ein Spezialprozessor, wie etwa zum Beispiel
ein Hochdurchsatz-MIC-Prozessor, ein Netz- oder Kommunikationsprozessor, eine Kompression-Engine, ein
Grafikprozessor, eine GPGPU, ein eingebetteter Prozessor oder dergleichen. Bei einer Ausfiihrungsform kann
der Steuer-Hub 4220 einen integrierten Grafikbeschleuniger beinhalten.

[0307] Die physikalischen Ressourcen 4210, 4215 kénnen sehr unterschiedlich im Hinblick auf das Spektrum
der Leistungsmetrik, einschliel3lich Architektur-, Mikroarchitektur-, Warme-, Stromverbrauchsmerkmale und
dergleichen sein.

[0308] Bei einer Ausflihrungsform fiihrt der Prozessor 4210 Befehle aus, die Datenverarbeitungsoperationen

eines allgemeinen Typs steuern. Eingebettet in die Befehle kdnnen Koprozessorbefehle sein. Der Prozessor
4210 erkennt diese Koprozessorbefehle als von einem Typ, der durch den angehangten Koprozessor 4245

62/134

DE 10 2018 005 216 A1 2019.02.21

ausgefihrt werden sollte. Entsprechend gibt der Prozessor 4210 diese Koprozessorbefehle (oder Steuersi-
gnale, die Koprozessorbefehle reprasentieren) auf einem Koprozessorbus oder einer anderen Zwischenver-
bindung an den Koprozessor 4245 aus. Der/die Koprozessor(en) 4245 nehmen die empfangen Koprozessor-
befehle an und flhren diese aus.

[0309] Mit Bezug auf Fig. 43 ist ein Blockdiagramm eines ersten spezifischeren beispielhaften Systems 4300
gemal einer Ausfihrungsform der vorliegenden Offenbarung gezeigt. Wie in Fig. 43 gezeigt, ist das Mehr-
fachprozessorsystem 4300 ein Punkt-zu-Punkt-Zwischenverbindungssystem und beinhaltet einen ersten Pro-
zessor 4370 und einen zweiten Prozessor 4380, der Uber eine Punkt-zu-Punkt-Zwischenverbindung 4350 ge-
koppelt ist. Jeder der Prozessoren 4370 und 4380 kann irgendeine Version des Prozessors 4100 sein. In einer
Ausfihrungsform der Offenbarung, sind die Prozessoren 4370 und 4380 jeweils Prozessoren 4210 und 4215,
wahrend der Prozessor 4338 der Koprozessor 4245 ist. Bei einer anderen Ausfiihrungsform sind die Prozes-
soren 4370 und 4380 der Prozessor 4210 bzw. der Koprozessor 4245.

[0310] Die Prozessoren 4370 und 4380 sind einschliellich IMC-Einheiten (IMC: Integrated Memory Controller
- Integrierter-Speicher-Steuerung) 4372 bzw. 4382 gezeigt. Der Prozessor 4370 weist auch, als Teil seiner
Bussteuereinheiten, die Punkt-zu-Punkt- (P-P)-Schnittstellen 4376 und 4378 auf; in ahnlicher Weise weist der
zweite Prozessor 4380 die P-P-Schnittstellen 4386 und 4388 auf. Die Prozessoren 4370 und 4380 kénnen
Daten Uber eine Punkt-zu-Punkt(P-P)-Schnittstelle 4350 unter Verwendung von P-P-Schnittstellenschaltungen
4378 bzw. 4388 austauschen. Wie in Fig. 43 gezeigt, koppeln IMCs 4372 und 4382 die Prozessoren mit
jeweiligen Speichern, namlich einem Speicher 4332 und einem Speicher 4334, die Teile eines Hauptspeichers
sein kénnen, die lokal an die jeweiligen Prozessoren angehangt sind.

[0311] Die Prozessoren 4370, 4380 kdnnen jeweils Informationen Uber individuelle P-P-Schnittstellen 4352,
4354 mit einem Chipsatz 4390 unter Verwendung von Punkt-zu-Punkt-Schnittstelle-Schaltkreisen 4376, 4394,
4386, 4398 austauschen. Der Chipsatz 4390 kann optional Informationen mit dem Koprozessor 4338 (iber
eine Hochleistungsschnittstelle 4339 austauschen. Bei einer Ausfihrungsform ist der Koprozessor 4338 ein
Spezialprozessor, wie etwa zum Beispiel ein Hochdurchsatz-MIC-Prozessor, ein Netz- oder Kommunikations-
prozessor, eine Kompression-Engine, ein Grafikprozessor, eine GPGPU, ein eingebetteter Prozessor oder
dergleichen.

[0312] Ein (nichtgezeigter) geteilter Cache kann in beiden Prozessoren oder aul3erhalb beider Prozessoren
enthalten sein, jedoch Uber eine P-P-Zwischenverbindung mit den Prozessoren verbunden sein, so dass loka-
le Cacheinformationen von einem oder beiden der Prozessoren in dem geteilten Cache gespeichert werden
kénnen, falls ein Prozessor in einen Niederleistungsmodus gesetzt wird.

[0313] Der Chipsatz 4390 kann Uber eine Schnittstelle 4396 mit einem ersten Bus 4316 gekoppelt werden. In
einer Ausfiihrungsform kann der erste Bus 4316 ein PCI-(Peripheral Component Interconnect)-Bus oder ein
Bus wie ein PCI Express-Bus oder ein anderer 1/O-Interconnect-Bus der dritten Generation sein, wenngleich
der Schutzumfang der vorliegenden Offenbarung nicht darauf eingeschréankt ist.

[0314] Wie in Fig. 43 gezeigt, kdnnen verschiedene E/A-Vorrichtungen 4314 zusammen mit einer Busbriicke
4318, die den ersten Bus 4316 mit einem zweiten Bus 4320 koppelt, mit dem ersten Bus 4316 gekoppelt sein.
Bei einer Ausfuihrungsform sind ein oder mehrere zuséatzliche Prozessoren 4315, wie etwa Koprozessoren,
Hochdurchsatz-MIC-Prozessoren, GPGPUs, Beschleuniger (wie etwa z. B. Grafikbeschleuniger oder DSP-
Einheiten (DSP: Digital Signal Processing - digitale Signalverarbeitung)), vor Ort programmierbare Gate-Arrays
oder ein beliebiger anderer Prozessor, mit dem ersten Bus 4316 gekoppelt. In einer Ausfiihrungsform kann der
zweite Bus 4320 ein LPC-Bus (Low Pin Count) sein. Verschiedene Vorrichtungen kénnen mit einem zweiten
Bus 4320 gekoppelt sein, der zum Beispiel eine Tastatur und/oder Maus 4322, Kommunikationsvorrichtungen
4327 und eine Speichereinheit 4328 wie ein Plattenlaufwerk oder eine andere Massenspeichervorrichtung, die
Befehle/Code und Daten 4330 aufweisen kann, in einer Ausfiihrungsform umfassen. Ferner kann ein Audio-
E/A 4324 mit dem zweiten Bus 4320 gekoppelt sein. Es wird angemerkt, dass andere Architekturen moglich
sind. Zum Beispiel kann ein System statt der Punkt-zu-Punkt-Architektur aus Fig. 43 einen Multi-Drop-Bus
oder eine andere solche Architektur implementieren.

[0315] Mit Bezug auf Fig. 44 ist ein Blockdiagramm eines zweiten spezifischeren beispielhaften Systems
4400 gemal einer Ausfiihrungsform der vorliegenden Offenbarung gezeigt. Gleiche Elemente in Fig. 43 und
Fig. 44 tragen gleiche Bezugsziffern und gewisse Aspekte aus Fig. 43 wurden in Fig. 44 weggelassen, um
eine Verschleierung anderer Aspekte von Fig. 44 zu vermeiden.

63/134

DE 10 2018 005 216 A1 2019.02.21

[0316] Fig. 44 veranschaulicht, dass die Prozessoren 4370, 4380 eine Integrierter-Speicher-und-E/A-Steuer-
logik (,CL*“: Control Logic) 4372 bzw. 4382 beinhalten kénnen. Dementsprechend beinhaltet die CL 4372, 4382
integrierte Speichersteuereinheiten und beinhaltet eine E/A-Steuerlogik. Fig. 44 veranschaulicht ferner, dass
nicht nur die Speicher 4332, 4334 mit der CL 4372, 4382 gekoppelt sind, sondern auch, dass die E/A-Vorrich-
tungen 4414 ebenfalls mit der Steuerlogik 4372, 4382 gekoppelt sind. Veraltete E/A-Vorrichtungen 4415 sind
mit dem Chipsatz 4390 gekoppelt.

[0317] Mit Bezug auf Fig. 45 ist ein Blockdiagramm eines SoC 4500 gemaf einer Ausfiihrungsform der vor-
liegenden Offenbarung gezeigt. Gleiche Elemente in Fig. 41 tragen gleiche Bezugsziffern. AuRerdem Kasten
sind mit Kasten gestrichelten Linien optionale Merkmale auf fortschrittlicheren SoCs. In Fig. 45 ist eine Ver-
bindungseinheit 4502 gekoppelt mit: einem Anwendungsprozessor 4510, der einen Satz von einem oder meh-
reren Kernen 202A-N und gemeinsame Cache-Einheit(en) 4106 aufweist; eine Systemagenteneinheit 4110;
eine Bussteuereinheit 4116; eine integrierte Speichersteuereinheit 4114; einen Satz von oder einen oder meh-
rere Koprozessoren 4520, die integrierte Grafiklogik, einen Bildprozessor, einen Audioprozessor und einen
Videoprozessor aufweisen kann/kénnen; eine SRAM-Einheit (SRAM - statischer Zufallszugriffspeicher) 4530;
eine DMA-Einheit (DMA - Direktzugriffsspeicher) 4532; und eine Anzeigeeinheit 4540 zum Koppeln mit einer
oder mehreren externen Anzeigen aufweist. In einer Ausfihrungsform weist/weisen der/die Koprozessor(en)
4520 einen Spezialprozessor auf, wie zum Beispiel einen Netzwerk- oder Kommunikationsprozessor, eine
Kompressions-Engine, GPGPU, einen Hochdurchsatz-MIC-Prozessor, einen eingebetteten Prozessor oder
dergleichen.

[0318] Hierin offenbarte Ausfiihrungsformen (z. B. der Mechanismen) kénnen in Hardware, Software, Firm-
ware oder einer Kombination solcher Implementierungsansatze implementiert werden. Ausfiihrungsformen der
Offenbarung kénnen als Computerprogramme oder Programmcode implementiert werden, die auf program-
mierbaren Systemen ausgeflihrt werden, die mindestens einen Prozessor, ein Speichersystem (einschliel3lich
flichtiger und nichtflichtiger Speicher und/oder Speicherelemente), mindestens eine Eingabevorrichtung und
mindestens eine Ausgabevorrichtung umfassen.

[0319] Ein Programmcode, wie etwa der in Fig. 43 veranschaulichte Code 4330, kann auf Eingabebefehle
angewandt werden, um die hier beschriebenen Funktionen durchzufiihren und Ausgabeinformationen zu er-
zeugen. Die Ausgabeinformationen kénnen auf eine oder mehrere Ausgabevorrichtungen auf bekannte Weise
angewandt werden. Zum Zweck dieser Anmeldung beinhaltet ein Verarbeitungssystem ein beliebiges System,
das einen Prozessor aufweist, wie etwa zum Beispiel einen digitalen Signalprozessor (DSP), einen Mikrocon-
troller, einen anwendungsspezifischen integrierten Schaltkreis (ASIC: Application Specific Integrated Circuit)
oder einen Mikroprozessor.

[0320] Der Programmcode kann in einer héheren prozeduralen oder objektorientierten Programmiersprache
implementiert werden, um mit einem Verarbeitungssystem zu kommunizieren. Der Programmcode kann, falls
gewdulnscht, auch in einer Assembler- oder Maschinensprache implementiert werden. Tatsachlich sind die hier
beschriebenen Mechanismen in dem Schutzumfang nicht auf irgendeine bestimmte Programmiersprache be-
schrankt. In jedem Fall kann die Sprache eine kompilierte oder interpretierte Sprache sein.

[0321] Ein oder mehrere Aspekte von mindestens einer Ausflihrungsform kénnen durch repréasentative Befeh-
le, die auf einem maschinenlesbaren Medium gespeichert sind, das verschiedene Logik innerhalb des Prozes-
sors reprasentiert, implementiert sein, welche, wenn sie durch eine Maschine gelesen werden, die Maschine
veranlassen, Logik zu fabrizieren zum Durchfiihren der hier beschriebenen Techniken. Derartige Reprasenta-
tionen, als ,IP-Kerne“ bekannt, kénnen auf einem greifbaren maschinenlesbaren Medium gespeichert sein und
an verschiedene Kunden oder Herstellungseinrichtungen geliefert werden, um in die Fabrikationsmaschinen
geladen zu werden, die tatsachlich die Logik oder den Prozessor herstellen.

[0322] Solche maschinenlesbaren Speichermedien kénnen ohne Einschrankung nichtfliichtige, greifbare An-
ordnungen von Artikeln einschliel3en, die durch eine Maschine oder ein Gerat hergestellt oder gebildet wer-
den, einschlieBlich Speichermedien wie Festplatten, jede andere Art von Laufwerken, einschliellich Disketten,
optische Disketten, CD-ROMs, CD-RWs und magnetooptische Platten, Halbleitervorrichtungen wie Nur-Lese-
Speicher (ROMs), Direktzugriffsspeicher (RAMs) wie dynamische Direktzugriffsspeicher (DRAMs), statische
Direktzugriffsspeicher (SRAMs), Idschbare programmierbare Nur-Lese-Speicher (EPROMSs), Flash-Speicher,
elektrisch l16schbare programmierbare Nur-Lese-Speicher (EEPROMs), Phasenwechselspeicher (PCM), ma-
gnetische oder optische Karten oder dergleichen oder jede andere Art von Medien, die zum Speichern elek-
tronischer Anweisungen geeignet sind.

64/134

DE 10 2018 005 216 A1 2019.02.21

[0323] Dementsprechend schliefien Ausfiihrungsformen der Offenbarung auch nicht transitorische, greifbare
maschinenlesbare Medien ein, die Befehle enthalten oder Ausgestaltungsdaten enthalten, wie zum Beispiel
Hardware Description Language (HDL), die hierin beschriebene Strukturen, Schaltungen, Vorrichtungen, Pro-
zessoren und/oder Systemmerkmale definiert. Solche Ausflihrungsformen kdnnen als Programmprodukte be-
zeichnet werden.

Emulation (einschlie3lich Binaribersetzung, Codeumformung usw.)

[0324] In manchen Fallen kann ein Befehlsumwandler verwendet werden, um einen Befehl von einem Quel-
lenbefehlssatz zu einem Zielbefehlssatz umzuwandeln. Zum Beispiel kann der Befehlsumwandler einen Befehl
in einen oder mehrere andere Befehle, die durch den Kern zu verarbeiten sind, Ubersetzen (z. B. unter Ver-
wendung statischer Binarlibersetzung, dynamischer Binariibersetzung einschliellich dynamischer Kompilati-
on), umformen, emulieren oder anderweitig umwandeln. Der Befehlsumwandler kann in Software, Hardware,
Firmware oder einer Kombination davon implementiert sein. Der Befehlsumwandler kann auf dem Prozessor,
aulerhalb des Prozessors oder teilweise auf und teilweise auflerhalb des Prozessors sein.

[0325] Fig. 46 ist ein Blockdiagramm, das die Verwendung eines Softwarebefehlumwandlers zum Umwan-
deln von binaren Befehlen einem Quellbefehlssatz zu binaren Befehlen in einem Zielbefehlssatz gemal Aus-
fuhrungsformen der Offenbarung kontrastiert. Bei der veranschaulichten Ausfliihrungsform ist der Befehlsum-
wandler ein Softwarebefehlsumwandler, obwohl alternativ dazu der Befehlsumwandler in Software, Firmware,
Hardware oder verschiedenen Kombinationen davon implementiert werden kann. Fig. 46 zeigt ein Programm
in einer hdheren Sprache 4602, das unter Verwendung eines x86-Kompilierers 4604 kompiliert werden kann,
um einen x86-Binarcode 4606 zu erzeugen, der durch einen Prozessor mit wenigstens einem x86-Befehlsatz-
Kern 4616 nativ ausgefiihrt werden kann. Der Prozessor mit wenigstens einem x86-Befehlssatz-Kern 4616
reprasentiert einen beliebigen Prozessor, der im Wesentlichen die gleichen Funktionen wie ein Intel-Prozes-
sor mit wenigstens einem x86-Befehlssatz-Kern durch kompatibles Ausfiihren oder anderweitiges Verarbeiten
(1) eines wesentlichen Teils des Befehlssatzes des Intel-x86-Befehlssatz-Kerns oder (2) von Objektcodever-
sionen von Anwendungen oder anderer Software, die auf einem Intel-Prozessor mit wenigstens einem x86-
Befehlssatz-Kern ablaufen soll, durchfiihren kann, um im Wesentlichen das gleiche Ergebnis wie ein Intel-Pro-
zessor mit einem x86-Befehlssatz-Kern zu erreichen. Der x86-Kompilierer 4604 reprasentiert einen Kompilie-
rer, der dazu funktionsfahig ist, einen x86-Binarcode 4606 (z. B. Objektcode) zu erzeugen, der mit oder ohne
zusatzliche Verknupfungsverarbeitung auf dem Prozessor mit wenigstens einem x86-Befehlssatz-Kern 4616
ausgefihrt werden kann. Gleichermalen zeigt Fig. 46, dass das Programm in der hdheren Sprache 4602 unter
Verwendung eines Alternativer-Befehlssatz-Kompilierers 4608 kompiliert werden kann, um einen Alternativer-
Befehlssatz-Binarcode 4610 zu erzeugen, der durch einen Prozessor ohne wenigstens einen x86-Befehlssatz-
Kern 4614 (z. B. einen Prozessor mit Kernen, die den MIPS-Befehlssatz von MIPS Technologies of Sunnyvale,
CA, USA ausfiihren und/oder den ARM-Befehlssatz von ARM Holdings of Sunnyvale, CA, USA ausfihren)
nativ ausgefihrt werden kann. Der Befehlsumwandler 4612 wird verwendet, um den x86-Bindrcode 4606 in
einen Code umzuwandeln, der durch den Prozessor ohne einen x86 Befehlssatz-Kern 4614 nativ ausgefiihrt
werden kann. Dieser umgewandelte Code ist wahrscheinlich nicht der gleiche wie der alternative Befehlssatz-
Binarcode 4610, da ein Befehlsumwandler, der dies kann, schwierig herzustellen ist; der umgewandelte Code
wird jedoch die allgemeine Operation ausfiihren und aus Befehlen aus dem alternativen Befehlssatz bestehen.
Dementsprechend reprasentiert der Befehlsumwandler 4612 Software, Firmware, Hardware oder eine Kom-
bination davon, die durch Emulation, Simulation oder einen beliebigen anderen Prozess ermdglicht, dass ein
Prozessor oder eine andere elektronische Vorrichtung, der/die keinen x86-Befehlssatz-Prozessor oder -Kern
aufweist, den x86-Binarcode 4606 ausfihrt.

Patentanspriiche

1. Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
fihrungseinheit, um den decodierten Befehl auszufiihren, damit eine erste Operation durchgefihrt wird;
mehrere Verarbeitungselemente;
ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Da-
tenflussgraphen zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenver-
bindungsnetz und die mehreren Verarbeitungselemente zu Gberlagern ist, wobei jeder Knoten als ein Daten-
flussoperator in den mehreren Verarbeitungselementen reprasentiert ist, die mehreren Verarbeitungselemente
eine zweite Operation durchzufihren haben, wenn ein eingehender Operandensatz bei den mehreren Verar-
beitungselementen eingeht, wobei die zweite Operation eine atomare Operation ist.

65/134

DE 10 2018 005 216 A1 2019.02.21

2. Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
fuhrungseinheit, um den decodierten Befehl auszuflihren, damit eine erste Operation durchgefihrt wird;
mehrere Verarbeitungselemente;
ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Da-
tenflussgraphen zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenver-
bindungsnetz und die mehreren Verarbeitungselemente zu iberlagern ist, wobei jeder Knoten als ein Daten-
flussoperator in den mehreren Verarbeitungselementen reprasentiert ist, die mehreren Verarbeitungselemente
eine zweite Operation durchzuflihren haben, wenn ein eingehender Operandensatz bei den mehreren Verar-
beitungselementen eingeht; und
eine Transaktionssteuerung, um mehrere Speicherzugriffe zu gruppieren, die mit der zweiten Operation in
Zusammenhang stehen.

3. Prozessor nach Anspruch 2, wobei die Transaktionssteuerung die mehreren Speicherzugriffe in eine
Transaktion durch Markieren, mit einem Transaktionsidentifizierer, einer Cache-Zeile, die durch die zweite
Operation zu modifizieren ist, zu gruppieren hat.

4. Prozessor nach Anspruch 3, wobei eine erste Nachricht zu der Transaktionssteuerung in Verbindung mit
einem Start der Transaktion zu senden ist.

5. Prozessor nach Anspruch 4, wobei eine zweite Nachricht zu der Transaktionssteuerung in Verbindung
mit einem Ende der Transaktion zu senden ist.

6. Prozessor nach Anspruch 5, wobei die Transaktionssteuerung als Reaktion auf die zweite Nachricht den
Transaktionsidentifizierer aus der Cache-Zeile zu |6schen hat.

7. Prozessor nach Anspruch 2, wobei die mehreren Speicherzugriffe einen Lesezugriff durch ein erstes der
mehreren Verarbeitungselemente einschlielen.

8. Prozessor nach Anspruch 7, wobei die mehreren Speicherzugriffe einen Schreibzugriff durch ein zweites
der mehreren Verarbeitungselemente einschlief3en.

9. Prozessor nach Anspruch 8, wobei das erste und das zweite der mehreren Verarbeitungselemente un-
terschiedliche Verarbeitungselemente sind.

10. Prozessor nach Anspruch 8, wobei das erste und das zweite der mehreren Verarbeitungselemente das
gleiche Verarbeitungselement sind.

11. Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
fuhrungseinheit, um den decodierten Befehl auszuflihren, damit eine erste Operation durchgefihrt wird;
mehrere Verarbeitungselemente;
ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Da-
tenflussgraphen zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenver-
bindungsnetz und die mehreren Verarbeitungselemente zu berlagern ist, wobei jeder Knoten als ein Daten-
flussoperator in den mehreren Verarbeitungselementen reprasentiert ist, die mehreren Verarbeitungselemente
eine zweite Operation durchzuflihren haben, wenn ein eingehender Operandensatz bei den mehreren Verar-
beitungselementen eingeht; und
einen Cache, wobei der Cache in einem Speicheruntersystem einzuschliel3en ist, das Speicheruntersystem
auch einen Speicher einzuschlieRen hat, in dem mehrere alte Datenwerte zu speichern sind, um eine Ausfiih-
rung vom Start einer Epoche zu wiederholen, wobei die Epoche die Operation einzuschliel3en hat.

12. Prozessor nach Anspruch 11, wobei ein erster der mehreren alten Datenwerte bis zum Ende der Epoche
im Speicher zu bewahren ist, als Reaktion darauf, dass ein entsprechender neuer Datenwert in einer Zeile des
Cache durch eines der mehreren Verarbeitungselemente gespeichert wird.

13. Prozessor nach Anspruch 12, wobei der neue Datenwert von einem Schreibzugriff von einem der meh-
reren Verarbeitungselemente ist.

66/134

DE 10 2018 005 216 A1 2019.02.21

14. Prozessor nach Anspruch 13, wobei der erste der mehreren alten Datenwerte gemaf einem Cache-
Kohéarenzprotokoll zu bewahren ist.

15. Verfahren, umfassend:
Decodieren eines Befehls mit einem Decodierer eines Kerns eines Prozessors in einen decodierten Befehl;
Ausflihren des decodierten Befehls mit einer Ausfiihrungseinheit des Kerns des Prozessors, damit eine erste
Operation durchgefiihrt wird;
Empfangen eines Eingangs eines Datenflussgraphen, der mehrere Knoten umfasst;
Uberlagern des Datenflussgraphen in mehrere Verarbeitungselemente des Prozessors und ein Zwischenver-
bindungsnetz zwischen den mehreren Verarbeitungselementen des Prozessors, wobei jeder Knoten als ein
Datenflussoperator in den mehreren Verarbeitungselementen reprasentiert ist;
Durchfliihren einer zweiten Operation des Datenflussgraphen mit dem Zwischenverbindungsnetz und den meh-
reren Verarbeitungselementen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungsele-
menten eingeht; und
Bewahren mehrerer alter Datenwerte in einem Speicher wahrend einer Epoche, wobei die Epoche ein Schrei-
ben eines neuen Datenwerts von einem der mehreren Verarbeitungselemente einschlief3t, wobei der neue
Wert einem der mehreren alten Datenwerte entspricht.

16. Verfahren nach Anspruch 15, ferner umfassend Erhalten, durch einen Cache gemaR einem Cache-
Koharenzprotokoll, des Besitzes einer Cache-Zeile, in die der neue Datenwert zu speichern ist.

17. Verfahren nach Anspruch 16, ferner umfassend, als Reaktion auf das Bestimmen, dass die Cache-Zeile
koharent in Besitz des Cache ist, Schreiben der Cache-Zeile in den Speicher.

18. Verfahren nach Anspruch 17, ferner umfassend Aktualisieren der Cache-Zeile zu dem neuen Wert nach
dem Schreiben der Cache-Zeile in den Speicher.

19. Verfahren nach Anspruch 18, ferner umfassend Andern der Cache-Zeile von kohérent in Besitz zu
spekulativ in Besitz nach dem Schreiben der Cache-Zeile in den Speicher.

20. Verfahren nach Anspruch 16, ferner umfassend, als Reaktion auf das Bestimmen, dass die Cache-Zeile
spekulativ in Besitz des Cache ist, Aktualisieren der Cache-Zeile zu dem neuen Wert, ohne ein Schreiben der
Zeile in den Speicher.

21. Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
fuhrungseinheit, um den decodierten Befehl auszuflihren, damit eine erste Operation durchgefihrt wird;
mehrere Verarbeitungselemente;
Mittel zum Empfangen eines Eingangs eines Datenflussgraphen, der mehrere Knoten umfasst, wobei der
Datenflussgraph in die Mittel und die mehreren Verarbeitungselemente zu Uberlagern ist,
wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen reprasentiert ist; die
mehreren Verarbeitungselemente eine zweite Operation durchzufiihren haben, wenn ein eingehender Ope-
randensatz bei den mehreren Verarbeitungselementen eingeht; und
eine Transaktionssteuerung, um mehrere Speicherzugriffe zu gruppieren, die mit der zweiten Operation in
Zusammenhang stehen.

22. Prozessor nach Anspruch 21, wobei die Transaktionssteuerung die mehreren Speicherzugriffe in eine
Transaktion durch Markieren, mit einem Transaktionsidentifizierer, einer Cache-Zeile, die durch die zweite
Operation zu modifizieren ist, zu gruppieren hat.

23. Prozessor nach Anspruch 22, wobei eine erste Nachricht zu der Transaktionssteuerung in Verbindung
mit einem Start der Transaktion zu senden ist.

24. Prozessor nach Anspruch 23, wobei eine zweite Nachricht zu der Transaktionssteuerung in Verbindung
mit einem Ende der Transaktion zu senden ist.

25. Prozessor nach Anspruch 24, wobei die Transaktionssteuerung als Reaktion auf die zweite Nachricht
den Transaktionsidentifizierer aus der Cache-Zeile zu |6schen hat.

Es folgen 67 Seiten Zeichnungen

67/134

100/}

DE 10 2018 005 216 A1

Anhéangende Zeichnungen

2019.02.21

SPEICHERSCHNITTSTELLE 102
GANZZAHL-
VERARBEITUNGS-
ELEMENT
PE) - ZWISCHENVERBINDUNGSNETZ 104
N GANZZAHL] [GANZZAHL] [GAnzzanL] [Ganzzand [GANZzAL [gier.
PE PE PE PE PE KOMMA:
PE
omvzzand [eanzzand feanzzand] [eanzzand [eanzzand] [eanzzandd
PE PE PE PE PE PE T
KOMMA:
KOMMUNKATIONS| [GaNZZARL] [GANZZARL] [GANZZAHL: GANZZAHL) | "o
SCHALTUNG P PE o PE
_ — .
GANZZAHL| [MN-STRUK-| | GANZZAHL] | GLEIT-
TUR: INSTRUKTUR-SPEICHER
PE | |sPECHER PE KOF'Y:;\”’*
GANZZAHL] [eANzzanL] [GANZZAHL- GANZZAHU]
PE PE PE PE GLEIT-
KOMMA-
GANZZAHL] [GANZzARL] [oaNzzanL] [GAnzzand] [Ganzzand [eanzzand | pe
PE PE PE PE PE PE
oAnzzand [eAnzzand) [eanzzand] [eanzzand [omvzzand [oanzzans) K%L;\E{/TIA
PE PE PE PE PE PE o
GANZZAHL] [canzzani] [Ganzzand] [eAnzzaRD] [eanzzand] [GAnzzARL:
PE PE PE PE PE PE GLEM-
KOMMA-
GANZZAHL-| [GANZZAHL{ (GaNzZzAHL| [canzzaHL] [canzzaHL] [canzzanL] PE
PE PE PE PE PE PE
GLEIT-
KOMMUNKATIONS | [GANZZAHL] [GANZZAHL] [GANZZAHL: GANZZARL] | koMvA
SCHALTUNG PE PE PE PE
e 2| PE
SRUC] S]
GANZZAHLY [IN-STRUK nsTRUKTURsPEIcHER | [CANEEARH o
PE_ | |SPEICHER PE KOMMA
GANZZAHL] [GANZZARL] [GANZZAHL: canzzad L PE
PE PE PE PE
GLEIT-
GANZZAHL] [oanzzaHL] [eanzzanl] [eanzzan] [eanzzani] [eanzzand] | komwia
PE PE PE PE PE PE PE
FIG. 1

68/134

DE 10 2018 005 216 A1 2019.02.21

201 /}

PROZESSOR2L)
KERNO . KERN N
—Pp
BESCHLEUNIGERO . BESCHLEUNIGERM
FIG. 2

69/134

SPEICHER 202

2019.02.21

DE 10 2018 005 216 A1

€9

14

VSO 31H3IdNOIINOM

A

]

1

ATV
vooe]

N\

V80E 1

Z0€ ATT3LSLLINHOS¥IHOI3dS

.(10€

g¢ "old
HdV49SSNT1ANILYA

I

Y311VHIS

90¢

a9,
z X

/\ 0oe

Ve "Old
ITIINDWAVHOOYd

{
X ¥ondngz
Ry X =X
(A 'x INI) MNNAYHAT

70/134

2019.02.21

DE 10 2018 005 216 A1

G L1I4HOS (3) ¥ L1I4HOS (@) ¥ 'Ol4

90 90r—\YaL oS 4
Q ©
80p 80 °
4
y0p POv—") ¥0ld ¢ g
1
¢ 1114HOS (2) 2 LLIYHOS (8) b LLIMHOS (v)
90v 907 907 Yz w0l <
807 807 80y °
Z
y0y 70 POy —""1 ¥Old o\

|

-ﬂ(\oov

71/134

2019.02.21

DE 10 2018 005 216 A1

}
}

¢ Ol

[¥XHANI] 9 =
(++ XHAANI N > ¥Y9aNTI
(N INI ‘gx ¥HEAT ‘v

[XAONTI] ®

‘o =
HAAT)

XAANI INI) ¥nd
AAOWNAW SHYHAMT

72/134

600 f\'

DE 10 2018 005 216 A1

2019.02.21

SPEICHER-/CACHE-HIERARCHIE-SCHNITTSTELLE 602

- 611 f61261 0
(—L{SCHALTER s SCHALTERL£8™_| IScHALTER SCHALTER——
61 616
606
PUFFER | |-604 | [FPURFER PUFFER
GANZZAHL-PE GANZZAHL-PE FMA-PE
PUFFER |-608 | [PUFFER PUFFER
- S [[] |
[—SCHALTER SCHALTER SCHALTER SCHALTER——
PUFFER PUFFER PUFFER
GANZZAHL-PE GANZZAHL-PE FMA-PE
PUFFER PUFFER PUFFER
- [1 |1 []
—{SCHALTER SCHALTER SCHALTER SCHALTER——
PUFFER PUFFER PUFFER
GANZZAHL-PE GANZZAHL-PE FMA-PE
PUFFER PUFFER PUFFER
AL T 1 N
SCHALTER SCHALTER SCHALTER SCHALTERL——

Ul

U

UL

73/134

UL

FIG. 6

2019.02.21

DE 10 2018 005 216 A1

NOLLMNNS
~43N3LSSSNA

(3d Nv) 3gvosny

y

(3d NOA) 3gvONI3

g.'9l4

(3d Nv) 3gvosny

.
(]
A
NOLLYNNJ NOILYNNA
-43N3LSSSN14 -43N31SSSN14
A
0
]
(]
V. 9l4
(3d NOA) 3gvONI3 (3d Nv) 3gvosny
'
]
" /A
]
. 1
1 |
(]
« (3d NOA) 3gvONI3

X-mm:&mmw:i

NOILMNNS

(3d NOA) 3gvoNia

]
Eim

”\ 104

oL/

(3dNv) 3gvosny

ﬂ\ 00,

74/134

DE 10 2018 005 216 A1

2019.02.21

RAF;FJUDEM U
810 I

OTI

CACHE-
BANK

| CACHE-
| BANK

CACHE-
BANK

CACHE-
BANK

{808

ODI

FIG. 8

75/134

2019.02.21

DE 10 2018 005 216 A1

6 'Ol

: T I 16

[I
C |) — 79@
| | %06

9s6~~ | ¥4344NdIEVOSNYNALYA| ves~~| 0 ¥I44NdIAYOSNYNILYA]| ze6—{¥343Nd-SNV-OULS
8g6~{SNLYLS <
916
\ 4
| ¥alsiozy < |- oz
€26
16 JINV'Id I NOILVINOIND
-SNOILY¥3d0 616
0 NOILY¥N9I3NO
A -SNOILYY3dO
' "4 —
s | ¥344nd 0 ¥344nd s | 8343N0d
38YONIINILYQ 926~ 3gyONIINILYa 19YONI3-DYLS

: | [[N
— T L 11 _/mom
[L 7vom
i L] L] 206

ﬂ\ 006

76/134

2019.02.21

DE 10 2018 005 216 A1

_ 0 T I [] [] [] 1 0 1 0l "9I4
]
-] 11] 11 I LI] I T | ﬁ_ge
_ m_ m [TT TT T <9001
. = [11 11 mi <001
[N & o TZ001
- a 7 X 7.\ 7\ - U L Symamzian 307
(7]
- [R @
e > o Q 5
“ B 3 3 Z
/] 2 z | N N 9101
a0’ \/ o/ Creor \/ Ceor 0zor | 8oL A
Nmmé%s %&:&o Bmae_EE NIONYTHOSILHVYM (3EVONIF) INSWNOYY dO YITHYZ-NINOL
TN og_ A@wwe @ @ S LIBNOIONYHEY
ITWNDISSNLYLS ~¥10}
899\ zE<m/ xwozw_mmm%a N3LVQa Haay Toow | EREs
b (".rm/x._ p

v

[12ds snv X

P ZHOV ¥3NVId

—~ v vy

0l ~ TH343843HOI34S

[1]

1HTHOI 3¢

010}~ NIav1_—
ﬂ\ 000t Sd0Y3HOI3dS

g3HO3dS NI

77/134

2019.02.21

DE 10 2018 005 216 A1

YLl '9ld
ONNLIVHOS ONNLIYHOS ONNLIVYHOS ONNLIVHOS
-SNOILYYINNWINOM -SNOILYMINNINWOM “SNOILYAINNWINONA “SNOILYYMINNININOM
¥3HJI3dS ¥3HDI3dS ¥3IHDI3dS ¥3HOI3dS H3IHDI3dS
SHNWMNYLS-NI - VL -m:b_:Em z_NE -m:b.:Em-z_ OLbL -HNMNYLSNI 80LL -4NINYLSNI
~ A ./ Al \ ~ Ao -

7

L

| Jad
HEEEEEMIII ulIl | B
R ZEENER lallr EIEIEK s
M MCPERNE" PEERE T |[NPEEE (OO0

ol)l)l) o
) Bl Bl) BBl el) BB e e | el B
5 5151551 5) o] 513 5 el e e

|[&] [&

3d

(8) 4vy (2) 4v¥ (9) 4vy () vy (¥) 4vd (€) 4wy (@) 4vy (1) 4vy

[e I e [e M su I[N e I exr | esux I su |

IT1FLSLLINHOS-IHOVO-43IDINNITHOS3d

€1
VHO

- H - -

o7
(1) ¥NYg
Al

(8) ¥NVE (L) ¥Nve (9) MNvE (S) MNvE (§) INVE (€) ¥Nvg (2)NvE
21 Al 21 Al 2 A 21

”\ooS

78/134

DE 10 2018 005 216 A1 2019.02.21

TRANSAKTIONSMECHANISMUS 120

Transaktions-
Software- , P
serialisierungs- %‘“ o e o e | Tracker g

Handler

i {
P i
| §

\\\ Spelcher- .

\\\ . netzschnlttstelle
\\\ |

4444444444 \\\\ \

\\\\\\

=

FIG. 11B

79/134

DE 10 2018 005 216 A1 2019.02.21

FiG. 11C

80/134

2019.02.21

DE 10 2018 005 216 A1

FIG. 11D

81/134

DE 10 2018 005 216 A1 2019.02.21

FiG. 11E

82/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 11F

83/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 11G

84/134

DE 10 2018 005 216 A1 2019.02.21

CA Sz >Z H2

FIG. 11H

85/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 11

86/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 11J

87/134

DE 10 2018 005 216 A1

2019.02.21

1200 /;

—
1
m
~
W LYY
O NANN
d L
Ll NSNS
= sSaswNy
<L NANNNNN
(D sSsssaanny
NNNNNSNSAN
ANNSSNSNNNNNS
ONN NN NN NNETE
NANNSNNRNNNNNN g
NANNNSNNANNNNNS o~
CANANNNNNNNNN NN A
NNNANRN NN NN AN,
CANSNAANNNNNYN SNy
MY EEEEEEE I I)
NNNANNNNANNSS NNy
NANNANNNNNNS NSNS NN
NANNNNNASNNN NN NN NN
NNNANANNNNNNNN NN NN
Y EEYEEEREEI I I N N NS I SN
ANNNANNNY NN NN NN NN 3
AASNAANANNNN NNV N NA NN N
NONN RN NN NN NN R NN NN NN NNy A
QONAOARNANN NN AA NN NN N NN NN NN
OO S S L L L L B UL B B B N NN T N N S NN
O T L T T B O N N T A N S N NN
O O R O O R N I R N A A A N Y
NN L L T T R N N N N N I)
Y S NN R AR L T T I T e e e
R R R L LR R R R I N I O N O O A S O O L)
SRR LN RN N S S N N O N O ST O O) o~
N A T L R R IR R <
S S L e N NN NN o
[L R R R R SO N)
(RTINS S NN
(R R LT T T N N O N O N N O SR O Y
AR N A LI E R E IR R R)
IR R R A A IR E R EE XS]
A N % NN NAANN AN N RN NN
MANNANNNN NN NN NN A NS
L N R T T N O N NS W)
AR N N N NS)
AR R E L E A R RN
NNN NN Ry Ny NN
SNNS N AN NNNNNANNANS
R L LR R RN]
NN AN NN NN NN
SN NSNS NN N NN NN
= NN NN RSN ASNNNADS
L_U Ao S %y NN NS
m NN NN NN N AN
) NaN N NN
Q) NNSNANNNADS
7] NN NN ANAN
= NN ANNANN
= NaNS S
m NNSAS
L L)
V) AR)
1 d b
L ~

88/134

FIG. 12

DE 10 2018 005 216 A1

1300 /x

2019.02.21

KONFIGURIERTES

KONFIGURIERTES

NN KONFIGURATIONSDATENPFAD

89/134

KONFIGURIERTES PE PE
PE 1302 1304
l I
" R =S
N "N :.....-.-....'a.-...'
. . 17 :
- Y __ 3 ‘
| T VT | [TH]
NICHT KONF\}SKI;IEREN KONFIGL;IEIERTES
KONFIGLFJ,EIERTES 1306 1308
N
I USmr e A
N N % (\ l
R T — — — -
Ll T LT |]
NICHT NICHT NICHT
KONFIGURIERTES KONFIGURIERTES KONFIGURIERTES
PE PE PE
--------- AKTIVER KANAL
— — — INAKTIVER KANAL
———— -~ KONFIGURATIONSSTEUERUNG
FIG. 13

DE 10 2018 005 216 A1 2019.02.21

1400 /}

BEITRAG

NEUER BEITRAG

DERZEITIGES EXTRAKTIONSGEBIET

NEUES EXTRAKTIONSGEBIET

VORHER

FIG. 14

90/134

DE 10 2018 005 216 A1 2019.02.21

1500 /;

C&C++ FORTRAN ANDERE

N o4/

KOMPILIER- KOMPILIEREN (LLVM)
ZEIT EINSCHLIESSLICH GLIEDERUNG
FETT BINAR:
LAUFZEIT ODER SPATER LLVM IR

JT [LLVM => CAS-CODE (SCHLUSSELSCHLEIFEN)

PUFFEREINFUGUNG

PLATZIEREN UND ROUTEN DER GRAPHEN

GENERIEREN VON KONFIGURATIONSCODE

CODE AUSFUHREN

FEEDBACK

FIG. 15

91/134

1600 Q

DE 10 2018 005 216 A1 2019.02.21

KOMPILIERER-
FRONTEND

| SEQ INS GEN |

CSA-BACKEND [STEUERFLUSS (CF) ZU DF |

| DF OPT |

DF-ASSEMBLIERCODE
A 4
| PUFFEREINFUGUNG |

AKTUALISIERTE ASSEMBLY

| PLACE & ROUTE |

AKTUALISIERTE ASSEMBLY
A 4

SEQUENTIELLE
OPERATIONS-
SEMANTIK

UMWANDLUNG
IN DATENFLUSS
(DF)

"SYMBOLISCHER" CSA ASM + LINKER

FUNKTIONELLER SIMULATOR

TIMING-SIMULATOR

FIG. 16

92/134

DE 10 2018 005 216 A1 2019.02.21

1d32 Rdata, Raddr

1d32 Rdata2, Raddr?

mul32 Rv0, Rdata, 17
mul32 Rvl, Rdata?Z2, Rdata2
add32 Rres, Rv0, Rvl

st32 Raddr, Rres

1d32 Rdata3, Raddr3

SEQUENTIELLE ASSEMBLY 1702

FIG. 17A

.lic .i32 data; .lic .i64 addr;
.lic .132 data2; .lic .i64 addr2;
.lic .i32 data3; .lic .i64 addr3;
.lic .132 v0; .lic .132 vl1l; .lic .1i32 res
1d32 data, addr

1d32 data?2, addr2

mul32 v0, data, 17

mul32 vl1, data2, dataz

add32 res, v0, vl

st32 addr, res, done, %ign

1d32 data3, addr3, %ign, done

DATENFLUSS-ASSEMBLY 1704
FIG. 17B

93/134

DE 10 2018 005 216 A1 2019.02.21

ADDR ADDR2
LD32 LD32
DATA 17 DATAZi//\\M DATA2
MUL32 MUL32
VO V1
ADD32
ADDR
RES
ST32
ADDR3 :
\J DONE
LD32
DATA3

DATENFLUSSGRAPH 1706

FIG. 17C

94/134

DE 10 2018 005 216 A1 2019.02.21

1if (1 < n)

y = X + a;
else

y = 1 + X;

C-QUELLCODE 1802

FIG. 18A

.lic .11 test

cmplts32 test, i, n

switch32 %ign, aT, test, a
switch32 iF, %ign, test, i
switch32 xF, xT, test, x

add32 yT, xT, aT # True path
add32 yF, iF, xF # False path
pick32 y, test, yF, yT

add32 z, vy, 1

DATENFLUSS-ASSEMBLY 1804

FIG. 18B

95/134

TEST

DE 10 2018 005 216 A1 2019.02.21

' TEST l TEST l
IEHHEHHHH\

PICK32

y
| ADD32 |
Z

DATENFLUSSGRAPH 1806

FIG. 18C

96/134

2019.02.21

DE 10 2018 005 216 A1

g6l Ol
7061 ATENISSY-SSN14NILYA

uns wo3l3o0q ‘Isyd3TMs ‘uns Yoeqdool ‘wns 3no zEydIIMS
T doay ‘uns dojl ‘wns wo3l3loq zZEppe

uns yoeqdooT ‘uns 3TUT ‘x9%oTd ‘wns doa zexyotd
*UOTIRIS]TUSITOTYDS TP WN SuNMG TP 2ISTPPY #

I9yo3Ims ‘I9yot1d Taow
u dooT ‘T wo3l30q ‘IDYDITMS zgsiTdwd VY6l 'Old

*2IT2TYDS Iap 2puy we yosTaTbasp # Z56T 3000 T13NO-0

u dooT ‘xsyoatms ‘U yoeqdooT ‘ubTy ZEUYOITMS
u xoeqdooT ‘u 3tur ‘zexot1d ‘u dooT zeyotd

*9JTOTYDS Jop bunaynisny spal InJ U UOA 1I5M USBP STOUISPSIM # ‘uns uanisa
f(u > 1) STTUM
T woljoq ‘Isyd3Tms ‘T 3oeqdooT ‘ubTg ZEUDITMS T+ T =T
T ‘T do3 ‘T wo3l0q zZEppe !T + wns = wns
T 3yoeqdooT ‘T 3TuTr ‘zeoxoTd ‘T doix zeyotrd } op
UOT1eIS]1TUSITOTYDS 9pal anJy 1T uoA 1JI9M USp obnozay # {0 = wns 3Jut
‘0 = T 3ut

0 [Teae* !0 onfea {xa3oT1d xano:
‘0 USUOoTTbuBIUY JISUTS JTW ISDTJ WT 93I5M-19SIJ0O #

I9YyD3TMS T OTT®
asxotd TT OTT”
*9TRUBRYISNSO]SUSITISTYUDS #

97/134

2019.02.21

DE 10 2018 005 216 A1

J61 Ol

- 9061 HAVYOSSN14dNILvd
WNS 1NO

CEY3LTWHOS

WNS WOLL109

ZeqQY [4—— I d0L

NS doL

¢eM0Id

(0) WNS™LINI

v
N™YOVEd001

\4
N™0v8d00T

CEYILTVHIS

I"%0v8d001
NOI%
=~ LAOW
T “ NOI%
|
I |
| |
L ZeY3LIVHOS
I
_
I
_
P ZESL1dWD [€——
| "WoLL08
_
_|l o — e e
_ I
N"d001 _
_
_ — - zeaavy
_
_ —_—
_ I"do1

A%) I<

NLINI

¢EXId

(L) "LINI

98/134

DE 10 2018 005 216 A1 2019.02.21

2000 W

DEKODIEREN EINES BEFEHLS MIT EINEM
DECODER EINES KERNS EINES
PROZESSORS IN EINEN DECODIERTEN
BEFEHL 2002

I

AUSFUHREN DES DECODIERTEN BEFEHLS
MIT EINER AUSFUHRUNGSEINHEIT DES
KERNS DES PROZESSORS ZUM DURCHFUHREN
EINER ERSTEN OPERATION 2004

l

EMPFANGEN EINER EINGABE EINES
DATENFLUSSGRAPHEN, UMFASSEND
MEHRERE KNOTEN 2006

l

UBERLAGERN DES DATENFLUSSGRAPHEN

IN MEHRERE VERARBEITUNGSELEMENTE

DES PROZESSORS UND EINES ZWISCHEN-
VERBINDUNGSNETZES ZWISCHEN DEN

MEHREREN VERARBEITUNGSELEMENTEN DES
PROZESSORS, WOBEI JEDER KNOTEN
REPRASENTIERT IST ALS DATENFLUSS-
OPERATOR IN DEN MEHREREN VERARBEITUNGS-
ELEMENTEN 2008

A 4
DURCHFUHRUNG EINER ZWEITEN OPERATION
DES DATENFLUSSGRAPHEN MIT DEM ZWISCHEN-
VERBINDUNGSNETZ UND DEN MEHREREN
VERARBEITUNGSELEMENTEN DURCH EINEN
JEWEILIGEN EINGEHENDEN OPERANDENSATZ,
DER AN JEDEM DER DATENFLUSSOPERATOREN
DER MEHREREN VERARBEITUNGSELEMENTE
EINGEHT 2010

FIG. 20A

99/134

DE 10 2018 005 216 A1 2019.02.21

EMPFANGEN EINER EINGABE EINES DATEN-
FLUSSGRAPHEN, UMFASSEND MEHRERE
KNOTEN 2003

UBERLAGERN DES DATENFLUSSGRAPHEN IN MEHRERE
VERARBEITUNGSELEMENTE EINES PROZESSORS,
EINES DATENPFADNETZWERKS ZWISCHEN DEN

MEHREREN VERARBEITUNGSELEMENTEN,

UND EINES FLUSSSTEUERPFAD-
NETZWERKS ZWISCHEN DEN MEHREREN
VERARBEITUNGSELEMENTEN, WOBEI JEDER
KNOTEN REPRASENTIERT IST ALS DATEN-
FLUSSOPERATOR IN DEN MEHREREN VERAR-
BEITUNGSELEMENTEN 2005

FIG. 20B

100/134

2019.02.21

DE 10 2018 005 216 A1

YADIE!

NOILVY¥3IdO O¥d 3I1OY3INT

38VOSNV-I 3OT04INIHITH-NI \w
|

38vOsnv-+ mO._On_ZwI_m_m-_/___

39VYOSNV-Z 397104ANIHITE-NI

3gYOSNY-b
-397104N3IHITY-¥ISSNY

39VOSNVY-Z-397104NIHITY-¥ISSNY

VSO

Z1vSHOYNA

ﬁ\ 0012

101/134

DE 10 2018 005 216 A1

2200 q

2019.02.21

SPEICHER-/CACHE-HIERARCHIE-SCHNITTSTELLE
LOKALE I —
KONFIGURATIONS- NETZWERK
STEUERUNG |STEUERUNG|
2202 2210
l
| I L L i
i || s o e i B s
q
—LISCHALTER SCHALTER SCHALTER : CHALTERi_]
| I
PUFFER PUFFER || poreERl
|
RE RE == |
' |
PUFFER PUFFER || [PUFEER])
] 1 | 11
- ! | | i 7JEIKOI\JHGURATlOI\Js-
SCHALTER SCHALTER SCHALTER " | ISCHALTER TERMINATOR
- } =S| 2204
| I
: PUFFER]|
I
KONFIGURATIONS-
PE PE N ! | TERMRATOR
PUFFER || [PUFEER] | I ===
[] [1 |11
] — | — 1—g 7:|
SCHALTER SCHALTER SCHALTER SCHALTER
- —
| I
PUEFER PUFFER ! l——PUFFg—l:I
} LOKALE
NETZWERK-
PE PE | STEERUNG || STEERUNG 2206
PUFFER PUFFER || PurrER]l
N [I —T177 1
P e 1e—T
[—L{SCHALTER SCHALTER SCHALTER SCHALTER
il UL 00 - 'I'_H: -
FIG. 22

102/134

2019.02.21

DE 10 2018 005 216 A1

(34 Nv) 3gvosny

U

(3d NOA) 3gvoNI3

Vvee Ol

(3d NOA) 38vONI3

A

T

(3d Nv) 3gvosny

(3d Nv) 3gvosny

/|

(3d NOA) 38VONI3

(3d NOA) 3gvONI3

o
m')

POET
ONNLTYHOSNA
-T1ALSLLINHOS
HYIMZLIN

\ 90¢€C

(3d Nv) 3gvosny

Z0EC ONNYANALS

-SNOLLYENOI4NOM

IFWMOT

ﬂ\ 00€Z

103/134

2019.02.21

DE 10 2018 005 216 A1

g¢¢ 'old

(3d Nv) 3avosny (3d NOA) 38vONI3 (3d NV) 3gvosny

x L=

(3d NOA) 38YONIT (3d NOA) 38VONI3
(3d Nv) 3gvosny

(3d NOA) 39VONI3

‘ 80¢€¢

=T

\ooe /

(3d Nv) 3gvosny

P0EC
ONNLTVYHOSNS
-T1IALSLLINHOS
HIIMZLIN

70T
ONNY3N3LS
-SNO LLYINOIINOM

ELLA)

ﬂ\ 00€2

104/134

2019.02.21

DE 10 2018 005 216 A1

(3d Nv) 3avosny

J€¢ OId

(3d NOA) 3gvONIT (3d NV) 3gvOSny (3d NOA) 3gVONI3

—

(3d NOA) 3aVONIT

oET
ONMLTYHOSNT
“1HLSLLINHOS
MIIMZLIN

20EC
ONNY3N3LS
SNOLLYHNS HNOY

JWNOT

(3d NOA) 39VONI3
(3d Nv) 3gvosny (3d Nv) 3gvosny

”\ 00€e

105/134

2019.02.21

DE 10 2018 005 216 A1

b¢ Old

clvZ ANOQ 94D

0L¥Z AINVYA 942

80vC 1MVLS 940

90vC 449132

c0rC ONNHYIANTLSSNOILVHNOIANOM

106/134

DE 10 2018 005 216 A1 2019.02.21

2500/\v

SPEICHER-/CACHE-HIERARCHIE-SCHNITTSTELLE
foosemsoen *
LOKALE LOKALER CACHE : ;
KONFIG - 2514 sNETZWERK-4
STEUERUNG — +STEUERUNG
5502 KONF IG -CACHE 2520 b1
= E
- I"l— | — 1 — 1
[PCHALTER LIS CHALTER SCHALTER il ISCHALTERY SCHALTER
' ;
: :
= s
PUFFER PUFFER :[PUFFER]} PUFFER
[[}
: E
: :
q
PUFFER PUFFER PUFFER: PUFFER
[[o 1
-]] — [1
SCHALTE SCHALTER *| [SCHALTERY KONFIG--
P OHALTER e — :&JQ:SCHALTER TERMINATOR
: ‘ 2504
[] q
(] [}
Hils
PUFFER PUFFER :[PUFFER]} PUFFER
[[}
: : KONFIG.-
: TERMINATOR
P 2508
PUFFER PUFFER + PUFFER]; [PUFFER]
[[s TI]L [
o111 I
SCHALTER—LISCHALTER SCHALTER SCHALTERS
I v ==

r.....

NEOFTERT: me——"
SNETZWERK-{ CACHE 2516

‘STEUERUNG; KONFIG .-
12212 TOKALE {CACHE 2518

1 KONFIG-
STEUERUNG
2506

.

[]
L3
®

FIG. 25

107/134

DE 10 2018 005 216 A1 2019.02.21

2600@

REKONEIGURATIONG]| SPEICHER-/CACHE-HERARCHIE-SCHNITTSTELLE
SCHALTUNG 2622 gmeonomanens
| KONFTG -7AU0SNARME- ¢ NETZWERK-
HANDHABUNGS- LOKALER SSTEUERUNG
STEUERUNG 2602 CACHE 2610
] [| — 1 H— 1
S S SCHALTER :
S CHALTER_LISCHALTER SCHALTERL
s [PUFFER |
[4
[
[
PE PE :
P : :
[PUFFER J:
[] L1 L1 ' 1
] |- [1 ' [1
SCHAL TERL_| ISCHALTE SCHALTER al [ScHALTE S KONFIG.-
[LSk =—— $ qu L TER L ERVINATOR
: 2604
f | =
B [
$ (PUFFER |
1d
]
p : : KONFIG -
- E FE] P HERMINATOR
2608
[T [s T [
] — | In 1 1
CHAL TERLISCHAL TER SCHALTER SCHAL TER SCHALTE
L] w—— >
il I]
[PUFFER | [PUFFER] s PUFFER [PUFF
‘ L]
I ¢NETZWERK- & LOKALER
PE PE § STEUERUNG} CACHE 2516
12612
: REKONFIGURATIONS
Nl R
] N T KONFIG.-/AUSNARME-
N HANDHABUNGS- |||
C | ! L STEUERUNG 2606
SCHAL TERL_LISCHAL TER SCHALTER
fenel L =zl
U UL L |
FIG. 26

108/134

DE 10 2018 005 216 A1 2019.02.21

 REKONFIGURATIONS-
SCHALTUNG 2718

KONFIGURATIONS-
ZUSTAND 2720

FIG. 27

109/134

DE 10 2018 005 216 A1 2019.02.21

2800/\'

SPEICHER- /CACHE-HIERARCHIE-SCHNITTSTELLE

NETZWERK- §

iSTEUERUNG $
L L L L] L] [
O ! — ! H— I
—SCHALTER SCHALTER SCHALTER QCHALTERI:! SCHALTER

PE PE PE | PE
1]
[roe)
L1 1] L1 1
i p— — 10 1 1
SCHALTER SCHALTER SCHALTER SCHAL TER SCHALTER
- H—
F —— A — ——— e | eg— — — — —— - — — o — P T ﬂ
| Lo
| o] |
: PE__ PE b ope il PE
[]
|] |
[[[[&] TKONFIGURATIONS-
IE | — I = ' 1 ANFRAGE
|1 kot ter MLTEREﬂSCHALTEREHsCHALTERl | CH=\TT?R\/
L] - -0 -
[: L
| d |
| [PUFFER | [PUFFER | ruEER H | [PUFFER |
| ENE]ZWERK . |
| PE PE {STEUERUNG Y} PE
I erieLRaTons | FFER] 12e1e
SCHALTUNG |
| [[T 1 onFicaUsNaRvE. |T] 2806
IF - — 1 HANDHABUNGSSTEVERUNGI =T
'_QCHALTER SCHALTER SCHALTER SCHALTERD =
o 1 O 1 O 11 M S 2 +) UL
KONFIGURATIONSANTWORT
FIG. 28

110/134

DE 10 2018 005 216 A1 2019.02.21
2900@
— e o= =
| NETZWERK- , | KACHEL-LEVEL
SPEICHER-/CACHE-HERARCHE-SCHNTTSTELLE | STEUERUNG Aé%%“g%ﬂéh
l 20
[
L N L |
- [(F— F—— 1] ?"]L‘__|
| SCHALTER SCHALTER SCHALTER | SCHALTER —
| |
I
PUFFER PUFFER | '
PE PE | :
PUFFER PUFFER | |
1 1 I
- — — I] "r_l___|
[SCHALTER SCHALTER SCHALTER LI SCHALTER —
' |
|
PUFFER PUFFER | :
PE PE | ,
L}
PUFFER PUFFER | |
1] 1] | |
C | | — | — Wr—_l
[
] SCHALTER SCHALTER SCHALTER L
: |
|
PUFFER PUFFER || [PUEFER |
NETZWERK-
PE PE : STEUERUNG| VEZZANNE:
FPUFFER] F PUFFER] | PUFFER AGGREGATCR
1 1 HIEN —
i 10"
1 .
[SCHALTER SCHALTER SCHALTER L scrted f——
UL il il L /-
FIG. 29

111/134

2019.02.21

DE 10 2018 005 216 A1

I

/

- |
—

~
A £loe

11
1 vam
=i 1010
_ _ I 800¢
0cos~— | ¥344Nd3IaVOSNYNILYC pe0s~~ 0 H344NdIAVYOSNYNILYQ [ze0e | ¥344Nd-SNV-OULS “ L [Sraxos <!
i i F e _
|| === |
T OP0EWS3 | 3508 WO LvyaNTD |
v 1| [HANSTY] iy |
8606 ~~{SNLVLS cTTT T T T T T T T T
910¢
\ 4
¥aLSI03y << |roee
£20¢ S stz
7H0E dINVd | [T NOILYEngI N0
« -SNOILYY3d0
| [ONOILVENDINOY, | B¢
-SNOI LY¥3dO0
¢/ ’—
w0e | ¥344nd 0¥344nd e ¥344Nd
38YONIAN3LYA $20€~ 3g¥ONIIN3LYQ 38YONIF-OHLS
| [[N
11 11 _Moom
] 1 ~Nocm
[|] L 200€

0¢€ "Old

»(000€

112/134

3100W

DE 10 2018 005 216 A1

2019.02.21

SPEICHER.-/CACHE-HERARCHE-SCHNTTSTELLE
LOKALE I_ —— 'i
EXTRAKTIONS-
NETZWERK-
STEUERUNG | STEUERUNG |
3102 | 1
o1 —— }————:— 1JI—|
SCHALTER SCHALTER SCHALTER V| | SCHALTER
| I
PUFFER PUFFER : pUFFeR |I
RE AE T PE I
PUFFER PUFFER || [CPUFFER]y
] 1 | —T11
- | — ! i i EXTRAKTIONS-
—L{ SCHALTER SCHALTER SCHALTER SCHALTER TERMINATOR
! 3104
| I
PUFFER PUFFER : [PUFFER |:
PE PE 1 PE | EXTRAKTIONS-
} TERMNATOR
PUFFER PUFFER || CPUFFER] | 3108
[] TT I /171
o e 11— W:ﬁ
SCHALTER SCHALTER SCHALTER SCHALTER
] —%—%——Eﬁh —
I I |
| | .
PUFFER PUFFER 1| [PUFFER |: EXTLF?EAP&HSNS
PE PE || sk | STEUERUNG
STEUERUNG 306
PUFFER PUFFER I| [PUFFER]| —
N [177
1 1
L] SCHALTER SCHALTER SCHALTER SCHALTER

UL

i

-t

T -3

113/134

2019.02.21

DE 10 2018 005 216 A1

BdNv) 3gvosny BdNoA) 3gvoN3

J g

BdNOA) 3gvON3
(B4 Nv) 3gvosnV

vee Ol

BdNv) 3gvosny (3dNOA) 38vONIT

GdNOA) 3gvON3

(Bd Nv) 3gvosny

y0E
ONNLTVHOSNS
“TBLSLLINHIS
MIIMZLIN

202€ ONNY3N3LS
“SNOI VY LX3
0T

W\ 002€

114/134

2019.02.21

DE 10 2018 005 216 A1

(3d Nv) 38vosnv

[\

(3d NOA) 38vON3

(3d NOA) 38VON3

g¢¢ Ol

__/

(3d Nv) 3gvosnY

(3d Nv) 3gvosny

(3dNOA) 3gvoON3

(3d NOA) 3gvONT

s

p0CE
ONNLTYHOSNI
“T13LS1INHOS
HAIMZLAN

soze/

(3d Nv) 38vosny

20z
ONNY3NALS

-SNOI DAVH X3

30N

ﬂ\oomm

115/134

2019.02.21

DE 10 2018 005 216 A1

(3d Nv) 3gvosny

ﬂl,

(3d NOA) 3gvON3

.

(3d NOA) 38vON3

/|

(3dNv) 3gvosny

_/

J2¢ 'Ol

(3d Nv) 38vosny

(3d NOA) 38¥ONIT

(3dNOA) 38vON3

p0c€
ONNLTVHOSNS
T13LSLLNHOS
MIIMZLAN
c0CE
ONNY3IN3LS

-SNOLIAVHIX3
3O

(3d Nv) 38O 3NV

%\ 002€

116/134

2019.02.21

DE 10 2018 005 216 A1

¢¢ Old

y0EE ¥30137

ZVE£3131dIN00 343

80EE LY LS O3

| 016380815 03T

90EE LOVHLAa 037

Z0E€ ONNYINILSSNOIIMYH X3

117/134

DE 10 2018 005 216 A1 2019.02.21

3400 /}'

DEKODIEREN EINES BEFEHLS MIT EINEM DECODER
EINES KERNS EINES PROZESSORS IN EINEN
DECODIER3152N BEFEHL

AUSFUHRUNG DES DECODIERTEN BEFEHLS MIT EINER
AUSFUHRUNGSEINHEIT DES KERNS DES PROZESSORS
ZUR DURCHFUHRUNG EINER ERSTEN OPERATION
3404

l

EMPFANGEN EINER EINGABE EINES DATENFLUSS-
GRAPHEN, UMFASSEND MEHRERE KNOTEN 3406

UBERLAGERN DES DATENFLUSSGRAPHEN IN EIN
ARRAY AUS VERARBEITUNGSELEMENTEN DES
PROZESSORS, WOBEI JEDER KNOTEN ALS
DATENFLUSSOPERATOR IN DEM ARRAY AUS
VERARBEITUNGSELEM%I;I&I}EN REPRASENTIERT IST

l

DURCHFUHRUNG EINER ZWEITEN OPERATION DES
DATENFLUSSGRAPHEN MIT DEM ARRAY AUS VERARBEITUNGS-
ELEMENTEN, WENN EIN EINGEHENDER OPERANDENSATZ
AM ARRAY AUS VERARBEITUNGSELEMENTEN EINGEHT
3410

FIG. 34

118/134

DE 10 2018 005 216 A1 2019.02.21

3500 f\‘

DECODIEREN EINES BEFEHLS MIT EINEM DECODER
EINES KERNS EINES PROZESSORS IN EINEN
DECODIERTEN BEFEHL
3502

AUSFUHRUNG DES DECODIERTEN BEFEHLS MIT EINER
AUSFUHRUNGSEINHEIT DES KERNS DES PROZESSORS
ZUR DURCHFUHRUNG EINER ERSTEN OPERATION
3504

l

EMPFANGEN EINER EINGABE EINES DATENFLUSS-
GRAPHEN, UMFASS%{I}I(%MEHRERE KNOTEN

UBERLAGERN DES DATENFLUSSGRAPHEN IN
MEHRERE VERARBEITUNGSELEMENTE DES
PROZESSORS UND EINES ZWISCHEN-
VERBINDUNGSNETZES ZWISCHEN DEN MEHREREN
VERARBEIMTUNGSELEMENTEN DES PROZESSORS

WOBEI JEDER KNOTEN REPRASENTIERT IST ALS
DATENFLUSSOPERATOR IN DEN MEHREREN
VERARBEITU?&)%ELEMENTEN

DURCHFUHRUNG EINER ZWEITEN OPERATION DES
DATENFLUSSGRAPHEN MIT DEM ZWISCHEN-
VERBINDUNGSNETZ UND DEN MEHREREN
VERARBEITUNGSELEMENTEN, WENN EIN EINGEHENDER
OPERANDENSATZ AN DEN MEHREREN VERARBEITUNGS-
ELEMENEEI;IOEINGEHT

FIG. 35

119/134

2019.02.21

DE 10 2018 005 216 A1

T T T ==T" — \ e Sron
7 | om | B | g% | mw OPG%E _ P9E % | me
“om&% a0 ..szmwm“mm B! - SOV T xﬁm%_mw e mmmo@mN 3500 | %%lj
_ _ 089€
_ _ _ 9¥HOJNAL
I o 1HOIN 33HONZ8FHOI3dS
zzee | o | EE | 8e9% | e 759 7P9e % | me
R = NS e N el e 5o FHOES L = R RN
_ _ %mwmﬁm, ¢! 7% WYHOdN3L Gz
_ | S3MNH | MONZUHOTdS 44MonZ
e 823%&_ RETRERS
vy 4)
a% 1 uE | BF G7GE IVEE wE | 7% | mw
e T o= | = %&W 55 Lol 03
BLUANY deabid “Nalvd SNWVHINIYO | fgiva)3 _/@t i T | NG - o4
S s e
—_— 8Go€ — | _
I — a4, % | ' —T T
2 N SNOLY3dol G134 | T VOPOE | W | TE | G
site) du R O T e B B L B
| TN Feakiod “Nalva R Ve N Nl N R 6 e |
RS “ D e | | _ .n_o&a@Emﬁlwwsz%%o> L
S3HOITANNIYIHO LMIA I S '4449NZ4H X
ST | ! _ | | 44NON2FHOB S N3 055
— -)
— %% | 8% | o= | 7 | o
ReEqmEze | R | om | ¥E | OO | B mﬂwml_ .
— AW _INISOVDY Ao 230N FSNOUYERd0] - wwiios| V9€ 014
059 Q134NOLLIIOSNOLLY INFWONY W35934] SISV il
4

/9 0734-300340-11N4

120/134

2019.02.21

DE 10 2018 005 216 A1

¥£9€ Q733-3003d0- 11N

[=== ——-— = s ~N o
s | — | ~— 00903 rmom | == Th%E
| % | 0% gooce | g | 965%€ | BLSSE ¢ | 889%¢
TR T ae e AN I el Bt 2sSy ey, & [snoliao
| BLUANN [E Kz uwmm\,.__%:s_m AODE [avols| -80S | 35SV 3OS | -y3fgiozy| ~ SOVE | LS|
_ L _ _ . 1€ 0cse
_ _ _ | I | HOYHOYdSW OZ HOdS 44Monz
_ I | _ " “43HO13dS
| | [| I |
_ I _ _ _
| | I | I _
_ [I | | _
| I _ |
I I | I |
TR | el G oo | %;xfégm) 7% | 5% ||
B4), QR —— T [i [| S vl
_Imm_s_z: F2H) HODEA |32SA} G3uH0S | 35V NS5 -u3lsioqu| T Sva | 104
_ , | _ | ZI%E 'd0-dAL3ZN
_ k _ “4979uLS W JHONZIFHOIFAS NI
I~ =T = vok ¥ - Yoo 7 Y vorse 7o
e | 0E Voo | ¢ [02s% 03| megee || wonse %
“.em&é i ————{ ool R0l e 258y Bl X |svolado VR0
) BLUANN 33 -SONNANNY | INY § -813HOS NS¥) ¥3LS103| -Sisve
009 Jpm— _ [ZISE dO dAL"9YLS z
VA0 3338 _ V9.5 | | _ Ny NTLHOHHOS WHOZHOAS &m_.mwma
SHOIANNFHHO LA | sy _ | ! LIS
SINSNIOTV ! | d _ ; _ N
C [L ;
—ll — — — — — + re—— = —
— e | —1 — & | 2% | 50 = |
| % | % 8e9%e 76013 or%€ 420 BT :
| 3 | S, e R Ki? kel IR) LJB8 | 2 bsvalviadd]. 89t Ol
| BLUANN fgiin A3 [165 013101 VH3dOSNOLLY INSNONY GTRE] M 1A%0

121/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 37A) MOD RIM-BYTE SIB-BYTE
EVEX PRAFIX 3702 —— 7 65 32 0 7_65 3
DATENELEMENT- KLASSEN- MOD| REG | RM S R 33735%
BRETENFELD 3664 Fgyp 3668 REX' 3710 | 3742 3144 | 3746 3752 =0s | 408
REX' 3710 BETA- \VERSCHIEBUNGSFELD 3662A
l FELD, 3654 ([| (DISP32 IF MOD=10)
- l_ 2 | ___
1 0x62 YRIX[B[RTMMMMIW[V VIVIVIU[P [P [B[RV IKIKIK Y Y I [V Y [YTYIY MO R Ji i oy Oy GO “inimg™ |
X)\ | () L_ 1
| REX OPCODE- | VWWW-FELD 3720 REAL-OPCODE-FELD! 5748 | 5784 | b s52
. 3705 KARTE ~ 3730 ' ‘ : '
FORMAT: ALPHAFELD —o>—
FELD 3640 s . 3652 .. SCHREB- VERSCHIEBUNGSFAKTORFELD 36628 (DISP8*N,
PRAFIX- MASKENFELD WHEN MOD=01). WIRD ALS DISP8 * N BEZEICHNET,
CODIERUNGS- 3670 ENTHALT JEDOCH NUR DEN VERSCHIEBUNGSFAKTOR,
FELD 3725 DER MIT N MULTIPLIZIERT WIRD

SPEZIFI§)HES VEKTORFREUNDLICHES BEFEHLSFORMAT 3700

122/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 37B FULL-OPCODE-FELD 3674
FORMATFELD OPCODE-KARTE 3715

3640 DATENELEMENT-
BREITENFELD 3664

(ox62 [P[P

PRAFIX- BASISOPERATIONS-
CODIERUNGS- FELD 3642
FELD 3725 REAL-OPCODE-FELD 3730

123/134

DE 10 2018 005 216 A1 2019.02.21

FIG. 37C

REGISTERINDEXFELD 3644

R{X|BIR] [V REG | RM VIVIVIV

XXX

BBB

;_Y__J

REX REX' %24 %25 VWW-FELD 1/2754 V37756

3705 3710 3720

124/134

DE 10 2018 005 216 A1

2019.02.21

KLASSENFELD ALPHAFELD

FIG. 37D 368 3652 /\BETAFELD 3654
AUGMENTATIONSOPERATIONSFELD 3650 “ S[CTET]
RS. MOD-FELD 3742
FELD 3652A [a|B|B|B 1 re LC BIB[B
RUNDUNG T T 1] T FELD 3652A | , | |
RUNDUNGSOPERATIONSFELD 3658 FORMATION

RUNDUNGSSTEUERFELD 3654A

DATEN-
3652A.2 1RANSFORMATIONS-

FELD 36548

MOD-FELD 3742

BBOO

ODER

01 |0DER} 10

RAUMUNGS-
HINWEISFELD

51150

36528 —

ECER

LU

56@
AT R Y
D,/D DLD,

"t g
36628

DATENMANIPULATIONSFELD 3654C

SCHREIB-
MASKEN-
STEUERFELD

3652C \E
ZUSAMMEN-
LEGEN \[0:

B1B]B
1

L1
ri|fo

;Y_J

RUNDUNGS-
OPERATIONS-
FELD 3659A

\ RL-
™ FELD 4
L 3657A |
1iRUNDUNq

3657A.1)

MOD-FELD 3742

11

(-
| LANG

NULLEN \E

g S o~

LANGENFELD 36598

N RL-
FELD
3657A

B
|

- a4 TO
[en] b =2

L1

—
(=

VSIZE
3657A.2

VEKTOR-
ENFELD 36598

MOD-FELD 3742

00 PDER

01

ODER| 1

0

BROADCAST-FELD 36578

125/134

2019.02.21

DE 10 2018 005 216 A1

8¢ 'Ol

2

0

S118 %9
§18¢ HILSIOFUNINSYNEIFUHIS

0S8€ 131V LSIO3Y
JHOV1d "INI 3IMOVd3O
XN m\.,_._m ¥9

ONISVITY

Y
s11g9 08
{d428X)
SY8€ 131¥AY3LSIOTHT1IdVLS-d4 IHY VNS

Wz
S118952

(119 821)

Shiwwx | SHwwA

owIX owwA OWIWZ
\ v

sLgzls
018€ ¥ILSIOTHHO YA
S118 %9 X 9}
SZ8E ¥ILSIOTUNIIMZTIV

08€ YNLAILIHOHYEILSIOFY

126/134

2019.02.21

DE 10 2018 005 216 A1

306 763 —
B | LaesrovonaLva | G76E LG
-IHOVO21 766 “d3HOdS
LIFHNE-G1LELYD
, 09BE ¥3LSNT10SONNYHNSNY
$96E —
T95E
NN EEENE
“3HOBEdS -SONNYHNSSMV
A A
_ T
|
BG6E (N3) LIBHNISISLY QY3 LSIO 38 FHOSIS AHd “
- I A { = .
F T == === - pe6E LBHNE |
I 956¢ (N3)LBHNIZ-YINVd LD s | g6¢ ‘Ol
-— s e e e P — —III VIV
F———== === - } 056¢
| sonnSE2 SONTINENIEAN LI3HNIZ-SNIONS
e S S ST - -SONHHNASNY
— 0€6€
+
_ 8EGE JNuEvS HIZg] (/
e . 086€ Ny
GEBE LBHNIF- 8115 TH338 NS i
[FeeE LaHNE3Hovos e 8 “SONNDIIMZAZA
| = 816¢ — T I T
bc6e <cee N3IZEHOS — p16€ == T | o — S —
| N3giyH0s |oNnaYHOWVH | i3HOEAS 9i6e NBsImHomas| EH¢ ol | 806t | oG a6
A _ ONNY¥3100030 .
1534 | 3y | NGEESDS NISHHNASTY | ngsamasomy] NNV zmzzmzmms_:“ sz |vasanoosgPN 0030 ey
| [2 —— = —_———— — -

V6¢ Ol

006€ INM3dd ~—

127/134

2019.02.21

DE 10 2018 005 216 A1

gao0v 'OId

v900¥
JHOVONILVA-11

) J

accov Yoy
ONNTANVMAN ONNTANYMAN
JHOSIHAWNN JHOSIHINNN
A
14%0) 4
d3LSI9FHH0 AN
A
Y ¥ 1 4
0cot aov
NITZZIMS NIH3IZINd3d
Yy v ¥ h J
8c0t

NV JO1IM3IA 311349-91

A

9¢0v
YA LSIOFUNIASYWGITHHIS

vov "Old

AIIMZLINONIY

¢00t

A

y

3JHOVO-¢1S3d
Z1YSHIINN ¥IIWAO0T

v00t

F

 J

JHOVI-11

900V

Y10t
d31S193Y
-0 3N

A4
43181939

3

Y

-43'TWAS
4

v

0LO¥
1IFHNIE
-HJOIM3A

i

3

y

8007
1I3HNI3
-SONNHAITYNS

Y

F

0007
ONNY3IA003ASTHI438

128/134

2019.02.21

DE 10 2018 005 216 A1

ollY
(N3) LI3HNIT
-SONNY3ANILSSNE

|
|
|
_
_

T
(N3)LI3HNIZ
-SONNY3INILS

-43HII3dS
3143493 INI

0Li¥
1I3HNIINTLNJOV
-W3LSAS

901% (N3) LIAHNIFIHOYD
31Z1NNIO WYSNIFWNID

_
INALEHNT |-
| -3HOVD |

—— o |

NZOlY Ny3x |

Va0l Nd3IM

HNOAMZTVIZ3dS)

— — . o— nad

_
“ 80LY MIO0T |
_

N

00L¥
d0SS3704d

129/134

DE 10 2018 005 216 A1 2019.02.21

4215
4200 \ -—— 17
— 4210

| ==A
r I‘_: — PRozESSOR [— — T
| — /4295|
4245 | 1ot
o I_/; STEUERUNGS- <
co. HUB 4220 SPEICHER
b —1_
| ProzESSOR " oo 29 r
' | I KOMPILIERER-
| MODUL
4260 4240A
— |_ L 4240A
Io , |OH 2250 |
|
| |

FIG. 42

130/134

2019.02.21

DE 10 2018 005 216 A1

AADE

o | Mawa ||
ann 3doo NIONNLHORHOA SNYW
ONNYIHOIFASNILYA L2ty ~INWOX ¢eeY —1 syn1visSyL
_. 0zey J F .__—
SIer veer 7ieh gIey
¥0S$S370¥d oA 01Ny NIONN LHOSOA-OA anonxuasng
orgy I : |
96ey —1 M | zeey —1 T
g6cy — dd 06€% ZLYSdIHO Add L geey | ¥0S$3204d09)
Veer — —
pED 266y
— —— _ _
0%ch dd| |dd d-d dd Vi
9gch —) 88eY — \ \ L 9/€Y
8.8y
05Ey
— 285V Ly —7
NI NI
peey Zeey
H3HOI3dS Y3HOI34S
M0SSIZONAOD
/¥0SSIZ0Nd ¥0$$3Z0¥d

4/ 00EY

131/134

2019.02.21

DE 10 2018 005 216 A1

by Ol

veey
43HIIAdS

PeEY
43HIIAdS

Sivy on
3131 TvH3A
06EY 96y —1
Z1YSdIHD
gecy —| d-d yoey —1 d=d
ySEY l\» « Z5EY |\» «
-—p
08Sh dd d-d d-d dd 0cv
98e7 — ggeyy — \ o Lo
8.EY
05EY
— 795 TN —
10 10
¥0S53Z0¥d ¥0SS370¥d
o ww |
NIONNLHORHON

01

e

/ 00y

132/134

2019.02.21

DE 10 2018 005 216 A1

Sy Ol

_ — vy
obSY a3 0ESt (NJ)LI3HNIZ
113HNE LEHNEYING 1I3HNI3 -SONNYINILS
-3913ZNv -NYHS -43HOI3dS
EIRE N REIY]
9Ly
(N3) LI3HNI3
-SONNYAN3LSSNY 0St (N3).LIIHNIISONNANIGYIANTHOSIMZ
T T T T T T l_
_ 901% (N3) LIFHNIZIHOV? _
_ 31Z1NN3O WYSNIFWIO
=T~~~
[} NvOlw] Vi0lY
o | [e | i
1I3HNIEANIINIOV 22 “
WALSAS | Wzory vy | YZ0Ly N3
01Gt ¥OSSIZOYdSONNANIMNY

025t (N2)H0SSIZ0Yd0D

/ 00SY

diHO W3ANIZ 4NV W3LSAS

133/134

2019.02.21

DE 10 2018 005 216 A1

9% Old

c09t
JHOVHdSHOOH

8091
4393NIdNOM
-Z1YSSTH3439
HIALYNYILTY

YooY
d3431NIdINOM-98X

909t 3A0O0HYNIF-98X

cloy
JITANYMNIN
-STH3438

0lL8Y

3000yNIg
-Z1¥SSTH3438
JUYMLLOS NER YNETRY
F JYYMAHVH
979 NYIY-ZLYSSTHI4ag 719% N¥IH-ZLYSSTHI43g
-98X N3NI3 SNILSIANIN -98X INHO ¥OSS3Z0Nd
LI ¥0SSIZ0¥d

134/134

	Titelseite
	Beschreibung
	Ansprüche
	Anhängende Zeichnungen

