
(19) *DE102018005216A120190221*

(10) DE 10 2018 005 216 A1 2019.02.21

(12) Offenlegungsschrift

(21) Aktenzeichen: 10 2018 005 216.9
(22) Anmeldetag: 29.06.2018
(43) Offenlegungstag: 21.02.2019

(51) Int Cl.: G06F 9/30 (2018.01)

(30) Unionspriorität:
15/640,533 01.07.2017 US

(71) Anmelder:
INTEL CORPORATION, Santa Clara, Calif., US

(74) Vertreter:
Samson & Partner Patentanwälte mbB, 80538
München, DE

(72) Erfinder:
Fleming, Kermin, Hudson, Mass., US; Glossop,
Kent, Nashua, N.H., US; Steely, Simon C. Jr.,
Hudson, N.H., US; Sury, Samantika S., Westford,
Mass., US

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

(54) Bezeichnung: Prozessoren, Verfahren und Systeme für einen konfigurierbaren, räumlichen Beschleuniger mit
Transaktions- und Wiederholungsmerkmalen

(57) Zusammenfassung: Es werden Systeme, Verfahren
und Vorrichtungen bezüglich eines konfigurierbaren räumli-
chen Beschleunigers beschrieben. In einer Ausführungsform
weist ein Prozessor mehrere Verarbeitungselemente auf;
und ein Zwischenverbindungsnetz zwischen den mehreren
Verarbeitungselementen zum Empfangen einer Eingabe ei-
nes Datenflussgraphen, der mehrere Knoten umfasst, wobei
der Datenflussgraph in das Zwischenverbindungsnetz und
die mehreren Verarbeitungselemente zu überlagern, wobei
jeder Knoten als ein Datenflussoperator in den mehreren
Verarbeitungselementen repräsentiert ist, und die mehreren
Verarbeitungselemente eine atomare Operation durchzufüh-
ren haben, wenn ein eingehender Operand bei den mehre-
ren Verarbeitungselementen eingeht.



DE 10 2018 005 216 A1    2019.02.21

2/134

Beschreibung

AUSSAGE BEZÜGLICH DER STAATLICH GEFÖRDERTEN FORSCHUNG UND ENTWICKLUNG

[0001] Diese Erfindung wurde mit Unterstützung der Regierung unter Vertragsnummer H98230A-13-D-0124,
verliehen vom Ministerium für Verteidigung, erstellt. Die Regierung besitzt gewisse Rechte auf diese Erfindung.

TECHNISCHES GEBIET

[0002] Die Offenbarung betrifft allgemein Elektronik, und spezifischer betrifft eine Ausführungsform der Offen-
barung einen konfigurierbaren räumlichen Beschleuniger.

Hintergrund

[0003] Ein Prozessor oder Satz von Prozessoren führt Befehle aus einem Befehlssatz aus, z. B. der Befehls-
satzarchitektur (ISA). Der Befehlssatz ist Teil der Rechnerarchitektur bezüglich der Programmierung und be-
inhaltet im Allgemeinen die nativen Datentypen, Befehle, Registerarchitektur, Adressiermodi, Speicherarchi-
tektur, Interrupt- und Ausnahmehandhabung und externe Eingabe und Ausgabe (I/O) auf. Es sei angemerkt,
dass sich der Begriff Befehl hierin auf einen Makrobefehl, z. B. einen Befehl, der dem Prozessor zur Ausfüh-
rung bereitgestellt wird, oder auf einen Mikrobefehl, z. B. einen Befehl, der aus einem Prozessor-Decodierer
resultiert, der Makrobefehle decodiert, beziehen kann.

Figurenliste

[0004] Die vorliegende Offenbarung ist beispielhaft und nicht einschränkend in den Figuren der beigefügten
Zeichnungen veranschaulicht, in denen ähnliche Bezugszeichen ähnliche Elemente angeben und in denen
zeigen:

Fig. 1 veranschaulicht eine Beschleuniger-Kachel gemäß Ausführungsformen der Offenbarung;

Fig. 2 veranschaulicht einen Hardware-Prozessor, der mit einem Speicher gekoppelt ist, gemäß Ausfüh-
rungsformen der Offenbarung;

Fig. 3A veranschaulicht eine Programmquelle gemäß Ausführungsformen der Offenbarung;

Fig. 3B veranschaulicht einen Datenflussgraphen für die Programmquelle aus Fig. 3A gemäß Ausfüh-
rungsformen der Offenbarung;

Fig. 3C veranschaulicht einen Beschleuniger mit mehreren Verarbeitungselementen, die zum Ausführen
des Datenflussgraphen aus Fig. 3B gemäß Ausführungsformen der Offenbarung konfiguriert ist;

Fig. 4 veranschaulicht eine beispielhafte Ausführung des Datenflussgraphen gemäß Ausführungsformen
der Offenbarung;

Fig. 5 veranschaulicht eine Programmquelle gemäß Ausführungsformen der Offenbarung;

Fig. 6 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen ge-
mäß Ausführungsformen der Offenbarung;

Fig. 7A veranschaulicht ein konfigurierbares Datenpfad-Netzwerk gemäß Ausführungsformen der Offen-
barung;

Fig. 7B veranschaulicht ein konfigurierbares Flusssteuerpfad-Netzwerk gemäß Ausführungsformen der
Offenbarung;

Fig. 8 veranschaulicht eine Hardware-Prozessor-Kachel, umfassend einen Beschleuniger gemäß Aus-
führungsformen der Offenbarung;

Fig. 9 veranschaulicht ein Verarbeitungselement gemäß Ausführungsformen der Offenbarung;

Fig. 10 veranschaulicht eine Abfrage-Adressdatei (RAF)-Schaltung gemäß Ausführungsformen der Of-
fenbarung;

Fig. 11A veranschaulicht mehrere Abfrage-Adressdatei (RAF)-Schaltungen, die zwischen mehreren Be-
schleuniger-Kacheln und mehreren Cache-Bänken gemäß Ausführungsformen der Offenbarung gekop-
pelt sind;



DE 10 2018 005 216 A1    2019.02.21

3/134

Fig. 11B veranschaulicht einen Transaktionsmechanismus, in dem Cache-Zeilen mit Informationen über
die Quelle eines Lese- oder Schreibzugriffs markiert sind, gemäß Ausführungsformen der Offenbarung.

Fig. 11C bis Fig. 11J veranschaulicht eine Unterstützung für Backup und Wiederholung unter Verwendung
von Epochen im Cache-/Speicheruntersystem gemäß Ausführungsformen der Offenbarung.

Fig. 12 veranschaulicht einen Gleitkomma-Multiplizierer, der in drei Gebiete (Ergebnisgebiet, drei poten-
tielle Übertraggebiete und Gebiet mit Gate) gemäß Ausführungsformen der Offenbarung unterteilt ist;

Fig. 13 veranschaulicht eine In-Flight-Beschleunigerkonfiguration mit mehreren Verarbeitungselementen
gemäß Ausführungsformen der Offenbarung;

Fig. 14 veranschaulicht einen Speicherauszug einer zeitverschachtelten In-Flight-Extraktion gemäß Aus-
führungsformen der Offenbarung;

Fig. 15 veranschaulicht eine Kompilationstoolkette für einen Beschleuniger gemäß Ausführungsformen
der Offenbarung;

Fig. 16 veranschaulicht einen Kompilierer für einen Beschleuniger gemäß Ausführungsformen der Offen-
barung;

Fig. 17A veranschaulicht einen sequentiellen Assembliercode gemäß Ausführungsformen der Offenba-
rung;

Fig. 17B veranschaulicht einen Datenfluss-Assembliercode für den sequentiellen Assembliercode aus
Fig. 17A gemäß Ausführungsformen der Offenbarung;

Fig. 17C veranschaulicht einen Datenflussgraph für den Datenfluss-Assembliercode aus Fig. 17B für
einen Beschleuniger gemäß Ausführungsformen der Offenbarung;

Fig. 18A veranschaulicht einen C-Quellcode gemäß Ausführungsformen der Offenbarung;

Fig. 18B veranschaulicht einen Datenfluss-Assembliercode für den C-Quellcode aus Fig. 18A gemäß
Ausführungsformen der Offenbarung;

Fig. 18C veranschaulicht einen Datenflussgraphen für den Datenfluss-Assembliercode aus Fig. 18B für
einen Beschleuniger gemäß Ausführungsformen der Offenbarung;

Fig. 19A veranschaulicht einen C-Quellcode gemäß Ausführungsformen der Offenbarung;

Fig. 19B veranschaulicht einen Datenfluss-Assembliercode für den C-Quellcode aus Fig. 19A gemäß
Ausführungsformen der Offenbarung;

Fig. 19C veranschaulicht einen Datenflussgraphen für den Datenfluss-Assembliercode aus Fig. 19B für
einen Beschleuniger gemäß Ausführungsformen der Offenbarung;

Fig. 20A veranschaulicht ein Flussdiagramm gemäß Ausführungsformen der Offenbarung;

Fig. 20B veranschaulicht ein Flussdiagramm gemäß Ausführungsformen der Offenbarung;

Fig. 21 veranschaulicht einen Durchlaufsgraphen gegenüber der Energie pro Operation gemäß Ausfüh-
rungsformen der Offenbarung;

Fig. 22 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine lokale Konfigurationssteuerung gemäß Ausführungsformen der Offenbarung;

Fig. 23A-23C veranschaulicht eine lokale Konfigurationssteuerung, die ein Datenpfad-Netzwerk konfigu-
riert, gemäß Ausführungsformen der Offenbarung;

Fig. 24 veranschaulicht eine Konfigurationssteuerung gemäß Ausführungsformen der Offenbarung;

Fig. 25 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen,
ein Konfigurations-Cache und eine lokale Konfigurationssteuerung gemäß Ausführungsformen der Offen-
barung;

Fig. 26 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine Konfigurations- und Ausnahmehandhabungssteuerung mit einer Rekonfigurationsschaltung ge-
mäß Ausführungsformen der Offenbarung;

Fig. 27 veranschaulicht eine Rekonfigurationsschaltung gemäß Ausführungsformen der Offenbarung;



DE 10 2018 005 216 A1    2019.02.21

4/134

Fig. 28 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine Konfigurations- und Ausnahmehandhabungssteuerung mit einer Rekonfigurationsschaltung ge-
mäß Ausführungsformen der Offenbarung;

Fig. 29 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und einen Mezzanine-Ausnahmeaggregator, der mit einem Kachel-Level-Ausnahmeaggregator gemäß
Ausführungsformen der Offenbarung gekoppelt ist;

Fig. 30 veranschaulicht ein Verarbeitungselement mit einem Ausnahmegenerator gemäß Ausführungs-
formen der Offenbarung;

Fig. 31 veranschaulicht eine Beschleuniger-Kachel, umfassend ein Array von Verarbeitungselementen
und eine lokale Extraktionssteuerung gemäß Ausführungsformen der Offenbarung;

Fig. 32A-32C veranschaulicht eine lokale Extraktionssteuerung, die ein Datenpfad-Netzwerk konfiguriert,
gemäß Ausführungsformen der Offenbarung;

Fig. 33 veranschaulicht eine Extraktionssteuerung gemäß Ausführungsformen der Offenbarung;

Fig. 34 veranschaulicht ein Flussdiagramm gemäß Ausführungsformen der Offenbarung;

Fig. 35 veranschaulicht ein Flussdiagramm gemäß Ausführungsformen der Offenbarung;

Fig. 36A ist ein Blockdiagramm, das ein allgemeines vektorfreundliches Befehlsformat und Klasse-A-
Befehlstemplates gemäß Ausführungsformen der Offenbarung veranschaulicht;

Fig. 36B ist ein Blockdiagramm, welches das allgemeine vektorfreundliche Befehlsformat und Klasse-B-
Befehlstemplates davon gemäß Ausführungsformen der Offenbarung veranschaulicht;

Fig. 37A ist ein Blockdiagramm, das Felder für die allgemeinen vektorfreundlichen Befehlsformate in
Fig. 36A und Fig. 36B gemäß Ausführungsformen der Offenbarung veranschaulicht;

Fig. 37B ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats aus
Fig. 37A veranschaulicht, das ein Full-Opcode-Feld gemäß einer Ausführungsform der Offenbarung bil-
det;

Fig. 37C ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats aus
Fig. 37A veranschaulicht, das ein Registerindex-Feld gemäß einer Ausführungsform der Offenbarung
bildet;

Fig. 37D ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats aus
Fig. 37A veranschaulicht, das ein Augmentationsoperationsfeld 3650 gemäß einer Ausführungsform der
Offenbarung bildet;

Fig. 38 ist ein Blockdiagramm einer Registerarchitektur gemäß einer Ausführungsform der Offenbarung;

Fig. 39A ist ein Blockdiagramm, das sowohl eine beispielhafte In-Reihenfolge-Pipeline als auch eine bei-
spielhafte Außer-Reihenfolge-Ausgabe/Ausführungspipeline mit Registerumbenennung gemäß Ausfüh-
rungsformen der Offenbarung veranschaulicht;

Fig. 39B ist ein Blockdiagramm, das sowohl ein Ausführungsbeispiel eines In-Reihenfolge-Architektur-
kerns als auch einen beispielhaften Außer-Reihenfolge-Ausgabe/Ausführungsarchitekturkem, der in ei-
nen Prozessor aufzunehmen ist, gemäß Ausführungsformen der Offenbarung veranschaulicht;

Fig. 40A ist ein Blockdiagramm eines einzelnen Prozessorkerns zusammen mit seiner Verbindung mit
On-Die-Zwischenverbindungsnetzen und mit seinem lokalen Level 2 (L2) -Cacheuntersatz gemäß Aus-
führungsformen der Offenbarung;

Fig. 40B ist eine auseinander gezogene Ansicht des Teils des Prozessorkerns aus Fig. 40A gemäß
Ausführungsformen der Offenbarung;

Fig. 41 ist ein Blockdiagramm eines Prozessors, der mehr als einen Kern aufweisen kann, eine integrierte
Speichersteuerung aufweisen kann und der eine integrierte Grafik gemäß Ausführungsformen der Offen-
barung aufweisen kann;

Fig. 42 ist ein Blockdiagramm eines Systems gemäß einer Ausführungsform der vorliegenden Offenba-
rung;

Fig. 43 ist ein Blockdiagramm eines spezifischeren beispielhaften Systems gemäß einer Ausführungsform
der vorliegenden Offenbarung;



DE 10 2018 005 216 A1    2019.02.21

5/134

Fig. 44 zeigt ein Blockdiagramm eines zweiten spezifischeren beispielhaften Systems gemäß einer Aus-
führungsform der vorliegenden Offenbarung;

Fig. 45 zeigt ein Blockdiagramm eines SoC (System-on-Chip) gemäß einer Ausführungsform der vorlie-
genden Offenbarung;

Fig. 46 ist ein Blockdiagramm, das die Verwendung eines Softwarebefehlumwandlers zum Umwandeln
von binären Befehlen in einem Quellbefehlssatz zu binären Befehlen in einem Zielbefehlssatz gemäß
Ausführungsformen der Offenbarung kontrastiert.

AUSFÜHRLICHE BESCHREIBUNG

[0005] In der folgenden Beschreibung sind zahlreiche spezielle Details dargelegt. Es versteht sich jedoch,
dass Ausführungsformen der Offenbarung ohne diese spezifischen Details in die Praxis umgesetzt werden
können. In anderen Fällen wurden hinlänglich bekannte Schaltungen, Strukturen und Techniken nicht im Detail
gezeigt, um das Verständnis dieser Beschreibung nicht zu verschleiern.

[0006] Bezugnahmen in der Beschreibung auf „eine Ausführungsform“, „Ausführungsform“, „ein Ausführungs-
beispiel“ usw. geben an, dass die beschriebene Ausführungsform ein bestimmtes Merkmal, eine bestimmte
Struktur oder ein bestimmtes Charakteristikum aufweisen kann, wobei allerdings nicht jede Ausführungsform
dieses bestimmte Merkmal, diese bestimmte Struktur oder dieses bestimmte Charakteristikum notwendiger-
weise aufweist. Darüber hinaus beziehen sich derartige Formulierungen nicht notwendigerweise auf dieselbe
Ausführungsform. Wenn ein bestimmtes Merkmal, eine bestimmte Struktur oder ein bestimmtes Charakteris-
tikum in Verbindung mit einer Ausführungsform beschrieben wird, wird außerdem angenommen, dass es im
Kenntnisbereich eines Fachmannes liegt, auf ein derartiges Merkmal, eine derartige Struktur oder ein derarti-
ges Charakteristikum in Verbindung mit anderen Ausführungsformen einzuwirken, ob es nun explizit beschrie-
ben wurde oder nicht.

[0007] Ein Prozessor (z. B. mit einem oder mehreren Kernen) kann Befehle ausführen (z. B. einen Thread
von Befehlen), um Daten zu bearbeiten, um beispielsweise arithmetische, logische oder andere Funktionen
durchzuführen. Zum Beispiel kann Software eine Operation anfordern, und ein Hardware-Prozessor (z. B. ein
Kern oder Kerne davon) kann die Operation als Reaktion auf die Anfrage durchführen. Ein nicht einschränken-
des Beispiel für eine Operation ist eine Mischoperation, um mehrere Vektorelemente einzugeben und einen
Vektor mit mehreren Mischelementen auszugeben. In bestimmten Ausführungsformen wird eine Vielzahl von
Operationen mit der Ausführung eines einzelnen Befehls erreicht.

[0008] Exascale-Leistung, z. B. wie vom Ministerium für Energie definiert, kann erfordern, dass die Gleitkom-
ma-Punktleistung auf Systemebene 10^18 Gleitkomma-Operationen pro Sekunde (exaFLOPs) oder mehr in-
nerhalb eines vorgegebenen (z. B. 20 MW) Leistungsbudgets übersteigt. Bestimmte Ausführungsformen hierin
sind auf einen konfigurierbaren räumlichen Beschleuniger (CSA - Configurable Spatial Accelerator) gerichtet,
der auf Hochleistungsrechnen (HPC - High Performance Computing) abzielt. Bestimmte Ausführungsformen
eines CSA zielen auf die direkte Ausführung eines Datenflussgraphen ab, um eine rechenintensive, jedoch
energieeffiziente räumliche Mikroarchitektur zu erhalten, die herkömmliche Roadmap-Architekturen weit über-
steigt. Im Folgenden wird eine Beschreibung der Architekturphilosophie von Ausführungsformen eines CSA
und bestimmter Merkmale davon gegeben. Wie bei jeder revolutionären Architektur kann die Programmierbar-
keit ein Risiko darstellen. Zur Abschwächung dieses Problems wurden Ausführungsformen der CSA-Architek-
tur zusammen mit einer Kompilier-Toolkette ausgestaltet, die ebenfalls unten erläutert wird.

EINLEITUNG

[0009] Exascale-Rechenziele können eine enorme Gleitkommaleistung auf Systemebene (z. B. 1 ExaFLOPs)
innerhalb eines aggressiven Leistungsbudgets (z. B. 20 MW) erfordern. Die gleichzeitige Verbesserung der
Leistung und Energieeffizienz der Programmausführung mit klassischen von Neumann-Architekturen ist jedoch
schwierig geworden: Außer-Reihenfolge-Planung, simultanes Multithreading, komplexe Registerdateien und
andere Strukturen stellen Leistung bereit, jedoch mit hohen Energiekosten. Bestimmte Ausführungsformen
hierin erreichen gleichzeitig die Leistungs- und Energieanforderungen. Exascale-Rechenenergie-Leistungszie-
le können sowohl einen hohen Durchlauf als auch einen geringen Energieverbrauch pro Operation erfordern.
Bestimmte Ausführungsformen hierin stellen dies bereit, indem sie eine große Anzahl von niederkomplexen,
energieeffizienten Verarbeitungs- (z. B. Rechen-) Elementen bereitstellen, die den Steuerungsaufwand bis-
heriger Prozessorausgestaltungen weitgehend beseitigt. Geleitet von dieser Beobachtung weisen bestimmte
Ausführungsformen hierin einen konfigurierbaren räumlichen Beschleuniger (CSA) auf, der z. B. ein Array aus



DE 10 2018 005 216 A1    2019.02.21

6/134

Verarbeitungselementen (PEs) umfasst, die durch einen Satz von leichtgewichtigen Gegendrucknetzwerken
verbunden werden. Ein Beispiel für eine CSA-Kachel ist in Fig. 1 dargestellt. Bestimmte Ausführungsformen
von Verarbeitungselementen (z. B. Rechenelementen) sind Datenflussoperatoren, z. B. eine Vielzahl von Da-
tenflussoperatoren, die nur Eingabedaten verarbeiten, wenn sowohl (i) die Eingabedaten beim Datenflussope-
rator eingegangen sind und (ii) Speicherplatz zum Speichern der Ausgabedaten verfügbar ist, weil z. B. an-
derenfalls keine Verarbeitung erfolgt. Bestimmte Ausführungsformen (z. B. eines Beschleunigers oder CSA)
benutzen keinen getriggerten Befehl.

[0010] Fig. 1 veranschaulicht eine Beschleuniger-Kachel 100 gemäß Ausführungsformen der Offenbarung.
Die Beschleuniger-Kachel 100 kann ein Abschnitt einer größeren Kachel sein. Die Beschleuniger-Kachel 100
führt einen oder mehrere Datenflussgraphen aus. Ein Datenflussgraph kann sich im Allgemeinen auf eine ex-
plizit parallele Programmbeschreibung beziehen, die bei der Kompilierung von sequentiellen Codes entsteht.
Bestimmte Ausführungsformen hierin (z. B. CSAs) ermöglichen, dass Datenflussgraphen direkt auf dem CSA-
Array konfiguriert werden, z. B. anstatt in sequentielle Befehlsströme umgewandelt zu werden. Die Ableitung
eines Datenflussgraphen aus einem sequentiellen Kompilierungsfluss ermöglicht es Ausführungsformen ei-
nes CSA, bekannte Programmiermodelle zu unterstützen und (z. B. ohne Verwendung einer Arbeitstabelle) ei-
nen existierenden Hochleistungsrechencode (HPC) direkt auszuführen. Die CSA-Verarbeitungselemente (PE)
können energieeffizient sein. In Fig. 1 kann die Speicherschnittstelle 102 mit einem Speicher (z. B. Speicher
202 in Fig. 2) gekoppelt sein, um es der Beschleuniger-Kachel 100 zu ermöglichen, auf Daten des Speichers
(z. B. Off-Die) zuzugreifen (z. B. diese zu laden und/oder zu speichern). Die dargestellte Beschleuniger-Kachel
100 ist ein heterogenes Array, das aus verschiedenen Arten von PEs besteht, die über ein Zwischenverbin-
dungsnetz 104 miteinander gekoppelt sind. Die Beschleuniger-Kachel 100 kann eine oder mehr ganzzahlige
arithmetische PEs, arithmetische Gleitkomma-PEs, Kommunikationsschaltkreise und in-Struktur-Speicher auf-
weisen. Die Datenflussgraphen (z. B. kompilierte Datenflussgraphen) können die Beschleuniger-Kachel 100
für die Ausführung überlagern. In einer Ausführungsform handhabt für einen bestimmten Datenflussgraphen
jede PE nur eine oder zwei Operationen des Graphen. Das PE-Array kann heterogen sein, z. B. derart, dass
kein PE die volle CSA-Datenflussarchitektur unterstützt und/oder eine oder mehrere PEs programmiert sind (z.
B. benutzerdefiniert), um nur einige wenige, aber hocheffiziente Operationen durchzuführen. Bestimmte Aus-
führungsformen hierin ergeben somit einen Beschleuniger mit einem Array aus Verarbeitungselementen, das
im Vergleich zu Roadmap-Architekturen rechenintensiv ist und dennoch eine Erhöhung der Energieeffizienz
und Leistung in Bezug auf bestehende HPC-Angebote um etwa eine Größenordnung erreicht.

[0011] Die Leistungsanstiege können aus der parallelen Ausführung innerhalb des (z. B. dichten) CSA, wobei
jede PE gleichzeitig ausführen kann, z. B. wenn Eingabedaten verfügbar sind. Die Effizienzanstiege können
aus der Effizienz jedes PE resultieren, z. B. wenn jede PE-Operation (z. B. Verhalten) einmal pro Konfigurati-
onsschritt (z. B. Mapping) fixiert wird und die Ausführung beim lokalen Eingehen von Daten am PE erfolgt, z. B.
ohne Berücksichtigen einer anderen Strukturaktivität. In bestimmten Ausführungsformen ist ein PE ein Daten-
flussoperator (z. B. jeweils ein einzelner), z. B. ein Datenflussoperator, der nur Eingabedaten verarbeitet, wenn
sowohl (i) die Eingabedaten beim Datenflussoperator eingegangen sind als auch (ii) Speicherplatz zum Spei-
chern der Ausgabedaten verfügbar ist, weil z. B. anderenfalls keine Verarbeitung erfolgt. Diese Eigenschaften
ermöglichen Ausführungsformen des CSA, paradigmaverschobene Leistungsniveaus und enorme Verbesse-
rungen in der Energieeffizienz über eine breite Klasse bestehender Einzelstrom- und Parallelprogramme be-
reitzustellen, z. B. aller bei gleichzeitiger Beibehaltung vertrauter HPC-Programmiermodelle. Bestimmte Aus-
führungsformen eines CSA können auf HPC abzielen, sodass die Gleitkomma-Energieeffizienz extrem wich-
tig wird. Bestimmte Ausführungsformen des CSA liefern nicht nur überzeugende Leistungsverbesserungen
und Energieeinsparungen, sie liefern diese Vorteile auch für bestehende HPC-Programme, die in Mainstream-
HPC-Sprachen und für Mainstream-HPC-Frameworks geschrieben sind. Bestimmte Ausführungsformen der
CSA-Architektur (z. B. unter Berücksichtigung der Kompilierung) stellen mehrere Erweiterungen bei der direk-
ten Unterstützung der von modernen Kompilierern erzeugten internen Steuerdatenflussrepräsentationen be-
reit. Bestimmte Ausführungsformen hierin sind direkt an einen CSA-Datenfluss-Kompilierer gerichtet, der z. B.
C-, C++- und Fortran-Programmiersprachen akzeptieren kann, um auf eine CSA-Architektur abzuzielen.

[0012] Abschnitt 2 unten offenbart Ausführungsformen der CSA-Architektur. Insbesondere sind neuartige
Ausführungsformen der Integration von Speicher innerhalb des Datenfluss-Ausführungsmodells offenbart. Ab-
schnitt 3 taucht in die mikroarchitektonischen Details der Ausführungsformen eines CSA ein. In einer Aus-
führungsform ist das Hauptziel eines CSA die Unterstützung von vom Kompilierer erzeugten Programmen.
Abschnitt 4 unten untersucht die Ausführungsformen einer CSA-Kompilierungstoolkette. Die Vorteile der Aus-
führungsformen eines CSA werden mit anderen Architekturen bei der Ausführung von kompilierten Codes in
Abschnitt 5 verglichen. Schließlich wird die Leistung der Ausführungsformen einer CSA-Mikroarchitektur in



DE 10 2018 005 216 A1    2019.02.21

7/134

Abschnitt 6 erläutert, weitere CSA-Details werden in Abschnitt 7 erläutert und eine Zusammenfassung in Ab-
schnitt 8 bereitgestellt.

ARCHITEKTUR

[0013] Das Ziel bestimmter Ausführungsformen eines CSA ist das schnelle und effiziente Ausführen von Pro-
grammen, z. B. Programmen, die von Kompilierern erzeugt werden. Bestimmte Ausführungsformen der CSA-
Architektur stellen Programmierabstraktionen bereit, die den Bedarf an Kompilierertechnologien und Program-
mierparadigmen unterstützen. Ausführungsformen des CSA führen Datenflussgraphen aus, z. B. eine Pro-
grammmanifestation, welche die kompilierereigene interne Repräsentation (IR) von kompilierten Programmen
eng imitiert. In diesem Modell wird ein Programm als ein Datenflussgraph dargestellt, der aus Knoten (z. B.
Scheitelpunkten), die aus einem Satz von architektonisch definierten Datenflussoperatoren (die z. B. sowohl
Rechen- als auch Steueroperationen umschließen) und Rändern besteht, welche die Übertragung von Daten
zwischen den Datenflussoperatoren repräsentieren. Die Ausführung kann durch Einfügen von Datenfluss-To-
ken (die z. B. Datenwerte sind oder repräsentieren) in den Datenflussgraph fortschreiten. Die Token können
zwischen jedem Knoten (z. B. Scheitelpunkt) fließen und umgewandelt werden und z. B. eine vollständige
Berechnung bilden. Ein Probendatenflussgraph und seine Ableitung aus einem High-Level-Quellcode ist in
Fig. 3A-3C gezeigt, und Fig. 5 zeigt ein Beispiel der Ausführung eines Datenflussgraphen.

[0014] Ausführungsformen der CSA sind für die Datenflussgrahpausführung durch Bereitstellen exakt solcher
Datenfluss-Graph-Ausführungsunterstützungen konfiguriert, die durch die Kompilierer erfordert werden. In ei-
ner Ausführungsform ist der CSA ein Beschleuniger (z. B. ein Beschleuniger aus Fig. 2), der nicht versucht,
einige der notwendigen aber selten verwendeten Mechanismen zu suchen, die auf Allzweck-Verarbeitungs-
kernen verfügbar sind (z. B. einem Kern aus Fig. 2), wie z. B. Systemanrufe. Daher kann der CSA in dieser
Ausführungsform viele Codes ausführen, aber nicht alle Codes. Im Gegenzug erzielt der CSA signifikante Leis-
tungs- und Energievorteile. Zum Aktivieren der Beschleunigung von Code, der in herkömmlich verwendeten
sequentiellen Sprachen geschrieben ist, führen die Ausführungsformen hierin auch verschiedene neuartige
Architekturmerkmale zum Unterstützen des Kompilierers ein. Eine besondere Neuheit ist die CSA-Speicher-
behandlung, ein Gegenstand, der zuvor ignoriert oder nur dürftig angegangen wurde. Ausführungsformen des
CSA sind auch eindeutig bei der Verwendung von Datenflussoperatoren, z. B. im Gegensatz zu Nachschlage-
tabellen (LUT), als ihre fundamentale Architekturschnittstelle.

[0015] Fig. 2 veranschaulicht einen Hardware-Prozessor 200, der mit einem Speicher 202 gemäß Ausfüh-
rungsformen der Offenbarung gekoppelt (z. B. damit verbunden) ist. In einer Ausführungsform sind der Hard-
ware-Prozessor 200 und der Speicher 202 ein Rechnersystem 201. In bestimmen Ausführungsformen sind
einer oder mehrere der Beschleuniger ein CSA gemäß dieser Offenbarung. In bestimmten Ausführungsformen
sind einer oder mehrere der Kerne in einem Prozessor die hierin offenbarten Kerne. Der Hardware-Prozessor
200 (z. B. jeder Kern davon) kann einen Hardware-Decodierer (z. B. Decodiereinheit) und eine Hardware-Aus-
führungseinheit aufweisen. Der Hardware-Prozessor 200 kann Register aufweisen. Es sei angemerkt, dass
die Figuren hierin ggf. nicht alle Datenkommunikationskopplungen (z. B. Verbindungen) darstellen. Ein Durch-
schnittsfachmann wird zu schätzen wissen, dass dies gewisse Details in den Figuren nicht verschleiert. Es sei
darauf hingewiesen, dass ein Doppelpfeil in den Figuren keine Zweiwegekommunikation erfordert, z. B. kann
er eine Einwegekommunikation (z. B. zu oder von dieser Komponente oder Vorrichtung) angeben. Jede oder
alle Kombinationen von Kommunikationspfaden können in bestimmten Ausführungsformen hierin verwendet
werden. Der dargestellte Hardware-Prozessor 200 weist mehrere Kerne (O bis N, wobei N 1 oder mehr sein
kann) und Hardware-Beschleuniger (O bis M, wobei M 1 oder mehr sein kann) gemäß Ausführungsformen der
Offenbarung auf. Der Hardware-Prozessor 200 (z. B. der/die Beschleuniger und/oder Kern(e) davon) können
mit dem Speicher 202 (z. B. Datenspeichervorrichtung) gekoppelt sein. Der Hardware-Decodierer (z. B. des
Kerns) kann einen (z. B. einzelnen) Befehl (z. B. Makrobefehl) empfangen und den Befehl decodieren, z. B. in
Mikrobefehle und/oder Mikrooperationen. Die Hardware-Ausführungseinheit (z. B. des Kerns) kann den deco-
dierten Befehl (z. B. Makrobefehl) zum Durchführen einer Operation oder Operationen ausführen. Mit erneuter
Bezugnahme auf die Ausführungsformen des CSA werden als nächstes die Datenflussoperatoren erläutert.

Datenflussoperatoren

[0016] Die wichtigste Architekturschnittstelle der Ausführungsformen des Beschleunigers (z. B. CSA) ist der
Datenflussoperator, z. B. als eine direkte Repräsentation eines Knotens in einem Datenflussgraphen. Aus
einer betrieblichen Perspektive verhalten sich die Datenflussoperatoren in einer Streaming- oder datenange-
steuerten Weise. Die Datenflussoperatoren können ausführen, sobald ihre eingehenden Operanden verfüg-
bar werden. Die CSA-Datenflussausführung kann (z. B. nur) von einem stark lokalisierten Status abhängig



DE 10 2018 005 216 A1    2019.02.21

8/134

sein, der z. B. in einer hoch skalierbaren Architektur mit einem verteilten, asynchronen Ausführungsmodell
resultiert. Die Datenflussoperatoren können arithmetische Datenflussoperatoren aufweisen, z. B. eine oder
mehrere von Gleitkomma-Addition und - Multiplikation, Integer-Addition, Subtraktion und Multiplikation, ver-
schiedene Vergleichsformen, logische Operatoren und Verschiebung. Die Ausführungsformen des CSA kön-
nen auch einen reichen Satz an Steueroperatoren aufweisen, welche die Verwaltung der Datenfluss-Token in
dem Programmgraphen stützen. Beispiele davon weisen einen „Pick-“ Operator auf, der z. B. zwei oder mehr
logische Eingabekanäle zu einem einzelnen Ausgabekanal multiplext, sowie einen „Schalt-“ Operator, der z.
B. als ein Kanal-Demultiplexer arbeitet (der z. B. einen einzelnen Kanal aus zwei oder mehreren logischen
Eingabekanälen ausgibt). Diese Operatoren können einem Kompilierer ermöglichen, Steuerparadigmen wie
bedingte Ausdrücke zu implementieren. Bestimmte Ausführungsformen eines CSA können einen begrenzten
Datenflussoperatorsatz (z. B. für eine relativ kleine Anzahl an Operationen) aufweisen, um dichte und energie-
effiziente PE-Mikroarchitekturen zu ergeben. Bestimmte Ausführungsformen können Datenflussoperatoren für
komplexe Operationen aufweisen, die in HPC-Code gewöhnlich sind. Die CSA-Datenflussoperator-Architektur
ist für einsatzspezifische Erweiterungen stark anpassungsfähig. Zum Beispiel können komplexere mathema-
tische Datenflussoperatoren, z. B. trigonometrische Funktionen, in bestimmten Ausführungsformen zum Be-
schleunigen bestimmter mathematikintensiver HPC-Arbeitslasten einschließen. Auf ähnliche Weise kann eine
neuralnetzwerkabgestimmte Erweiterung Datenflussoperatoren für eine vektorisierte niederpräzise Arithmetik
einschließen.

[0017] Fig. 3A veranschaulicht eine Programmquelle gemäß Ausführungsformen der Offenbarung. Der Pro-
grammquellcode weist eine Multiplikationsfunktion (func) auf. Fig. 3B veranschaulicht ein Datenflussschaubild
300 für die Programmquelle aus Fig. 3A gemäß Ausführungsformen der Offenbarung. Der Datenflussgraph
300 weist einen Pick-Knoten 304, Switch-Knoten 306 und Multiplikationsknoten 308 auf. Ein Puffer kann wahl-
weise entlang eines oder mehrerer Kommunikationspfade aufgenommen sein. Der dargestellte Datenfluss-
graph 300 kann eine Operation der Auswahl der Eingabe X mit Pick-Knoten 304 durchführen, X mit Y multi-
plizieren (z. B. Multiplikationsknoten 308) und dann das Ergebnis von der übrigen Ausgabe des Switch-Kno-
tens 306 ausgeben. Fig. 3C veranschaulicht einen Beschleuniger (z. B. CSA) mit mehreren Verarbeitungs-
elementen 301, der zum Ausführen des Datenflussgraphen aus Fig. 3B gemäß Ausführungsformen der Of-
fenbarung 301 konfiguriert ist; Insbesondere ist der Datenflussgraph 300 in das Array der Verarbeitungsele-
mente 301 überlagert (z. B. und die (z. B. Zwischenverbindungs-)Netzwerk(e) dazwischen), z. B. sodass je-
der Knoten des Datenflussgraphen 300 als ein Datenflussoperator in dem Array aus Verarbeitungselemen-
ten 301 repräsentiert ist. In einer Ausführungsform dienen eines oder mehrere der Verarbeitungselemente
in dem Array von Verarbeitungselementen 301 zum Zugriff auf den Speicher durch die Speicherschnittstelle
302). In einer Ausführungsform entspricht der Pick-Knoten 304 des Datenflussgraphen 300 somit dem Pick-
Operator 304A (wird z. B. davon repräsentiert), der Switch-Knoten 306 des Datenflussgraphen 300 entspricht
also dem Schalt-Operator 306A (wird z. B. davon repräsentiert) und der Multiplizierer-Knoten 308 des Daten-
flussgraphen 300 entspricht also dem Multiplizierer-Operator 308A (wird z. B. dadurch repräsentiert). Ein wei-
teres Verarbeitungselement und/oder ein Flusssteuerpfad-Netzwerk können die Steuersignale (z. B. Steuer-
Token) an den Pick-Operator 304A und den Schalt-Operator 306A bereitstellen, um die Operation in Fig. 3A
durchzuführen. In einer Ausführungsform ist das Array von Verarbeitungselementen 301 zum Ausführen des
Datenflussgraphen 300 aus Fig. 3B vor Start der Ausführung konfiguriert. In einer Ausführungsform führt der
Kompilierer die Umwandlung von Fig. 3A bis Fig. 3B durch. In einer Ausführungsform bettet die Eingabe der
Datenflussgraph-Knoten in das Array aus Verarbeitungselementen den Datenflussgraph logisch in das Array
aus Verarbeitungselementen ein, z. B. wie weiter unten besprochen, sodass der Eingabe-/Ausgabepfad zum
Erzeugen des gewünschten Ergebnisses konfiguriert ist.

Latenzinsensitive Kanäle

[0018] Kommunikationsbögen sind die zweite Hauptkomponente des Datenflussgraphen. Bestimmte Ausfüh-
rungsformen eines CSA beschreiben diese Bögen als latenzinsensitive Kanäle, z. B. in-Reihenfolge, Gegen-
druck- (die z. B. keine Ausgabe erzeugen oder senden, bis ein Platz zum Speichern der Ausgabe vorhanden
ist), Point-to-Point-Kommunikationskanäle. Wie bei den Datenflussoperatoren sind die latenzinsensitiven Ka-
näle fundamental asynchron und geben die Freiheit, viele Typen von Netzwerken zum Implementieren der
Kanäle eines bestimmten Graphen zusammenzustellen. Latenzinsensitive Kanäle können willkürlich lange
Latenzen aufweisen und die CSA-Architektur weiterhin gewissenhaft implementieren. In bestimmten Ausfüh-
rungsformen ist es jedoch ein großer Anreiz bezüglich der Leistung und Energie, die Latenzen so klein wie
möglich zu machen. Abschnitt 3.2 hierin offenbart eine Netzwerk-Mikroarchitektur, in der die Datenflussgraph-
Kanäle zeitverschachtelt mit nicht mehr als einem Latenzzyklus implementiert sind. Ausführungsformen von
latenzinsensitiven Kanälen stellen eine kritische Abstraktionsschicht bereit, die mit der CSA-Architektur zum
Bereitstellen einer Anzahl von Laufzeitdiensten an den Anwendungsprogrammierer genutzt werden können.



DE 10 2018 005 216 A1    2019.02.21

9/134

Ein CSA kann beispielsweise die latenzinsensitiven Kanäle bei der Implementierung der CSA-Konfiguration
(dem Laden eines Programms auf ein CSA-Array) nutzen.

[0019] Fig. 4 veranschaulicht eine beispielhafte Ausführung des Datenflussgraphen 400 gemäß Ausführungs-
formen der Offenbarung. Bei Schritt 1 können Eingabewerte (z. B. 1 für X in Fig. 3B und Fig. 2 für Y in Fig. 3B)
in den Datenflussgraph 400 geladen werden, um eine 1 x 2-Muliplikationsoperation durchzuführen. Einer oder
mehrere Dateneingabewerte können in der Operation (z. B. 1 für X und 2 für Y in Bezug auf Fig. 3B) statisch
(z. B. konstant) sein oder während der Operation aktualisiert werden. Bei Schritt 2 geben ein Verarbeitungs-
element (z. B. auf einem Flusssteuerpfad-Netzwerk) oder andere Schaltungsausgaben eine Null in die Steu-
ereingabe (z. B. Mux-Steuersignal) von Pick-Knoten 404 (z. B. um eine eins von Port „0“ zu seiner Ausgabe
zu beschaffen) und gibt eine Null zur Steuereingabe (z. B. Mux-Steuersignal) von Switch-Knoten 406 aus (z.
B. zum Bereitstellen seiner Eingabe aus Port „0“ zu einem Ziel (z. B. einem nachgeschalteten Verarbeitungs-
element). Bei Schritt 3 wird der Datenwert 1 vom Pick-Knoten 404 (und z. B. sein Steuersignal „0“ am Pick-
Knoten 404 verbraucht) an den Multiplizierer-Knoten 408 ausgegeben, um mit dem Datenwert von 2 bei Schritt
4 multipliziert zu werden. Bei Schritt 4 erreicht die Ausgabe des Multiplizierer-Knotens 408 den Switch-Knoten
406, was z. B. den Switch-Knoten 406 veranlasst, ein Steuersignal „0“ zu verbrauchen, um den Wert von 2
von Port „2“ von Switch-Knoten 406 bei Schritt 5 auszugeben. Die Operation ist dann abgeschlossen. Ein CSA
kann daher dementsprechend programmiert werden, damit ein entsprechender Datenflussoperator für jeden
Knoten die Operation in Fig. 4 durchführt. Obwohl die Ausführung in diesem Beispiel serialisiert ist, können
im Prinzip alle Datenfluss-Operationen parallel ausgeführt werden. Die Schritte werden in Fig. 4 verwendet,
um die Datenflussausführung von jeder physischen mikroarchitektonischen Manifestation zu differenzieren.
In einer Ausführungsform hat ein nachgeschaltetes Verarbeitungselement ein Signal an den Schalter 406 zu
senden (oder kein Bereit-Signal zu senden) (z. B. auf einem Flusssteuerpfad-Netzwerk), um die Ausgabe von
Schalter 406 aufzuhalten, z. B. bis das nachgeschaltete Verarbeitungselement für die Ausgabe bereit ist (z.
B. Speicherplatz aufweist).

Speicher

[0020] Datenfluss-Architekturen konzentrieren sich im Allgemeinen auf die Kommunikation und Datenmani-
pulation und beachten dem Status weniger Beachtung. Das Aktivieren von echter Software, insbesondere
Programmen, die in sequentiellen veralteten Sprachen geschrieben sind, erfordert eine bedeutende Beach-
tung der Schnittstelle mit dem Speicher. Bestimmte Ausführungsformen eines CSA verwenden Architektur-
speicheroperationen als ihre primäre Schnittstelle zur (z. B. großen) statusbehafteten Speicherung. Aus der
Perspektive des Datenflussgraphen ähneln die Speicheroperationen anderen Datenfluss-Operationen, mit der
Ausnahme, dass sie den Nebeneffekt der Aktualisierung eines gemeinsam genutzten Speichers aufweisen.
Insbesondere haben Speicheroperationen von bestimmten Ausführungsformen hierin die gleiche Semantik
wie jeder andere Datenflussoperator, z. B. werden „ausgeführt“, wenn ihre Operanden, z. B. eine Adresse,
verfügbar ist und nach einiger Latenz eine Antwort erzeugt wird. Bestimmte Ausführungsformen hierin entkop-
peln die Operandeneingabe explizit und resultieren in einer Ausgabe, sodass die Speicheroperatoren natürlich
zeitverschachtelt sind und das Potenzial aufweisen, viele simultan ausstehende Anforderungen zu erzeugen,
welche diese z. B. ausgezeichnet für die Latenz- und Bandbreitencharakteristika eines Speicheruntersystems
geeignet machen. Ausführungsformen eines CSA stellen grundlegende Speicheroperationen wie Last bereit,
die einen Adressenkanal nimmt und einen Antwortkanal mit den Werten, die den Adressen entsprechen, und
einen Speicher füllt. Ausführungsformen eines CSA können auch erweiterte Operationen wie speicherinterne
Atomik- und Konsistenz-Operatoren bereitstellen. Diese Operationen können eine ähnliche Semantik wie ihre
von-Neumann-Gegenstücke aufweisen. Ausführungsformen eines CSA können vorhandene Programme be-
schleunigen, die unter Verwendung sequentieller Sprachen wie C- und Fortran beschrieben werden. Eine Fol-
ge der Unterstützung dieser Sprachmodelle ist das Adressieren der Programmspeicherreihenfolge, z. B. der
seriellen Anordnung von Speicheroperationen, die typischerweise durch diese Sprachen vorgeschrieben sind.

[0021] Fig. 5 veranschaulicht eine Programmquelle (z. B. C-Code) 500 gemäß Ausführungsformen der Of-
fenbarung. Gemäß der Speichersemantik der C-Programmiersprache ist die Speicherkopie (memcpy) zu se-
rialisieren. Memcpy kann jedoch mit einer Ausführungsform des CSA parallelisiert werden, wenn die Arrays
A und B bekanntermaßen unverbunden sind. Fig. 5 veranschaulicht ferner das Problem der Programmrei-
henfolge. Allgemein können Kompilierer nicht nachweisen, dass Array A anders als Array B ist, z. B. entwe-
der für den gleichen Wert des Index oder einen anderen Wert des Index über den Schleifenkörpern. Dies ist
als Zeiger- oder Speicher-Aliasing bekannt. Da Kompilierer einen statisch korrekten Code erzeugen müssen,
werden sie gewöhnlich zur Serialisierung der Speicherzugriffe gezwungen. Typischerweise verwenden Kom-
pilierer, die auf sequentielle von-Neumann-Architekturen abzielen, die Befehlsreihenfolge als natürliches Mittel
zum Durchsetzen der Programmreihenfolge. Ausführungsformen des CSA besitzen jedoch keine Vorstellung



DE 10 2018 005 216 A1    2019.02.21

10/134

von Befehlen oder befehlsbasierter Programmreihenfolge, wie durch einen Programmzähler definiert. In be-
stimmten Ausführungsformen sind eingehende Abhängigkeits-Token, die z. B. keine architektonisch sichtbare
Information enthalten, wie alle anderen Datenfluss-Token und die Speicheroperationen können nicht ausge-
führt werden, bis sie einen Abhängigkeits-Token empfangen haben. In bestimmten Ausführungsformen erzeu-
gen die Speicheroperationen einen ausgehenden Abhängigkeits-Token, sobald ihre Operation für alle logisch
nachfolgenden abhängigen Speicheroperationen sichtbar ist. In bestimmten Ausführungsformen gleichen die
Abhängigkeits-Token anderen Datenfluss-Token in einem Datenflussgraph. Da Speicheroperationen z. B. in
bedingten Kontexten auftreten, können die Abhängigkeits-Token auch unter Verwendung von Steueroperato-
ren manipuliert werden, wie in Abschnitt 2.1 beschrieben, z. B. wie alle anderen Token. Abhängigkeits-Token
können den Effekt der Serialisierung von Speicherzugriffen haben, z. B. dem Kompilierer eine Einrichtung zum
architektonischen Definieren der Reihenfolge von Speicherzugriffen bereitstellen.

Laufzeitdienste

[0022] Ein Hauptpunkt für die Berücksichtigung der Architektur von Ausführungsformen des CSA beinhaltet
die tatsächliche Ausführung von Programmen auf Benutzerebene, es kann aber auch wünschenswert sein,
verschiedene Mechanismen zu unterstützen, die diese Ausführung stärken. Zu den wichtigsten zählen Konfi-
guration (bei der ein Datenflussgraph in den CSA geladen wird), Extraktion (bei welcher der Status eines aus-
führenden Graphen in den Speicher verschoben wird) und Ausnahmen (in denen mathematische, weiche und
andere Arten von Fehlern in der Struktur erkannt und behandelt werden, möglicherweise durch eine externe
Entität). Abschnitt 3.6 unten erläutert die Eigenschaften einer latenzinsensitiven Datenflussarchitektur einer
Ausführungsform eines CSA, um effiziente, stark zeitverschachtelte Implementierungen dieser Funktionen zu
ergeben. Vom Konzept her kann die Konfiguration den Status eines Datenflussgraphen in die Zwischenverbin-
dungs- und Verarbeitungselemente (z. B. Struktur) laden, z. B. im Allgemeinen von dem Speicher. Während
dieses Schrittes können alle Strukturen im CSA mit einem neuen Datenflussgraphen geladen werden und alle
Datenfluss-Token in diesem Graphen, z. B. als Folge einer Kontextumschaltung, leben. Die latenzinsensitive
Semantik eines CSA kann eine verteilte, asynchrone Initialisierung der Struktur ermöglichen, z. B. kann sie die
Ausführung unmittelbar beginnen, sobald die PEs konfiguriert sind. Unkonfigurierte PEs können ihre Kanäle
gegendrücken, bis sie konfiguriert werden, z. B. Kommunikationen zwischen konfigurierten und unkonfigurier-
ten Elementen verhindern. Die CSA-Konfiguration kann in einen priviligierten Status und Status auf Benutzer-
ebene partitioniert werden. Eine solche Zwei-Level-Partitionierung kann der primären Konfiguration der Struk-
tur ermöglichen, ohne Aufrufen des Betriebssystems zu erfolgen. Während einer Extraktionsausführungsform
wird eine logische Sicht des Datenflussgraphen erfasst und in den Speicher festgeschrieben, z. B. durch Auf-
nehmen aller Live-Steuer- und Datenfluss-Token und Zustand in dem Graphen.

[0023] Die Extraktion kann auch eine Rolle bei der Bereitstellung von Zuverlässigkeitsgarantien durch die
Schaffung von Strukturprüfpunkten spielen. Ausnahmen in einem CSA können allgemein durch die gleichen
Ereignisse verursacht werden, die Ausnahmen in Prozessoren bewirken, wie z. B. illegale Operatorargumen-
te oder RAS-Ereignisse (RAS - Reliability (Zuverlässigkeit), Availability (Verfügbarkeit) und Serviceability (Be-
triebsfähigkeit). In bestimmten Ausführungsformen werden Ausnahmen auf dem Level der Datenflussoperato-
ren erfasst, wie z. B. durch Prüfen von Argumentwerten oder durch modulare arithmetische Schemata. Nach
dem Detektieren einer Ausnahme kann ein Datenflussoperator (z. B. eine Schaltung) halten und eine Ausnah-
menachricht emittieren, die z. B. sowohl einen Operationsidentifikator als auch einige Details über die Natur
des Problems, das aufgetreten ist, enthält. In einer Ausführungsform bleibt der Datenflussoperator angehalten,
bis er rekonfiguriert wurde. Die Ausnahmenachricht kann dann einem zugeordneten Prozessor (z. B. Kern) zur
Wartung kommuniziert werden, die z. B. das Extrahieren des Graphen zur Softwareanalyse einschließen kann.

Kachel-Level-Architektur

[0024] Ausführungsformen der CSA-Computerarchitekturen (z. B. auf HPC und Datencenter abzielende Ver-
wendungen) sind nebeneinander angeordnet. Fig. 6 und Fig. 8 zeigen den Kachel-Level-Einsatz eines CSA.
Fig. 8 zeigt eine Voll-Kachel-Implementierung eines CSA, die z. B. ein Beschleuniger eines Prozessors mit
einem Kern sein kann. Ein Hauptvorteil dieser Architektur kann reduziertes Ausgestaltungsrisiko sein, sodass
der CSA und der Kern z. B. bei der Herstellung vollständig entkoppelt sind. Zusätzlich zu der Ermöglichung ei-
ner besseren Komponentenwiederverwendung kann dies der Ausgestaltung der Komponenten wie dem CSA-
Cache ermöglichen, nur den CSA zu berücksichtigen, statt z. B. die strikteren Latenzanforderungen des Kerns
zu integrieren. Schließlich können separate Kacheln die Integration des CSA mit kleinen oder großen Kernen
ermöglichen. Eine Ausführungsform des CSA erfasst die meisten vektorparellelen Arbeitslasten, sodass die
meisten vektorartigen Arbeitslasten direkt auf dem CSA laufen, aber in bestimmten Ausführungsformen können
die vektorartigen Befehle in dem Kern eingeschlossen sein, z. B. zum Unterstützen von veralteten Binaritäten.



DE 10 2018 005 216 A1    2019.02.21

11/134

MIKROARCHITEKTUR

[0025] In einer Ausführungsform ist das Ziel der CSA-Mikroarchitektur das Bereitstellen einer hochqualitativen
Implementierung jedes Datenflussoperators, der durch die CSA-Architektur spezifiziert wird. Ausführungsfor-
men der CSA-Mikroarchitektur sehen vor, dass jedes Verarbeitungselement der Mikroarchitektur ungefähr ei-
nem Knoten (z. B. einer Entität) in dem Architekturdatenflussgraphen entspricht. In bestimmten Ausführungs-
formen führt dies zu Mikroarchitekturelementen, die nicht nur kompakt sind, was zu einem dichten Berech-
nungsarray führt, sondern auch energieeffizient, zum Beispiel, wenn Verarbeitungselemente (PEs) sowohl ein-
fach als auch stark ungemultiplext sind, z. B. Ausführen eines einzelnen Datenflussoperators für eine Konfigu-
ration (z. B. Programmierung) des CSA ausführen. Um den Energie- und Implementierungsbereich weiter zu
reduzieren, kann ein CSA einen konfigurierbaren, heterogenen Strukturstil aufweisen, in dem jedes PE davon
nur einen Untersatz von Datenflussoperatoren implementiert. Periphere und unterstützende Teilsysteme, wie
z. B. der CSA-Cache, können bereitgestellt werden, um die verteilte Parallelität zu unterstützen, die in der
Haupt-CSA-Verarbeitungsstruktur selbst vorherrscht. Die Implementierung von CSA-Mikroarchitekturen kann
Datenfluss- und latenzinsensitive Kommunikationsabstraktionen verwenden, die in der Architektur vorhanden
sind. In bestimmten Ausführungsformen gibt es (z. B. im Wesentlichen) eine Eins-zu-Eins-Entsprechung zwi-
schen Knoten in dem kompilierererzeugten Graphen und den Datenflussoperatoren (z. B. Datenflussoperator-
Rechenelementen) in einem CSA.

[0026] Es folgt eine Erläuterung eines beispielhaften CSA, gefolgt von einer detaillierteren Erläuterung der
Mikroarchitektur. Bestimmte Ausführungsformen hierin stellen einen CSA bereit, der eine einfache Kompilie-
rung ermöglicht, z. B. im Gegensatz zu bestehenden FPGA-Kompilierern, die einen kleinen Untersatz einer
Programmiersprache (z. B. C oder C++) handhaben und viele Stunden benötigen, um selbst kleine Program-
me zu kompilieren.

[0027] Bestimmte Ausführungsformen einer CSA-Architektur erlauben heterogene grobkörnige Operationen,
wie Gleitkomma mit doppelter Genauigkeit. Programme können in weniger grobkörnigen Operationen aus-
gedrückt werden, z. B. so, dass der offenbarte Kompilierer schneller läuft als herkömmliche räumliche Kom-
pilierer. Bestimmte Ausführungsformen beinhalten eine Struktur mit neuen Verarbeitungselementen, um se-
quentielle Konzepte wie programmgeordnete Speicherzugriffe zu unterstützen. Bestimmte Ausführungsformen
implementieren Hardware, um grobkörnige datenflussartige Kommunikationskanäle zu unterstützen. Dieses
Kommunikationsmodell ist abstrakt und kommt der vom Kompilierer verwendeten Steuerdatenflussrepräsen-
tation sehr nahe. Bestimmte Ausführungsformen hierin beinhalten eine Netzwerkimplementierung, die Einzel-
zyklus-Latenzzeitkommunikationen unterstützt, z. B. Benutzen (z. B. kleiner) PEs, die einzelne Steuerdaten-
flussoperationen unterstützen. In bestimmten Ausführungsformen verbessert dies nicht nur die Energieeffizi-
enz und Leistung, sondern vereinfacht auch die Kompilierung, da der Kompilierer eine Eins-zu-eins-Abbildung
zwischen High-Level-Datenflusskonstrukten und der Struktur vornimmt. Bestimmte Ausführungsformen hierin
vereinfachen somit die Aufgabe des Kompilierens existierender (z. B. C-, C++- oder Fortran-) Programme zu
einem CSA (z. B. Struktur).

[0028] Die Energieeffizienz kann ein Hauptanliegen moderner Rechensysteme sein. Bestimmte Ausführungs-
formen hierin stellen ein neues Schema von energieeffizienten räumlichen Architekturen bereit. In bestimmten
Ausführungsformen bilden diese Architekturen eine Struktur mit einer einzigartigen Zusammensetzung aus
einer heterogenen Mischung aus kleinen, energieeffizienten, datenflussorientierten Verarbeitungselementen
(PEs) mit einem leichtgewichtigen leitungsvermittelten Kommunikationsnetzwerk (z. B. Interconnect), z. B.
mit einer gehärteten Unterstützung der Flussteuerung. Aufgrund der Energievorteile davon kann die Kombi-
nation dieser zwei Komponenten einen räumlichen Beschleuniger (z. B. als Teil eines Rechners) bilden, der
zum Ausführen von kompilierergenerierten parallelen Programmen in einer extrem energieeffizienten Weise
geeignet ist. Da diese Struktur heterogen ist, können bestimmte Ausführungsformen an unterschiedliche An-
wendungsdomänen durch Einführen neuer domänenspezifischer PEs angepasst werden. Eine Struktur für die
Hochleistungsberechnung könnte z. B. einige Anpassungen für doppelte Genauigkeit, fusioniertes Multiply-
Add, enthalten, während eine Struktur, die auf tiefe neuronale Netzwerke abzielt, Gleitkomma-Operationen mit
niedriger Genauigkeit beinhalten könnte.

[0029] Eine Ausführungsform eines räumlichen Architekturschemas, wie es z. B. in Fig. 6 veranschaulicht ist,
ist die Zusammensetzung von leichtgewichtigen Verarbeitungselementen (PE), die durch ein Inter-PE-Netz-
werk verbunden sind. Im Allgemeinen können PEs Datenflussoperatoren umfassen, wo z. B., sobald alle Ein-
gabeoperanden bei dem Datenflussoperator eingegangen sind, einige Operationen (z. B. Mikrobefehl oder Mi-
krobefehlssatz) ausgeführt werden, und die Ergebnisse an nachgeschaltete Operatoren weitergeleitet werden.



DE 10 2018 005 216 A1    2019.02.21

12/134

Steuerung, Planung und Datenspeicherung können daher unter den PEs verteilt sein, z. B. durch Entfernen
des Aufwands der zentralisierten Strukturen, die klassische Prozessoren dominieren.

[0030] Programme können in Datenflussgraphen umgewandelt werden, die auf die Architektur abgebildet wer-
den, indem PEs und Netzwerk konfiguriert werden, um den Steuerdatenflussgraphen des Programms auszu-
drücken. Kommunikationskanäle können flussgesteuert und vollständig gegengedrückt sein, z. B. sodass die
PEs anhalten, wenn entweder die Quellkommunikationskanäle keine Daten aufweisen oder die Zielkommuni-
kationskanäle voll sind. In einer Ausführungsform fließen Daten zur Laufzeit durch die PEs und Kanäle, die zum
Implementieren der Operation konfiguriert wurden (z. B. ein beschleunigter Algorithmus). Zum Beispiel können
Daten aus dem Speicher durch die Struktur eingestreamt werden und dann zurück in den Speicher gehen.

[0031] Ausführungsformen einer solchen Architektur können eine bemerkenswerte Leistungseffizienz gegen-
über herkömmlichen Mehrkernprozessoren erreichen: die Rechenleistung (z. B. in Form von PEs) kann einfa-
cher, energieeffizienter und umfangreicher sein als in größeren Kernen, und die Kommunikation kann direkt
und meist kurzstreckig sein, z. B. im Gegensatz zum Auftreten über ein breites Vollchip-Netzwerk wie in ty-
pischen Mehrkernprozessoren. Da Ausführungsformen der Architektur des Weiteren extrem parallel sind, ist
eine Anzahl von leistungsfähigen Optimierungen auf Schaltungs- und Geräteebene möglich, ohne den Durch-
satz ernsthaft zu beeinträchtigen, z. B. Geräte mit niedrigem Verlust und niedriger Betriebsspannung. Diese
Lower-Level-Optimierungen können gegenüber herkömmlichen Kernen noch größere Leistungsvorteile brin-
gen. Die Kombination aus Effizienz auf Architektur-, Schaltungs- und Geräte-Level dieser Ausführungsformen
ist zwingend. Ausführungsformen dieser Architektur können größere aktive Bereiche ermöglichen, während
gleichzeitig die Transistordichte weiter steigt.

[0032] Ausführungsformen hierin bieten eine einzigartige Kombination aus Datenflussunterstützung und Lei-
tungsvermittlung, um die Struktur kleiner, energieeffizienter zu machen und eine höhere Aggregatleistung ge-
genüber vorherigen Architekturen bereitzustellen. FPGAs sind im Allgemeinen auf eine feinkörnige Bitmanipu-
lation abgestimmt, während Ausführungsformen hierin auf Gleitkomma-Operationen mit doppelter Genauigkeit
in HPC-Anwendungen abgestimmt sind. Bestimmte Ausführungsformen hierin können einen FPGA zusätzlich
zu einem CSA gemäß dieser Offenbarung aufweisen.

[0033] Bestimmte Ausführungsformen hierin kombinieren ein leichtgewichtiges Netzwerk mit energieeffizien-
ten Datenflussverarbeitungselementen zum Bilden einer energieeffizienten HPC-Struktur mit hohem Durchsatz
und geringer Latenz. Dieses Netzwerk mit geringer Latenz kann den Bau von Verarbeitungselementen mit we-
niger Funktionen ermöglichen, zum Beispiel nur einen oder zwei Befehle und ggf. ein sichtbares Architektur-
register, weil es effizient ist, mehrere PE gemeinsam zu gruppieren, um ein vollständiges Programm zu bilden.

[0034] Bezüglich eines Prozessorkerns können CSA-Ausführungsformen hierin mehr Rechendichte und En-
ergieeffizienz bereitstellen. Wenn zum Beispiel PEs sehr klein sind (z. B. verglichen mit einem Kern), kann der
CSA viel mehr Operationen durchführen und hat viel mehr Rechenparallelität als ein Kern, z. B. womöglich
etwa das 16-fache der Anzahl der FMAs einer Vektorverarbeitungseinheit (VPU - Vector Processing Unit).
Zum Nutzen aller dieser Rechenelemente ist die Energie pro Operation in bestimmten Ausführungsformen
sehr gering.

[0035] Die Energievorteile unserer Ausführungsformen dieser Datenflussarchitektur sind zahlreich. Paralleli-
tät ist in Datenflussgraphen explizit und Ausführungsformen der CSA-Architektur verbrauchen keine oder nur
minimale Energie zur Extraktion davon, z. B. im Gegensatz zu Außer-Reihenfolge-Prozessoren, die jedes Mal,
wenn ein Befehl ausgeführt wird, die Parallelität neu erkennen müssen. Da jedes PE in einer Ausführungsform
für eine einzelne Operation verantwortlich ist, können die Registerdateien und Port-Zählungen klein sein, z. B.
oft nur eins, und verbrauchen daher weniger Energie als ihre Gegenstücke im Kern. Bestimmte CSAs weisen
viele PEs auf, von denen jedes Live-Programmwerte enthält, die den Gesamteffekt einer riesigen Registerdatei
in einer traditionellen Architektur ergeben, was die Speicherzugriffe drastisch reduziert. In Ausführungsformen,
bei denen der Speicher vom Mehrfachporttyp und verteilt ist, kann ein CSA viel mehr anstehende Speicher-
anforderungen erfüllen und mehr Bandbreite als ein Kern nutzen. Diese Vorteile können kombiniert werden,
um einen Energiepegel pro Watt zu ergeben, der nur einen kleinen Prozentsatz der Kosten der bloßen arith-
metischen Schaltung darstellt. Zum Beispiel kann im Falle einer Integer-Multiplikation ein CSA nicht mehr als
25% mehr Energie als die zugrundeliegende Multiplikationsschaltung verbrauchen. In Bezug auf eine Ausfüh-
rungsform eines Kerns verbraucht eine Integeroperation in dieser CSA-Struktur weniger als 1/30 der Energie
pro Integeroperation.



DE 10 2018 005 216 A1    2019.02.21

13/134

[0036] Aus einer Programmierperspektive ergibt die anwendungsspezifische Formbarkeit von Ausführungs-
formen der CSA-Architektur wichtige Vorteile gegenüber einer Vektorverarbeitungseinheit (VPU). Bei tradi-
tionellen, unflexiblen Architekturen müssen die Anzahl funktionaler Einheiten, wie Gleitdivision, oder die ver-
schiedenen transzendentalen mathematischen Funktionen zum Ausgestaltungszeitpunkt basierend auf einem
erwarteten Anwendungsfall gewählt werden. In Ausführungsformen der CSA-Architektur können solche Funk-
tionen basierend auf den Anforderungen jeder Anwendung (z. B. durch einen Benutzer und nicht einen Her-
steller) in der Struktur konfiguriert werden. Der Anwendungsdurchsatz kann dadurch weiter gesteigert werden.
Gleichzeitig verbessert sich die Rechendichte von Ausführungsformen des CSA, indem die Verhärtung solcher
Funktionen vermieden wird und stattdessen mehr Instanzen primitiver Funktionen wie Gleitmultiplikation vor-
gesehen werden. Diese Vorteile können bei HPC-Arbeitslasten von Bedeutung sein, von denen einige 75%
der Gleitkomma-Ausführung in transzendentalen Funktionen verbrauchen.

[0037] Bestimmte Ausführungsformen des CSA stellen einen bedeutenden Fortschritt als eine datenflussori-
entierte räumliche Architektur dar, weil z. B. die PEs dieser Offenbarung kleiner, aber auch energieeffizienter
sein können. Diese Verbesserungen können sich direkt aus der Kombination von datenflussorientierten PEs
mit einer leichtgewichtigen, leitungsvermittelten Zwischenverbindung ergeben, die zum Beispiel im Gegensatz
zu einem paketvermittelten Netzwerk eine Einzelzykluslatenz aufweist (z. B. mit einer 300% höheren Latenz
an einem Minimum). Bestimmte Ausführungsformen der PEs unterstützen die 32-Bit- oder 64-Bit-Operation.
Bestimmte Ausführungsformen hierin erlauben die Einführung neuer anwendungsspezifischer PEs, z. B. für
Maschinenlernen oder Sicherheit, und sind keine rein homogene Kombination. Bestimmte Ausführungsformen
hierin kombinieren leichtgewichtige datenflussorientierte Verarbeitungselemente mit einem leichtgewichtigen
Niederlatenznetzwerk zum Bilden einer energieeffizienten Rechenstruktur.

[0038] Damit bestimmte räumliche Architekturen erfolgreich sind, müssen Programmierer sie mit relativ ge-
ringem Aufwand konfigurieren, z. B. sie gegenüber sequentiellen Kernen eine signifikante Energie- und Leis-
tungsüberlegenheit erhalten. Bestimmte Ausführungsformen hierin stellen einen CSA (z. B. räumliche Struktur)
bereit, der leicht programmiert werden kann (z. B. durch einen Kompilierer), energieeffizient und hochparallel
ist. Bestimmte Ausführungsformen hierin stellen ein Netzwerk (z. B. Zwischenverbindungsnetz) bereit, dass
diese drei Ziele erreicht. Aus einer Programmierbarkeitsperspektive stellen bestimmte Ausführungsformen des
Netzwerks flussgesteuerte Kanäle bereit, die z. B. dem Steuerdatenflussgraphen (CDFG - Control-Dataflow
Graph)-Modell der Ausführung entsprechen, das in Kompilierern verwendet wird. Bestimmte Netzwerkausfüh-
rungsformen benutzen zweckgebundene leitungsvermittelte Verknüpfungen, so dass die Programmleistung
sowohl von einem Menschen als auch einem Kompilierer leichter zu verstehen ist, weil die Leistung vorher-
sagbar ist. Bestimmte Netzwerkausführungsformen bieten sowohl hohe Bandbreite als auch niedrige Latenz.
Bestimmte Netzwerkausführungsformen (z. B. statische leitungsvermittelte) stellen eine Latenz von 0 bis 1
Zyklus bereit (z. B. je nach der Übertragungsstrecke). Bestimmte Ausführungsformen stellen eine hohe Band-
breite durch paralleles Verlegen verschiedener Netzwerke bereit, z. B. in Low-Level-Metallen. Bestimmte Netz-
werkausführungsformen kommunizieren in Low-Level-Metallen und über kurze Strecken und sind somit sehr
energieeffizient.

[0039] Bestimmte Ausführungsformen von Netzwerken weisen eine Architekturunterstützung für die Durch-
flusssteuerung auf. Zum Beispiel können in räumlichen Beschleunigern, die aus kleinen Verarbeitungselemen-
ten (PEs) bestehen, die Kommunikationslatenz und die Bandbreite für die Gesamtprogrammleistung bedeu-
tend sein. Bestimmte Ausführungsformen hierin stellen ein leichtgewichtiges leitungsvermitteltes Netzwerk be-
reit, das die Kommunikation zwischen PEs in räumlichen Verarbeitungsarrays, wie dem in Fig. 6 gezeigten
räumlichen Array, und den mikroarchitektonischen Steuermerkmalen, die notwendig sind, um dieses Netzwerk
zu unterstützen, erleichtert. Bestimmte Ausführungsformen eines Netzwerks ermöglichen die Konstruktion von
flussgesteuerten Punkt-zu-Punkt-Kommunikationskanälen, welche die Kommunikation der datenflussorientier-
ten Verarbeitungselemente (PEs) unterstützen. Zusätzlich zu den Punkt-zu-Punkt-Kommunikationen können
bestimmte Netzwerke hierin auch Multicast-Kommunikationen unterstützen. Die Kommunikationskanäle kön-
nen durch statisches Konfigurieren des Netzwerks zum Bilden virtueller Schaltungen zwischen den PEs gebil-
det werden. Schaltungsumschalttechniken hierin können die Kommunikationslatenz verringern und die Netz-
werkpufferung entsprechend minimieren, was zum Beispiel sowohl zu einer hohen Leistungsfähigkeit als auch
zu einer hohen Energieeffizienz führt. In bestimmten Ausführungsformen eines Netzwerks kann die Inter-PE-
Latenz so niedrig wie ein Null-Zyklus sein, was bedeutet, dass das nachgeschaltete PE mit Daten im Zyklus
arbeiten kann, nachdem es erzeugt wurde. Zum Erhalten einer noch höheren Bandbreite und zum Zulassen
von mehr Programmen kann eine Vielzahl von Netzwerken parallel angeordnet sein, wie z. B. in Fig. 6 gezeigt.

[0040] Räumliche Architekturen, wie die in Fig. 6 gezeigte, können die Zusammensetzung von leichtgewich-
tigen Verarbeitungselementen sein, die durch ein Inter-PE-Netzwerk verbunden sind. Programme, die als Da-



DE 10 2018 005 216 A1    2019.02.21

14/134

tenflussgraphen angesehen werden, können auf der Architektur durch Konfigurieren der PEs und des Netz-
werks abgebildet werden. Im Allgemeinen können PEs als Datenflussoperatoren konfiguriert sein und, sobald
alle Eingabeoperanden am PE eingehen, kann dann eine Operation erfolgen und das Ergebnis an die ge-
wünschten nachgeschalteten PEs weitergeleitet werden. PEs können über zweckgebundene virtuelle Schal-
tungen kommunizieren, die durch statistisches Konfigurieren eines leitungsvermittelten Kommunikationsnetz-
werks gebildet werden. Diese virtuellen Schaltungen können flussgesteuert und vollständig gegengedrückt
sein, z. B. so, dass die PEs anhalten, wenn entweder die Quelle keine Daten aufweist oder der Zielspeicher-
platz voll ist. Bei Laufzeit können Daten durch die PEs fließen und den abgebildeten Algorithmus implementie-
ren. Zum Beispiel können Daten aus dem Speicher durch die Struktur eingestreamt werden und dann zurück
in den Speicher gehen. Ausführungsformen dieser Architektur können eine bemerkenswerte Leistungseffizi-
enz im Vergleich zu herkömmlichen Mehrkernprozessoren erreichen: wenn zum Beispiel eine Berechnung in
der Form von PEs einfacher und zahlreicher ist als größere Kerne und die Kommunikation direkt ist, z. B. im
Gegensatz zu einer Erweiterung des Speichersystems.

[0041] Fig. 6 veranschaulicht eine Beschleuniger-Kachel 600, umfassend ein Array von Verarbeitungsele-
menten (PEs) gemäß Ausführungsformen der Offenbarung. Das Zwischenverbindungsnetz ist als leitungsver-
mittelte, statisch konfigurierte Kommunikationskanäle dargestellt. Zum Beispiel eine Gruppe von Kanälen, die
durch einen Schalter miteinander verbunden sind (z. B. Schalter 610 in einem ersten Netzwerk und Schalter
611 in einem zweiten Netzwerk). Das erste Netzwerk und das zweite Netzwerk können getrennt oder zusam-
mengekoppelt sein. Der Schalter 610 kann z. B. einen oder mehrere der vier Datenpfade (612, 614, 616, 618)
zusammenkoppeln, z. B. wie zum Durchführen einer Operation gemäß einem Datenflussgraphen konfiguriert.
In einer Ausführungsform kann die Anzahl von Datenpfaden jede beliebige Vielzahl sein. Das Verarbeitungs-
element (z. B. Verarbeitungselement 604) kann wie hierin offenbart sein, zum Beispiel, wie in Fig. 9A. Die
Beschleuniger-Kachel 600 weist eine Speicher-/Cache-Hierarchieschnittstelle 602 auf, z. B. zum Verbinden
der Beschleuniger-Kachel 600 mit einem Speicher und/oder Cache. Ein Datenpfad (z. B. 618) kann sich zu
einer anderen Kachel erstrecken oder enden, z. B. am Rand einer Kachel. Ein Verarbeitungselement kann
einen Eingabepuffer (z. B. Puffer 606) und einen Ausgabepuffer (z. B. Puffer 608) aufweisen.

[0042] Die Operationen können basierend auf der Verfügbarkeit ihrer Eingaben und dem Status des PE aus-
geführt werden. Ein PE kann Operanden aus den Eingabekanälen erhalten und die Ergebnisse in Ausgabe-
kanäle schreiben, auch wenn ein interner Registerstatus ebenfalls verwendet werden kann. Bestimmte Aus-
führungsformen hierin beinhalten ein konfigurierbares datenflussfreundliches PE. Fig. 9 zeigt ein detailliertes
Blockdiagramm eines solchen PE: dem Integer-PE. Dieses PE besteht aus verschiedenen I/O-Puffern, einer
ALU, einem Speicherregister, einigen Befehlsregistern und einem Planer. Jeden Zyklus kann der Planer einen
Befehl für die Ausführung basierend auf der Verfügbarkeit der Eingabe- und Ausgabepuffer und dem Status
des PE auswählen. Das Ergebnis der Operation kann dann entweder in einen Ausgabepuffer oder ein Register
(z. B. lokal oder PE) geschrieben werden. Die Daten, die in einen Ausgabepuffer geschrieben werden, können
zu einem nachgeschalteten PE zur weiteren Verarbeitung transportiert werden. Dieser PE-Stil kann extrem
energieeffizient sein, z. B. weil statt Daten aus einer komplexen Mehrportregisterdatei zu lesen, ein PE die
Daten aus einem Register liest. Auf ähnliche Weise können die Befehle direkt in einem Register gespeichert
werden, anstelle in einem virtuellen Befehls-Cache.

[0043] Befehlsregister können während eines speziellen Konfigurationsschrittes eingestellt werden. Während
dieses Schritts können Hilfssteuerdrähte und Zustand zusätzlich zum inter-PE-Netzwerk zum Streamen in der
Konfiguration über die verschiedenen PEs, welche die Struktur umfassen, verwendet werden. Als Ergebnis
der Parallelität können bestimmte Ausführungsformen eines solchen Netzwerks eine schnelle Rekonfiguration
bereitstellen, z. B. kann ein kachelgroßes Netzwerk in weniger als etwa 10 Mikrosekunden konfiguriert sein.

[0044] Fig. 9 repräsentiert eine Beispielkonfiguration eines Verarbeitungselements, in dem z. B. alle Archi-
tekturelemente minimal bemessen sind. In anderen Ausführungsformen ist jede der Komponenten eines Ver-
arbeitungselements unabhängig bemessen, um neue PEs zu erzeugen. Zum Handhaben komplizierterer Pro-
gramme kann z. B. eine größere Anzahl von Befehlen eingefügt werden, die durch ein PE ausführbar sind.
Eine zweite Dimension der Konfigurierbarkeit ist abhängig von der PE-Arithmetik-Logik-Einheit (ALU). In Fig. 9
ist ein Integer-PE dargestellt, das Addition, Subtraktion und verschiedene logische Operationen unterstützen
kann. Andere Arten von PEs können durch Ersetzen unterschiedlicher Arten von Funktionseinheiten in dem PE
geschaffen werden. Ein Integer-Multiplikations-PE kann beispielsweise keine Register, einen Einzelbefehl und
einen einzigen Ausgabepuffer aufweisen. Bestimmte Ausführungsformen eines PE zerlegen eine fusionier-
te Multiplikationsaddition (FMA) in separate, aber eng gekoppelte, Gleitkomma-Multiplikations- und Gleitkom-
ma-Additionseinheiten zum Verbessern der Unterstützung von Multiply-Add-Schwerarbeitslasten. PEs werden
nachstehend erläutert.



DE 10 2018 005 216 A1    2019.02.21

15/134

[0045] Fig. 7A veranschaulicht ein konfigurierbares Datenpfad-Netzwerk 700 (z. B. von Netzwerk eins oder
Netzwerk zwei, die in Bezug auf Fig. 6 erläutert wurden) gemäß Ausführungsformen der Offenbarung. Das
Netzwerk 700 weist mehrere Multiplexer (z. B. Multiplexer 702, 704, 706) auf, die konfiguriert werden können
(z. B. über zugehörige Steuersignale), um einen oder mehrere Datenpfade (z. B. von PEs) miteinander zu
verbinden. Fig. 7B veranschaulicht ein konfigurierbares Flusssteuerpfad-Netzwerk 701 (z. B. Netzwerk eins
oder Netzwerk zwei, die in Bezug auf Fig. 6 erläutert wurden) gemäß Ausführungsformen der Offenbarung. Ein
Netzwerk kann ein leichtgewichtiges PE-PE-Netzwerk sein. Bestimmte Ausführungsformen eines Netzwerks
können als ein Satz von zusammenfügbaren Grundelementen zum Bau von verteilten, Punkt-zu-Punkt-Daten-
kanälen gedacht sein. Fig. 7A zeigt ein Netzwerk, das zwei aktivierte Kanäle aufweist, die fette schwarze Linie
und die gepunktete schwarze Linie. Der Kanal der fetten schwarzen Linie ist Multicast, z. B. wird eine einzelne
Eingabe an zwei Ausgaben gesendet. Es sei angemerkt, dass sich die Kanäle an einigen Punkten innerhalb
eines einzelnen Netzwerks schneiden können, selbst wenn zweckgebundene leitungsvermittelte Pfade zwi-
schen den Kanalendpunkten gebildet werden. Des Weiteren stellt diese Kreuzung keine strukturelle Gefahr
zwischen den zwei Kanälen dar, sodass jeder unabhängig und bei voller Bandbreite arbeitet.

[0046] Das Implementieren von verteilten Datenkanälen kann zwei Pfade aufweisen, wie in Fig. 7A bis Fig. 7B
veranschaulicht. Die Vorwärtsverbindung, oder Datenpfad, trägt Daten von einem Erzeuger zu einem Verbrau-
cher. Multiplexer können zum Lenken von Daten und Validieren von Bits von dem Erzeuger zu dem Verbrau-
cher konfiguriert sein, z. B. wie in Fig. 7A. Im Fall von Multicast werden die Daten zu einer Vielzahl von Ver-
braucherendpunkten gelenkt. Der zweite Teil dieser Ausführungsform eines Netzwerks ist die Flusssteuerung
oder der Gegendruckpfad, der in Gegenrichtung des Vorwärtsdatenpfads fließt, z. B. wie in Fig. 7B. Die Ver-
braucherendpunkte können geltend gemacht werden, wenn sie zum Annehmen neuer Daten bereit sind. Diese
Signale können dann zurück zum Erzeuger unter Verwendung der konfigurierbaren logischen Konjunktionen
gelenkt werden, die als Flusssteuerungsfunktion in Fig. 7B gekennzeichnet sind (z. B. Rückfluss). In einer
Ausführungsform kann jede Flusssteuerungsfunktionsschaltung mehrere Schalter (z. B. Muxes) aufweisen,
wie z. B. ähnlich denen aus Fig. 7A. Der Flusssteuerpfad kann zurückkehrende Steuerdaten von dem Ver-
braucher an den Erzeuger handhaben. Konjunktionen können Multicast ermöglichen, wobei z. B. jeder Ver-
braucher Daten empfangen kann, bevor der Erzeuger voraussetzt, dass diese empfangen wurden. In einer
Ausführungsform ist ein PE ein PE, das einen Datenflussoperator wie seine Architekturschnittstelle aufweist.
Zusätzlich oder alternativ kann in einer Ausführungsform ein PE eine Art von PE (z. B. in der Struktur) sein, z.
B. ein PE, das eine Befehlszweiger-, Triggerbefehl- oder Zustandsmaschinen-Architekturschnittstelle aufweist,
aber nicht darauf beschränkt ist.

[0047] Das Netzwerk kann statisch konfiguriert sein, z. B. zusätzlich zu PEs, die statisch konfiguriert sind.
Während des Konfigurationsschrittes können Konfigurationsbits an jeder Netzwerkkomponente eingestellt wer-
den. Diese Bits steuern z. B. die Muxauswahl und die Flusssteuerfunktionen. Ein Netzwerk kann mehrere
Netzwerke umfassen, z. B. ein Datenpfad-Netzwerk und ein Flusssteuerungsnetzwerk. Eine Netzwerk oder
mehrere Netzwerke können Pfade unterschiedlicher Breiten benutzen (z. B. einer ersten Breite und einer en-
geren oder breiteren Breite). In einer Ausführungsform weist ein Datenpfad-Netzwerk eine breitere (z. B. Bit-
transport) Breite auf als die Breite eines Flusssteuerpfad-Netzwerks. In einer Ausführungsform weist jedes
von einem ersten Netzwerk und einem zweiten Netzwerk sein eigenes Datenpfad-Netzwerk und Flussteuer-
pfad-Netzwerk auf, z. B. Datenpfad-Netzwerk A und Flusssteuerpfad-Netzwerk A und ein breiteres Datenpfad-
Netzwerk B und ein Flusssteuerpfad-Netzwerk B.

[0048] Bestimmte Ausführungsformen eines Netzwerks sind pufferlos und die Daten müssen sich zwischen
dem Erzeuger und Verbraucher in einem Einzelzyklus bewegen. Bestimmte Ausführungsformen eines Netz-
werks sind ungebunden, das heißt, das Netzwerk überspannt die gesamte Struktur. In einer Ausführungsform
kommuniziert ein PE mit einem anderen PE in einem Einzelzyklus. In einer Ausführungsform können zum
Verbessern der Routingbandbreite mehrere Netzwerke parallel zwischen die Reihen der PE gelegt werden.

[0049] Bezüglich der FPGAs haben bestimmte Ausführungsformen von Netzwerken hierin drei Vorteile: Be-
reich, Frequenz und Programmausdruck. Bestimmte Ausführungsformen von Netzwerken arbeiten grobkörnig,
was z. B. die Anzahl an Konfigurationsbits reduziert und dadurch den Netzwerkbereich. Bestimmte Ausfüh-
rungsformen von Netzwerken erhalten die Bereichsreduktion durch Implementieren der Steuerlogik direkt im
Schaltkreis (z. B. Silicium). Bestimmte Ausführungsformen gehärteter Netzwerkimplementierungen genießen
gegenüber FPGA auch einen Frequenzvorteil. Aufgrund eines Bereichs- und Frequenzvorteils kann ein Leis-
tungsvorteil vorhanden sein, wenn eine geringere Spannung als Durchsatzparität verwendet wird. Schließlich
stellen bestimmte Ausführungsformen von Netzwerken bessere High-Level-Semantiken als FPGA-Drähte be-
reit, insbesondere in Bezug auf die variable Zeitsteuerung, weshalb solche bestimmten Ausführungsformen
leichter durch die Kompilierer anzuzielen sind. Bestimmte Ausführungsformen von Netzwerken hierin können



DE 10 2018 005 216 A1    2019.02.21

16/134

als ein Satz von zusammensetzbaren Grundelementen zum Bau von verteilten, Punkt-zu-Punkt-Datenkanälen
gedacht sein.

[0050] In bestimmten Ausführungsformen kann eine Multicast-Quelle ihre Daten erst dann geltend machen,
wenn ein Bereit-Signal von jeder Senke empfangen wurde. Daher können ein zusätzliches Konjunktions- und
Steuerbit in dem Multicastfall benutzt werden.

[0051] Wie bestimmte PEs kann das Netzwerk statistisch konfiguriert sein. Während dieses Schrittes werden
Konfigurationsbits an jeder Netzwerkkomponente eingestellt. Diese Bits steuern z. B. die Muxauswahl und die
Flusssteuerungsfunktion. Der Vorwärtspfad unseres Netzwerks erfordert, dass einige Bits ihre Muxe schwin-
gen. In dem in Fig. 7A gezeigten Beispiel werden vier Bits pro Hop erfordert: die Ost- und West-Muxe benutzen
jeweils ein Bit, während die südlich gebundenen Muxe zwei Bits benutzen. In dieser Ausführungsform können
vier Bits für den Datenpfad benutzt werden, es können aber 7 Bits für die Flusssteuerungsfunktion benutzt
werden (z. B. in dem Flusssteuerpfad-Netzwerk). Andere Ausführungsformen können mehr Bits benutzen, z.
B., wenn ein CSA ferner eine Nord-Süd-Richtung benutzt. Die Flusssteuerungsfunktion kann ein Steuerbit für
jede Richtung benutzen, aus welcher die Flusssteuerung kommen kann. Dies kann das Einstellen der Sensiti-
vität der Flusssteuerungsfunktion statisch ermöglichen. Die Tabelle 1 unten fasst die Boolsche Algebra-Imple-
mentierung der Flusssteuerungsfunktion für das Netzwerk in Fig. 7B zusammen, wobei die Konfigurationsbits
in Großbuchstaben aufgeführt sind. In diesem Beispiel werden sieben Bits benutzt.

Tabelle 1 Flussimplementierung

readyToEast (EAST_WEST_SENSITIVE+readyFromWest) * (EAST_SOUTH_SENSITIVE+ready-
FromSouth)

readyToWest (WEST_EAST_SENSITIVE+readyFromEast) * (WEST_SOUTH_SENSITIVE+ready-
FromSouth)

readyToNorth (NORTH_WEST_SENSITIVE+readyFromWest) * (NORTH_EAST_SENSITIVE+rea-
dyFromEast) * (NORTH_SOUTH_SENSITIVE+readyFromSouth)

[0052] Für die dritte Flusssteuerungsbox von links in Fig. 7B sind EAST_WEST_SENSITIVE (ost-west-sensi-
tiv) und NORTH_SOUTH_SENSITIVE (nord-süd-sensitiv) als Satz dargestellt, um die Flusssteuerung für Ka-
näle in fetter Linie bzw. gestrichelter Linie zu implementieren.

[0053] Fig. 8 veranschaulicht eine Hardware-Prozessor-Kachel, 800 umfassend einen Beschleuniger 802 ge-
mäß Ausführungsformen der Offenbarung. Der Beschleuniger 802 kann ein CSA gemäß dieser Offenbarung
sein. Die Kachel 800 weist mehrere Cache-Bänke (z. B. Cache-Bank 808) auf. Abfrageadressdatei (RAF)-
Schaltungen 810 können aufgenommen sein, z. B. wie unten in Abschnitt 3.2 erläutert. ODI kann sich auf eine
On-Die-Zwischenverbindung beziehen, z. B. eine Zwischenverbindung, die sich über den gesamten Chip er-
streckt, der alle Kacheln miteinander verbindet. OTI kann sich auf eine On-Tile-Zwischenverbindung beziehen,
die sich z. B. über eine Kachel erstreckt, die z. B. die Cache-Bänke auf der Kachel miteinander verbindet.

Verarbeitungselemente

[0054] In bestimmten Ausführungsformen weist ein CSA ein Array aus heterogenen PEs auf, in denen die
Struktur aus verschiedenen Typen von PEs zusammengesetzt ist, von denen jedes nur einen Untersatz von
Datenflussoperatoren implementiert. Rein beispielhaft zeigt Fig. 9 eine provisionale Implementierung eines
PE, das einen breiten Satz von Integer- und Steueroperationen implementieren kann. Andere PEs, einschließ-
lich solcher, die eine Gleitkomma-Addition, Gleitkomma-Multiplikation, Pufferung und bestimmte Steueropera-
tionen aufweisen, können einen ähnlichen Implementierungsstil aufweisen, z. B. mit der angemessenen (Da-
tenflussoperator)-Schaltung, welche die ALU ersetzt. PEs (z. B. Datenflussoperatoren) eines CSA können vor
dem Beginn der Ausführung zum Implementieren einer bestimmten Datenfluss-Operation von einem der Sät-
ze, die das PE unterstützt, konfiguriert (z. B. programmiert) werden. Eine Konfiguration kann eines oder zwei
Steuerwörter umfassen, die einen Opcode spezifizieren, der die ALU steuert, die verschiedenen Multiplexer
innerhalb des PE lenkt und den Datenfluss in die PE-Kanäle hinein und aus diesen heraus betätigt. Die Daten-
flussoperatoren können durch Mikrocodieren dieser Konfigurationsbits implementiert werden. Das dargestellte
Integer-PE 900 in Fig. 9 ist als Einzelstufen-Logik-Pipeline, die von oben nach unten fließt, organisiert. Daten
treten von einem eines Satzes lokaler Netzwerke ein, in denen sie in einem Eingabepuffer zur nachfolgenden
Operation registriert werden. Jedes PE kann eine Anzahl von breiten, datenausgerichteten und schmalen,
steuerungsausgerichteten Kanälen unterstützen. Die Anzahl der vorgesehenen Kanäle kann basierend auf der



DE 10 2018 005 216 A1    2019.02.21

17/134

PE-Funktionalität variieren, jedoch weist eine Ausführungsform eines ganzzahlorientierten PE 2 breite und 1-2
schmale Eingabe- und Ausgabekanäle auf. Obwohl das Integer-PE als eine Einzelzyklus-Pipeline implemen-
tiert ist, können andere Wahlen für das Pipelinenetz benutzt werden. Multiplikations-PEs können z. B. eine
Mehrzahl von Pipelinestufen aufweisen.

[0055] Die PE-Ausführung kann im Datenflussstil voranschreiten. Basierend auf dem Konfigurationsmikro-
code kann der Planer den Status der Eintritts- und Austrittspuffer des PE untersuchen und, wenn alle Einga-
ben für die konfigurierte Operation eingegangen sind und der Austrittspuffer der Operation verfügbar ist, die
tatsächliche Ausführung der Operation durch einen Datenflussoperator (z. B. auf der ALU) inszenieren. Der
resultierende Wert kann in dem konfigurierten Austrittspuffer platziert werden. Übertragungen zwischen dem
Austrittspuffer eines PE und dem Eintrittspuffer eines anderen PE können asynchron auftreten, wenn eine
Pufferung verfügbar wird. In bestimmten Ausführungsformen sind die PEs derart ausgestattet, dass mindes-
tens eine Datenfluss-Operation pro Zyklus abgeschlossen wird. In Abschnitt 2 ist der Datenflussoperator als
primitive Operationen umschließend erläutert, wie z. B. Add, Xor oder Pick. Bestimmte Ausführungsformen
können Vorteile bei Energie, Bereich, Leistung und Latenz bereitstellen. In einer Ausführungsform können mit
einer Erweiterung zu einem PE-Steuerpfad, mehr fusionierte Kombinationen ermöglicht werden. In einer Aus-
führungsform beträgt die Breite der Verarbeitungselemente 64 Bits, z. B. für die starke Nutzung der Doppel-
präzision-Gleitkomma-Berechnung in HPC und zum Unterstützen der 64-Bit-Speicher-Adressierung.

Kommunikationsnetzwerke

[0056] Ausführungsformen der CSA-Mikroarchitektur stellen eine Hierarchie von Netzwerken bereit, die zu-
sammen eine Implementierung der architektonischen Abstraktion latenzinsensitiver Kanäle über mehrere Kom-
munikationsmaßstäbe bereitstellen. Das niedrigste Level der CSA-Kommunikationshierarchie kann das lokale
Netzwerk sein. Das lokale Netzwerk kann ein statisch leitungsvermitteltes sein, das z. B. die Konfigurationsre-
gister zum Schwingen eines oder mehrerer Multiplexer in dem lokalen Netzwerkdatenpfad zum Bilden fester
elektrischer Pfade zwischen kommunizierenden PEs verwendet. In einer Ausführungsform wird die Konfigura-
tion des lokalen Netzwerkes einmal pro Datenflussgraph eingestellt, z. B. gleichzeitig mit der PE-Konfigurati-
on. In einer Ausführungsform optimiert die statische Leitungsvermittlung die Energie, z. B. wenn eine große
Mehrheit (evtl. größer als 95%) des CSA-Kommunikationsverkehrs das lokale Netzwerk kreuzt. Ein Programm
kann Begriffe aufweisen, die in einer Mehrzahl von Ausdrücken verwendet werden. Zum Optimieren in diesem
Fall stellen Ausführungsformen hierin eine Hardwareunterstützung für Multicast innerhalb des lokalen Netz-
werks bereit. Mehrere verschiedene lokale Netzwerke können zusammengefasst werden, um Routingkanäle
zu bilden, die z. B. verschachtelt (als ein Gitter) zwischen Reihen und Spalten der PEs sind. Als eine Opti-
mierung können mehrere verschiedene Netzwerke zum Tragen von Steuerungs-Token aufgenommen sein.
Im Vergleich mit einer FPGA-Zwischenverbindung kann ein lokales CSA-Netzwerk an der Granularität des
Datenpfads geleitet werden und ein weiterer Unterschied kann die CSA-Behandlung der Steuerung sein. Eine
Ausführungsform eines lokalen CSA-Netzwerks ist explizit flussgesteuert (z. B. gegengedrückt). Zum Beispiel
muss ein CSA für jeden Vorwärts-Datenpfad und Multiplexer-Satz einen Rückwärtsfluss-Flusssteuerpfad be-
reitstellen, der physisch mit dem Vorwärts-Datenpfad gepaart ist. Die Kombination der zwei mikroarchitektoni-
schen Pfade kann eine Punkt-zu-Punkt-Implementierung der latenzinsensitiven Kanalabstraktion mit niedriger
Latenz, niedriger Energie und niedrigem Bereich bereitstellen. In einer Ausführungsform sind die Flusssteue-
rungsleitungen eines CSA für das Benutzerprogramm nicht sichtbar, können jedoch durch die Architektur in
Betrieb des Benutzerprogramms manipuliert werden. Zum Beispiel können die in Abschnitt 2.2 beschriebenen
Ausnahmehandhabungsmechanismen erreicht werden, indem Flusssteuerungsleitungen bei der Erkennung
eines Ausnahmezustands in einen Zustand „nicht vorhanden“ gezogen werden. Diese Aktion kann nicht nur die
Teile der Pipeline, die an der fehlerhaften Berechnung beteiligt sind, elegant anhalten, sondern kann auch den
Maschinenzustand, der zu der Ausnahme geführt hat, bewahren, z. B. für eine Diagnoseanalyse. Die zweite
Netzwerkschicht, z. B. das Mezzanine-Netzwerk, kann ein gemeinsam genutztes paketvermitteltes Netzwerk
sein. Das Mezzanine-Netzwerk (z. B. das Netzwerk, das schematisch durch die gestrichelte Box in Fig. 22 dar-
gestellt ist) kann allgemeinere Kommunikationen mit größerer Reichweite auf Kosten von Latenz, Bandbreite
und Energie bereitstellen. In gut gerouteten Programmen kann die meiste Kommunikation in dem lokalen Netz-
werk stattfinden, weshalb die Mezzanine-Netzwerkbereitstellung im Vergleich beträchtlich reduziert wird, zum
Beispiel kann sich jedes PE mit mehreren lokalen Netzwerken verbinden, aber der CSA nur einen Mezzanine-
Endpunkt pro logischer Nachbarschaft der PEs bereitstellen. Da das Mezzanine tatsächlich ein gemeinsam
genutztes Netzwerk ist, kann jedes Mezzanine-Netzwerk mehrere logisch unabhängige Kanäle tragen und
z. B. mit einer Vielzahl von virtuellen Kanälen versehen sein. In einer Ausführungsform ist die Hauptfunktion
des Mezzanine-Netzwerks die Bereitstellung von Weitbereichskommunikationen zwischen PEs und zwischen
PEs und Speicher. Zusätzlich zu dieser Kapazität kann das Mezzanine-Netzwerk auch ein Laufzeitunterstüt-
zungsnetzwerk betreiben, durch das z. B. verschiedene Dienste auf die komplette Struktur auf benutzerpro-



DE 10 2018 005 216 A1    2019.02.21

18/134

grammtransparente Weise zugreifen. In dieser Eigenschaft kann der Mezzanine-Endpunkt als eine Steuerung
für seine lokale Nachbarschaft dienen, z. B. während der CSA-Konfiguration. Zum Bilden der Kanäle, die eine
CSA-Kachel überbrücken, können drei Teilkanäle und zwei lokale Netzwerkkanäle (die Verkehr zu und von
einem einzelnen Kanal in dem Mezzanine-Netzwerk tragen) benutzt werden. In einer Ausführungsform wird
ein Mezzanine-Kanal benutzt, z. B. ein Mezzanine- und zwei lokale = 3 Netzwerk-Hops insgesamt.

[0057] Die Zusammensetzbarkeit von Kanälen über Netzwerkschichten hinweg kann auf Higher-Level-Netz-
werkebenen an den Inter-Tile-, Inter-Die- und Fabric-Granularitäten erweitert werden.

[0058] Fig. 9 veranschaulicht Verarbeitungselement 900 gemäß Ausführungsformen der Offenbarung. In ei-
ner Ausführungsform wird das Betriebskonfigurationsregister 919 während der Konfiguration (z. B. Abbildung)
geladen und spezifiziert die bestimmte Operation (oder Operationen), die dieses Verarbeitungs- (z. B. Rechen-
) Element durchführen soll. Die Aktivität von Register 920 kann durch diese Operation (eine Ausgabe von Mux
916, die z. B. durch den Planer 914 gesteuert wird) gesteuert werden. Der Planer 914 kann eine Operation
oder Operationen des Verarbeitungselements 900 planen, zum Beispiel, wenn Eingabedaten und die Steuer-
eingabe eintreffen. Der Steuereingabepuffer 922 ist mit dem lokalen Netzwerk 902 verbunden (z. B. kann das
lokale Netzwerk 902 ein Datenpfad-Netzwerk wie in Fig. 7A und ein Flusssteuerpfad-Netzwerk wie in Fig. 7B
aufweisen) und wird mit einem Wert geladen, wenn er eintrifft (wenn z. B. das Netzwerk ein/mehrere Datenbit/
s und eines/mehrere gültige Bit/s aufweist). Der Steuerausgabepuffer 932, der Datenausgabepuffer 934 und/
oder der Datenausgabepuffer 936 können eine Ausgabe des Verarbeitungselements 900 empfangen, z. B.
wie durch die Operation (eine Ausgabe des Mux 916) gesteuert. Das Zustandsregister 938 kann immer dann
geladen werden, wenn die ALU 918 ausgeführt wird (wird auch durch die Ausgabe von Mux 916 gesteuert).
Die Daten in dem Steuereingabepuffer 922 und Steuerausgabepuffer 932 können ein Einzelbit sein. Der Mux
921 (z. B. Operand A) und Mux 923 (z. B. Operand B) können Quelleingaben sein.

[0059] Angenommen, die Operation dieses Verarbeitungs- (z. B. Rechen-) Elements ist (oder beinhaltet) zum
Beispiel, was als ein Pick in Fig. 3B bezeichnet wird. Das Verarbeitungselement 900 muss dann die Daten
entweder von dem Dateneingabepuffer 924 oder dem Dateneingabepuffer 926 auswählen, z. B. um zu Da-
tenausgabepuffer 934 (z. B. Standard) oder Datenausgabepuffer 936 zu gehen. Das Steuerbit in 922 kann
daher eine 0 angeben, wenn es von dem Dateneingabepuffer 924 ausgewählt wird oder 1, wenn es von dem
Dateneingabepuffer 926 ausgewählt wird.

[0060] Angenommen, die Operation dieses Verarbeitungs- (z. B. Rechen-) Elements ist (oder beinhaltet) zum
Beispiel, was als ein Switch (Schalter) in Fig. 3B bezeichnet wird. Das Verarbeitungselement 900 muss dann
die Daten zum Datenausgabepuffer 934 oder dem Datenausgabepuffer 936 ausgeben, z. B. vom Datenein-
gabepuffer 924 (z. B. Standard) oder Dateneingabepuffer 926. Das Steuerbit in 922 kann daher eine 0 ange-
ben, wenn es zum Datenausgabepuffer 934 ausgegeben wird oder 1, wenn es zum Datenausgabepuffer 936
ausgegeben wird.

[0061] Eine Vielzahl von Netzwerken (z. B. Zwischenverbindungen) kann mit einem Verarbeitungselement
verbunden sein, z. B. die (Eingabe-) Netzwerke 902, 904, 906 und (Ausgabe-) Netzwerke 908, 910, 912. Die
Verbindungen können Schalter sein, wie z. B. in Bezug auf Fig. 7A und Fig. 7B erläutert. In einer Ausfüh-
rungsform weist jedes Netzwerk zwei Unternetzwerke (oder zwei Kanäle auf dem Netzwerk) auf, z. B. eines
für das Datenpfad-Netzwerk aus Fig. 7A und eines für das Flusssteuer- (z. B. Gegendruck-) Pfadnetzwerk aus
Fig. 7B. Als ein Beispiel ist das lokale Netzwerk 902 (z. B. als Steuerungszwischenverbindung eingerichtet)
als mit dem Steuereingabepuffer 922 geschaltet (z. B. verbunden) dargestellt. In dieser Ausführungsform kann
ein Datenpfad (z. B. ein Netzwerk wie in Fig. 7A) den Steuereingabewert (z. B. Bit oder Bits) (z. B. ein Steuer-
Token) tragen, und der Flusssteuerpfad (z. B. das Netzwerk) kann das Gegendrucksignal (z. B. Gegendruck-
oder Nicht-Gegendruck-Token) von dem Steuereingabepuffer 922 tragen, um z. B. dem vorgeschalteten Er-
zeuger (z. B. PE) anzuzeigen, dass ein neuer Steuereingabewert nicht in den Steuereingabepuffer 922 zu
laden (z. B. senden) ist, bis das Gegendrucksignal angibt, dass Platz in dem Steuereingabepuffer 922 für den
neuen Steuereingabewert (z. B. von einer Steuerausgabepuffer des vorgeschalteten Erzeugers) vorhanden ist.
In einer Ausführungsform kann der neue Steuereingabewert nicht in den Steuereingabepuffer 922 eintreten,
bis sowohl (i) der vorgeschaltete Erzeuger das Gegendrucksignal „Platz verfügbar“ von dem „Steuereingabe“-
Puffer 922 empfängt, als auch (ii) der neue Steuereingabewert von dem vorgeschalteten Erzeuger gesendet
wird, und dies z. B. das Verarbeitungselement 900 anhält, bis dies geschieht (und Platz in dem bzw. den Ziel-
ausgabepuffer(n) verfügbar ist).

[0062] Der Dateneingabepuffer 924 und der Dateneingabepuffer 926 können in ähnlicher Weise arbeiten, z.
B. ist das lokale Netzwerk 904 (z. B. als eine Datenzwischenverbindung (im Gegensatz zur Steuerung) einge-



DE 10 2018 005 216 A1    2019.02.21

19/134

richtet) als mit dem Dateneingabepuffer 924 geschaltet (z. B. verbunden) dargestellt. In dieser Ausführungs-
form kann ein Datenpfad (z. B. ein Netzwerk wie in Fig. 7A) den Dateneingabewert (z. B. Bit oder Bits) (z. B.
ein Datenfluss-Token) tragen, und der Flusssteuerpfad (z. B. das Netzwerk) kann das Gegendrucksignal (z. B.
Gegendruck- oder Nicht-Gegendruck-Token) von dem Dateneingabepuffer 924 tragen, um z. B. dem vorge-
schalteten Erzeuger (z. B. PE) anzuzeigen, dass ein neuer Dateneingabewert nicht in den Dateneingabepuffer
924 zu laden (z. B. senden) ist, bis das Gegendrucksignal angibt, dass Platz in dem Steuereingabepuffer 924
für den neuen Dateneingabewert (z. B. von einer Datenausgabepuffer des vorgeschalteten Erzeugers) vor-
handen ist. In einer Ausführungsform kann der neue Dateneingabewert nicht in den Dateneingabepuffer 924
eintreten, bis sowohl (i) der vorgeschaltete Erzeuger das Gegendrucksignal „Platz verfügbar“ von dem „Daten-
eingabe“-Puffer 924 empfängt, als auch (ii) der neue Dateneingabewert von dem vorgeschalteten Erzeuger
gesendet wird, und dies z. B. das Verarbeitungselement 900 anhält, bis dies geschieht (und Platz in dem bzw.
den Zielausgabepuffer(n) verfügbar ist). Ein Steuerausgabewert und/oder Datenausgabewert können in ihren
jeweiligen Ausgabepuffern (z. B. 932, 934, 936) angehalten werden, bis ein Gegendrucksignal anzeigt, dass
Platz in dem Eingabepuffer für das bzw. die nachgeschalteten Verarbeitungselemente verfügbar ist.

[0063] Ein Verarbeitungselement 900 kann von der Ausführung abgehalten werden, bis seine Operanden (z.
B. ein Steuereingabewert und sein bzw. seine entsprechender/n Dateneingabewert oder -werte) empfangen
werden und/oder bis Platz in dem/den Ausgabepuffer(n) des Verarbeitungselements 900 für Daten vorhanden
ist, die durch die Ausführung der Operation für diese Operanden zu erzeugen sind.

Speicherschnittstelle

[0064] Die Abfrageadressdatei- (RAF) Schaltung, von der eine vereinfachte Version in Fig. 10 gezeigt ist,
kann für die Ausführung von Speicheroperationen verantwortlich sein und dient als Vermittler zwischen der
CSA-Struktur und der Speicherhierarchie. Als solche kann die Hauptaufgabe der Mikroarchitektur der RAF
darin bestehen, das Außer-Reihenfolge-Speichersubsystem mit der In-Reihenfolge-Semantik der CSA-Struk-
tur zu rationalisieren. In dieser Eigenschaft kann die RAF-Schaltung mit Abschlusspuffern ausgestattet sein,
z. B. warteschlangenähnlichen Strukturen, welche die Speicherantworten neu ordnen und diese zur Struktur
in der Anforderungsreihenfolge zurückführen. Die zweite Hauptfunktionalität der RAF-Schaltung kann darin
bestehen, Unterstützung in Form einer Adressumsetzung und eines Seitenwanderers bereitzustellen. Einge-
hende virtuelle Adressen können unter Verwendung eines kanalassoziativen Adressenübersetzungspuffers
(Translation Lookaside Puffer - TLB) in physische Adressen umgesetzt werden. Zum Bereitstellen einer brei-
ten Speicherbandbreite kann jede CSA-Kachel eine Vielzahl von RAF-Schaltungen aufweisen. Wie bei den
verschiedenen PEs der Struktur können die RAF-Schaltungen in einem Datenflussstil durch Prüfen auf Ver-
fügbarkeit der Eingabeargumente und Ausgabepufferung, wenn notwendig, vor dem Auswählen eines Spei-
cherbetriebs zur Ausführung betrieben werden. Im Gegensatz zu einigen PEs wird die RAF-Schaltung jedoch
zwischen mehreren verschiedenen gemeinsam angeordneten Speicheroperationen gemultiplext. Eine gemul-
tiplexte RAF-Schaltung kann zum Minimieren des Bereichs oberhalb ihrer verschiedenen Subkomponenten
verwendet werden, z. B. zum gemeinsamen Nutzen des Accelerator Cache Interface (ACI) -Ports (ausführli-
cher in Abschnitt 3.4 beschrieben), der gemeinsam genutzten Virtualspeicher (SVM)-Support-Hardware, Mez-
zanine-Netzwerkschnittstelle und anderen Hardware-Verwaltungseinrichtungen. Es kann jedoch einige Pro-
grammeigenschaften geben, die diese Wahl motivieren. In einer Ausführungsform muss ein (z. B. gültiger)
Datenflussgraph den Speicher in einem gemeinsam genutzten virtuellen Speichersystem abfragen. Speicher-
latenzgebundene Programme, wie z. B. Graph-Traversierungen, können viele getrennte Speicheroperationen
benutzen, um die Speicherbandbreite aufgrund des speicherabhängigen Steuerflusses zu sättigen. Obwohl
jede RAF gemultiplext sein kann, kann ein CSA eine Vielzahl (z. B. zwischen 8 und 32) RAFs bei einer Kachel-
Granularität aufweisen, um eine adäquate Bandbreite bereitzustellen. RAFs können mit dem Rest der Struktur
über sowohl das lokale Netzwerk als auch Mezzanine-Netzwerk kommunizieren. Wenn die RAFs gemultiplext
sind, kann jede RAF mit mehreren verschiedenen Ports in dem lokalen Netzwerk vorgesehen sein. Diese Ports
können als minimallatenter, hochdeterministischer Pfad zum Speicher zur Verwendung durch latenzsensitive
oder Hochbandbreiten-Speicheroperationen dienen. Zusätzlich kann eine RAF mit einem Mezzanine-Endpunkt
vorgesehen sein, der z. B. einen Speicherzugriff auf Laufzeitdienste und entfernte Benutzerebenen-Speicher-
zugangseinrichtungen bereitstellt.

[0065] Fig. 10 veranschaulicht eine Abfrage-Adressdatei (RAF)-Schaltung 1000 gemäß Ausführungsformen
der Offenbarung. In einer Ausführungsform kann zur Zeit der Konfiguration die Speicherlast- und -speiche-
roperationen, die in einem Datenflussgraphen waren, in Registern 1010 spezifiziert werden. Die Bögen zu
diesen Speicheroperationen in den Datenflussgraphen können dann mit den Eingabewarteschlangen 1022,
1024 und 1026 verbunden werden. Die Bögen aus diesen Speicheroperationen müssen somit die Abschluss-
puffer 1028, 1030 oder 1032 verlassen. Abhängigkeits-Token (die einzelne Bits sein können) kommen in die



DE 10 2018 005 216 A1    2019.02.21

20/134

Warteschlangen 1018 und 1020. Abhängigkeits-Token müssen die Warteschlange 1016 verlassen. Der Ab-
hängigkeits-Tokenzähler 1014 kann eine kompakte Repräsentation einer Warteschlange sein und eine Anzahl
von Abhängigkeits-Token, die für eine vorgegebene Eingabewarteschlange verwendet werden, nachverfolgen.
Wenn die Abhängigkeits-Tokenzähler 1014 gesättigt sind, können keine zusätzlichen Abhängigkeits-Token für
neue Speicheroperationen generiert werden. Entsprechend kann eine Speicherordnungsschaltung (z. B. eine
RAF in Fig. 11A) das Planen neuer Speicheroperationen anhalten, bis die Abhängigkeits-Tokenzähler 1014
ungesättigt werden.

[0066] Als ein Beispiel für eine Last geht eine Adresse in der Warteschlange 1022 ein, die der Planer 1012 mit
einer Last in 1010 in Übereinstimmung bringt. Ein Abschlusspufferslot für diese Last wird in der Reihenfolge
zugeordnet, in der die Adresse eingegangen ist. Unter der Voraussetzung, dass diese bestimmte Last in dem
Graphen keine spezifizierten Abhängigkeiten aufweist, werden die Adresse und der Abschlusspufferslot durch
den Planer (z. B. durch die Anweisung durch den Speicher 1042) aus dem Speichersystem gesendet. Wenn
das Ergebnis zum Mux 1040 zurückkehrt (schematisch dargestellt), wird dieses in dem Abschlusspufferslot,
das dieser spezifiziert, gespeichert (z. B. wenn es den Zielslot vollständig entlang durch das Speichersystem
getragen hat). Der Abschlusspuffer sendet die Ergebnisse zurück in das lokale Netzwerk (z. B. lokales Netz-
werk 1002, 1004, 1006 oder 1008), in der Reihenfolge, in der die Adressen eingegangen sind.

[0067] Die Speicher können ähnlich sein, außer dass sowohl die Adresse als auch die Daten eingehen müs-
sen, bevor irgendeine Operation an das Speichersystem ausgesendet wird.

Cache

[0068] Datenflussgraphen können eine Profusion von Anfragen (z. B. Wortgranularität) parallel erzeugen. Da-
her stellen bestimmte Ausführungsformen des CSA in Cache-Untersystem mit ausreichender Bandbreite be-
reit, um den CSA zu bedienen. Eine stark gestapelte Cache-Mikroarchitektur, wie sie beispielsweise in Fig. 11A
gezeigt ist, kann benutzt werden. Fig. 11A veranschaulicht eine Schaltung 1100 mit mehreren Abfrage-Adress-
datei (RAF)-Schaltungen (z. B. RAF-Schaltung (1)), die zwischen mehreren Beschleuniger-Kacheln (1108,
1110, 1112, 1114) und mehreren Cache-Bänken (z. B. Cache-Bank 1102) gemäß Ausführungsformen der Of-
fenbarung gekoppelt sind. In einer Ausführungsform kann die Anzahl der RAFs und Cache-Bänke in einem
Verhältnis von entweder 1:1 oder 1:2 sein. Cache-Bänke können volle Cache-Zeilen enthalten (z. B. im Gegen-
satz zur gemeinsamen Nutzung durch Wort), wobei jede Zeile genau eine Heimat im Cache hat. Cache-Zeilen
können über eine Pseudozufallsfunktion auf Cache-Bänke abgebildet werden. Der CSA kann das SVM-Modell
zur Integration mit anderen gekachelten Architekturen übernehmen. Bestimmte Ausführungsformen weisen
ein ACI-Netzwerk (ACI - Accelerator Cache Interconnect, Beschleuniger-Cache-Zwischenverbindung), das die
RAFs mit den Cache-Bänken verbindet. Dieses Netzwerk kann die Adresse und Daten zwischen den RAFs
und dem Cache übertragen. Die ACI-Topologiekann eine kaskadierte Crossbar sein, z. B. als ein Kompromiss
zwischen Latenz- und Implementierungskomplexität.

[0069] Fig. 11B veranschaulicht einen Transaktionsmechanismus, in dem Cache-Zeilen mit Informationen
über die Quelle eines Lese- oder Schreibzugriffs markiert sind, gemäß Ausführungsformen der Erfindung. Da
Lese- und Schreibgeräte verteilt sind, werden Sätze von Lese- und Schreibgeräten in Transaktionsklassen
gruppiert, die keinen Transaktionsfehlschlag induzieren. Die Struktur initiiert und beendet Transaktionen durch
eine Sondernachricht.

[0070] Fig. 11B zeigt die Architektur auf Systemebene der Transaktionsschnittstelle. Zu der Kompilationszeit
werden Speicherzugriffsstreams mit einem bestimmten Transaktionsidentifizierer in Zusammenhang gebracht.
Dies ermöglicht, dass größere Teile der Struktur an derselben Transaktion arbeiten. Zur Laufzeit beginnen
Transaktionen durch Senden einer Nachricht zu der Transaktionssteuerung, die die Transaktion als aktiv mar-
kiert. Nachfolgende Abfragen von den Transaktionszugangseinrichtungen werden als mit der aktiven Trans-
aktion im Cache in Zusammenhang gebracht markiert.

[0071] Die Transaktion wird durch Senden einer anderen Nachricht zu der Steuerung abgeschlossen, die
Markierungsbits im Cache löscht. Wenn keine Konflikte aufgetreten sind, wird die Transaktion erfolgreich ab-
geschlossen und die Struktur wird informiert. Wenn jedoch ein Konflikt aufgetreten ist, wird die Struktur über
einen Fehlschlag informiert. Jegliche Cache-Aktualisierungen werden zurückgesetzt, um den Zustand vor der
Transaktion wiederherzustellen.



DE 10 2018 005 216 A1    2019.02.21

21/134

[0072] Optional wird bei einem Fehlschlag eine Software aufgerufen, um den potentiellen Konflikt zu reparie-
ren. Die Software kann reagieren, indem eine weniger parallele Version des Programms, zum Beispiel eine
sequenzielle Version auf einem Kern zu dem Punkt eines vorherigen sicheren Prüfpunkts, ausgeführt wird.

[0073] In Ausführungsformen schließt dieser Mechanismus einen Begriff von Checkpointing und eine Benach-
richtigung über den Teil der Struktursoftware ein. Die Struktur beginnt einen Prüfpunkt und fährt mit der Aus-
führung fort. Zum Ende der Transaktion muss die Struktur möglicherweise den Speicher synchronisieren, zum
Beispiel durch das Ausgeben von Speicher-Fences. Eine Erweiterung des Basismechanismus schließt ein
Überwachen der Festschreibung von transaktionsbezogenen Aktivitäten in der Hardware ein.

[0074] Von einem Transaktionsmechanismus gemäß Ausführungsformen der Erfindung kann gewünscht sein,
dass er atomare Operationen unterstützt, die Operationen sind, in denen ein Speicherort gelesen wird, der
Wert modifiziert wird und dann der neue Wert zurück in denselben Speicherort gespeichert wird. Dies wird
„atomar“ durchgeführt, was bedeuten soll, dass kein anderer Agent, der am Speicher agiert, auch denselben
Lesewert zum Bearbeiten verwenden kann. Sie müssen entweder einen vorherigen Wert oder den resultieren-
den Wert dieser atomaren Aktion verwenden. Mit anderen Worten, wenn mehrere Agenten jeweils versuchen,
einen Speicherort zu inkrementieren, dann wird jeder der individuellen Werte nur durch einen Agenten, der
am Speicher agiert, erzeugt.

[0075] Da Arithmetik an Datenwerten in der CSA-Struktur durchgeführt wird, ermöglicht diese Lösung, dass
die Modifikation an dem Datenwertteil der atomaren Operation in der räumlichen Struktur stattfindet. Ausfüh-
rungsformen können einschließen:

• Ausgeben einer Ladeoperation zu dem Cache, die anzeigt, dass eine atomare Operation an den Daten
an dem spezifizierten Ort initiiert wird. Der Wert der Daten wird zusammen mit einem Signal, das anzeigt,
ob eine atomare Operation erfolgreich initiiert wurde oder nicht, zurückgeleitet. Eine atomare Operation
könnte nicht erfolgreich initiiert werden, wenn eine andere atomare Operation durch einen anderen Agen-
ten, der am Speicher agiert, schon im Gange ist.

• Annehmen, dass die atomare Operation initiiert wurde, dann werden die Daten durch die geeigneten
Rechenelemente im Graphen modifiziert.

• Ausgeben einer Speicheroperation zu dem Cache mit den modifizierten Daten. Diese Speicheroperation
ist eine bedingte Speicherung, die nur erfolgreich sein wird, wenn der Speicherort für die gesamte Zeit-
spanne von der Ladung zur Speicherung unter der Cache-Kohärenzsteuerung des CSA-Cache gestanden
hat. Wenn er unter der Steuerung steht, dann wird die Speicherung durchgeführt und eine Erfolgsangabe
wird zurückgeliefert, andernfalls wird eine Speicherungsfehlschlagangabe zurückgeliefert.

[0076] Gemäß diesem Ansatz wird eine Sperre-im-Gange-Adresse an jeder Cache-Bank im Cache gehalten.
Sie wird als frei analysiert, wenn die anfängliche atomare Ladeoperation auftritt und dann geschrieben wird,
sodass sie durch die atomare Ladung gehalten wird. Sie wird durch eine beliebige Cache-Operation, die in den
Cache schreibt, oder eine beliebige Operation, die die Cache-Zeile aus dem Cache entfernt, sodass sie durch
einen Agenten geschrieben wird, untersucht. Wenn eines dieser beiden Ereignisse stattfindet, dann wird der
Sperre-im-Gange-Adressen-Latch ungültig gemacht. Die resultierende atomare Speicherung wird fehlschla-
gen, wenn ein anderes Schreibgerät für den Ort in der Zwischenzeit zwischen dem Eintreffen der atomaren
Ladung und dem Eintreffen der atomaren Speicherung erschienen ist. Es sei zu beachten, dass das Sperre-
im-Gange-Adressregister auch ein Timeout aufweisen wird.

[0077] Fig. 11C bis Fig. 11J veranschaulicht eine Unterstützung für Backup und Wiederholung unter Verwen-
dung von Epochen im Cache-/Speicheruntersystem gemäß Ausführungsformen der Erfindung. In konventio-
nellen Computer-Pipelines, die einen Befehlszeiger zum Anzeigen eines Strings von Befehlen verwenden, gibt
es typischerweise ein Zeitfenster, das von der Initiierung der Arbeit an einem Befehl bis zur Zurückziehung ei-
nes Befehls live gehalten werden. In dem Fenster befinden sich viele Befehle in-flight. Während dieses Fens-
ters kann die Pipeline immer zu einem beliebigen Live-Befehl im Fenster zurückgesetzt werden, und dies wird
für Ereignisse wie Zweigprädiktionsfehler und andere spekulative Aktionen, die korrekt erneut ausgeführt wer-
den müssen, durchgeführt. Es gibt jedoch weder einen zentralen Steuermechanismus mit Graphausführung
noch eine Befehlszeigerangabe, damit eine Erzeugung für ein Arbeitsfenster ermöglicht wird. Ein Backup-An-
satz, der zweckmäßig ist, periodisch Speicherauszüge zu erstellen, die einen Zeitpunkt bei der Ausführung
des Graphen repräsentieren und zu denen zurückgesetzt werden kann. Die Zeit von einem solchen Speicher-
auszug zum nächsten wird in dieser Offenbarung eine „Epoche“ genannt. Ausführungsformen der Erfindung
schließen Mechanismen ein, die in der Cache-Hierarchie durchgeführt werden, um die Ausführung mit Spei-
cherauszügen und die Fähigkeit zum Unterstützen eines Backups zu dem jüngsten Speicherauszug zu unter-



DE 10 2018 005 216 A1    2019.02.21

22/134

stützen. Ein Ansatz mit gestaffelter Extraktion kann in Verbindung mit dem Erstellen von Speicherauszügen
in der räumlichen Struktur verwendet werden.

[0078] Die Unterstützung für die Ausführung von Epochen im Cache-/Speichersystem kann einschließen:

• Akkumulieren von Speicherschreibzugriffen, die seit der Initiierung der Epoche aufgetreten sind.

• Bewahren der alten Werte (Datenwert, der zum Start der Epoche vorhanden war), sodass in dem Fall,
dass das System zum Start der Epoche zurückgesetzt werden muss, alle ursprünglichen Datenwerte
verfügbar sind.

• Steuern der Sichtbarkeit von Änderungen an Speicherdatenwerten in der Mitte einer Epoche von sichtbar
für alle anderen Agenten im Cache-Kohärenzsystem.

• Erhalten der Erlaubnis, die eindeutige Kopie einer Zeile zu besitzen, vom Kohärenzprotokoll während
der Ausführung der Epoche.

• Am Ende einer Epoche, Sichtbarmachen aller Änderungen, die in der Epoche auftraten, für alle Agenten
in einer atomaren Aktion.

[0079] Fig. 11C zeigt den Plan, wie eine Epochenunterstützung im Cache-/Speichersystem erreicht werden
kann. Neue Werte werden in Cache-Einträgen akkumuliert, während alte Werte, die vor dem Start der Epoche
vorhanden waren, als sich im Speicher befindlich garantiert werden. Falls eine Rücksetzung zum Start der
Epoche erforderlich ist, werden alle neuen Werte ungültig gemacht. Wenn eine erfolgreiche Bewegung zur
nächsten Epoche stattfindet, werden dem Cache-Kohärenzprotokoll alle neuen Werte als sichtbar deklariert.
Bei Fig. 11C werden beispielsweise in Schritt C1 alle neu erstellten Werte W1 im Cache CA gehalten, während
Epoche n+1 ausgeführt wird. Falls eine Rücksetzung benötigt wird, werden beispielsweise alle Werte der Epo-
che n+1 ausgelöscht, um die Werte der Epoche n verfügbar zu machen. Anschließend folgt das Übergehen zu
Epoche n+2, umfassend Sichtbarmachen aller erzeugten Werte der Epoche n+1 für das Cache Kohärenzpro-
tokoll, Starten des Akkumulierens von erzeugten Werten der Epoche n+2 in den Cache CA und, wie benötigt,
Verschieben der Werte der Epoche n+1 in den Speicher SP. Für jene geschriebenen Werte W2 die zum Start
der Epoche n+1 live waren und nicht im Cache CA verbleiben können, folgt gemäß Schritt C2, Sicherstellen,
dass eine Kopie im Speicher SP ist.

[0080] Das Cache-Kohärenzprotokoll kann drei Operationen zum Unterstützen der Epochenausführung ein-
schließen. Die erste derartige Operation (Speicherabgleich-Schreibzugriff) ist ein Verfahren des Sicherstellens,
dass der Speicherwert mit einem im Cache gehaltenen Wert übereinstimmt, wie in Fig. 11D gezeigt. Diese
Operation ändert einen Cache-Kohärenzzustand nicht; sie stellt lediglich sicher, dass die Daten aus einem
Cache-Eintrag in den Speicher geschrieben werden.
Bei Fig. 11D wird beispielsweise der Speicher SP an den Cache-Wert „Speicherableich-Schreibzugriff“ ange-
passt und der Cache-Zustand unverändert belassen und die Tag Verzeichnisse T unverändert belassen. Dies
stellt im Wesentlichen nur eine Buchführungsoperation dar, wobei das Bezugszeichen D1 eine Zeile in Besitz
im Cache veranschaulicht. In unseren gegenwärtigen Protokollen würde diese neue Option unter Verwendung
eines Zugmodells implementiert werden (Anfragen zum Verschieben, Warten auf eine Zuganfrage).

[0081] Die zweite Protokolloperation (Besitzfreigabe-Keine-Daten) ist ein Verfahren zum Freigeben des Be-
sitzes einer Zeile und Spezifizieren, dass die Speicherkopie der gegenwärtige zu verwendende Wert ist, wie
in Fig. 11E gezeigt. Diese Operation ändert den Cache-Kohärenzsteuerzustand im Tag-Verzeichnis, sodass
er nicht zu dem Cache als den Ort zum Erhalten von Daten zeigt, sondern sie stattdessen aus dem Speicher
zu bekommen.
Bei Fig. 11E wird beispielsweise der Besitz der Zeile abgegeben, ohne Daten bereitzustellen (nachfolgende
Anforderer würden eine Speicherkopie verwenden; „Besitzfreigabe-Keine-Daten“). Das Tag-Verzeichnis T ent-
fernt nur den Datensatz der gecachten Zeile in Besitz, daher ist der Speicher jetzt der Bereitsteller von Daten,
wobei das Bezugszeichen E1 eine Zeile in Besitz im Cache veranschaulicht. Dies liegt sehr nahe an einer
Operation einer „sauberen Räumung“ in unseren gegenwärtigen Protokollen.

[0082] Die dritte Operation, in Fig. 1F veranschaulicht, ist die Fähigkeit, auf eine Untersuchung, die in diesem
Cache nach Daten sucht, zu reagieren und anzuzeigen, dass es keine Daten gibt, und stattdessen die Spei-
cherkopie zu erhalten. Da es gewünscht ist, die Epochen auf eine atomare Art und Weise auszuführen, sodass
für jeden Beobachter entweder die gesamten Epochenänderungen stattgefunden haben oder keine Änderun-
gen stattgefunden haben, wird durch diese Operation eine Weise des Handhabens von Untersuchungen von
anderen Beobachtern bereitgestellt.



DE 10 2018 005 216 A1    2019.02.21

23/134

Fig. 11F veranschaulicht die Fähigkeit, einer Untersuchung U zu sagen, dass der Cache CA tatsächlich nicht
die Daten, die man haben will, aufweist, und stattdessen die Kopie im Speicher SP verwendet, wobei das
Bezugszeichen F1 eine Zeile in Besitz im Cache veranschaulicht. In gegenwärtigen Protokollen würde dies eine
RSPI-Antwort sein. In Laufbedingung mit einem „Speicherabgleich-Schreibzugriff“ würde die Untersuchung
entweder den noch nicht aus dem Cache CA gezogenen Wert verwenden oder den RSPI empfangen und den
Wert aus dem Speicher SP holen.

[0083] Ein zusätzlicher Cache-Zustand, in Fig. 11G veranschaulicht, kann zum Unterscheiden zwischen ko-
härenten Zeilen in Besitz gegenüber spekulativen Zeilen in Besitz bereitgestellt werden. Diese Metadaten in
Cache-Kohärenzprotokoll-Unterstützungsstrukturen unterscheiden nicht zwischen den beiden unterschiedli-
chen Besitz-Zuständen und zeichnen nur auf, dass dieser Cache der Besitzer der Zeile ist.
Fig. 11G veranschaulicht daher zwei Zustände Z1 und Z2 im Cache CA, aber beide sind der in-Besitz-Zustand,
soweit es das Tag-Verzeichnis betrifft, wobei Zustand Z1 der „Spekulativ in Besitz“ Zustand und Zustand Z2
der „in Besitz“ Zustand ist.

[0084] Als Nächstes, um die Epochenunterstützung zu veranschaulichen, zeigt Fig. 11H einen Schreibzugriff
von der räumlichen Struktur in den Cache, wie in Fig. 11 H gezeigt. Wenn der Schreibzugriff auf eine speku-
lative Zeile in Besitz trifft, dann wird die Zeile aktualisiert. Wenn der Schreibzugriff eine reguläre Zeile in Besitz
trifft, dann wird zuerst mit einer „Speicherabgleich-Schreibzugriff“-Operation veranlasst, dass die Zeile mit dem
Speicher übereinstimmt. Dann wird die Zeile zu spekulativ in Besitz und aktualisiert abgeändert. Wenn der
Schreibzugriff keine In-Besitz-Version der Zeile findet, dann wird dem Cache-Kohärenzprotokoll eine „Anfra-
ge für den Besitz“(RFO)-Anweisung gesendet. Beim Empfang der Füllung und somit des Besitzes der Zeile
wird die Quelle der Füllung untersucht. Wenn sie vom Speicher kam, dann ist der Speicher schon auf dem
neuesten Stand und es wird keine „Speicherabgleich-Schreibzugriff“-Anweisung ausgegeben. Wenn sie nicht
vom Speicher kam, dann wird eine „Speicherabgleich-Schreibzugriff“-Anweisung ausgegeben. Danach wird
die Zeile zu spekulativ in Besitz und aktualisiert abgeändert.

[0085] Es sei zu beachten, dass, wenn die Schreibanfrage den Cache verfehlt und eine Zeile im Cache zu-
weisen muss, es Platz für die neue Zeile geben muss, ohne eine spekulative Zeile zu räumen. Ein Ansatz
zum Handhaben von diesem besteht darin, dass, wenn die Zuweisung für die letzte Zeile im Satz ist, der nicht
spekulativ in Besitz ist, dann ein Epochenende deklariert wird und der Transfer von sowohl der räumlichen
Struktur als auch des Cache zur nächsten Epoche initiiert wird. Eine beliebige Schwelle würde zum Initiieren
des nächsten Speicherauszugs funktionieren.

[0086] Fig. 11H veranschaulicht mehrere Schritte, zuerst, Finden einer Zeile in Besitz oder Erhalten von einer,
falls notwendig (RFO) H1, zweitens, Durchführen eines „Speicherabgleich-Schreibzugriffs“ von ursprünglichen
Daten in dem Speicher und drittens, Abändern des Cache-Zustands zu „spekulativ in Besitz“ und Durchführen
des Schreibzugriffs SZ. Es sei zu beachten, dass, wenn erforderlich, RFO und Füllung aus Speicher kommen,
„Speicherabgleich-Schreibzugriff“ nicht durchgeführt werden muss. Wenn die Zeile schon „spekulativ in Be-
sitz“ ist, dann folgt nur Durchführen H2 des Schreibzugriffs SZ. Die nächste Aktion ist der Übergang von einer
Epoche zur nächsten. Die Cache-Kohärenzprotokoll-Metadaten in den Tag-Verzeichnissen zeichnen auf, dass
dieser Cache alle Zeilen besitzt, die in dieser Epoche geschrieben werden. Daher wird eine Flash-Änderungs-
operation durchgeführt, um den Kohärenzzustand zu ändern, der im Cache für alle Zeilen, die spekulativ in
Besitz oder nur in Besitz sind, aufgezeichnet ist, wie in Fig. 11I gezeigt. Keine Aktion wird durch die Cache-
Kohärenz-Metadaten benötigt, die sich in den Tag-Verzeichnissen befinden.
Fig. 11I veranschaulicht im Endeffekt eine Flash-Löschoperation, die alle „spekulativ in Besitz“-Zustände zu
„in Besitz“ ändert, d.h. alle Schreibzugriffe SZ sind jetzt für das Cache-Kohärenzprotokoll sichtbar 11.

[0087] Die letzte Aktion bei der Unterstützung der Epochenausführung ist ein Mechanismus zum Zurücksetzen
der Cache-/Speicherhierarchie zu dem Punkt des jüngsten Epochenstarts (dem Speicherauszug). Dies ist in
Fig. 11J veranschaulicht. Der Ansatz besteht darin, alle spekulativen Zeilen in Besitz ungültig zu machen.
Dies kann mit einer Flash-Löschoperation durchgeführt werden. Nun, obwohl die Cache-Kohärenz-Metadaten
diese Zeilen als durch diesen Cache zu besitzend aufzeichnen, wenn eine Untersuchung stattfindet, besteht
die Antwort darin, die Daten im Speicher zu finden.

[0088] Fig. 11J zeigt eine zusätzliche Leistungsverbesserung, die zwei ungültige Zeilentypen benötigen wür-
de, eine reguläre ungültige Zeile und eine Flash-ungültig gemachte Zeile. Beide würden als ungültige Zeilen
behandelt werden, mit der Ausnahme eines Demon, der läuft und den Cache nach Flash-ungültig gemachten
Zeilen durchkämmt. Wenn diese gefunden werden, wird er „Besitzfreigabe-Keine-Daten“-Anweisungen aus-
geben, um sicherzustellen, dass die Cache-Kohärenz-Metadaten aufzeichnen, dass der Speicher der Ort ist,



DE 10 2018 005 216 A1    2019.02.21

24/134

um die Daten zu erhalten, und nicht dieser Cache. Diese Zeilen würden dann zu dem regulären ungültigen
Zustand geändert werden.
Wir können alle „spekulativ in Besitz“-Zeilen Flash-ungültig machen und das RSPI-Merkmal zum Säubern
jeglicher Kommunikation von anderen Beobachtern verwenden, was sie zwingen wird, die Speicherkopie zu
bekommen. Wenn die Struktur eine Zeile erneut berühren will, muss sie eine RFO zu dem Kohärenzsystem
ausgeben, das die Daten aus dem Speicher holen wird. Eine zusätzliche Leistungsverbesserung könnte sein,
zwei ungültige Zustände aufzuweisen und einen Demon herumlaufen zu lassen und jegliche Flash-ungültig
gemachte Zeilen in wahrlich ungültige Zeilen sauber zu räumen.

Gleitkomma-Unterstützung

[0089] Bestimmte HPC-Anwendungen sind durch ihre Bedarf an einer signifikanten Gleitkomma-Bandbreite
gekennzeichnet. Um diesen Bedarf zu erfüllen, können Ausführungsformen eines CSA mit einer Vielzahl (z.
B. jeweils zwischen 128 und 256) von Gleitkomma-Additions- und Multiplikations-PEs bereitgestellt werden, z.
B. in Abhängigkeit von der Kachelkonfiguration. Ein CSA kann einige andere erweiterte Genauigkeitsmodi be-
reitstellen, z. B. zum Vereinfachen der Mathematikbibliothek-Implementierung. CSA-Gleitkomma-PEs können
sowohl einzelne als auch doppelte Genauigkeit unterstützen, aber PEs mit geringerer Genauigkeit können die
Maschinenlern-Arbeitslasten unterstützen. Ein CSA kann eine um eine Größenordnung höhere Gleitkomma-
Leistung als ein Prozessorkern bereitstellen. In einer Ausführungsform wird zusätzlich zur Erhöhung der Gleit-
komma-Bandbreite die Energie, die in Gleitkomma-Operationen verbraucht wird, reduziert, um alle Gleitkom-
ma-Einheiten zu versorgen. Zum Reduzieren von Energie kann ein CSA selektiv die Bits niedriger Ordnung der
Gleitkomma-Multiplizierer-Anordnung durchschalten. Bei der Untersuchung des Verhaltens der Gleitkomma-
Arithmetik beeinflussen die Bits niedriger Ordnung des Multiplikationsarrays oft nicht das endgültige, gerundete
Produkt. Fig. 12 veranschaulicht einen Gleitkomma-Multiplizierer 1200, der in drei Gebiete (Ergebnisgebiet,
drei potentielle Übertraggebiete (1202, 1204, 1206) und Gebiet mit Gate) gemäß Ausführungsformen der Of-
fenbarung unterteilt ist. In bestimmten Ausführungsformen beeinflusst das Übertraggebiet wahrscheinlich das
Ergebnisgebiet, und es ist unwahrscheinlich, dass das Gebiet mit Gate das Ergebnisgebiet beeinflusst. Bei der
Betrachtung eines Gebiets mit Gate aus g Bits kann der maximale Übertrag wie folgt sein:

carry i

i i

g

g g
ig

g g

gg

≤ ∑

≤ - +∑∑

≤ -

-1
2

2

2 2
1

1

1

1

11

Wenn bei diesem maximalen Übertrag das Ergebnis des Übertragsgebiets kleiner als 2c - g ist, wobei das
Übertraggebiet c Bits breit ist, kann das Gebiet mit Gate ignoriert werden, da es das Ergebnisgebiet nicht be-
einflusst. Das Erhöhen von g bedeutet, dass es wahrscheinlicher ist, dass das Gebiet mit Gate benötigt wird,
während das Erhöhen von c bedeutet, dass das Gebiet mit Gate bei zufälliger Annahme unbenutzt bleibt und
deaktiviert werden kann, um einen Energieverbrauch zu vermeiden. In Ausführungsformen eines CSA-Gleit-
komma-Multiplikations-PE wird ein zweistufiger Pipeline-Ansatz benutzt, bei dem zuerst das Übertraggebiet
bestimmt wird und dann das Gebiet mit Gate bestimmt wird, wenn festgestellt wird, dass dies das Ergebnis
beeinflusst. Wenn mehr Information über den Kontext der Multiplikation bekannt ist, stimmt ein CSA die Größe
des Gebiets mit Gate aggressiver ab. Bei einer FMA kann das Multiplikationsergebnis zu einem Akkumulator
addiert werden, der oft viel größer als jeder der Multiplikanden ist. In diesem Fall kann der Addend-Exponent
vor der Multiplikation beobachtet werden, und die CSDA kann das Gebiet mit Gate entsprechend einstellen.
Eine Ausführungsform des CSA weist ein Schema auf, in dem ein Kontextwert, der das Mindestergebnis einer
Berechnung bindet, zugehörigen Multiplizierern bereitgestellt wird, um Minimum-Energie-Gating-Konfiguratio-
nen auszuwählen.

Laufzeitdienste

[0090] In einer bestimmten Ausführungsform weist ein CSA eine heterogene und verteilte Struktur auf, und
folglich müssen Laufzeitdienst-Implementierungen mehrere Arten von PEs in einer parallelen und verteilten
Weise aufnehmen. Obwohl Laufzeitdienste in einem CSA kritisch sein können, können sie im Vergleich zur
Berechnung auf Benutzerebene infrequent sein. Bestimmte Implementierungen konzentrieren sich daher auf
das Überlagern von Diensten über Hardwareressourcen. Zur Erreichung dieser Ziele können CSA-Laufzeit-
dienste als eine Hierarchie angegeben werden, wobei z. B. jede Schicht einem CSA-Netzwerk entspricht.
Auf Kachel-Level kann eine einzelne nach außen weisende Steuerung Dienstbefehle an einen zugeordneten



DE 10 2018 005 216 A1    2019.02.21

25/134

Kern mit der CSA-Kachel akzeptieren oder senden. Eine Kachel-Level-Steuerung kann dazu dienen, regionale
Steuerungen an den RAFs zu koordinieren, z. B. unter Verwendung des ACI-Netzwerks. Im Gegenzug können
regionale Steuerungen lokale Steuerungen an bestimmten Mezzanine-Stopps im Netzwerk koordinieren. Auf
dem untersten Level können dienstspezifische Mikroprotokolle über das lokale Netzwerk ausgeführt werden,
z. B. während eines speziellen Modus, der durch die Mezzanine-Steuerung gesteuert wird. Die Mikroprotokolle
können zulassen, dass jedes PE (z. B. PE-Klasse nach Typ) mit dem Laufzeitdienst gemäß eigenem Bedarf
interagiert. Die Parallelität ist somit in dieser hierarchischen Organisation implizit und Operationen auf gerings-
tem Level können gleichzeitig stattfinden. Diese Parallelität kann die Konfiguration einer CSA-Kachel zwischen
Hunderten von Nanosekunden bis einigen Mikrosekunden ermöglichen, z. B. abhängig von der Konfigurati-
onsgröße und ihrem Speicherplatz in der Speicherhierarchie. Ausführungsformen des CSA nutzen somit die
Eigenschaften von Datenflussgraphen, um die Implementierung jedes Laufzeitdienstes zu verbessern. Eine
Hauptbeobachtung ist, dass Laufzeitdienste möglicherweise nur eine legale logische Ansicht des Datenfluss-
graphen bewahren müssen, z. B. einen Zustand, der durch eine gewisse Reihenfolge von Ausführungen des
Datenflussoperators erzeugt werden kann. Dienste brauchen im Allgemeinen keine temporäre Ansicht des
Datenflussgraphen garantieren, z. B. den Zustand eines Datenflussgraphen in einem CSA zu einem spezifi-
schen Zeitpunkt. Dies kann es dem CSA ermöglichen, die meisten Laufzeitdienste auf verteilte, zeitverschach-
telte und parallele Weise durchzuführen, z. B. unter der Voraussetzung, dass der Dienst abgestimmt ist, um
die logische Ansicht des Datenflussgraphen zu bewahren. Das lokale Konfigurationsmikroprotokoll kann ein
paketbasiertes Protokoll sein, das dem lokalen Netzwerk überlagert ist. Konfigurationsziele können in einer
Konfigurationskette organisiert sein, die z. B. in der Mikroarchitektur festgelegt ist. Strukturziele (z. B. PE-Ziele)
können einzeln konfiguriert werden, z. B. unter Verwendung eines einzigen zusätzlichen Registers pro Ziel,
um eine verteilte Koordination zu erreichen. Zum Starten der Konfiguration kann eine Steuerung ein Außer-
Band-Signal ansteuern, das alle Strukturziele in seiner Nachbarschaft in einen nicht konfigurierten, pausier-
ten Zustand versetzt und Multiplexer in dem lokalen Netzwerk zu einer vordefinierten Konformation schwingt.
Wenn die Strukturziele (z. B. PE-Ziele) konfiguriert sind, d. h. sie vollständig ihr Konfigurationspaket empfan-
gen, können sie ihre Konfigurations-Mikroprotokoll-Register setzen und das unmittelbar nachfolgende Ziel (z.
B. PE), das als nächstes konfiguriert wird, unter Verwendung des nachfolgenden Pakets mitteilen. Es gibt
keine Beschränkung für die Größe eines Konfigurationspakets, und Pakete können eine dynamisch variable
Länge aufweisen. Zum Beispiel können PEs, die konstante Operanden konfigurieren, ein Konfigurationspaket
aufweisen, das verlängert wird, um das konstante Feld (z. B. X und Y in Fig. 3B - Fig. 3C) aufzuweisen. Fig. 13
veranschaulicht eine in-Flight-Konfiguration eines Beschleunigers 1300 mit mehreren Verarbeitungselemen-
ten (z. B. PEs 1302, 1304, 1306, 1308) gemäß Ausführungsformen der Offenbarung. Nach der Konfiguration
können die PEs den Gegenstand der Datenflusseinschränkungen ausführen. Kanäle, die unkonfigurierte PEs
beinhalten, können jedoch durch die Mikroarchitektur deaktiviert werden, z. B. verhindern, dass undefinierte
Operationen stattfinden. Diese Eigenschaften ermöglichen Ausführungsformen eines CSA das verteilte Initia-
lisieren und Ausführen ohne jegliche zentralisierte Steuerung. Aus einem unkonfigurierten Zustand kann die
Konfiguration vollständig parallel stattfinden, z. B. in vielleicht nur 200 Nanosekunden. Aufgrund der verteilten
Initialisierung von Ausführungsformen eines CSA können PEs jedoch aktiv werden, zum Beispiel Anforderun-
gen an den Speicher senden, lange bevor die gesamte Struktur konfiguriert ist. Die Extraktion kann ähnlich
wie die Konfiguration ablaufen. Das lokale Netzwerk kann angepasst werden, um Daten von jeweils einem Ziel
gleichzeitig zu extrahieren, und es werden Zustandsbits verwendet, um eine verteilte Koordination zu errei-
chen. Ein CSA kann die Extraktion so steuern, dass sie nicht-destruktiv ist, d. h. nach Abschluss der Extraktion
ist jedes extrahierbare Ziel in seinen Ausgangszustand zurückgekehrt. In dieser Implementierung kann der
gesamte Zustand in dem Ziel in einem abtastungsähnlichen Ausgangsregister, das an das lokale Netzwerk
gebunden ist, zirkuliert werden. Es kann jedoch eine In-Place-Extraktion erreicht werden, indem neue Pfade
auf der Registerübertragungsebene (RTL) eingefügt werden oder bestehende Leitungen verwendet werden,
um die gleichen Funktionen mit geringerem Aufwand bereitzustellen. Wie bei der Konfiguration wird die hier-
archische Extraktion parallel dazu erreicht.

[0091] Fig. 14 veranschaulicht einen Speicherauszug 1400 einer zeitverschachtelten in-Flight-Extraktion ge-
mäß Ausführungsformen der Offenbarung. In einigen Verwendungsfällen der Extraktion, wie Checkpointing,
ist die Latenz möglicherweise kein Problem, solange der Strukturdurchsatz beibehalten wird. In diesen Fällen
kann die Extraktion auf zeitverschachtelt erfolgen. Diese Anordnung, die in Fig. 14 gezeigt ist, erlaubt es dem
größten Teil der Struktur, weiter auszuführen, während ein schmales Gebiet für die Extraktion deaktiviert ist.
Konfiguration und Extraktion können koordiniert und zusammengesetzt werden, um eine Umschaltung im zeit-
verschachtelten Kontext zu erreichen. Ausnahmen können sich qualitativ von der Konfiguration und Extrakti-
on darin unterscheiden, indem sie nicht zu einem spezifischen Zeitpunkt auftreten, sondern irgendwo in der
Struktur zu jedem Zeitpunkt während der Laufzeit. Dementsprechend kann das Ausnahme-Mikroprotokoll in
einer Ausführungsform nicht dem lokalen Netzwerk überlagert werden, das zur Laufzeit durch das Benutzer-
programm belegt ist, und benutzt sein eigenes Netzwerk. Ausnahmen sind jedoch von Natur aus selten und



DE 10 2018 005 216 A1    2019.02.21

26/134

insensitiv gegenüber Latenz und Bandbreite. Daher verwenden bestimmte Ausführungsformen des CSA ein
paketvermitteltes Netzwerk, um Ausnahmen zu dem lokalen Mezzanine-Stopp zu übertragen, wo sie z. B. in
der Diensthierarchie nach oben weitergeleitet werden (wie z. B. in Fig. 29). Pakete in dem lokalen Ausnahme-
Netzwerk können extrem klein sein. In vielen Fällen reicht eine PE-Identifikation (ID) von nur zwei bis acht Bits
als ein vollständiges Paket aus, da z. B. der CSA eine eindeutige Ausnahmekennung erzeugen kann, wenn
das Paket die Ausnahmediensthierarchie durchläuft. Ein solches Schema kann wünschenswert sein, weil es
auch den Bereichsaufwand zum Erzeugen von Ausnahmen an jedem PE reduziert.

KOMPILIERUNG

[0092] Die Fähigkeit, in Hochsprachen geschriebene Programme in einem CSA zu kompilieren, kann für die
Übernahme in der Branche von entscheidender Bedeutung sein. Dieser Abschnitt gibt einen allgemeinen Über-
blick über Kompilierungsstrategien für Ausführungsformen eines CSA. Zunächst wird ein CSA-Softwareframe-
work vorgeschlagen, das die gewünschten Eigenschaften einer idealen Toolkette für die Produktionsqualität
veranschaulicht. Danach wird ein Prototyp-Kompilierer-Framework erläutert. Dann wird eine „Control-to-Data-
flow-Conversion (Steuerung-zu-Datenfluss-Umwandlung)“ besprochen, z. B. um gewöhnlichen sequentiellen
Steuerflusscode in CSA-Datenfluss-Assembliercode umzuwandeln.

Beispiel Produktionsframework

[0093] Fig. 15 veranschaulicht eine Kompilierungs-Toolkette 1500 für einen Beschleuniger gemäß Ausfüh-
rungsformen der Offenbarung. Diese Toolkette kompiliert Hochsprachen (wie C, C ++ und Fortran) in eine
Kombination aus Host-Code- (LLVM) - Zwischenrepräsentation (IR) für die spezifischen Gebiete, die beschleu-
nigt werden sollen. Der CSA-spezifische Teil dieser Kompilierungs-Toolkette verwendet LLVM IR als Eingabe,
optimiert und kompiliert diese IR in eine CSA-Assembly, z. B. durch Hinzufügen einer geeigneten Pufferung
auf latenzinsensitiven Kanälen für die Leistung. Anschließend platziert und routet er die CSA-Assembly auf der
Hardware-Struktur und konfiguriert die PEs und das Netzwerk für die Ausführung. In einer Ausführungsform
unterstützt die Toolkette die CSA-spezifische Kompilierung als Just-in-Time (JIT), wobei potentielle Laufzeit-
rückmeldungen von tatsächlichen Ausführungen einbezogen werden. Eine der wichtigsten Ausgestaltungsei-
genschaften des Frameworks ist die Kompilierung von (LLVM) IR für den CSA anstelle der Verwendung einer
höheren Sprache als Eingabe. Während ein Programm, das in einer höheren Programmiersprache geschrie-
ben wurde, die speziell für den CSA ausgestaltet wurde, maximale Leistung und/oder Energieeffizienz errei-
chen kann, kann die Übernahme neuer Hochsprachen oder Programmier-Frameworks in der Praxis aufgrund
der Schwierigkeit der Umwandlung existierender Codegrundlagen langsam sein. Die Verwendung von (LLVM)
IR als Eingabe ermöglicht vielen existierenden Programmen, möglicherweise auf einem CSA ausgeführt zu
werden, ohne dass z. B. eine neue Sprache geschaffen werden muss oder das Frontend neuer Sprachen, die
auf dem CSA ausgeführt werden sollen, signifikant zu modifizieren.

Prototyp-Kompilierer

[0094] Fig. 16 veranschaulicht einen Kompilierer 1600 für einen Beschleuniger gemäß Ausführungsformen
der Offenbarung. Der Kompilierer 1600 konzentriert sich anfänglich auf die vorzeitige Kompilierung von C und
C++ durch das Frontend (z. B. Clang). Zum Kompilieren von (LLVM) IR implementiert der Kompilierer ein
CSA-Backend-Ziel in LLVM mit drei Hauptstufen. Zuerst verringert das CSA-Back-End LLVM IR zu einem ziel-
spezifischen Maschinenbefehl für die sequentielle Einheit, welche die meisten CSA-Operationen kombiniert
mit einer herkömmlichen RISC-artigen Steuerungsflussarchitektur (z. B. mit Verzweigungen und einem Pro-
grammzähler) implementiert. Die sequentielle Einheit in der Toolkette kann sowohl für Kompilierer als auch für
Anwendungsentwickler eine nützliche Hilfe sein, da sie eine stufenweise Transformation eines Programms von
einem Steuerungsfluss (CF) zu einem Datenfluss (DF) ermöglicht, z. B. durch gleichzeitiges Umwandeln eines
Codeabschnitts von Steuerfluss zu Datenfluss und zur Validierung der Programmkorrektheit. Die sequentielle
Einheit kann auch ein Modell zur Handhabung von Code bereitstellen, der nicht in das räumliche Array passt.
Danach wandelt der Kompilierer diesen Steuerfluss in Datenflussoperatoren (z. B. Code) für den CSA um. Die-
se Phase wird nachstehend in Abschnitt 4.3 beschrieben. Dann kann das CSA-Back-End seine eigenen Opti-
mierungsschritte auf den Datenfluss-Operationen ausführen. Schließlich kann der Kompilierer die Befehle in
einem CSA-Assemblierformat ausgeben. Dieses Assemblierformat wird als Eingabe für Tools der späten Stufe
verwendet, welche die Datenfluss-Operationen auf der tatsächlichen CSA-Hardware platzieren und routen.



DE 10 2018 005 216 A1    2019.02.21

27/134

Control-to-Dataflow-Umwandlung

[0095] Ein wichtiger Teil des Kompilierers kann in dem Control-to-Dataflow-Umwandlungs-Durchlauf oder kurz
Dataflow-Umwandlungs-Durchlauf implementiert sein. Dieser Durchlauf nimmt eine Funktion ein, die in der
Steuerflussform dargestellt ist, z. B. ein Steuerflussgraph (CFG) mit sequentiellen Maschinenbefehlen, die
auf virtuellen Registern arbeiten, und wandelt sie in eine Datenflussfunktion um, die konzeptionell ein Graph
von Datenfluss-Operationen (Befehlen) ist, der durch latenzinsensitive Kanäle (LICs) verbunden wird. Dieser
Abschnitt gibt eine High-Level-Beschreibung dieses Durchlaufs und beschreibt, wie er in bestimmten Ausfüh-
rungsformen Speicheroperationen, Verzweigungen und Schleifen konzeptionell behandelt.

Geradliniger Code

[0096] Fig. 17A veranschaulicht einen sequentiellen Assembliercode 1702 gemäß Ausführungsformen der
Offenbarung. Fig. 17B veranschaulicht einen Datenfluss-Assembliercode 1704 für den sequentiellen Assem-
bliercode 1702 aus Fig. 17A gemäß Ausführungsformen der Offenbarung. Fig. 17C veranschaulicht einen
Datenflussgraphen 1706 für den Datenfluss-Assembliercode 1704 aus Fig. 17B für einen Beschleuniger ge-
mäß Ausführungsformen der Offenbarung.

[0097] Zunächst ist der einfache Fall der Umwandlung eines geradlinigen Codes zu Datenfluss in Betracht zu
ziehen. Der Datenfluss-Umwandlungsdurchlauf kann einen Basisblock aus sequentiellem Code umwandeln,
wie z. B. den Code aus Fig. 17A in CSA-Assembliercode, wie in Fig. 17B gezeigt. Vom Konzept her repräsen-
tiert die CSA-Anordnung in Fig. 17B den Datenflussgraphen aus Fig. 17C. In diesem Beispiel wird jeder se-
quentielle Befehl in eine übereinstimmende CSA-Assembly übersetzt. Die .lic-Angaben (z. B. für Daten) dekla-
rieren latenzinsensitive Kanäle, die den virtuellen Registern im sequentiellen Code (z. B. Rdata) entsprechen.
In der Praxis kann die Eingabe in den Datenfluss-Umwandlungsdurchlauf in nummerierten virtuellen Registern
erfolgen. Der Klarheit halber verwendet dieser Abschnitt beschreibende Registernamen. Es sei zu beachten,
dass Lade- und Speicheroperationen in dieser Ausführungsform in der CSA-Architektur unterstützt werden,
so dass viel mehr Programme ausgeführt werden können als in einer Architektur, die nur reinen Datenfluss
unterstützt. Da der sequentielle Code, der in den Kompilierer eingegeben wird, in SSA-Form (Single Static As-
signment - Einzelstatikzuweisung) vorliegt, kann der Control-to-Dataflow-Durchlauf für einen einfachen Basis-
block jede virtuelle Registerdefinition in die Erzeugung eines Einzelwertes auf einem latenzinsensitiven Kanal
umwandeln. Die SSA-Form ermöglicht eine Vielzahl von Verwendungen einer einzelnen Definition eines virtu-
ellen Registers, wie z. B. in Rdata2. Zur Unterstützung dieses Modells, unterstützt der CSA-Assembliercode
eine Vielzahl von Verwendungen derselben LIC (z. B. data2), wobei der Simulator implizit die erforderlichen
Kopien der LICs erzeugt. Ein Hauptunterschied zwischen sequentiellem Code und Datenflusscode liegt in der
Behandlung von Speicheroperationen. Der Code in Fig. 17A ist vom Konzept her seriell, was bedeutet, dass
die load32 (ld32) von addr3 nach dem st32 von addr erfolgen sollte, falls sich die addr- und addr3-Adressen
überschneiden.

Verzweigungen

[0098] Zum Konvertieren von Programmen mit einer Vielzahl von Basisblöcken und Bedingtheiten in dem
Datenfluss generiert der Kompilierer spezielle Datenflussoperatoren, um die Verzweigungen zu ersetzen. Ge-
nauer verwendet der Kompilierer Schaltoperatoren, um ausgehende Daten am Ende eines Basisblocks in dem
ursprünglichen CFG zu steuern, und Operatoren zum Auswählen von Werten aus dem angemessenen einge-
henden Kanal am Anfang eines Basisblocks auszusuchen. Als ein konkretes Beispiel betrachte man den Code
und den entsprechenden Datenflussgraphen aus Fig. 18A - Fig. 18C, die bedingt einen Wert von y basierend
auf verschiedenen Eingaben berechnen: a, i, x und n. Nach dem Berechnen des Verzweigungsbedingungs-
tests verwendet der Datenflusscode einen Switch-Operator (siehe z. B. Fig. 3B - Fig. 3C), der den Wert in
Kanal x zu Kanal xF steuert, wenn der Test 0 ist, oder Kanal xT, wenn der Test 1 ist. Ähnlich wird ein Pick-
Operator (siehe z. B. Fig. 3B - Fig. 3C) verwendet, um den Kanal yF an y zu senden, wenn der Test 0 ist,
oder den Kanal yT an y zu senden, wenn der Test 1 ist. In diesem Beispiel stellt sich heraus, dass, obwohl der
Wert von a nur in der wahren Verzweigung der Bedingung verwendet wird, der CSA einen Switch-Operator
aufweisen muss, der diese lenkt, um aT zu kanalisieren, wenn der Test 1 ist, und den Wert verbraucht (frisst),
wenn der Test 0 ist. Letzterer Fall wird durch das Einstellen der falschen Eingabe des Schalters als %ign
ausgedrückt. Es ist möglicherweise nicht richtig, Kanal a direkt mit dem wahren Pfad zu verbinden, da in den
Fällen, in denen die Ausführung tatsächlich den falschen Pfad nimmt, dieser Wert von „a“ im Graphen übrig
bleibt, was zu einem inkorrekten Wert von a für die nächste Ausführung der Funktion führt. Dieses Beispiel
hebt die Eigenschaft der Steueräquivalenz hervor, einer Haupteigenschaft in Ausführungsformen der korrekten
Datenflussumwandlung.



DE 10 2018 005 216 A1    2019.02.21

28/134

[0099] Steueräquivalenz: Man betrachte einen Single-Entry-Single-Exit-Steuerflussgraphen G mit zwei Basis-
blöcken A und B. A und B sind steueräquivalent, wenn alle vollständigen Steuerflusspfade durch G A und B
die gleiche Anzahl von Malen besuchen.

[0100] LIC-Ersetzung: In einem Steuerflussgraphen G wird angenommen, dass eine Operation im Basisblock
A ein virtuelles Register x definiert, und eine Operation im Basisblock B, der x verwendet. Dann kann eine
korrekte Control-to-Dataflow-Transformation x durch einen latenzinsensitiven Kanal nur dann ersetzen, wenn
A und B steueräquivalent sind. Die Steueräquivalenz-Beziehung trennt die Basisblöcke eines CFG in starke
steuerungsabhängige Gebiete. Fig. 18A veranschaulicht einen C-Quellcode 1802 gemäß Ausführungsformen
der Offenbarung. Fig. 18B veranschaulicht einen Datenfluss-Assembliercode 1804 für den C-Quellcode 1802
aus Fig. 18A gemäß Ausführungsformen der Offenbarung. Fig. 18C veranschaulicht einen Datenflussgraphen
1806 für den Datenfluss-Assembliercode 1804 aus Fig. 18B für einen Beschleuniger gemäß Ausführungsfor-
men der Offenbarung. In dem Beispiel aus Fig. 18A-18C sind der Basisblock vor und nach den Bedingungen
steueräquivalent miteinander, aber die Basisblöcke in dem wahren und falschen Pfad befinden sich jeweils in
ihrem eigenen Steuerabhängigkeitsgebiet. Ein korrekter Algorithmus zum Umwandeln eines CFG in einen Da-
tenfluss besteht darin, dass der Kompilierereinsatz (1) schaltet, um die Nichtübereinstimmung in der Ausfüh-
rungsfrequenz für jeden Wert zu kompensieren, der zwischen Basisblöcken fließt, die nicht steueräquivalent
sind, und (2) zu Beginn der Basisblöcke aussucht, um aus beliebigen eingehenden Werten in einem Basisblock
zu wählen. Das Erzeugen der geeigneten Steuersignale für diese Picks und Switches kann der Schlüsselteil
der Datenflussumwandlung sein.

Schleifen (Loops)

[0101] Eine weitere wichtige Klasse der CFGs bei der Datenflussumwandlung sind CFGs für Single-Entry-
Single-Exit-Schleifen, eine herkömmliche Form von Schleife, die in (LLVM) IR generiert wird. Diese Schleifen
können nahezu azyklisch sein, mit Ausnahme eines einzelnen Randes vom Ende der Schleife zurück zu einem
Schleifenkopfblock. Der Datenfluss-Umwandlungsdurchlauf kann dieselbe High-Level-Strategie zum Umwan-
deln von Schleifen wie Verzweigungen verwenden, z. B. fügt er Switches am Ende der Schleife ein, um Wer-
te aus der Schleife zu leiten (entweder außerhalb des Schleifenaustritts oder um den hinteren Rand herum
zum Beginn der Schleife) und fügt Picks zu Beginn der Schleife ein, um zwischen anfänglichen Werten, die in
die Schleife eintreten, und Werten, die durch den hinteren Rand kommen, zu wählen. Fig. 19A veranschau-
licht einen C-Quellcode 1902 gemäß Ausführungsformen der Offenbarung. Fig. 19B veranschaulicht einen
Datenfluss-Assembliercode 1904 für den C-Quellcode 1902 aus Fig. 19A gemäß Ausführungsformen der Of-
fenbarung. Fig. 19C veranschaulicht einen Datenflussgraphen 1906 für den Datenfluss-Assembliercode 1904
aus Fig. 19B für einen Beschleuniger gemäß Ausführungsformen der Offenbarung. Fig. 19A-19C zeigen C-
und CSA-Assembliercode für eine beispielhafte Do-While-Schleife, die Werte zu einer Schleifeninduktionsva-
riable i zuaddiert, sowie den entsprechenden Datenflussgraphen. Für jede Variable, welche die Schleife (i und
Summe) vom Konzept her umkreist, hat dieser Graph ein entsprechendes Pick-/Switch-Paar, das den Fluss
dieser Werte steuert. Es sei zu beachten, dass dieses Beispiel auch ein Pick-/Switch-Paar zum Schalten des
Wertes n um die Schleife verwendet, obgleich n schleifeninvariant ist. Diese Wiederholung von n ermöglicht
die Umwandlung des virtuellen Registers von n in eine LIC, da sie die Ausführungsfrequenzen zwischen einer
begrifflichen Definition von n außerhalb der Schleife und der einen oder mehreren Verwendungen von n inner-
halb der Schleife in Einklang bringt. Im Allgemeinen werden für eine korrekte Datenflussumwandlung Regis-
ter, die live-in in einer Schleife sind, für jede Iteration innerhalb des Schleifenkörpers einmal wiederholt, wenn
das Register in eine LIC umgewandelt wird. In ähnlicher Weise müssen Register, die innerhalb einer Schlei-
fe aktualisiert werden, live-out der Schleife verbraucht werden, z. B. mit einem eindeutigen Abschlusswert,
der aus der Schleife gesendet wird. Schleifen führen eine Falte in den Datenfluss-Umwandlungsprozess ein,
nämlich indem die Steuerung für eine Wahl an der Oberseite der Schleife und der Schalter für die Unterseite
der Schleife versetzt sind. Wenn z. B. die Schleife in Fig. 18A drei Iterationen ausführt und beendet, sollte die
Steuerung für die Wahl 0, 1, 1 sein, während die Steuerung für den Schalter 1, 1, 0 sein sollte. Diese Steuerung
wird durch Starten des Auswahlkanals mit einer anfänglichen zusätzlichen 0 implementiert, wenn die Funktion
in Zyklus 0 beginnt (der in der Assembly durch die Direktiven .value 0 und .avail 0 spezifiziert wird) und dann
der Ausgabeschalter in den Picker kopiert. Es sei zu beachten, dass die letzte 0 in dem Umschalter eine ab-
schließende 0 in dem Picker wiederherstellt, sodass der Abschlusszustand des Datenflussgraphen garantiert
mit dem anfänglichen Zustand übereinstimmt.

[0102] Fig. 20A veranschaulicht ein Flussdiagramm 2000 gemäß Ausführungsformen der Offenbarung. Der
dargestellte Fluss 2000 beinhaltet Decodieren eines Befehls mit einem Decodierer eines Kerns eines Prozes-
sors in einen decodierten Befehl 2002; Ausführen des decodierten Befehls mit einer Ausführungseinheit des
Kerns des Prozessors zum Durchführen einer ersten Operation 2004; Empfangen einer Eingabe eines Da-



DE 10 2018 005 216 A1    2019.02.21

29/134

tenflussgraphen, der mehrere Knoten 2006 umfasst; Überlagern des Datenflussgraphen über mehrere Verar-
beitungselemente des Prozessors und ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungs-
elementen des Prozessors, wobei jeder Knoten einen Datenflussoperator in den mehreren Verarbeitungsele-
menten 2008 repräsentiert; und Durchführen einer zweiten Operation des Datenflussgraphen mit dem Zwi-
schenverbindungsnetz und den mehreren Verarbeitungselementen durch einen jeweiligen eingehenden Ope-
randensatz, der an jedem der Datenflussoperatoren der mehreren Verarbeitungselemente 2010 eingeht.

[0103] Fig. 20B veranschaulicht ein Flussdiagramm 2001 gemäß Ausführungsformen der Offenbarung. Der
dargestellte Fluss 2001 beinhaltet das Empfangen einer Eingabe eines Datenflussgraphen, umfassend mehre-
re Knoten 2003; und Überlagern des Datenflussgraphen über mehrere Verarbeitungselemente eines Prozes-
sors, eines Datenpfad-Netzwerks zwischen die mehreren Verarbeitungselemente und eines Flusssteuerpfad-
Netzwerks zwischen die mehreren Verarbeitungselemente, wobei jeder Knoten als ein Datenflussoperator in
den mehreren Verarbeitungselementen 2005 repräsentiert ist.

[0104] In einer Ausführungsform schreibt der Kern einen Befehl in eine Speicherwarteschlange und ein CSA
(z. B. die mehreren Verarbeitungselemente) überwacht die Speicherwarteschlange und beginnt mit der Aus-
führung, wenn der Befehl gelesen wird. In einer Ausführungsform führt der Kern einen ersten Teil eines Pro-
gramms aus, und ein CSA (z. B. die mehreren Verarbeitungselemente) führt einen zweiten Teil des Programms
aus. In einer Ausführungsform vollzieht der Kern andere Arbeit, während der CSA seine Operationen ausführt.

CSA-Vorteile

[0105] In bestimmten Ausführungsformen stellt die CSA-Architektur und - Mikroarchitektur tiefgreifende Vor-
teile in Bezug auf Energie, Leistung und Benutzerfreundlichkeit gegenüber Roadmap-Prozessorarchitekturen
und FPGAs bereit. In diesem Abschnitt werden diese Architekturen mit Ausführungsformen des CSA vergli-
chen und die Überlegenheit des CSA beim Beschleunigen von parallelen Datenflussgraphen in Bezug auf je-
den davon hervorgehoben.

Prozessoren

[0106] Fig. 21 veranschaulicht einen Graphen von Durchsatz vs. Energie pro Operation 2100 gemäß Aus-
führungsformen der Offenbarung. Wie in Fig. 21 gezeigt, sind kleine Kerne im Allgemeinen energieeffizien-
ter als große Kerne, und bei einigen Arbeitslasten kann dieser Vorteil durch höhere Kernzahlen in absolute
Leistung umgesetzt werden. Die CSA-Mikroarchitektur befolgt diese Beobachtungen bis ihrem Abschluss und
entfernt (z. B. die meisten) energieraubenden Steuerstrukturen, die mit von-Neumann-Architekturen in Zusam-
menhang gebracht werden, einschließlich des größten Teils der befehlsseitigen Mikroarchitektur. Durch Ent-
fernen dieser allgemeinen Aufwendungen und Implementieren einfacher Einzeloperations-PEs erhalten Aus-
führungsformen eines CSA ein dichtes, effizientes räumliches Array. Im Gegensatz zu kleinen Kernen, die
normalerweise ziemlich seriell sind, kann ein CSA seine PEs gruppieren, z. B. über das leitungsvermittelte
lokale Netzwerk, um explizit parallele aggregierte Datenflussgraphen zu bilden. Das Ergebnis ist Leistung in
nicht nur parallelen Anwendungen, sondern auch in seriellen Anwendungen. Im Gegensatz zu Kernen, die
für Leistung in Bezug auf Fläche und Energie teuer bezahlen, ist ein CSA in seinem nativen Ausführungsmo-
dell bereits parallel. In bestimmten Ausführungsformen erfordert ein CSA weder Spekulation, um die Leistung
zu erhöhen, noch muss er wiederholt Parallelität aus einer sequentiellen Programmdarstellung extrahieren,
wodurch zwei der Hauptenergieverbraucher in von Neumann-Architekturen vermieden werden. Die meisten
Strukturen in Ausführungsformen eines CSA sind verteilt, klein und energieeffizient, im Gegensatz zu den
zentralisierten, voluminösen, energiehungrigen Strukturen, die in Kernen zu finden sind. Zu berücksichtigen
sei der Fall von Registern im CSA: jedes PE kann einige wenige (z. B. 10 oder weniger) Speicherregister auf-
weisen. Allein genommen, können diese Register effizienter als herkömmliche Registerdateien sein. Zusam-
mengefasst können diese Register die Wirkung einer großen, strukturinternen Registerdatei bereitstellen. Als
ein Ergebnis vermeiden Ausführungsformen eines CSA die meisten Stapelverschüttungen und -füllungen, die
bei klassischen Architekturen auftreten, und brauchen gleichzeitig weniger Energie pro Statuszugriff. Selbst-
verständlich können die Anwendungen weiter auf den Speicher zugreifen. In Ausführungsformen eines CSA
sind Speicherzugriffsanfrage und -antwort architektonisch entkoppelt, wodurch Arbeitslasten ermöglicht wer-
den, die viele weitere ausstehende Speicherzugriffe pro Einheit Bereich und Energie beibehalten. Diese Ei-
genschaft bietet eine wesentlich höhere Leistung für cachegebundene Arbeitslasten und reduziert den Bereich
und die Energie, die zum Sättigen des Hauptspeichers in speichergebundenen Arbeitslasten benötigt werden.
Ausführungsformen eines CSA legen neue Formen der Energieeffizienz frei, die in nichtvon-Neumann-Archi-
tekturen einzigartig sind. Eine Folge des Ausführens einer einzelnen Operation (z. B. eines Befehls) an einem
(z. B. den meisten) PEs ist eine reduzierte Operandenentropie. Im Fall einer Inkrementierungsoperation kann



DE 10 2018 005 216 A1    2019.02.21

30/134

jede Ausführung zu einer Handvoll Umschaltmöglichkeiten auf der Schaltungsebene und einem geringen En-
ergieverbrauch führen, ein Fall, der in Abschnitt 6.2 im Detail untersucht wird. Demgegenüber sind von Neu-
mann-Architekturen gemultiplext, was zu einer höheren Anzahl von Bitübergängen führt. Der asynchrone Stil
von Ausführungsformen eines CSA ermöglicht auch mikroarchitektonische Optimierungen, wie die in Abschnitt
3.5 beschriebenen Gleitkomma-Optimierungen, die in eng geplanten Kern-Pipelines schwierig zu realisieren
sind. Da PEs relativ einfach sein können und ihr Verhalten in einem bestimmten Datenflussgraphen statisch
bekannt ist, können Takt-Gating- und Power-Gating-Techniken effektiver angewendet werden als in gröberen
Architekturen. Der Graphenausführungsstil, die kleine Größe und die Formbarkeit von Ausführungsformen der
CSA-PEs und dem Netzwerk ermöglichen zusammen den Ausdruck vieler Arten von Parallelität: Befehls-, Da-
ten-, Pipeline-, Vektor-, Speicher-, Thread- und Aufgabenparallelität können alle implementiert werden. Zum
Beispiel kann in Ausführungsformen eines CSA eine Anwendung arithmetische Einheiten verwenden, um ei-
nen hohen Grad an Adressbandbreite bereitzustellen, während eine andere Anwendung dieselben Einheiten
zur Berechnung verwenden kann. In vielen Fällen können mehrere Arten von Parallelität kombiniert werden,
um noch mehr Leistung zu erzielen. Viele wichtige HPC-Operationen können sowohl repliziert als auch in
Pipelines ausgeführt werden, was zu Leistungszugewinne von Größenordnung führt. Im Gegensatz dazu op-
timieren von-Neumann-Kerne typischerweise einen von den Architekten sorgfältig gewählten Parallelitätsstil,
was zu einem Versagen der Erfassung aller wichtigen Anwendungskerne führt. So wie Ausführungsformen
eines CSA viele Formen von Parallelität zeigen und erleichtern, wird keine bestimmte Form von Parallelität
vorgeschrieben oder, schlimmer noch, ist keine bestimmte Subroutine in einer Anwendung vorhanden, um
von dem CSA zu profitieren. Viele Anwendungen, einschließlich Einzel-Stream-Anwendungen, können sowohl
Leistungs- als auch Energievorteile von Ausführungsformen eines CSA erhalten, z. B. sogar dann, wenn sie
ohne Modifikation kompiliert werden. Dies kehrt den langen Trend um, dass ein signifikanter Programmierauf-
wand erforderlich ist, um einen wesentlichen Leistungsgewinn in Einzel-Stream-Anwendungen zu erzielen.
Tatsächlich erhalten Ausführungsformen eines CSA in einigen Anwendungen mehr Leistung von funktionell
äquivalenten, aber weniger „modernen“ Codes als von ihren verschachtelten zeitgenössischen Cousins, die
gefoltert wurden, um Vektoranweisungen zu erzielen.

Vergleich zwischen CSA-Ausführungsformen und FGPAs

[0107] Die Wahl der Datenflussoperatoren als grundlegende Architektur von Ausführungsformen eines CSA
unterscheidet diese CSAs von einem FGPA, und insbesondere ist der CSA als überlegener Beschleuniger
für HPC-Datenflussgraphen, die aus traditionellen Programmiersprachen stammen. Die Datenflussoperatoren
sind grundlegend asynchron. Dies ermöglicht Ausführungsformen eines CSA nicht nur eine große Freiheit bei
der Implementierung in der Mikroarchitektur, sondern ermöglicht auch die einfache und prägnante Aufnahme
abstrakter Architekturkonzepte. Zum Beispiel nehmen Ausführungsformen eines CSA natürlich viele Speicher-
Mikroarchitekturen auf, die im Wesentlichen asynchron sind, mit einer einfachen Lade-Speicher-Schnittstelle.
Man braucht nur einen FPGA DRAM-Controller zum Schätzen des Unterschieds in der Komplexität zu untersu-
chen. Ausführungsformen eines CSA nutzen Asynchronität auch, um schnellere und vollständiger ausgestatte-
te Laufzeitdienste wie Konfiguration und Extraktion bereitzustellen, von denen angenommen wird, dass sie vier
bis sechs Größenordnungen schneller sind als ein FPGA. Durch Verengen der Architekturschnittstelle ermög-
lichen Ausführungsformen eines CSA die Steuerung der meisten Zeitsteuerpfade auf Mikroarchitekturebene.
Dies ermöglicht Ausführungsformen eines CSA bei einer viel höheren Frequenz als der allgemeinere Steue-
rungsmechanismus zu arbeiten, der in einem FPGA geboten wird. In ähnlicher Weise sind Takt und Reset, die
für FPGAs architektonisch grundlegend sein können, im CSA mikroarchitektonisch, wodurch zum Beispiel ihre
Unterstützung als programmierbare Einheiten überflüssig wird. Die Datenflussoperatoren können größtenteils
grobkörnig sein. Indem nur grobe Operatoren behandelt werden, verbessern Ausführungsformen eines CSA
sowohl die Dichte der Struktur als auch ihren Energieverbrauch: Der CSA führt Operationen direkt aus, anstelle
sie mit Nachschlagetabellen zu emulieren. Eine zweite Konsequenz der Grobkörnigkeit ist eine Vereinfachung
des Platzier- und Routingproblems. CSA-Datenflussgraphen sind viele Größenordnungen kleiner als FPGA-
Netzlisten, und Platzier- und Routingzeit sind in Ausführungsformen eines CSA gleichfalls reduziert. Die signi-
fikanten Unterschiede zwischen den Ausführungsformen eines CSA und eines FPGA machen den CSA als
Beschleuniger überlegen, z. B. für Datenflussgraphen, die aus traditionellen Programmiersprachen stammen.

AUSWERTUNG

[0108] Beim CSA handelt es sich um eine neuartige Computerarchitektur, die im Vergleich zu Roadmap-Pro-
zessoren ein enormes Potential zur Bereitstellung von Leistungs- und Energievorteilen innehat. Man betrachte
den Fall des Berechnens einer einzelnen ausgreifenden Adresse zum Durchlaufen eines Arrays. Dieser Fall
kann in HPC-Anwendungen wichtig sein, die z. B. einen bedeutenden Integer-Aufwand bei der Berechnung
von Adress-Offsets verbringen. Bei der Adressberechnung und insbesondere bei der ausgreifenden Adress-



DE 10 2018 005 216 A1    2019.02.21

31/134

berechnung ist ein Argument konstant und das andere variiert nur geringfügig pro Berechnung. Daher wer-
den in den meisten Fällen nur eine Handvoll Bits pro Zyklus umgeschaltet. Tatsächlich kann gezeigt werden,
dass unter Verwendung einer Ableitung, die den in Abschnitt 3.5 beschriebenen gebundenen Gleitkomma-
Übertragsbits gleicht, durchschnittlich weniger als zwei Bits Eingabe pro Berechnung für eine Schrittberech-
nung umschalten, wodurch die Energie um 50% gegenüber einer zufälligen Umschaltverteilung reduziert wird.
Würde ein zeitgemultiplexter Ansatz verwendet, gingen viele dieser Energieeinsparungen verloren. In einer
Ausführungsform erzielt der CSA eine ungefähr 3-fache Energieeffizienz gegenüber eines Kerns und erzielt
einen 8-fachen Leistungszugewinn. Die Parallelitätszugewinne, die durch Ausführungsformen eines CSA er-
reicht werden, können zu reduzierten Programmlaufzeiten führen, was zu einer verhältnismäßigen wesentli-
chen Reduktion der Verlustenergie führt. Auf PE-Ebene sind die Ausführungsformen eines CSA extrem ener-
gieeffizient. Eine zweite wichtige Frage für den CSA ist, ob der CSA eine angemessene Menge an Energie auf
Kachel-Level verbraucht. Da Ausführungsformen eines CSA jedes Gleitkomma-PE in der Struktur bei jedem
Zyklus ausüben können, dient er als eine vernünftige Obergrenze für den Energie- und Leistungsverbrauch,
sodass z . B. der größte Teil der Energie in Gleitkomma-Multiplikation und -Addition geht.

WEITERE CSA-DETAILS

[0109] Dieser Abschnitt bespricht weitere Details zur Konfiguration und Ausnahmehandhabung.

Mikroarchitektur zum Konfigurieren eines CSA

[0110] Dieser Abschnitt offenbart Beispiele zum Konfigurieren eines CSA (z. B. Struktur), wie diese Konfigu-
ration schnell erreicht werden kann und wie der Ressourcenaufwand der Konfiguration minimiert werden kann.
Die schnelle Konfiguration der Struktur kann bei der Beschleunigung kleiner Teile eines größeren Algorithmus
und folglich bei der Erweiterung der Anwendbarkeit eines CSA von herausragender Bedeutung sein. Der Ab-
schnitt offenbart ferner Merkmale, die Ausführungsformen eines CSA die Programmierung mit Konfigurationen
unterschiedlicher Länge ermöglichen.

[0111] Ausführungsformen eines CSA (z. B. Struktur) können sich von herkömmlichen Kernen dadurch un-
terscheiden, dass sie einen Konfigurationsschritt verwenden, in dem (z. B. große) Teile der Struktur vor der
Programmausführung mit einer Programmkonfiguration geladen werden. Ein Vorteil der statischen Konfigura-
tion kann sein, dass sehr wenig Energie zur Laufzeit der Konfiguration verbraucht wird, z. B. im Gegensatz zu
sequentiellen Kernen, die Energie für fast jeden Zyklus zum Abrufen von Konfigurationsinformationen (eines
Befehls) verbrauchen. Der bisherige Nachteil der Konfiguration besteht darin, dass es sich um einen grobkör-
nigen Schritt mit einer möglicherweise großen Latenz handelt, was eine Untergrenze für die Größe des Pro-
gramms darstellt, die aufgrund der Kosten der Kontextumschaltung in der Struktur beschleunigt werden kann.
Diese Offenbarung beschreibt eine skalierbare Mikroarchitektur zum schnellen Konfigurieren eines räumlichen
Arrays in einer verteilten Art und Weise, die z. B. die bisherigen Nachteile vermeidet.

[0112] Wie oben erläutert, kann ein CSA leichtgewichtige Verarbeitungselemente aufweisen, die durch ein
Inter-PE-Netzwerk verbunden sind. Programme, die als Steuerdatenflussgraphen angesehen werden, werden
dann auf die Architektur abgebildet, indem die konfigurierbaren Strukturelemente (CFEs) konfiguriert werden,
z. B. PEs und die Zwischenverbindungs (Struktur) -Netze. Im Allgemeinen können PEs als Datenflussopera-
toren konfiguriert sein und, sobald alle Eingabeoperanden am PE eingetroffen sind, kann eine Operation statt-
finden und die Ergebnisse an ein weiteres PE oder PEs zum Verbrauch oder Ausgabe weitergeleitet werden.
PEs können über zweckgebundene virtuelle Schaltungen kommunizieren, die durch statistisches Konfigurieren
eines leitungsvermittelten Kommunikationsnetzwerks gebildet werden. Diese virtuellen Schaltungen können
flussgesteuert und vollständig gegengedrückt sein, z. B. so, dass die PEs anhalten, wenn entweder die Quel-
le keine Daten aufweist oder der Zielspeicherplatz voll ist. Bei Laufzeit können Daten durch die PEs fließen
und den abgebildeten Algorithmus implementieren. Zum Beispiel können Daten aus dem Speicher durch die
Struktur eingestreamt werden und dann zurück in den Speicher gehen. Eine solche räumliche Architektur kann
eine bemerkenswerte Leistungseffizienz im Vergleich zu herkömmlichen Mehrkernprozessoren erreichen: die
Berechnung, in der Form von PEs kann einfacher und zahlreicher als größere Kerne sein und die Kommuni-
kation direkt sein, z. B. im Gegensatz zu einer Erweiterung des Speichersystems.

[0113] Ausführungsformen eines CSA brauchen keine (z. B. softwaregesteuerte) Paketvermittlung verwen-
den, z. B. Paketvermittlung, die eine erhebliche Softwareunterstützung zur Ausführung erfordert, welche die
Konfiguration verlangsamt. Ausführungsformen eines CSA weisen eine Außer-Band-Signalisierung in dem
Netzwerk (z. B. von nur zwei bis drei Bits, abhängig von dem unterstützten Merkmalssatz) und eine Topologie
mit fester Konfiguration auf, um den Bedarf an einer signifikanten Softwareunterstützung zu vermeiden.



DE 10 2018 005 216 A1    2019.02.21

32/134

[0114] Ein Hauptunterschied zwischen Ausführungsformen eines CSA und dem Ansatz, der in FPGAs ver-
wendet wird, besteht darin, dass ein CSA-Ansatz ein breites Datenwort verwenden kann, verteilt ist und Me-
chanismen aufweist, um Programmdaten direkt aus dem Speicher abzurufen. Ausführungsformen eines CSA
können im Interesse der Bereichseffizienz keine JTAG-artigen Einzelbitkommunikationen verwenden, weil dies
z. B. Millisekunden benötigt, um eine große FPGA-Struktur vollständig zu konfigurieren.

[0115] Ausführungsformen eines CSA beinhalten ein verteiltes Konfigurationsprotokoll und eine Mikroarchi-
tektur, um dieses Protokoll zu unterstützen. Anfangs kann sich der Konfigurationsstatus im Speicher befin-
den. Mehrere (z. B. verteilte) lokale Konfigurationssteuerungen (Boxes) (LCCs) können Teile des Gesamtpro-
gramms in ihr lokales Gebiet der räumlichen Struktur streamen, z. B. unter Verwendung einer Kombination
aus einem kleinen Satz von Steuersignalen und dem Netzwerk mit Struktur. Statuselemente können an jedem
CFE verwendet werden, um Konfigurationsketten zu bilden, z. B. um einzelnen CFEs zu ermöglichen, sich
ohne globale Adressierung selbst zu programmieren.

[0116] Ausführungsformen eines CSA weisen eine spezifische Hardwareunterstützung für die Bildung von
Konfigurationsketten auf, z. B. keine Software, die diese Ketten dynamisch auf Kosten einer zunehmenden
Konfigurationszeit erstellt. Ausführungsformen eines CSA sind nicht rein paketvermittelt und weisen zusätz-
liche Außer-Band-Steuerdrähte (z. B. wird die Steuerung nicht durch den Datenpfad gesendet, was zusätzli-
che Zyklen erfordert, um diese Information abzutasten und diese Information zu reserialisieren) auf. Ausfüh-
rungsformen eines CSA verringern die Konfigurationslatenz durch Festlegen der Konfigurationsreihenfolge
und durch Bereitstellen einer expliziten Außer-Band-Steuerung (z. B. um mindestens einen Faktor von zwei),
während die Netzwerkkomplexität nicht wesentlich zunimmt.

[0117] Ausführungsformen eines CSA verwenden keinen seriellen Mechanismus zur Konfiguration, bei dem
Daten Bit für Bit unter Verwendung eines JTAG-artigen Protokolls in die Struktur gestreamt werden. Ausfüh-
rungsformen eines CSA benutzen einen grobkörnigen Strukturansatz. In bestimmten Ausführungsformen ist
das Hinzufügen einiger Steuerdrähte oder Zustandselemente zu einer 64- oder 32-Bit-orientierten CSA-Struk-
tur kostengünstiger als das Hinzufügen derselben Steuermechanismen zu einer 4- oder 6-Bit-Struktur.

[0118] Fig. 22 veranschaulicht eine Beschleuniger-Kachel 2200, umfassend ein Array von Verarbeitungsele-
menten (PE) und eine lokale Konfigurationssteuerung (2202, 2206) gemäß Ausführungsformen der Offenba-
rung. Jedes PE, jede Netzwerksteuerung und jeder Schalter können konfigurierbare Strukturelemente (CFEs)
sein, die z. B. durch Ausführungsformen der CSA-Architektur konfiguriert (z. B. programmiert) werden.

[0119] Ausführungsformen eines CSA weisen Hardware auf, die eine effiziente, verteilte Konfiguration mit
niedriger Latenzzeit für eine heterogene räumliche Struktur bereitstellt. Dies kann gemäß vier Techniken er-
reicht werden. Zuerst wird eine Hardwareentität, die lokale Konfigurationssteuerung (LCC - Local Configuration
Controller) benutzt, wie in Fig. 22 - Fig. 24. Eine LCC kann einen Stream aus Konfigurationsinformation aus
einem (z. B. virtuellen) Speicher abrufen. Zweitens kann ein Konfigurationsdatenpfad enthalten sein, der z.
B. so breit wie die ursprüngliche Breite der PE-Struktur ist und der die PE-Struktur überlagern kann. Drittens
können neue Steuersignale in der PE-Struktur empfangen werden, die den Konfigurationsprozess durchfüh-
ren. Viertens können Zustandselemente an jedem konfigurierbaren Endpunkt angeordnet sein (z. B. in einem
Register), die den Status benachbarter CFEs verfolgen, so dass sich jedes CFE ohne zusätzliche Steuersi-
gnale eindeutig selbst konfigurieren kann. Diese vier mikroarchitektonischen Merkmale können einem CSA
das Konfigurieren von Ketten seiner CFEs ermöglichen. Zum Erhalten einer geringen Konfigurationslatenz
kann die Konfiguration durch Bilden vieler LCCs und CFE-Ketten partitioniert werden. Zur Konfigurationszeit
können diese unabhängig voneinander arbeiten, um die Struktur parallel zu laden, z. B. um die Latenz dras-
tisch zu reduzieren. Als ein Ergebnis dieser Kombinationen können Strukturen, die unter Verwendung von
Ausführungsformen eines CSA-Architektur konfiguriert sind, vollständig konfiguriert sein (z. B. in Hunderten
von Nanosekunden). Im Folgenden wird der Betrieb der verschiedenen Komponenten von Ausführungsformen
eines CSA-Konfigurationsnetzwerks detailliert beschrieben.

[0120] Fig. 23A-23C veranschaulicht eine lokale Konfigurationssteuerung 2302, die ein Datenpfad-Netzwerk
gemäß Ausführungsformen der Offenbarung konfiguriert. Das dargestellte Netzwerk weist mehrere Multiplexer
(z. B. Multiplexer 2306, 2308, 2310) auf, die konfiguriert werden können (z. B. über zugehörige Steuersignale),
um einen oder mehrere Datenpfade (z. B. von PEs) miteinander zu verbinden. Fig. 23A veranschaulicht das
Netzwerk 2300 (z. B. Struktur), das für eine bisherige Operation oder Programm konfiguriert (z. B. eingestellt)
wurde. Fig. 23B zeigt die lokale Konfigurationssteuerung 2302 (die z. B. eine Netzwerkschnittstellenschaltung
2304 zum Senden und/oder Empfangen von Signalen aufweist), die ein Konfigurationssignal abtastet und das
lokale Netzwerk auf eine Standardkonfiguration (z. B. wie dargestellt) setzt, die es der LCC erlaubt, Konfigu-



DE 10 2018 005 216 A1    2019.02.21

33/134

rationsdaten an alle konfigurierbaren Strukturelemente (CFEs), z. B. Muxe, zu senden. Fig. 23C veranschau-
licht die LCC-Abtast-Konfigurationsinformation über das Netzwerk, wobei CFEs in einer vorbestimmten (z. B.
siliciumdefinierten) Sequenz konfiguriert werden. In einer Ausführungsform kann die Operation unverzüglich
beginnen, wenn die CFEs konfiguriert werden. In einer anderen Ausführungsform warten die CFEs mit dem
Beginn der Operation, bis die Struktur vollständig konfiguriert ist (z. B. wie durch den Konfigurationsterminator
(z. B. Konfigurationsterminator 2504 und Konfigurationsterminator 2508 in Fig. 25) für jede lokale Konfigurati-
onssteuerung signalisiert). In einer Ausführungsform erhält die LCC die Steuerung über die Netzwerkstruktur
durch Senden einer Sondernachricht oder Ansteuern eines Signals. Er tastet dann Konfigurationsdaten (z. B.
über eine Periode mehrerer Zyklen) zu den CFEs in der Struktur ab. In diesen Figuren sind die Multiplexer-
netzwerke Analoga des „Schalters (oder Switches)“, der in bestimmten Figuren gezeigt ist (z. B. Fig. 6).

Lokale Konfigurationssteuerung

[0121] Fig. 24 veranschaulicht eine (z. B. lokale) Konfigurationssteuerung 2402 gemäß Ausführungsformen
der Offenbarung. Eine lokale Konfigurationssteuerung (LCC - Local Configuration Controller) kann die Hard-
wareentität sein, die für das Laden der lokalen Teile (z. B. in einem Untersatz einer Kachel oder auf andere Wei-
se) des Strukturprogramms, das Interpretieren dieser Programmteile und dann das Laden dieser Programm-
teile in die Struktur verantwortlich ist, indem sie das angemessene Protokoll auf den verschiedenen Konfigu-
rationsdrähten ansteuert. In dieser Eigenschaft kann die LCC ein spezieller sequentieller Mikrocontroller sein.

[0122] Die LCC-Operation kann beginnen, wenn ein Zeiger zu einem Codesegment empfangen wird. Je nach
der LCC-Mikroarchitektur kann dieser Zeiger (z. B. im Zeigerregister 2406 gespeichert) entweder über ein
Netzwerk (z. B. von innerhalb des CSA (Struktur) selbst) oder über einen Speichersystemzugriff auf die LCC
kommen. Bei Empfangen eines solchen Zeigers entzieht die LCC optional den relevanten Status von ihrem
Teil der Struktur für den Kontextspeicher und fährt dann fort, den Teil der Struktur, für den sie verantwortlich ist,
sofort zu rekonfigurieren. Das von der LCC geladene Programm kann eine Kombination von Konfigurations-
daten für die Struktur- und Steuerbefehle für die LCC sein, die z. B. leicht codiert sind. Wenn die LCC in den
Programmabschnitt streamt, kann sie das Programm als einen Befehlsstream interpretieren und die geeignete
codierte Aktion ausführen, um die Struktur zu konfigurieren (z. B. zu laden).

[0123] Zwei unterschiedliche Mikroarchitekturen für die LCC sind in Fig. 22 gezeigt, wobei z. B. eine oder
beide in einem CSA benutzt werden. Die erste setzt die LCC 2202 als Speicherschnittstelle. In diesem Fall
kann die LCC direkte Anforderungen an das Speichersystem zum Laden von Daten stellen. Im zweiten Fall ist
die LCC 2206 auf einem Speichernetzwerk angeordnet, in dem sie Anforderungen an den Speicher nur indirekt
stellen kann. In beiden Fällen bleibt die logische Operation der LCC unverändert. In einer Ausführungsform
wird eine LCC über das zu ladende Programm informiert, beispielsweise durch einen Satz von (z. B. OS-
sichtbaren) Steuerstatusregistern, die verwendet werden, um einzelne LCCs über neue Programmzeiger usw.
zu informieren.

Zusätzliche Außer-Band-Steuerkanäle (z. B. Drähte)

[0124] In bestimmten Ausführungsformen verlässt sich die Konfiguration auf 2 bis 8 zusätzliche Außer-Band-
Steuerkanäle, um die Konfigurationsgeschwindigkeit wie unten definiert zu verbessern. Zum Beispiel kann
die Konfigurationssteuerung 2402 die folgenden Steuerkanäle aufweisen, z. B. den CFG_START Steuerkanal
2408, den CFG_VALID Steuerkanal 2410 und den CFG_DONE Steuerkanal 2412, wobei Beispiele von jedem
einzelnen in der nachstehenden Tabelle 2 besprochen sind.

Tabelle 2 Steuerkanäle

CFG_START Asserted at beginning of configuration. Sets configuration state at
each CFE and sets the configuration bus.

CFG_VALID Denotes validity of values on configuration bus.
CFG_DONE Optional. Denotes completion of the configuration of a particular CFE.

This allows configuration to be short circuited in case a CFE does not
require additional configuration

[0125] Im Allgemeinen kann die Handhabung von Konfigurationsinformation dem Implementierer eines be-
stimmten CFE überlassen werden. Zum Beispiel kann ein auswählbares Funktions-CFE eine Vorkehrung zum



DE 10 2018 005 216 A1    2019.02.21

34/134

Setzen von Registern unter Verwendung eines existierenden Datenpfads aufweisen, während eine festes
Funktions-CFE einfach ein Konfigurationsregister einstellen kann.

[0126] Aufgrund der langen Drahtverzögerungen beim Programmieren langer CFE-Sätze kann das CFG_
VALID Signal als eine Takt-/Latch-Aktivierung für die CFE-Komponenten behandelt werden. Da dieses Signal
als ein Takter verwendet wird, beträgt in einer Ausführungsform der Arbeitszyklus der Leitung höchstens 50%.
Als Ergebnis wird der Konfigurationsdurchsatz in etwa halbiert. Optional kann ein zweites CFG_VALID Signal
hinzugefügt werden, um eine kontinuierliche Programmierung zu ermöglichen.

[0127] In einer Ausführungsform wird nur CFG_START strikt an eine unabhängige Kopplung (z. B. Draht)
kommuniziert, zum Beispiel können CFG_VALID und CFG_DONE über andere Netzwerkkopplungen überla-
gert werden.

Wiederverwendung von Netzwerkressourcen

[0128] Zum Reduzieren des Konfigurationsaufwands nutzen bestimmte Ausführungsformen eines CSA die
vorhandene Netzwerkinfrastruktur zur Kommunikation von Konfigurationsdaten. Eine LCC kann sowohl eine
Chipebenen-Speicherhierarchie als auch Strukturebenen-Kommunikationsnetzwerke zum Bewegen von Da-
ten vom Speicher in die Struktur verwenden. Als Ergebnis trägt die Konfigurationsinfrastruktur in bestimmten
Ausführungsformen eines CSA nicht mehr als 2% zum gesamten Strukturbereich und zur Gesamtleistung bei.

[0129] Die Wiederverwendung von Netzwerkressourcen in bestimmten Ausführungsformen eines CSA kann
ein Netzwerk dazu veranlassen, einige Hardwareunterstützung für einen Konfigurationsmechanismus zu er-
langen. Leitungsvermittelte Netzwerke von Ausführungsformen eines CSA bewirken, dass eine LCC ihre Mul-
tiplexer auf eine spezifische Weise für die Konfiguration setzt, wenn das Signal ,CFG_START‘ angegeben
wird. Paketvermittelte Netzwerke erfordern keine Erweiterung, obwohl LCC-Endpunkte (z. B. Konfigurations-
terminatoren) eine spezifische Adresse in dem paketvermittelten Netzwerk verwenden. Die Netzwerkwieder-
verwendung ist optional und einige Ausführungsformen finden ggf. eigens vorgesehene Konfigurationsbusse
angemessener.

Per-CFE-Status

[0130] Jedes CFE kann ein Bit halten, das angibt, ob es konfiguriert wurde oder nicht (siehe z. B. Fig. 13).
Dieses Bit kann deaktiviert werden, wenn das Konfigurationsstartsignal angesteuert wird, und dann aktiviert
werden, sobald das bestimmte CFE konfiguriert wurde. In einem Konfigurationsprotokoll sind die CFEs ange-
ordnet, um Ketten mit dem CFE-Konfigurationsstatussbit zu bilden, das die Topologie der Kette bestimmt. Ein
CFE kann das Konfigurationsstatussbit des unmittelbar angrenzenden CFE lesen. Wenn dieses benachbar-
te CFE konfiguriert ist und das derzeitige CFE nicht konfiguriert ist, kann das CFE bestimmen, dass sämtli-
che derzeitigen Konfigurationsdaten auf das derzeitige CFE abzielen. Wenn das „CFG_DONE“-Signal aktiviert
wird, kann das CFE sein Konfigurationsbit setzen, z. B. vorgeschaltete CFEs zum Konfigurieren aktivieren. Als
ein Basisfall für den Konfigurationsprozess kann ein Konfigurations-Terminator (z. B. Konfigurations-Termina-
tor 2204 für LCC 2202 oder Konfigurations-Terminator 2208 für LCC 2206 in Fig. 22), der bestätigt, dass er
konfiguriert ist, am Ende einer Kette aufgenommen werden.

[0131] CFE-intern kann dieses Bit zum Ansteuern der flusssteuerbereiten Signale verwendet werden. Wenn
zum Beispiel das Konfigurationsbit deaktiviert wird, können Netzwerksteuersignale automatisch auf einen Wert
geklemmt werden, der verhindert, dass Daten fließen, während innerhalb der PEs keine Operationen oder
andere Aktionen geplant werden.

Behandeln von Konfigurationspfaden mit hoher Verzögerung

[0132] Eine Ausführungsform einer LCC kann ein Signal über eine lange Distanz, z. B. durch viele Multiplexer
und mit vielen Lasten, treiben. Daher kann es für ein Signal schwierig sein, an einem entfernten CFE inner-
halb eines kurzen Taktzyklus einzugehen. In bestimmten Ausführungsformen sind die Konfigurationssignale
in einer bestimmten Division (z. B. einem Bruchteil von) der Haupttaktfrequenz (z. B. CSA), um eine digitale
Zeitdisziplin bei der Konfiguration sicherzustellen. Die Taktteilung kann in einem Außer-Band-Signalisierungs-
protokoll benutzt werden und erfordert keine Modifikation des Haupttaktbaums.



DE 10 2018 005 216 A1    2019.02.21

35/134

Sicherstellen des konsistenten Strukturverhaltens während der Konfiguration

[0133] Da bestimmte Konfigurationsschemata verteilt sind und aufgrund von Programm- und Speichereffekten
eine nicht-deterministische Zeitsteuerung aufweisen, können verschiedene Teile der Struktur zu unterschied-
lichen Zeiten konfiguriert werden. Als ein Ergebnis stellen bestimmte Ausführungsformen eines CSA Mecha-
nismen bereit, um eine inkonsistente Operation zwischen konfigurierten und unkonfigurierten CFEs zu verhin-
dern. Allgemein wird Konsistenz als eine Eigenschaft angesehen, die von den CFEs selbst gefordert und bei-
behalten wird, z. B. unter Verwendung des internen CFE-Zustands. Wenn ein CFE z. B. in einem unkonfigu-
rierten Status ist, kann es beanspruchen, dass seine Eingabepuffer voll sind und dass seine Ausgabe ungültig
ist. Beim Konfigurieren werden diese Werte auf den wahren Status der Puffer eingestellt. Da genügend von
der Struktur aus der Konfiguration kommt, können diese Techniken den Beginn der Operation zulassen. Dies
hat den Effekt der weiteren Reduktion der Kontext-Switching-Latenz, z. B. wenn Speicheranfragen mit langer
Latenz früh ausgegeben werden.

Konfiguration mit variabler Breite

[0134] Unterschiedliche CFEs können unterschiedliche Konfigurationswortbreiten aufweisen. Bei kleineren
CFE-Konfigurationswörtern können die Implementierer die Verzögerung kompensieren, indem sie CFE-Kon-
figurationslasten über die Netzwerkleitungen gleichmäßig zuweisen. Zum Ausgleichen der Ladung von Netz-
werkleitungen ist eine Möglichkeit, Konfigurationsbits verschiedenen Abschnitten von Netzwerkleitungen zuzu-
weisen, um die Nettoverzögerung auf einen einzigen Draht zu begrenzen. Breite Datenwörter können durch Se-
rialisierungs-/Deserealisierungstechniken gehandhabt werden. Diese Entscheidungen können auf einer Per-
Fabric-Basis getroffen werden, um das Verhalten eines spezifischen CSA (z. B. Struktur) zu optimieren. Die
Netzwerksteuerung (z. B. eine oder mehrere von Netzwerksteuerung 2210 und Netzwerksteuerung 2212 kön-
nen mit jeder Domäne (z. B. Untersatz) des CSA (z. B. Struktur) kommunizieren, um z. B. Konfigurationsinfor-
mationen an eine oder mehrere LCCs zu senden.

Mikroarchitektur für die Niederlatenz-Konfiguration eines CSA und
zum rechtzeitigen Abrufen von Konfigurationsdaten für einen CSA

[0135] Ausführungsformen eines CSA können ein energieeffizientes und leistungsstarkes Mittel sein, um Be-
nutzeranwendungen zu beschleunigen. Bei der Berücksichtigung, ob ein Programm (z. B. ein Datenflussgraph
davon) erfolgreich durch einen Beschleuniger beschleunigt werden kann, können sowohl die Zeit zum Konfi-
gurieren des Beschleunigers als auch die Zeit zum Ausführen des Programms in Betracht gezogen werden.
Wenn die Laufzeit kurz ist, kann die Konfigurationszeit eine große Rolle bei der Bestimmung der erfolgreichen
Beschleunigung spielen. Um die Domäne von beschleunigbaren Programmen zu maximieren, wird daher in
einigen Ausführungsformen die Konfigurationszeit so kurz wie möglich gemacht. Einer oder mehrere Konfigu-
rations-Caches können in einem CSA enthalten sein, z. B. derart, dass der Speicher mit hoher Bandbreite und
niedriger Latenz eine schnelle Rekonfiguration ermöglicht. Im Folgenden wird eine Beschreibung verschiede-
ner Ausführungsformen eines Konfigurations-Caches gegeben.

[0136] In einer Ausführungsform greift während der Konfiguration die Konfigurationshardware (z. B. LCC) op-
tional auf den Konfigurations-Cache zu, um neue Konfigurationsinformationen zu erhalten. Der Konfigurations-
Cache kann entweder als ein traditioneller adressbasierter Cache oder in einem OS-verwalteten Modus ar-
beiten, in dem Konfigurationen in dem lokalen Adressraum gespeichert sind und durch Bezugnahme auf die-
sen Adressraum adressiert werden. Wenn sich der Konfigurationsstatus in dem Cache befindet, dann müssen
in bestimmten Ausführungsformen keine Anforderungen an den Sicherungsspeicher gestellt werden. In be-
stimmten Ausführungsformen ist dieser Konfigurations-Cache von sämtlichen (z. B. Lower-Level) gemeinsam
genutzten Caches in der Speicherhierarchie getrennt.

[0137] Fig. 25 veranschaulicht eine Beschleuniger-Kachel 2500, umfassend ein Array von Verarbeitungsele-
menten, ein Konfigurations-Cache (z. B. 2518 oder 2520) und eine lokale Konfigurationssteuerung (z. B. 2502
oder 2506) gemäß Ausführungsformen der Offenbarung. In einer Ausführungsform ist der Konfigurations-Ca-
che 2514 mit der lokalen Konfigurationssteuerung 2502 gemeinsam angeordnet. In einer Ausführungsform be-
findet sich der Konfigurations-Cache 2518 in der Konfigurationsdomäne der lokalen Konfigurationssteuerung
2506, z. B. mit einer ersten Domäne, die am Konfigurations-Terminator 2504 endet, und einer zweiten Domä-
ne, die am Konfigurations-Terminator 2508 endet. Ein Konfigurations-Cache kann es einer lokalen Konfigura-
tionssteuerung ermöglichen, während der Konfiguration auf den Konfigurations-Cache Bezug zu nehmen, z.
B. in der Hoffnung, einen Konfigurationsstatus mit einer niedrigeren Latenz als einen Bezug auf den Speicher



DE 10 2018 005 216 A1    2019.02.21

36/134

zu erhalten. Ein Konfigurations-Cache (Speicher) kann entweder dediziert sein oder kann als ein Konfigurati-
onsmodus eines strukturinternen Speicherelements, z. B. des lokalen Caches 2516, zugänglich sein.
Cachemodi

1. Demand Caching - In diesem Modus arbeitet das Konfigurations-Cache als true Cache. Die Konfigura-
tionssteuerung gibt adressbasierte Anfragen aus, die auf Tags im Cache überprüft werden. Fehler werden
in den Cache geladen und können dann während einer zukünftigen Neuprogrammierung erneut referen-
ziert werden.

2. In-Fabric Storage (Scratchpad) Caching - In diesem Modus empfängt der Konfigurations-Cache einen
Verweis auf eine Konfigurationssequenz in seinem eigenen kleinen Adressraum und nicht im größeren
Adressraum des Hosts. Dies kann die Speicherdichte verbessern, da der Teil des Caches, der zum Spei-
chern von Tags verwendet wird, stattdessen zum Speichern der Konfiguration verwendet werden kann.

[0138] In bestimmten Ausführungsformen kann ein Konfigurations-Cache die Konfigurationsdaten darin vor-
geladen aufweisen, z. B. entweder durch externe Richtung oder interne Richtung. Dies kann die Reduktion der
Latenz zum Laden von Programmen ermöglichen. Bestimmte Ausführungsformen hierin stellen eine Schnitt-
stelle zu einem Konfigurations-Cache bereit, die das Laden eines neuen Konfigurationsstatus in den Cache
erlaubt, z. B. selbst wenn eine Konfiguration bereits in der Struktur läuft. Die Initiierung dieser Ladung kann
entweder von einer internen oder externen Quelle erfolgen. Ausführungsformen des Vorlademechanismus re-
duzieren die Latenz weiter, indem sie die Latenz der Cacheladung von dem Konfigurationspfad entfernen.
Pre-Fetching-Modi

1. Explicit Prefetching - Ein Konfigurationspfad wird mit einem neuen Befehl augmentiert, ConfigurationCa-
chePrefetch. Statt der Programmierung der Struktur bewirkt dieser Befehl lediglich das Laden der rele-
vanten Programmkonfiguration in einen Konfigurations-Cache, ohne die Struktur zu programmieren. Da
dieser Mechanismus auf der vorhandenen Konfigurationsinfrastruktur pendelt, wird er sowohl innerhalb
der Struktur als auch extern offengelegt, z. B. für Kerne und andere Entitäten, die auf den Speicherraum
zugreifen.

2. Implicit prefetching -Eine globale Konfigurationssteuerung kann einen Prefetch-Prädiktor beibehalten
und diesen verwenden, um das explizite Vorladen zu einem Konfigurations-Cache, z. B. automatisch, zu
initiieren.

Hardware zur schnellen Rekonfiguration eines CSA als Reaktion auf eine Ausnahme

[0139] Bestimmte Ausführungsformen eines CSA (z. B. eine räumliche Struktur) weisen große Mengen eines
Befehls- und Konfigurationsstatus auf, der z. B. während des Betriebs des CSA weitgehend statisch ist. Da-
her kann der Konfigurationsstatus anfällig für weiche Fehler sein. Die schnelle und fehlerfreie Wiederherstel-
lung dieser weichen Fehler kann für die langfristige Zuverlässigkeit und Leistung von räumlichen Systemen
entscheidend sein.

[0140] Bestimmte Ausführungsformen hierin stellen eine schnelle Konfigurationswiederherstellungsschleife
bereit, bei der z. B. Konfigurationsfehler erkannt und Teile der Struktur sofort rekonfiguriert werden. Bestimmte
Ausführungsformen hierin weisen eine Konfigurationssteuerung auf, z. B. mit Merkmalen zur Umprogrammie-
rung der Zuverlässigkeit, Verfügbarkeit und Wartungsfreundlichkeit (RAS). Bestimmte Ausführungsformen des
CSA weisen einen Schaltkreis für eine Hochgeschwindigkeitskonfiguration, eine Fehlerberichterstattung und
eine Paritätsprüfung innerhalb der räumlichen Struktur auf. Unter Verwendung einer Kombination dieser drei
Merkmale und optional eines Konfigurations-Cache kann sich eine Konfigurations-/Ausnahmehandhabungs-
schaltung von weichen Fehlern in der Konfiguration erholen. Nach der Erkennung können weiche Fehler zu
einem Konfigurations-Cache übertragen werden, der eine sofortige Rekonfiguration der Struktur initiiert (z. B.
dieses Teils). Bestimmte Ausführungsformen stellen eine dedizierte Rekonfigurationsschaltung bereit, die z.
B. schneller ist als jede Lösung, die indirekt in die Struktur implementiert würde. In bestimmten Ausführungs-
formen kooperieren die co-lokalisierte Ausnahme- und Konfigurationsschaltung, um die Struktur bei der Kon-
figurationsfehlererkennung neu zu laden.

[0141] Fig. 26 veranschaulicht eine Beschleuniger-Kachel 2600, umfassend ein Array von Verarbeitungsele-
menten und eine Konfigurations- und Ausnahmehandhabungssteuerung (2602, 2606) mit einer Rekonfigura-
tionsschaltung (2618, 2622) gemäß Ausführungsformen der Offenbarung. In einer Ausführungsform sendet,
wenn ein PE einen Konfigurationsfehler durch seine lokalen RAS-Merkmale erkennt, es eine Nachricht (z. B.
einen Konfigurationsfehler oder einen Rekonfigurationsfehler) durch seinen Ausnahmegenerator an die Kon-
figurations- und Ausnahmehandhabungssteuerung (z. B. 2602 oder 2606). Bei Empfang dieser Nachricht in-



DE 10 2018 005 216 A1    2019.02.21

37/134

itiiert die Konfigurations- und Ausnahmehandhabungssteuerung (z. B. 2602 oder 2606) die co-lokalisierte Re-
konfigurationsschaltung (z. B. 2618 oder 2622), um den Konfigurationsstatus neu zu laden. Die Konfigurati-
ons-Mikroarchitektur geht weiter und lädt (z. B. nur) den Konfigurationsstatus neu, und in bestimmten Ausfüh-
rungsformen nur den Konfigurationsstatus für das PE, das den RAS-Fehler meldet. Nach Abschluss der Re-
konfiguration kann die Struktur die normale Operation wieder aufnehmen. Zum Verringern der Latenz kann
der Konfigurationsstatus, der von der Konfigurations- und Ausnahmehandhabungssteuerung (z. B. 2602 oder
2606) verwendet wird, aus einem Konfigurations-Cache bezogen werden. Als ein Basisfall für den Konfigura-
tions- und Rekonfigurationsprozess kann ein Konfigurations-Terminator (z. B. Konfigurations-Terminator 2604
für die Konfigurations- und Ausnahmehandhabungssteuerung 2602 oder Konfigurations-Terminator 2608 für
die Konfigurations- und Ausnahmehandhabungssteuerung 2606 in Fig. 26), der bestätigt, dass er konfiguriert
(oder rekonfiguriert) ist, am Ende einer Kette aufgenommen werden.

[0142] Fig. 27 veranschaulicht eine Rekonfigurationsschaltung 2718 gemäß Ausführungsformen der Offen-
barung. Die Rekonfigurationsschaltung 2718 weist ein Konfigurationsstatusregister 2720 auf, um den Konfigu-
rationsstatus (oder einen Zeiger darauf) zu speichern.

Hardware für eine strukturinitiierte Rekonfiguration eines CSA

[0143] Einige Teile einer Anwendung, die auf ein CSA (z. B. räumliches Array) abzielen, können infrequent
laufen oder können sich gegenseitig mit anderen Teilen des Programms ausschließen. Zum Sparen von Flä-
che und zum Verbessern der Leistung und/oder Reduzieren von Energie, kann es nützlich sein, Teile der
räumlichen Struktur zwischen mehreren verschiedenen Teilen des Programm-Datenflussgraphen zeitzumulti-
plexen. Bestimmte Ausführungsformen hierin weisen eine Schnittstelle auf, durch die ein CSA (z. B. über das
räumliche Programm) anfordern kann, dass ein Teil der Struktur umprogrammiert wird. Die kann dem CSA
ermöglichen, sich gemäß dem dynamischen Steuerfluss selbst zu verändern. Bestimmte Ausführungsformen
hierin erlauben eine strukturinitiierte Rekonfiguration (z. B. Umprogrammierung). Bestimmte Ausführungsfor-
men hierin stellen einen Satz für Schnittstellen zum Triggern der Konfiguration von innerhalb der Struktur be-
reit. In einigen Ausführungsformen gibt ein PE eine Rekonfigurationsanfrage basierend auf einer Entscheidung
in dem Programmdatenflussgraphen aus. Diese Anfrage kann durch ein Netzwerk zu unserer neuen Konfigu-
rationsschnittstelle gehen, wo sie die Rekonfiguration triggert. Sobald die Rekonfiguration abgeschlossen ist,
kann eine Nachricht optional zurückgeleitet werden, die den Abschluss mitteilt. Bestimmte Ausführungsformen
eines CSA stellen somit ein Programm (z. B. Datenflussgraph) bereit, das sich an die Rekonfigurationskapa-
zität richtet.

[0144] Fig. 28 veranschaulicht eine Beschleuniger-Kachel 2800, umfassend ein Array von Verarbeitungs-
elementen und eine Konfigurations- und Ausnahmehandhabungssteuerung 2806 mit einer Rekonfigurations-
schaltung 2818, gemäß Ausführungsformen der Offenbarung. Hier gibt ein Teil der Struktur eine Anforderung
zur (Re-) Konfiguration an eine Konfigurationsdomäne aus, z. B. der Konfigurations- und Ausnahmehandha-
bungssteuerung 2806 und/oder Rekonfigurationsschaltung 2818. Die Domäne (re)konfiguriert sich selbst, und
wenn die Anforderung erfüllt ist, gibt die Konfigurations- und Ausnahmehandhabungssteuerung 2806 und/oder
die Rekonfigurationsschaltung 2818 eine Antwort an die Struktur aus, um die Struktur darüber zu informie-
ren, dass die (Re-) Konfiguration abgeschlossen ist. In einer Ausführungsform deaktivieren die Konfigurations-
und Ausnahmehandhabungssteuerung 2806 und/oder die Rekonfigurationsschaltung 2818 die Kommunikati-
on während der Zeit, in der die (Re-) Konfiguration läuft, sodass das Programm während der Operation keine
Konsistenzprobleme aufweist.

Konfigurationsmodi

[0145] Configure-by-address - In diesem Modus fordert die Struktur das Laden von Konfigurationsdaten von
einer bestimmten Adresse direkt an.

[0146] Configure-by-reference - In diesem Modus fordert die Struktur das Laden einer neuen Konfiguration an,
z. B. durch eine vorbestimmte Referenz-ID. Dies kann die Bestimmung des zu ladenden Codes vereinfachen,
da der Speicherort des Codes abstrahiert wurde.

Konfigurieren einer Vielzahl von Domänen

[0147] Ein CSA kann eine Higher-Level-Konfigurationssteuerung aufweisen, um einen Multicast-Mechanis-
mus zu unterstützen, um Konfigurationsanforderungen (z. B. über ein Netzwerk, das durch die gestrichelte Box
angezeigt wird) an mehrere (z. B. verteilte oder lokale) Konfigurationssteuerungen zu übertragen. Dies kann



DE 10 2018 005 216 A1    2019.02.21

38/134

ermöglichen, dass eine einzelne Konfigurationsanforderung über größere Teile der Struktur repliziert werden
kann, z. B. durch Triggern einer breiteren Rekonfiguration.

Ausnahmeaggregatoren

[0148] Bestimmte Ausführungsformen eines CSA können auch eine Ausnahme erfahren (z. B. eine Ausnah-
mebedingung), z. B. einen Gleitkomma-Underflow. Bei Auftreten dieser Bedingungen kann ein spezieller Hand-
ler aufgerufen werden, um das Programm entweder zu korrigieren oder es zu beenden. Bestimmte Ausfüh-
rungsformen hierin stellen eine Architektur auf Systemebene zum Handhaben von Ausnahmen in räumlichen
Strukturen bereit. Da bestimmte räumliche Strukturen die Bereichseffizienz hervorheben, minimieren die Aus-
führungsformen hierin die Gesamtfläche und stellen gleichzeitig einen allgemeinen Ausnahmemechanismus
bereit. Bestimmte Ausführungsformen hierin stellen eine Niederbereichseinrichtung zum Signalisieren von au-
ßergewöhnlichen Zuständen bereit, die innerhalb eines CSA (z. B. einem räumlichen Array) auftreten. Be-
stimmte Ausführungsformen hierin stellen ein Schnittstellen- und Signalisierungsprotokoll zum Übermitteln sol-
cher Ausnahmen sowie eine PE-Ebenen-Ausnahmesemantik bereit. Bestimmte Ausführungsformen hierin sind
dedizierte Ausnahmehandhabungskapazitäten, und erfordern z. B. keine explizite Handhabung durch den Pro-
grammierer.

[0149] Eine Ausführungsform eines CSA-Ausnahmearchitektur besteht aus vier Teilen, die z. B. in den Fig. 29
bis Fig. 30 gezeigt sind. Diese Teile können in einer Hierarchie angeordnet sein, in der Ausnahmen von dem
Erzeuger und schließlich bis zu dem Kachel-Level-Ausnahmeaggregator (z. B. Handler) fließen, der sich mit
einem Ausnahmebediner, z. B. einem Kern, treffen kann. Die vier Teile können Folgende sein:

1. PE-Ausnahmegenerator

2. Lokales Ausnahme-Netzwerk

3. Mezzanine-Ausnahmeaggregator

4. Kachel-Level-Ausnahmeaggregator

[0150] Fig. 29 veranschaulicht eine Beschleuniger-Kachel 2900, umfassend ein Array von Verarbeitungsele-
menten und einen Mezzanine-Ausnahmeaggregator 2902, der mit einem Kachel-Level-Ausnahmeaggregator
2904 gemäß Ausführungsformen der Offenbarung gekoppelt ist. Fig. 30 veranschaulicht ein Verarbeitungs-
element 3000 mit einem Ausnahmegenerator 3044 gemäß Ausführungsformen der Offenbarung.

PE-Ausnahmegenerator

[0151] Das Verarbeitungselement 3000 kann beispielsweise das Verarbeitungselement 900 aus Fig. 9 auf-
weisen, wobei ähnliche Nummern ähnliche Komponenten sind, z. B. das lokale Netzwerk 902 und das loka-
le Netzwerk 3002. Das zusätzliche Netzwerk 3013 (z. B. Kanal) kann ein Ausnahme-Netzwerk sein. Ein PE
kann eine Schnittstelle zu einem Ausnahme-Netzwerk implementieren (z. B. Ausnahme-Netzwerk 3013 (z.
B. Kanal) in Fig. 30). Zum Beispiel zeigt Fig. 30 die Mikroarchitektur einer solchen Schnittstelle, wobei das
PE einen Ausnahme-Erzeuger 3044 aufweist (z. B. zum Initiieren einer endlichen Ausnahmestatusmaschine
(FSM) 3040, um ein Ausnahmepaket (z. B. BOXID 3042) an das Ausnahme-Netzwerk auszugeben. BOXID
3042 kann ein eindeutiger Identifizierer für eine Ausnahmeerzeugungsentität (z. B. ein PE oder eine Box) in
einem lokalen Ausnahme-Netzwerk sein. Wenn eine Ausnahme erkannt wird, misst der Ausnahmegenerator
3044 das Ausnahme-Netzwerk und tastet BOXID ab, wenn das Netzwerk als frei befunden wird. Ausnahmen
können durch viele Bedingungen verursacht werden, z. B. arithmetische Fehler, fehlgeschlagener ECC-Prüf-
einschaltzustand usw., aber nicht darauf beschränkt. Es kann jedoch auch sein, dass eine Ausnahmedaten-
flussoperation mit der Idee von Unterstützungskonstrukten wie Unterbrechungspunkten eingeführt wird.

[0152] Die Initiierung der Ausnahme kann entweder explizit, durch die Ausführung eines vom Programmierer
eingegebenen Befehls, oder implizit, wenn eine gehärtete Fehlerbedingung (z. B. ein Gleitkomma-Underflow)
erkannt wird, stattfinden. Bei einer Ausnahme kann das PE 3000 in einen Wartezustand eintreten, in dem es
darauf wartet, von dem eventuellen Ausnahme-Handler bedient zu werden, z. B. außerhalb des PE 3000. Die
Inhalte des Ausnahmepakets hängen von der Implementierung des bestimmten PE ab, wie unten beschrieben.

Lokales Ausnahme-Netzwerk

[0153] Ein (z. B. lokales) Ausnahme-Netzwerk lenkt Ausnahmepakete vom PE 3000 zum Mezzanine-Ausnah-
me-Netzwerk. Das Ausnahme-Netzwerk (z. B. 3013) kann ein serielles paketvermitteltes Netzwerk sein, das



DE 10 2018 005 216 A1    2019.02.21

39/134

aus einem (z. B. einzelnen) Steuerdraht und einem oder mehreren Datendrähten besteht, z. B. in einer Ring-
oder Baumtopologie organisiert ist, z. B. für einen PE-Untersatz. Jedes PE kann einen (z. B. Ring-)Stopp im (z.
B. lokalen) Ausnahme-Netzwerk aufweisen, in dem es z. B. entscheiden kann, Nachrichten in das Ausnahme-
Netzwerk einzuspeisen.

[0154] PE-Endpunkte, die ein Ausnahmepaket einspeisen müssen, können ihren lokalen Ausnahme-Netz-
werkaustrittspunkt beobachten. Wenn das Steuersignal „besetzt“ anzeigt, muss das PE warten, um mit dem
Einspeisen seines Pakets zu beginnen. Wenn das Netzwerk nicht besetzt ist, d. h. der nachgeschaltete Stopp
kein Paket zum Weiterleiten aufweist, geht das PE zum Beginn der Einspeisung über.

[0155] Netzwerkpakete können von variabler oder fester Länge sein. Jedes Paket kann mit einem Feld einer
festen Längenkopfzeile beginnen, die das Quell-PE des Pakets identifiziert. Danach kann eine variable Anzahl
von PE-spezifischen Feldern folgen, die Informationen enthalten, einschließlich Fehlercodes, Datenwerte oder
andere nützliche Statusinformationen.

Mezzanine-A usnahmeaggregator

[0156] Der Mezzanine-Ausnahmeaggregator 2904 ist dafür verantwortlich, ein lokales Ausnahme-Netzwerk
zu größeren Paketen zu assemblieren und sie an den Kachel-Level-Ausnahmeaggregator 2902 zu senden.
Der Mezzanine-Ausnahmeaggregator 2904 kann das lokale Ausnahmepaket mit seiner eigenen eindeutigen
ID voranstellen, z. B. um sicherzustellen, dass Ausnahmenachrichten unzweideutig sind. Der Mezzanine-Aus-
nahmeaggregator 2904 kann eine Schnittstelle mit einem speziellen virtuellen Nur-Ausnahme-Kanal im Mez-
zanine-Netzwerk aufweisen, die z. B. die Stillstandfreiheit der Ausnahmen sicherstellen.

[0157] Der Mezzanine-Ausnahmeaggregator 2904 kann auch direkt bestimmte Ausnahmeklassen bedienen.
Eine Konfigurationsanforderung von der Struktur kann z. B. aus dem Mezzanine-Netzwerk unter Verwendung
von Caches bedient werden, die für den Mezzanine-Netzwerkstopp lokal sind.

Kachel-Level-Ausnahmeaggregator

[0158] Die letzte Stufe des Ausnahmesystems ist der Kachel-Level-Ausnahmeaggregator 2902. Der Kachel-
Level-Ausnahmeaggregator 2902 ist verantwortlich für das Sammeln von Ausnahmen aus den verschiedenen
Mezzanine-Level-Ausnahmeaggregatoren (z. B. 2904) und für das Weiterleiten davon an die geeignete Ser-
vice-Hardware (z. B. Kern). Daher kann der Kachel-Level-Ausnahmeaggregator 2902 einige interne Tabellen
und Steuerungen aufweisen, um bestimmte Nachrichten Handler-Routinen zuzuordnen. Diese Tabellen kön-
nen entweder direkt oder mit einer kleinen Statusmaschine indiziert werden, um bestimmte Ausnahmen zu
lenken.

[0159] Wie der Mezzanine-Ausnahmeaggregator kann der Kachel-Level-Ausnahmeaggregator einige Aus-
nahmeanforderungen bedienen. Beispielsweise kann er die Umprogrammierung eines Großteils der PE-Struk-
tur als Reaktion auf eine spezifische Ausnahme initiieren.

Extraktionssteuerungen

[0160] Bestimmte Ausführungsformen eines CSA weisen eine oder mehrere Extraktionssteuerungen zum Ex-
trahieren von Daten aus der Struktur auf. Nachstehend werden Ausführungsformen erläutert, wie diese Extrak-
tion schnell vonstatten gehen kann und wie der Ressourcenaufwand der Konfiguration minimiert werden kann.
Die Datenextraktion kann für solche wichtigen Aufgaben wie Ausnahmehandhabung und Kontextumschaltung
benutzt werden. Bestimmte Ausführungsformen hierin extrahieren Daten aus einer heterogenen räumlichen
Struktur durch Einführen von Merkmalen, die extrahierbare Strukturelemente (EFEs) (z. B. PEs, Netzwerk-
steuerungen und/oder Schalter) mit variablen und dynamisch variablen Mengen des zu extrahierenden Status
zulassen.

[0161] Ausführungsformen eines CSA beinhalten ein verteiltes Datenextraktionsprotokoll und eine Mikroar-
chitektur, um dieses Protokoll zu unterstützen. Bestimmte Ausführungsformen eines CSA beinhalten eine Viel-
zahl von lokalen Extraktionssteuerungen (LECs), die Programmdaten aus ihrem lokalen Gebiet der räumlichen
Struktur unter Verwendung einer Kombination aus einem (z. B. kleinen) Satz von Steuersignalen und dem von
der Struktur bereitgestellten Netzwerk streamen. Zustandselemente können an jedem extrahierbaren Struk-
turelement (EFE) verwendet werden, um Extraktionsketten zu bilden, z. B. um einzelnen EFEs zu erlauben,
sich ohne globale Adressierung selbst zu extrahieren.



DE 10 2018 005 216 A1    2019.02.21

40/134

[0162] Ausführungsformen eines CSA verwenden kein lokales Netzwerk, um Programmdaten zu extrahieren.
Ausführungsformen eines CSA weisen eine spezifische Hardware-Unterstützung (z. B. eine Extraktionssteue-
rung) für die Bildung von z. B. Extraktionsketten auf, und verlassen sich nicht auf Software, um diese Ketten
dynamisch zu erstellen, z. B. auf Kosten der Extraktionszeit. Ausführungsformen eines CSA sind nicht rein
paketvermittelt und weisen zusätzliche Außer-Band-Steuerdrähte (z. B. wird die Steuerung nicht durch den
Datenpfad gesendet, was zusätzliche Zyklen zum Abtasten und Reserialisieren dieser Information erfordert)
auf. Ausführungsformen eines CSA verringern die Extraktionslatenz durch Festlegen der Extraktionsreihen-
folge und durch Bereitstellen einer expliziten Außer-Band-Steuerung (z. B. um mindestens einen Faktor von
zwei), während die Netzwerkkomplexität nicht wesentlich zunimmt.

[0163] Ausführungsformen eines CSA verwenden keinen seriellen Mechanismus zur Datenextraktion, bei der
Daten Bit für Bit unter Verwendung eines JTAG-artigen Protokolls in die Struktur gestreamt werden. Ausfüh-
rungsformen eines CSA benutzen einen grobkörnigen Strukturansatz. In bestimmten Ausführungsformen ist
das Hinzufügen einiger Steuerdrähte oder Zustandselemente zu einer 64- oder 32-Bit-orientierten CSA-Struk-
tur kostengünstiger als das Hinzufügen derselben Steuermechanismen zu einer 4- oder 6-Bit-Struktur.

[0164] Fig. 31 veranschaulicht eine Beschleuniger-Kachel 3100, umfassend ein Array von Verarbeitungsele-
menten und eine lokale Extraktionssteuerung (3102, 3106) gemäß Ausführungsformen der Offenbarung. Je-
des PE, jeder Netzwerkcontroller und jeder Schalter können extrahierbare Strukturelemente (EFEs) sein, die
z. B. durch Ausführungsformen der CSA-Architektur konfiguriert (z. B. programmiert) werden.

[0165] Ausführungsformen eines CSA weisen Hardware auf, die eine effiziente, verteilte Extraktion mit niedri-
ger Latenzzeit aus einer heterogenen räumlichen Struktur bereitstellt. Dies kann gemäß vier Techniken erreicht
werden. Zuerst wird eine Hardwareentität, die lokale Extraktionssteuerung (LEC - Local Extraction Controller)
benutzt, wie in Fig. 31 - Fig. 33. Eine LEC kann Befehle von einem Host (z. B. einem Prozessorkern) anneh-
men, z. B. einen Datenstream aus dem räumlichen Array extrahieren, und diese Daten zurück in den virtuel-
len Speicher zur Überprüfung durch den Host schreiben. Zweitens kann ein Extraktionsdatenpfad enthalten
sein, der z. B. so breit wie die ursprüngliche Breite der PE-Struktur ist und der über die PE-Struktur überlagert
sein kann. Drittens können neue Steuersignale in der PE-Struktur empfangen werden, die den Extraktions-
prozess anleiten. Viertens können Zustandselemente an jedem konfigurierbaren Endpunkt angeordnet sein
(z. B. in einem Register), die den Status benachbarter EFEs verfolgen, so dass jedes EFE ohne zusätzliche
Steuersignale seinen Status eindeutig exportiert. Diese vier mikroarchitektionischen Merkmale können einem
CSA das Extrahieren von Daten aus Ketten der EFEs ermöglichen. Um eine geringe Datenextraktionslatenz
zu erhalten, können bestimmte Ausführungsformen das Extraktionsproblem durch Einschließen mehrerer (z.
B. vieler) LECs und EFE-Ketten in die Struktur partitionieren. Zur Extraktion können diese unabhängig von-
einander arbeiten, um die Struktur unabhängig zu extrahieren, z. B. um die Latenz drastisch zu reduzieren.
Als ein Ergebnis dieser Kombinationen kann ein CSA ein vollständige Statusabbild (z. B. in Hunderten von
Nanosekunden) durchführen.

[0166] Fig. 32A-32C veranschaulichen eine lokale Extraktionssteuerung 3202, die ein Datenpfad-Netzwerk
gemäß Ausführungsformen der Offenbarung konfigurieren. Das dargestellte Netzwerk weist mehrere Multiple-
xer (z. B. Multiplexer 3206, 3208, 3210) auf, die konfiguriert werden können (z. B. über zugehörige Steuersi-
gnale), um einen oder mehrere Datenpfade (z. B. von PEs) miteinander zu verbinden. Fig. 32A veranschaulicht
das Netzwerk 3200 (z. B. Struktur), das für eine bisherige Operation oder Programm konfiguriert (z. B. einge-
stellt) wurde. Fig. 32B zeigt die lokale Extraktionssteuerung 3202 (die beispielsweise eine Netzwerkschnitt-
stellenschaltung 3204 zum Senden und/oder Empfangen von Signalen aufweist), die ein Extraktionssignal ab-
tastet und alle von der LEC gesteuerten PEs in den Extraktionsmodus eingibt. Das letzte PE in der Extrakti-
onskette (oder ein Extraktions-Terminator) kann die Extraktionskanäle (z. B. Bus) mastern und Daten entwe-
der gemäß (1) Signalen von der LEC oder (2) intern erzeugten Signalen (z. B. von einem PE) senden. Nach
Abschluss kann ein PE sein Abschlussflag setzen und z. B. dem nächsten PE das Extrahieren seiner Daten
ermöglichen. Fig. 32C zeigt, dass das am weitesten entfernte PE den Extraktionsprozess abgeschlossen hat
und als Ergebnis sein Extraktionszustandsbit oder -bits gesetzt hat, die z. B. die Muxe in das benachbarte
Netzwerk schwingen, um es dem nächsten PE zu ermöglichen, mit dem Extraktionsprozess zu beginnen. Das
extrahierte PE kann seine normale Operation wieder aufnehmen. In einigen Ausführungsformen kann das PE
deaktiviert bleiben, bis eine andere Aktion unternommen wird. In diesen Figuren sind die Multiplexernetzwerke
Analoga des „Schalters (oder Switches)“, der in bestimmten Figuren gezeigt ist (z. B. Fig. 6).

[0167] Die Folgenden Abschnitte beschreiben die Operation der verschiedenen Komponenten von Ausfüh-
rungsformen eines Extraktionsnetzwerks.



DE 10 2018 005 216 A1    2019.02.21

41/134

Lokale Extraktionssteuerung

[0168] Fig. 33 veranschaulicht eine Extraktionssteuerung 3302 gemäß Ausführungsformen der Offenbarung.
Eine lokale Extraktionssteuerung (Local Extraction Controller, LEC) kann die Hardwareentität sein, die dafür
verantwortlich ist, Extraktionsbefehle zu akzeptieren, den Extraktionsprozess mit den EFEs zu koordinieren
und/oder extrahierte Daten z. B. in einem virtuellen Speicher zu speichern. In dieser Eigenschaft kann die LEC
ein sequentieller Spezialzweck-Mikrocontroller sein.

[0169] Die LEC-Operation kann beginnen, wenn sie einen Zeiger auf einen Puffer (z. B. im virtuellen Speicher)
empfängt, in den der Strukturstatus und optional ein Befehl geschrieben wird, wie stark die Struktur extrahiert
werden wird. Je nach der LEC-Mikroarchitektur kann dieser Zeiger (z. B. im Zeigerregister 3304 gespeichert)
entweder über ein Netzwerk oder über einen Speichersystemzugriff auf die LEC gelangen. Wenn sie einen
solchen Zeiger (z. B. Befehl) empfängt, geht die LEC zum Extraktionsstatus von dem Teil der Struktur, für den
sie verantwortlich ist. Die LEC kann diese extrahierten Daten aus der Struktur in den Puffer streamen, der
durch den externen Anrufer bereitgestellt wird.

[0170] Zwei unterschiedliche Mikroarchitekturen für die LEC sind in Fig. 31 gezeigt. Die erste platziert die
LEC 3102 an der Speicherschnittstelle. In diesem Fall kann die LEC direkte Anfragen an das Speichersystem
zum Schreiben von extrahierten Daten stellen. Im zweiten Fall ist die LEC 3106 auf einem Speichernetzwerk
angeordnet, in dem sie Anforderungen an den Speicher nur indirekt stellen kann. In beiden Fällen kann die
logische Operation der LEC unverändert bleiben. In einer Ausführungsform werden die LECs über den Wunsch
informiert, Daten aus der Struktur zu extrahieren, beispielsweise durch einen Satz von (z. B. OS-sichtbaren)
Steuerstatusregistern, die verwendet werden, um einzelne LECs über neue Befehle zu informieren.

Zusätzliche Außer-Band-Steuerkanäle (z. B. Drähte)

[0171] In bestimmten Ausführungsformen verlässt sich die Extraktion auf 2 bis 8 zusätzliche Außer-Bandsi-
gnale, um die Konfigurationsgeschwindigkeit wie unten definiert zu verbessern. Durch die LEC angesteuerte
Signale können als LEC markiert sein. Durch EFE (z. B. PE) angesteuerte Signale können als EFE bezeich-
net werden. Die Konfigurationssteuerung 3302 kann die folgenden Steuerkanäle aufweisen, z. B. den LEC_
EXTRACT Steuerkanal 3406, LEC_START Steuerkanal 3308, LEC_STROBE Steuerkanal 3310 und den EFE_
COMPLETE Steuerkanal 3312, wobei Beispiele von jedem einzelnen in Tabelle 3 unten besprochen sind.

TABELLE 3: Extraktionskanäle

LEC_EXTRACT Optional signal asserted by the LEC during extraction process. Lo-
wering this signal causes normal operation to resume.

LEC_START Signal denoting start of extraction, allowing setup of local EFE state
LEC_STROBE Optional strobe signal for controlling extraction related state machines

at EFEs. EFEs may generate this signal internally in some implemen-
tations.

EFE_COMPLETE Optional signal strobed when EFE has completed dumping state. This
helps LEC identify the completion of individual EFE dumps.

[0172] Im Allgemeinen kann die Handhabung der Extraktion dem Implementierer eines bestimmten EFE über-
lassen werden. Zum Beispiel kann ein auswählbares Funktions-EFE eine Vorkehrung zum Abbilden von Re-
gistern unter Verwendung eines existierenden Datenpfads aufweisen, während eine festes Funktions-EFE ein-
fach einen Multiplexer aufweisen kann.

[0173] Aufgrund der langen Drahtverzögerungen beim Programmieren langer EFE-Sätze kann das LEC_
STROBE Signal als eine Takt-/Latch-Aktivierung für die EFE-Komponenten behandelt werden. Da dieses Si-
gnal als ein Takter verwendet wird, beträgt in einer Ausführungsform der Arbeitszyklus der Leitung höchstens
50%. Als Ergebnis wird der Extraktionsdurchsatz in etwa halbiert. Optional kann ein zweites LEC_STROBE
Signal hinzugefügt werden, um eine kontinuierliche Extraktion zu ermöglichen.

[0174] In einer Ausführungsform wird nur LEC_START strikt an eine unabhängige Kopplung (z. B. Draht)
kommuniziert, zum Beispiel können Steuerkanäle über ein existierendes Netzwerk überlagert werden.



DE 10 2018 005 216 A1    2019.02.21

42/134

Wiederverwendung von Netzwerkressourcen

[0175] Zum Reduzieren des Datenextraktionsaufwands nutzen bestimmte Ausführungsformen eines CSA die
vorhandene Netzwerkinfrastruktur zur Kommunikation von Extraktionsdaten. Eine LEC kann sowohl eine Chi-
pebenen-Speicherhierarchie als auch Strukturebenen-Kommunikationsnetzwerke zum Bewegen von Daten
von der Struktur in den Speicher nutzen. Als Ergebnis trägt die Extraktionsinfrastruktur in bestimmten Ausfüh-
rungsformen eines CSA nicht mehr als 2% zur gesamten Strukturfläche und zur Gesamtleistung bei.

[0176] Die Wiederverwendung von Netzwerkressourcen in bestimmten Ausführungsformen eines CSA kann
ein Netzwerk dazu veranlassen, einige Hardwareunterstützung für ein Extraktionsprotokoll aufzuweisen. Lei-
tungsvermittelte Netzwerke erfordern von bestimmten Ausführungsformen eines CSA, dass eine LEC ihre Mul-
tiplexer auf eine spezifische Weise für die Konfiguration setzt, wenn das Signal ,LEC_START‘ bestätigt wird.
Paketvermittelte Netzwerke erfordern keine Erweiterung, obwohl LEC-Endpunkte (z. B. Extraktions-Termina-
toren) eine spezifische Adresse in dem paketvermittelten Netzwerk verwenden. Die Netzwerkwiederverwen-
dung ist optional und einige Ausführungsformen finden ggf. eigens vorgesehene Konfigurationsbusse ange-
messener.

Per EFE-Status

[0177] Jedes EFE kann ein Bit halten, das angibt, ob es seinen Status exportiert hat oder nicht. Dieses Bit
kann deaktiviert werden, wenn das Konfigurationsstartsignal angesteuert wird, und dann aktiviert werden, so-
bald das bestimmte EFE die Extraktion beendet hat. In einem Extraktionsprotokoll sind die EFEs angeordnet,
um Ketten mit dem EFE-Extraktionszustandsbit zu bilden, das die Topologie der Kette bestimmt. Ein EFE kann
das Extraktionszustandsbit des unmittelbar angrenzenden EFE lesen. Wenn dieses benachbarte EFE sein
Extraktionsbit gesetzt hat und das aktuelle EFE dies nicht tut, kann das EFE bestimmen, dass es den Extrak-
tionsbus besitzt. Wenn ein EFE seinen letzten Datenwert abbildet, kann es das Signal ,EFE_DONE‘ ansteuern
und sein Extraktionsbit setzen, z. B. indem es vorgeschaltete EFEs die Konfiguration für die Extraktion ermög-
licht. Das Netzwerk benachbart des EFE kann dieses Signal beobachten und auch seinen Status einstellen,
um den Übergang zu bewältigen. Als ein Basisfall für den Extraktionsprozess kann ein Extraktions-Terminator
(z. B. Extraktions-Terminator 3104 für LEC 3102 oder Extraktions-Terminator 3108 für LEC 3106 in Fig. 22),
der bestätigt, dass die Extraktion abgeschlossen ist, am Ende einer Kette enthalten sein.

[0178] EFE-intem kann dieses Bit zum Ansteuern der flusssteuerungsbereiten Signale verwendet werden.
Wenn zum Beispiel das Extraktionsbit deaktiviert wird, können Netzwerksteuersignale automatisch auf einen
Wert geklemmt werden, der verhindert, dass Daten fließen, während innerhalb der PEs keine Operationen
oder andere Aktionen geplant werden.

Behandeln von Pfaden mit hoher Verzögerung

[0179] Eine Ausführungsform einer LEC kann ein Signal über eine lange Distanz, z. B. durch viele Multiple-
xer und mit vielen Lasten, ansteuern. Daher kann es für ein Signal schwierig sein, an einem entfernten EFE
innerhalb eines kurzen Taktzyklus einzugehen. In bestimmten Ausführungsformen sind die Extraktionssignale
in einer bestimmten Division (z. B. einem Bruchteil von) der Haupttaktfrequenz (z. B. CSA), um eine digitale
Zeitdisziplin bei der Extraktion sicherzustellen. Die Taktteilung kann in einem Außer-Band-Signalisierungspro-
tokoll benutzt werden und erfordert keine Modifikation des Haupttaktbaums.

Sicherstellen des konsistenten Strukturverhaltens während der Extraktion

[0180] Da bestimmte Extraktionsschemata verteilt sind und aufgrund von Programm- und Speichereffekten
eine nicht-deterministische Zeitsteuerung aufweisen, können verschiedene Elemente der Struktur zu unter-
schiedlichen Zeiten extrahiert werden. Während des Ansteuerns von LEC_EXTRACT können alle Netzwerk-
flusssignale logisch niedrig angesteuert werden, z. B. durch Einfrieren der Operation eines bestimmten Seg-
ments der Struktur.

[0181] Ein Extraktionsprozess kann nicht destruktiv sein. Daher kann ein Satz von PEs als operational be-
trachtet werden, sobald die Extraktion abgeschlossen wurde. Eine Erweiterung eines Extraktionsprotokolls
kann den PEs ermöglichen, nach der Extraktion deaktiviert zu werden. Alternativ wird die beginnende Konfi-
guration während des Extraktionsprozesses in Ausführungsformen einen ähnlichen Effekt haben.



DE 10 2018 005 216 A1    2019.02.21

43/134

Einzel-PE-Extraktion

[0182] In einigen Fällen kann es zweckmäßig sein, ein einzelnes PE zu extrahieren. In diesem Fall kann ein
optionales Adresssignal als Teil des Beginns des Extraktionsprozesses angesteuert werden. Dies kann dem
für die Extraktion angezielten PE ermöglichen, direkt aktiviert zu werden. Sobald dieses PE extrahiert wurde,
kann der Extraktionsprozess durch das Absenken des LEC_EXTRACT Signals enden. Auf diese Weise kann
ein einzelnes PE selektiv extrahiert werden, z. B. durch die lokale Extraktionssteuerung.

Handhaben des Extraktionsgegendrucks

[0183] In einer Ausführungsform, in der die LEC extrahierte Daten in den Speicher schreibt (z. B. zum Nach-
verarbeiten z. B. in Software), kann sie Gegenstand einer begrenzten Speicherbandbreite sein. In dem Fall,
dass die LEC ihre Pufferkapazität erschöpft oder erwartet, ihre Pufferkapazität zu erschöpfen, kann sie das
Abtasten des LEC_STROBE Signals anhalten, bis das Pufferproblem gelöst ist.

[0184] Es sei zu beachten, dass in bestimmten Figuren (z. B. Fig. 22, Fig. 25, Fig. 26, Fig. 28, Fig. 29 und
Fig. 31) Kommunikationen schematisch dargestellt sind. In bestimmten Ausführungsformen entstehen diese
Kommunikationen über das (z. B. Interconnect-) Netzwerk.

Flussdiagramme

[0185] Fig. 34 veranschaulicht ein Flussdiagramm 3400 gemäß Ausführungsformen der Offenbarung. Der
dargestellte Fluss 3400 beinhaltet das Decodieren eines Befehls mit einem Decodierer eines Kerns eines Pro-
zessors in einen decodierten Befehl 3402; Ausführen des decodierten Befehls mit einer Ausführungseinheit
des Kerns des Prozessors zum Durchführen einer ersten Operation 3404; Empfangen einer Eingabe eines
Datenflussgraphen, der mehrere Knoten 3406 umfasst; Überlagern des Datenflussgraphen über ein Array aus
Verarbeitungselementen des Prozessors, wobei jeder Knoten als Datenflussoperator in dem Array von Verar-
beitungselementen 3408 repräsentiert ist; und Durchführen einer zweiten Operation des Datenflussgraphen
mit dem Array aus Verarbeitungselementen, wenn ein eingehender Operandensatz an dem Array aus Verar-
beitungselementen 3410 eingeht.

[0186] Fig. 35 veranschaulicht ein Flussdiagramm 3500 gemäß Ausführungsformen der Offenbarung. Der
dargestellte Fluss 3500 beinhaltet das Decodieren eines Befehls mit einem Decodierer eines Kerns eines
Prozessors in einen decodierten Befehl 3502; Ausführen des decodierten Befehls mit einer Ausführungsein-
heit des Kerns des Prozessors zum Durchführen einer ersten Operation 3504; Empfangen einer Eingabe ei-
nes Datenflussgraphen, der mehrere Knoten 3506 umfasst; Überlagern des Datenflussgraphen über mehre-
re Verarbeitungselemente des Prozessors und ein Zwischenverbindungsnetz zwischen den mehreren Verar-
beitungselementen des Prozessors, wobei jeder Knoten einen Datenflussoperator in den mehreren Verarbei-
tungselementen 3508 repräsentiert; und Durchführen einer zweiten Operation des Datenflussgraphen mit dem
Zwischenverbindungsnetz und den mehreren Verarbeitungselementen, wenn ein eingehender Operandensatz
bei den mehreren Verarbeitungselementen 3510 eingeht.

KURZDARSTELLUNG

[0187] Supercomputing auf der ExaFLOP-Skala kann eine Herausforderung im Hochleistungsrechnen sein,
eine Herausforderung, die von konventionellen von Neumann-Architekturen wahrscheinlich nicht erfüllt wird.
Zum Erreichen von ExaFLOPs stellen Ausführungsformen eines CSA ein heterogenes räumliches Array bereit,
das auf die direkte Ausführung von (z. B. vom Kompilierer erzeugten) Datenflussgraphen abzielt. Zusätzlich
zu dem Auslegen der Architekturprinzipien von Ausführungsformen eines CSA beschreibt und bewertet das
Vorstehende auch Ausführungsformen eines CSA, der eine Leistung und Energie von mehr als dem 10-fa-
chen gegenüber existierenden Produkten zeigte. Kompilierererzeugter Code kann bedeutende Leistungs- und
Energiezugewinne gegenüber Roadmap-Architekturen haben. Als eine heterogene, parametrische Architektur
können Ausführungsformen eines CSA leicht an alle Computeranwendungen angepasst werden. Zum Beispiel
könnte eine mobile Version von CSA auf 32 Bits abgestimmt sein, während ein auf maschinelles Lernen fokus-
siertes Array eine signifikante Anzahl von vektorisierten 8-Bit-Multiplikationseinheiten aufweisen könnte. Die
Hauptvorteile von Ausführungsformen eines CSA sind eine hohe Leistung und eine extreme Energieeffizienz,
Eigenschaften, die für alle Formen des Rechnens von Supercomputing und Rechenzentrum bis zum Internet
der Dinge relevant sind.



DE 10 2018 005 216 A1    2019.02.21

44/134

[0188] In einer Ausführungsform weist ein Prozessor mehrere Verarbeitungselemente auf; und ein Zwischen-
verbindungsnetz zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe eines Da-
tenflussgraphen, umfassend mehrere Knoten, wobei der Datenflussgraph in das Zwischenverbindungsnetz
und die mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Datenflussoperator in
den mehreren Verarbeitungselementen repräsentiert ist, und die mehreren Verarbeitungselemente eine ato-
mare Operation durchzuführen haben, wenn ein eingehender Operand bei den mehreren Verarbeitungsele-
menten eingeht.

[0189] Ein Verarbeitungselement der Vielzahl von Verarbeitungselementen kann die Ausführung anhalten,
wenn ein Gegendrucksignal von einem nachgeschalteten Verarbeitungselement anzeigt, dass kein Speicher
in dem nachgeschalteten Verarbeitungselement für eine Ausgabe des Verarbeitungselements verfügbar ist.
Der Prozessor kann ein Flusssteuerpfad-Netzwerk zum Übertragen des Gegendrucksignals gemäß dem Da-
tenflussgraphen aufweisen. Ein Datenfluss-Token kann bewirken, dass eine Ausgabe von einem Datenfluss-
operator, der das Datenfluss-Token empfängt, zu einem Eingabepuffer eines bestimmten Verarbeitungsele-
ments der mehreren Verarbeitungselemente gesendet wird. Die atomare Operation kann einen Speicherzugriff
beinhalten, und die mehreren Verarbeitungselemente umfassen einen Speicherzugriffs-Datenflussoperator,
der den Speicherzugriff nicht durchzuführen hat, bis er ein Speicherabhängigkeits-Token von einem logisch
vorherigen Datenflussoperator empfängt. Die mehreren Verarbeitungselemente können einen ersten Typ von
Verarbeitungselement und einen zweiten, unterschiedlichen Typ von Verarbeitungselement aufweisen.

[0190] In einer Ausführungsform beinhaltet ein Prozessor mehrere Verarbeitungselemente; ein Zwischenver-
bindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Datenflussgraphen
zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenverbindungsnetz und
die mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Datenflussoperator in den
mehreren Verarbeitungselementen repräsentiert ist und die mehreren Verarbeitungselemente eine Operation
durchzuführen haben, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen ein-
geht; und eine Transaktionssteuerung, um mehrere Speicherzugriffe zu gruppieren, die mit der Operation in
Zusammenhang stehen.

[0191] Die Transaktionssteuerung kann die mehreren Speicherzugriffe in eine Transaktion durch Markieren,
mit einem Transaktionsidentifizierer, einer Cache-Zeile, die durch die Operation zu modifizieren ist, gruppie-
ren. Eine erste Nachricht kann zu der Transaktionssteuerung in Verbindung mit einem Start der Transaktion
gesendet werden. Eine zweite Nachricht kann zu der Transaktionssteuerung in Verbindung mit einem Ende der
Transaktion gesendet werden. Die Transaktionssteuerung kann den Transaktionsidentifizierer als Reaktion auf
die zweite Nachricht aus der Cache-Zeile löschen. Die mehreren Speicherzugriffe können einen Lesezugriff
durch ein erstes der mehreren Verarbeitungselemente einschließen. Die mehreren Speicherzugriffe können
einen Schreibzugriff durch ein zweites der mehreren Verarbeitungselemente einschließen. Das erste und das
zweite der mehreren Verarbeitungselemente sind unterschiedliche Verarbeitungselemente. Das erste und das
zweite der mehreren Verarbeitungselemente sind das gleiche Verarbeitungselement.

[0192] In einer Ausführungsform beinhaltet ein Prozessor mehrere Verarbeitungselemente; ein Zwischenver-
bindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Datenflussgraphen
zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenverbindungsnetz und
die mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Datenflussoperator in den
mehreren Verarbeitungselementen repräsentiert ist und die mehreren Verarbeitungselemente eine Operation
durchzuführen haben, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen ein-
geht; und einen Cache, wobei der Cache in einem Speicheruntersystem einzuschließen ist, das Speicherun-
tersystem auch einen Speicher einzuschließen hat, in dem mehrere alte Datenwerte zu speichern sind, um
eine Ausführung vom Start einer Epoche zu wiederholen, wobei die Epoche die Operation einzuschließen hat.

[0193] Der erste der mehreren alten Datenwerte kann bis zum Ende der Epoche im Speicher bewahrt wer-
den, als Reaktion darauf, dass ein entsprechender neuer Datenwert in einer Zeile des Cache durch eines der
mehreren Verarbeitungselemente gespeichert wird. Der neue Datenwert kann von einem Schreibzugriff von
einem der mehreren Verarbeitungselemente sein. Der erste der mehreren alten Datenwerte kann gemäß ei-
nem Cache-Kohärenzprotokoll bewahrt werden.

[0194] In einer Ausführungsform kann ein Verfahren beinhalten Empfangen eines Eingangs eines Datenfluss-
graphen, der mehrere Knoten umfasst; Überlagern des Datenflussgraphen in mehrere Verarbeitungselemente
des Prozessors und ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen des Pro-
zessors, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert



DE 10 2018 005 216 A1    2019.02.21

45/134

ist; Durchführen einer Operation des Datenflussgraphen mit dem Zwischenverbindungsnetz und den mehreren
Verarbeitungselementen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen
eingeht; und Bewahren mehrerer alter Datenwerte in einem Speicher während einer Epoche, wobei die Epoche
ein Schreiben eines neuen Datenwerts von einem der mehreren Verarbeitungselemente einschließt, wobei der
neue Wert einem der mehreren alten Datenwerte entspricht.

[0195] Das Verfahren kann auch beinhalten Erhalten, durch einen Cache gemäß einem Cache-Kohärenzpro-
tokoll, des Besitzes einer Cache-Zeile, in die der neue Datenwert zu speichern ist. Das Verfahren kann auch
beinhalten, als Reaktion auf das Bestimmen, dass die Cache-Zeile kohärent in Besitz des Cache ist, Schrei-
ben der Cache-Zeile in den Speicher. Das Verfahren kann auch beinhalten Aktualisieren der Cache-Zeile zu
dem neuen Wert nach dem Schreiben der Cache-Zeile in den Speicher. Das Verfahren kann auch beinhalten
Ändern der Cache-Zeile von kohärent in Besitz zu spekulativ in Besitz nach dem Schreiben der Cache-Zeile
in den Speicher. Das Verfahren kann auch beinhalten, als Reaktion auf das Bestimmen, dass die Cache-Zeile
spekulativ in Besitz des Cache ist, Aktualisieren der Cache-Zeile zu dem neuen Wert, ohne ein Schreiben der
Zeile in den Speicher.

[0196] In einer anderen Ausführungsform umfasst ein Verfahren Empfangen einer Eingabe eines Datenfluss-
graphen umfassend mehrere Knoten; Überlagern des Datenflussgraphen über mehrere Verarbeitungselemen-
te des Prozessors und eines Zwischenverbindungsnetzes zwischen den mehreren Verarbeitungselementen
des Prozessors, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen re-
präsentiert ist; und Durchführen einer atomaren Operation des Datenflussgraphen mit dem Zwischenverbin-
dungsnetz und den mehreren Verarbeitungselementen durch einen jeweiligen eingehenden Operandensatz,
der an jedem der Datenflussoperatoren der mehreren Verarbeitungselemente eingeht. Das Verfahren kann das
Anhalten der Ausführung durch ein Verarbeitungselement der mehreren Verarbeitungselemente beinhalten,
wenn ein Gegendrucksignal von einem nachgeschalteten Verarbeitungselement anzeigt, dass kein Speicher in
dem nachgeschalteten Verarbeitungselement für eine Ausgabe des Verarbeitungselements verfügbar ist. Das
Verfahren kann das Senden des Gegendrucksignals auf einem Flusssteuerpfad-Netzwerk gemäß dem Daten-
flussgraphen beinhalten. Ein Datenfluss-Token kann bewirken, dass eine Ausgabe von einem Datenflussope-
rator, der das Datenfluss-Token empfängt, zu einem Eingabepuffer eines bestimmten Verarbeitungselements
der mehreren Verarbeitungselemente gesendet wird. Das Verfahren kann umfassen, dass kein Speicherzu-
griff ausgeführt wird, bis ein Speicherabhängigkeits-Token von einem logisch vorherigen Datenflussoperator
empfangen wird, wobei die atomare Operation den Speicherzugriff umfasst und die mehreren Verarbeitungs-
elemente einen Speicherzugriffs-Datenflussoperator umfassen. Das Verfahren kann das Bereitstellen eines
ersten Typs von Verarbeitungselement und eines zweiten, unterschiedlichen Typs von Verarbeitungselement
beinhalten.

[0197] In noch einer anderen Ausführungsform weist eine Vorrichtung ein Datenpfad-Netzwerk zwischen meh-
reren Verarbeitungselementen auf; und ein Flusssteuerpfad-Netzwerk zwischen den mehreren Verarbeitungs-
elementen, wobei das Datenpfad-Netzwerk und das Flusssteuerpfad-Netzwerk eine Eingabe eines Datenfluss-
graphen empfangen müssen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Datenpfad-Netz-
werk und das Flusssteuerpfad-Netzwerk und die mehreren Verarbeitungseinheiten zu überlagern ist, wobei
jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert ist, und die
mehreren Verarbeitungselemente eine atomare Operation durch einen jeweiligen eingehenden Operandensatz
durchzuführen haben, der an jedem der Datenflussoperatoren der mehreren Verarbeitungselemente eingeht.
Das Flusssteuerpfad-Netzwerk kann Gegendrucksignale zu mehreren Datenflussoperatoren gemäß dem Da-
tenflussgraphen tragen. Ein Datenfluss-Token, das auf dem Datenpfad-Netzwerk zu einem Datenflussoperator
gesendet wurde, kann bewirken, dass eine Ausgabe von dem Datenflussoperator, der an einen Eingabepuffer
eines bestimmten Verarbeitungselements der mehreren Verarbeitungselemente auf dem Datenpfad-Netzwerk
gesendet wird. Das Datenpfad-Netzwerk kann ein statisches leitungsvermitteltes Netzwerk sein, um den jewei-
ligen Eingabeoperandensatz gemäß dem Datenflussgraphen zu jedem der Datenflussoperatoren zu tragen.
Das Flusssteuerpfad-Netzwerk kann ein Gegendrucksignal gemäß dem Datenflussgraphen von einem nach-
geschalteten Verarbeitungselement übertragen, um anzuzeigen, dass kein Speicher in dem nachgeschalteten
Verarbeitungselement für eine Ausgabe des Verarbeitungselements verfügbar ist. Mindestens ein Datenpfad
des Datenpfad-Netzwerks und mindestens ein Flusssteuerpfad des Flussteuerpfad-Netzwerks können eine
kanalisierte Schaltung mit Gegendrucksteuerung bilden. Das Flusssteuerpfad-Netzwerk kann mindestens zwei
der mehreren Verarbeitungselemente zeitverschachteln.

[0198] In einer weiteren Ausführungsform beinhaltet ein Verfahren das Empfangen einer Eingabe eines Da-
tenflussgraphen, umfassend mehrere Knoten; und Überlagern des Datenflussgraphen über mehrere Verarbei-
tungselemente eines Prozessors, eines Datenpfad-Netzwerks zwischen die mehreren Verarbeitungselemente



DE 10 2018 005 216 A1    2019.02.21

46/134

und eines Flusssteuerpfad-Netzwerk zwischen die mehreren Verarbeitungselemente, wobei jeder Knoten als
ein Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert ist. Das Verfahren kann das
Tragen des Gegendrucksignals mit dem Flusssteuerpfad-Netzwerk zu mehreren Datenflussoperatoren gemäß
dem Datenflussgraphen beinhalten. Das Verfahren kann das Senden eines Datenfluss-Token auf dem Daten-
pfad-Netzwerk beinhalten, um zu bewirken, dass eine Ausgabe von dem Datenflussoperator an einen Einga-
bepuffer eines bestimmten Verarbeitungselements der mehreren Verarbeitungselemente auf dem Datenpfad-
Netzwerk gesendet wird. Das Verfahren kann das Einstellen mehrerer Schalter des Datenpfad-Netzwerks und/
oder mehrerer Schalter des Flusssteuerpfad-Netzwerks zum Tragen des jeweiligen Eingabeoperandensatzes
zu jedem der Datenflussoperatoren gemäß dem Datenflussgraphen beinhalten, wobei das Datenpfad-Netz-
werk ein statisches leitungsvermitteltes Netzwerk ist. Das Verfahren kann das Übertragen eines Gegendruck-
signals mit dem Flusssteuerpfad-Netzwerk gemäß dem Datenflussgraphen von einem nachgeschalteten Ver-
arbeitungselement beinhalten, um anzuzeigen, dass kein Speicher in dem nachgeschalteten Verarbeitungs-
element für eine Ausgabe des Verarbeitungselements verfügbar ist. Das Verfahren kann das Bilden einer ka-
nalisierten Schaltung mit Gegendrucksteuerung mit mindestens einem Datenpfad des Datenpfad-Netzwerks
und mindestens einem Flusssteuerpfad des Flussteuerpfad-Netzwerks beinhalten.

[0199] In noch einer anderen Ausführungsform weist ein Prozessor mehrere Verarbeitungselemente auf; und
eine Netzwerkeinrichtung zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe
eines Datenflussgraphen, umfassend mehrere Knoten, wobei der Datenflussgraph in die Netzwerkeinrichtung
und die mehreren Verarbeitungseinheiten überlagert wird, wobei jeder Knoten als ein Datenflussoperator in
den mehreren Verarbeitungselementen repräsentiert ist, und die mehreren Verarbeitungselemente eine ato-
mare Operation durch einen jeweiligen eingehenden Operandensatz durchzuführen haben, der an jedem der
Datenflussoperatoren der mehreren Verarbeitungselemente eingeht.

[0200] In einer weiteren Ausführungsform weist eine Vorrichtung eine Datenpfad-Einrichtung zwischen meh-
reren Verarbeitungselementen auf; und eine Flusssteuerpfad-Einrichtung zwischen den mehreren Verarbei-
tungselementen, wobei die Datenpfad-Einrichtung und die Flusssteuerpfad-Einrichtung eine Eingabe eines
Datenflussgraphen zu empfangen haben, der mehrere Knoten umfasst, wobei der Datenflussgraph in die Da-
tenpfad-Einrichtung und die Flusssteuerpfad-Einrichtung und die mehreren Verarbeitungseinheiten zu überla-
gern ist, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert
ist, und die mehreren Verarbeitungselemente eine atomare Operation durch einen jeweiligen eingehenden
Operandensatz durchzuführen haben, der an jedem der Datenflussoperatoren der mehreren Verarbeitungs-
elemente eingeht.

[0201] In einer Ausführungsform weist ein Prozessor ein Array aus Verarbeitungselementen zum Empfangen
einer Eingabe eines Datenflussgraphen, der mehrere Knoten umfasst, auf, wobei der Datenflussgraph in das
Array aus Verarbeitungselementen zu überlagern ist, wobei jeder Knoten für einen Datenflussoperator in dem
Array aus Verarbeitungselementen steht, und das Array aus Verarbeitungselementen eine atomare Operati-
on durchzuführen hat, wenn ein eingehender Operandensatz am Array aus Verarbeitungselementen eingeht.
Das Array aus Verarbeitungselementen kann die zweite Operation nicht durchführen, bis der eingehende Ope-
randensatz an dem Array aus Verarbeitungselementen eingeht und der Speicher in dem Array aus Verarbei-
tungselementen zur Ausgabe der atomaren Operation verfügbar ist. Das Array aus Verarbeitungselementen
kann ein Netzwerk (oder einen oder mehrere Kanäle) aufweisen, um die Datenfluss-Tokens und Steuertokens
zu mehreren Datenflussoperatoren zu tragen. Die atomare Operation kann einen Speicherzugriff aufweisen,
und das Array aus Verarbeitungselementen kann einen Speicherzugriff-Datenflussoperator aufweisen, der den
Speicherzugriff nicht durchzuführen hat, bis er ein Speicherabhängigkeits-Token von einem logisch vorherigen
Datenflussoperator empfängt. Jedes Verarbeitungselement kann nur eine oder zwei Operationen des Daten-
flussgraphen durchführen.

[0202] In einer weiteren Ausführungsform beinhaltet ein Verfahren das Empfangen einer Eingabe eines Da-
tenflussgraphen, der mehrere Knoten umfasst; Überlagern des Datenflussgraphen über ein Array aus Verar-
beitungselementen des Prozessors, wobei jeder Knoten als ein Datenflussoperator in dem Array von Verarbei-
tungselementen repräsentiert ist; und Durchführen einer atomaren Operation des Datenflussgraphen mit dem
Array aus Verarbeitungselementen, wenn ein eingehender Operandensatz an dem Array aus Verarbeitungs-
elementen eingeht. Das Array aus Verarbeitungselementen kann die atomare Operation nicht durchführen,
bis der eingehende Operandensatz an dem Array aus Verarbeitungselementen eingeht und der Speicher in
dem Array aus Verarbeitungselementen zur Ausgabe der atomaren Operation verfügbar ist. Das Array aus
Verarbeitungselementen kann ein Netzwerk aufweisen, das die Datenfluss-Tokens und Steuertokens zu meh-
reren Datenflussoperatoren trägt. Die atomare Operation kann einen Speicherzugriff aufweisen, und das Ar-
ray aus Verarbeitungselementen kann einen Speicherzugriff-Datenflussoperator, der den Speicherzugriff nicht



DE 10 2018 005 216 A1    2019.02.21

47/134

durchführen darf, bis er ein Speicherabhängigkeits-Token von einem logisch vorherigen Datenflussoperator
empfängt, aufweisen. Jedes Verarbeitungselement kann nur eine oder zwei Operationen des Datenflussgra-
phen durchführen.

[0203] In noch einer anderen Ausführungsform veranlasst ein nichtflüchtiges maschinenlesbares Medium,
das Code speichert, der, wenn er von einer Maschine ausgeführt wird, die Maschine veranlasst, ein Verfah-
ren durchzuführen, aufweisend das Empfangen einer Eingabe eines Datenflussgraphen, der mehrere Knoten
umfasst; Überlagern des Datenflussgraphen über ein Array aus Verarbeitungselementen des Prozessors, wo-
bei jeder Knoten als ein Datenflussoperator in dem Array von Verarbeitungselementen repräsentiert ist; und
Durchführen einer atomaren Operation des Datenflussgraphen mit dem Array aus Verarbeitungselementen,
wenn ein eingehender Operandensatz an dem Array aus Verarbeitungselementen eingeht. Das Array des
Verarbeitungselements darf die atomare Operation nicht durchführen, bis der eingehende Operandensatz an
dem Array aus Verarbeitungselementen eingeht und der Speicher in dem Array aus Verarbeitungselementen
zur Ausgabe der zweiten Operation verfügbar ist. Das Array aus Verarbeitungselementen kann ein Netzwerk
aufweisen, das die Datenfluss-Tokens und Steuertokens zu mehreren Datenflussoperatoren trägt. Die atoma-
re Operation kann einen Speicherzugriff aufweisen, und das Array aus Verarbeitungselementen kann einen
Speicherzugriff-Datenflussoperator, der den Speicherzugriff nicht durchführen darf, bis er ein Speicherabhän-
gigkeits-Token von einem logisch vorherigen Datenflussoperator empfängt, aufweisen. Jedes Verarbeitungs-
element kann nur eine oder zwei Operationen des Datenflussgraphen durchführen.

[0204] In einer weiteren Ausführungsform weist ein Prozessor Einrichtungen zum Empfangen einer Eingabe
eines Datenflussgraphen, der mehrere Knoten umfasst, auf, wobei der Datenflussgraph in die Einrichtung zu
überlagern ist, wobei jeder Knoten für einen Datenflussoperator in der Einrichtung steht, und die Einrichtung
eine atomare Operation durchzuführen hat, wenn ein eingehender Operandensatz an der Einrichtung eingeht.

[0205] In einer Ausführungsform weist ein Prozessor einen Kern mit einem Decodierer zum Decodieren eines
Befehls in einem decodierten Befehl und eine Ausführungseinheit zum Ausführen des decodierten Befehls zum
Durchführen einer ersten Operation; mehrere Verarbeitungselemente; und ein Zwischenverbindungsnetzwerk
zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe eines Datenflussgraphen,
umfassend mehrere Knoten, auf, wobei der Datenflussgraph in das Zwischenverbindungsnetzwerk und die
mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Datenflussoperator in den meh-
reren Verarbeitungselementen repräsentiert ist, und die mehreren Verarbeitungselemente eine zweite Opera-
tion durchzuführen haben, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen
eingeht, wobei die zweite Operation eine atomare Operation ist. Der Prozessor kann ferner mehrere Konfigu-
rationssteuerungen umfassen, wobei jede Konfigurationssteuerung mit einem jeweiligen Untersatz der meh-
reren Verarbeitungselemente gekoppelt ist und jede Konfigurationssteuerung Konfigurationsinformation aus
dem Speicher zu laden und eine Kopplung des jeweiligen Untersatzes der mehreren Verarbeitungselemente
gemäß der Konfigurationsinformation zu veranlassen hat. Der Prozessor kann mehrere Konfigurations-Caches
enthalten, und jede Konfigurationssteuerung ist mit einem jeweiligen Konfigurations-Cache gekoppelt, um die
Konfigurationsinformation für den jeweiligen Untersatz der mehreren Verarbeitungselemente abzurufen. Die
erste Operation, die durch die Ausführungseinheit durchgeführt wird, kann Konfigurationsinformation in jeden
der mehreren Konfigurations-Caches abrufen. Jede der mehreren Konfigurationssteuerungen kann eine Re-
konfigurationsschaltung aufweisen, um bei Empfang einer Konfigurationsfehlermeldung von dem mindestens
einen Verarbeitungselement eine Rekonfiguration für mindestens ein Verarbeitungselement des jeweiligen Un-
tersatzes von Verarbeitungselementen zu veranlassen. Jede der mehreren Konfigurationssteuerungen kann
eine Rekonfigurationsschaltung aufweisen, um bei Empfang einer Rekonfigurationsanforderungsnachricht ei-
ne Rekonfiguration des jeweiligen Untersatzes der mehreren Verarbeitungselemente zu veranlassen und die
Kommunikation mit dem jeweiligen Untersatz der mehreren Verarbeitungselemente zu deaktivieren, bis die
Rekonfiguration abgeschlossen ist. Der Prozessor kann mehrere Ausnahmeaggregatoren enthalten, und jeder
Ausnahmeaggregator ist mit einem jeweiligen Untersatz der mehreren Verarbeitungselemente gekoppelt, um
Ausnahmen von dem jeweiligen Untersatz der mehreren Verarbeitungselemente zu sammeln und die Ausnah-
men an den Kern zum Bedienen weiterzuleiten. Der Prozessor kann mehrere Extraktionssteuerungen aufwei-
sen, wobei jede Extraktionssteuerung mit einem jeweiligen Untersatz der mehreren Verarbeitungselemente
gekoppelt ist und jede Extraktionssteuerung veranlassen muss, dass Statusdaten aus dem jeweiligen Unter-
satz der mehreren Verarbeitungselemente in dem Speicher gespeichert werden.

[0206] In einer weiteren Ausführungsform beinhaltet ein Verfahren das Decodieren eines Befehls mit einem
Decodierer eines Kerns eines Prozessors in einen decodierten Befehl; Ausführen des decodierten Befehls mit
einer Ausführungseinheit des Kerns des Prozessors zum Durchführen einer ersten Operation; Empfangen ei-
ner Eingabe eines Datenflussgraphen, der mehrere Knoten umfasst; Überlagern des Datenflussgraphen über



DE 10 2018 005 216 A1    2019.02.21

48/134

mehrere Verarbeitungselemente des Prozessors und eines Zwischenverbindungsnetzes zwischen den meh-
reren Verarbeitungselementen des Prozessors, wobei jeder Knoten als ein Datenflussoperator in den meh-
reren Verarbeitungselementen repräsentiert ist; und Durchführen einer zweiten Operation des Datenflussgra-
phen mit dem Zwischenverbindungsnetz und den mehreren Verarbeitungselementen, wenn ein eingehender
Operandensatz bei den mehreren Verarbeitungselementen eingeht, wobei die zweite Operation eine atomare
Operation ist.

[0207] Das Verfahren kann das Laden von Konfigurationsinformationen aus dem Speicher für jeweilige Unter-
sätze der mehreren Verarbeitungselemente und das Veranlassen der Kopplung für jeden jeweiligen Untersatz
der mehreren Verarbeitungselemente gemäß der Konfigurationsinformation beinhalten. Das Verfahren kann
das Abrufen der Konfigurationsinformation für den jeweiligen Untersatz der mehreren Verarbeitungselemente
von einem jeweiligen Konfigurations-Cache mehrerer Konfigurations-Caches beinhalten. Die erste Operation,
die durch die Ausführungseinheit durchgeführt wird, kann das Abrufen von Konfigurationsinformation in jedem
der mehreren Konfigurations-Caches sein. Das Verfahren kann bei Empfang einer Konfigurationsfehlermel-
dung von dem mindestens einen Verarbeitungselement das Veranlassen einer Rekonfiguration für mindestens
ein Verarbeitungselement des jeweiligen Untersatzes von Verarbeitungselementen beinhalten. Das Verfahren
kann bei Empfang einer Rekonfigurationsanforderungsnachricht das Veranlassen einer Rekonfiguration des
jeweiligen Untersatzes der mehreren Verarbeitungselemente und das Deaktivieren der Kommunikation mit
dem jeweiligen Untersatz der mehreren Verarbeitungselemente bis Abschluss der Rekonfiguration beinhalten.
Das Verfahren kann das Sammeln von Ausnahmen aus einem jeweiligen Untersatz der mehreren Verarbei-
tungselemente; und das Weiterleiten der Ausnahmen zum Kern für die Bedienung beinhalten. Das Verfahren
kann das Veranlassen, dass Statusdaten von einem jeweiligen Untersatz der mehreren Verarbeitungselemen-
te in dem Speicher gespeichert werden, beinhalten.

[0208] In noch einer anderen Ausführungsform veranlasst ein nichtflüchtiges maschinenlesbares Medium,
das Code speichert, der, wenn er von einer Maschine ausgeführt wird, die Maschine veranlasst, ein Verfahren
durchzuführen, aufweisend das Decodieren eines Befehls mit einem Decodierer eines Kerns eines Prozessors
in einen decodierten Befehl; Ausführen des decodierten Befehls mit einer Ausführungseinheit des Kerns des
Prozessors zum Durchführen einer ersten Operation; Empfangen einer Eingabe eines Datenflussgraphen, der
mehrere Knoten umfasst; Überlagern des Datenflussgraphen über mehrere Verarbeitungselemente des Pro-
zessors und eines Zwischenverbindungsnetzes zwischen den mehreren Verarbeitungselementen des Prozes-
sors, wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert ist;
und Durchführen einer zweiten Operation des Datenflussgraphen mit dem Zwischenverbindungsnetz und den
mehreren Verarbeitungselementen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungs-
elementen eingeht, wobei die zweite Operation eine atomare Operation ist. Das Verfahren kann das Laden von
Konfigurationsinformationen aus dem Speicher für jeweilige Untersätze der mehreren Verarbeitungselemente
und das Veranlassen der Kopplung für jeden jeweiligen Untersatz der mehreren Verarbeitungselemente ge-
mäß der Konfigurationsinformation beinhalten. Das Verfahren kann das Abrufen der Konfigurationsinformation
für den jeweiligen Untersatz der mehreren Verarbeitungselemente von einem jeweiligen Konfigurations-Ca-
che mehrerer Konfigurations-Caches beinhalten. Die erste Operation, die durch die Ausführungseinheit durch-
geführt wird, kann das Abrufen von Konfigurationsinformation in jedem der mehreren Konfigurations-Caches
sein. Das Verfahren kann bei Empfang einer Konfigurationsfehlermeldung von dem mindestens einen Verar-
beitungselement das Veranlassen einer Rekonfiguration für mindestens ein Verarbeitungselement des jeweili-
gen Untersatzes von Verarbeitungselementen beinhalten. Das Verfahren kann bei Empfang einer Rekonfigu-
rationsanforderungsnachricht das Veranlassen einer Rekonfiguration des jeweiligen Untersatzes der mehreren
Verarbeitungselemente und das Deaktivieren der Kommunikation mit dem jeweiligen Untersatz der mehreren
Verarbeitungselemente bis Abschluss der Rekonfiguration beinhalten. Das Verfahren kann das Sammeln von
Ausnahmen aus einem jeweiligen Untersatz der mehreren Verarbeitungselemente; und das Weiterleiten der
Ausnahmen zum Kern zur Bedienung beinhalten. Das Verfahren kann das Veranlassen, dass Statusdaten
von einem jeweiligen Untersatz der mehreren Verarbeitungselemente in dem Speicher gespeichert werden,
beinhalten.

[0209] In einer weiteren Ausführungsform weist ein Prozessor mehrere Verarbeitungselemente auf; und ei-
ne Einrichtung zwischen den mehreren Verarbeitungselementen zum Empfangen einer Eingabe eines Da-
tenflussgraphen, umfassend mehrere Knoten, wobei der Datenflussgraph in die Einrichtung und die mehre-
ren Verarbeitungseinheiten zu überlagern ist, wobei jeder Knoten als ein Datenflussoperator in den mehreren
Verarbeitungselementen repräsentiert ist, und die mehreren Verarbeitungselemente eine atomare Operation
durchzuführen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungselementen eingeht.



DE 10 2018 005 216 A1    2019.02.21

49/134

[0210] In noch einer weiteren Ausführungsform umfasst eine Vorrichtung ein Datenspeichergerät, das Code
speichert, der, wenn er durch einen Hardware-Prozessor ausgeführt wird, veranlasst, dass der Hardware-
Prozessor jedes hierin offenbarte Verfahren durchführt. Eine Vorrichtung kann wie eine in der detaillierten
Beschreibung beschriebene sein. Ein Verfahren kann wie ein in der ausführlichen Beschreibung beschriebenes
sein.

[0211] In einer weiteren Ausführungsform veranlasst ein nichtflüchtiges maschinenlesbares Medium, das
Code speichert, der, wenn er von einer Maschine ausgeführt wird, die Maschine veranlasst, ein Verfahren
durchzuführen, das jedes beliebige hierin offenbarte Verfahren umfasst.

[0212] Ein Befehlssatz (z. B. zur Ausführung durch den Kern) kann eines oder mehrere Befehlsformate auf-
weisen. Ein gegebenes Befehlsformat kann verschiedene Felder (z. B. Anzahl an Bits, Ort von Bits) definie-
ren, um unter anderem die auszuführende Operation (z. B. Opcode) und den/die Operand(en), an dem/denen
die Operation durchzuführen ist, und/oder (ein) andere(s) Datenfeld(er) (z. B. Maske) zu spezifizieren. Man-
che Befehlsformate sind durch die Definition von Befehlstemplates (oder Subformaten) weiter aufgeschlüs-
selt. Zum Beispiel können die Befehlstemplates eines gegebenen Befehlsformats so definiert sein, dass sie
unterschiedliche Untersätze der Felder des Befehlsformats aufweisen (die enthaltenen Felder sind typischer-
weise in der gleichen Reihenfolge, aber wenigstens manche weisen unterschiedliche Bitpositionen auf, weil
weniger Felder enthalten sind), und/oder so definiert sein, dass sie ein gegebenes Feld aufweisen, das un-
terschiedlich interpretiert wird. Dementsprechend wird jeder Befehl einer ISA unter Verwendung eines gege-
benen Befehlsformats (und, falls definiert, in einem gegebenen der Befehlstemplates jenes Befehlsformats)
ausgedrückt und beinhaltet jeder Felder zum Spezifizieren der Operation und der Operanden. Zum Beispiel
weist ein beispielhafter ADD-Befehl einen speziellen Opcode und ein Befehlsformat auf, das ein Opcode-Feld
zum Spezifizieren dieses Opcodes und ein Operandenfeld zum Auswählen von Operanden (Quelle 1/Ziel und
Quelle 2) beinhaltet; und ein Auftreten dieses ADD-Befehls in einem Befehlsstrom wird spezielle Inhalte in den
Operandenfeldern aufweisen, die spezielle Operanden auswählen. Ein Satz von SIMD-Erweiterungen, die als
Advanced Vector Extensions (AVX) (AVX1 und AVX2) bezeichnet werden und das Vektorerweiterungs (VEX)
-Codierschema verwenden, wurde herausgegeben und/oder veröffentlicht (siehe z. B. Intel® 64 und IA-32 Ar-
chitectures Software Developer's Manual, Juni 2016; und siehe Intel® Architecture Instruction Set Extensions
Programming Reference, Februar 2016).

Beispielhafte Befehlsformate

[0213] Ausführungsformen des/der hier beschrieben Befehls/Befehle können in verschiedenen Formaten um-
gesetzt werden. Außerdem sind beispielhafte Systeme, Architekturen und Pipelines unten ausführlich beschrie-
ben. Ausführungsformen des/der Befehls/Befehle können auf solchen Systemen, Architekturen und Pipelines
ausgeführt werden, sind aber nicht auf jene ausführlich beschriebenen beschränkt.

Allgemeines vektorfreundliches Befehlsformat

[0214] Ein Vektorfreundliches Befehlsformat ist ein Befehlsformat, das für Vektorbefehle geeignet ist (z. B.
gibt es gewisse Felder, die für Vektoroperationen spezifisch sind). Obgleich Ausführungsformen beschrieben
sind, bei denen sowohl Vektor- als auch Skalaroperationen durch das vektorfreundliche Befehlsformat unter-
stützt werden, verwenden alternative Ausführungsformen nur Vektoroperationen durch das vektorfreundliche
Befehlsformat.

[0215] Fig. 36A -Fig. 36B sind Blockdiagramme, die ein allgemeines vektorfreundliches Befehlsformat und
Befehlstemplates davon gemäß Ausführungsformen der Offenbarung veranschaulichen. Fig. 36A ist ein Block-
diagramm, das ein allgemeines vektorfreundliches Befehlsformat und Klasse-A-Befehlstemplates gemäß Aus-
führungsformen der Offenbarung veranschaulicht; während Fig. 36B ein Blockdiagramm ist, welches das all-
gemeine vektorfreundliche Befehlsformat und Klasse-B-Befehlstemplates gemäß Ausführungsformen der Of-
fenbarung veranschaulicht. Speziell ein allgemeines vektorfreundliches Befehlsformat 3600, für das Klasse-
A- und Klasse-B-Befehlstemplates definiert sind, die beide Befehlstemplates ohne Speicherzugriff 3605 und
Befehlstemplates mit Speicherzugriff 3620 beinhalten. Der Ausdruck allgemein in dem Zusammenhang des
vektorfreundlichen Befehlsformats verweist darauf, dass das Befehlsformat nicht an irgendeinen speziellen
Befehlssatz gebunden ist.

[0216] Wenngleich Ausführungsformen der Offenbarung beschrieben werden, in denen das vektorfreundliche
Befehlsformat Folgendes unterstützt: eine 64-Byte-Vektoroperandenlänge (oder -größe) mit 32-Bit- (4-Byte)
oder 64-Bit- (8-Byte-) Datenelementbreiten (oder -größen) (weshalb ein 64-Byte-Vektor aus entweder 16 dop-



DE 10 2018 005 216 A1    2019.02.21

50/134

pelwortgroßen Elementen oder alternativ 8 vierwortgroßen Elementen besteht); eine 64-Byte-Vektoroperan-
denlänge (oder -größe) mit 16 Bit (2 Byte) oder 8 Bit (1 Byte) Datenelementbreiten (oder -größen); eine 32-
Byte-Vektoroperandenlänge (oder -größe) mit 32 Bit (4 Byte), 64 Bit (8 Byte), 16 Bit (2 Byte) oder 8 Bit (1
Byte) Datenelementbreiten (oder -größen); und eine 16-Byte-Vektoroperandenlänge (oder -größe) mit 32 Bit
(4 Byte), 64 Bit (8 Byte), 16 Bit (2 Byte) oder 8 Bit (1 Byte) Datenelementbreiten (oder -größen); können alter-
native Ausführungsformen mehr, weniger und/oder unterschiedliche Vektoroperandengrößen (z. B. 256 Byte-
Vektoroperanden) mit mehr, weniger oder unterschiedlichen Datenelementbreiten (z. B. 128 Bit (16 Byte) Da-
tenelementbreiten) unterstützen.

[0217] Die Klasse-A-Befehlstemplates aus Fig. 36A weisen auf: 1) innerhalb der Befehlstemplates ohne Spei-
cherzugriff 3605 ist ein Befehlstemplate für eine Vollrundungssteuerungsoperation ohne Speicherzugriff 3610
und ein Befehlstemplate für eine Datentransformationsoperation ohne Speicherzugriff 3610 gezeigt; und 2)
innerhalb der Befehlstemplates mit Speicherzugriff 3620 ist ein temporäres Speicherzugriffsbefehlstemplate
3625 und ein nicht temporäres Speicherzugriffsbefehlstemplate 3630 gezeigt. Die Klasse-B-Befehlstemplates
aus Fig. 36B weisen auf: 1) innerhalb der Befehlstemplates ohne Speicherzugriff 3605 ist ein Befehlstem-
plate für eine Schreibmaskensteuerung-Teilrundungssteuerungsoperation ohne Speicherzugriff 3612 und ein
Befehlstemplate für eine Schreibmaskensteuerung-VSIZE-Operation mit Speicherzugriff 3610 gezeigt; und 2)
innerhalb der Befehlstemplates mit Speicherzugriff 3620 ist ein Speicherzugriffsschreibmaskensteuerungsbe-
fehlstemplate 3627 gezeigt.

[0218] Das allgemeine vektorfreundliche Befehlsformat 3600 weist die folgenden Felder auf, die unten in der
in Fig. 36A bis Fig. 36B aufgelisteten Reihenfolge veranschaulicht sind.

[0219] Formatfeld 3640 - ein spezieller Wert (ein Befehlsformatkennungswert) in diesem Feld identifiziert das
vektorfreundliche Befehlsformat und dementsprechend Vorkommnisse von Befehlen in dem vektorfreundlichen
Befehlsformat in Befehlsströmen eindeutig. Von daher ist dieses Feld in dem Sinn optional, dass es nicht für
einen Befehlssatz benötigt wird, der nur das allgemeine vektorfreundliche Befehlsformat aufweist.

[0220] Basisoperationsfeld 3642 - sein Inhalt unterscheidet verschiedene Basisoperationen.

[0221] Registerindexfeld 3644 - sein Inhalt spezifiziert die Orte der Quellen- und Zieloperanden, seien sie in
Registern oder in einem Speicher, direkt oder durch Adressenerzeugung. Diese beinhalten eine ausreichende
Anzahl an Bits, um N Register aus einer P×Q(z. B. 32×512, 16×128, 32×1024, 64×1024)-Registerbank aus-
zuwählen. Während bei einer Ausführungsform N bis zu drei Quellen- und ein Zielregister sein kann, können
alternative Ausführungsformen mehr oder weniger Quellen- und Zielregister unterstützen (können z. B. bis
zu zwei Quellen unterstützen, wobei eine dieser Quellen auch als das Ziel wirkt, können bis zu drei Quellen
unterstützen, wobei eine dieser Quellen auch als das Ziel wirkt, können bis zu zwei Quellen und ein Ziel un-
terstützen).

[0222] Modifiziererfeld 3646 - sein Inhalt unterscheidet das Auftreten von Befehlen im allgemeinen Vektorbe-
fehlsformat, die den Speicherzugriff spezifizieren, von denen, die dies nicht tun; das heißt, zwischen Befehl-
templates ohne Speicherzugriff 3605 und Befehlstemplates mit Speicherzugriff 3620. Speicherzugriffsopera-
tionen lesen und/oder schreiben in die Speicherhierarchie (in manchen Fällen Schreiben der Quellen- und/oder
Zieladressen unter Verwendung von Werten in Registern), während Operationen ohne Speicherzugriff dies
nicht tun (z. B. sind die Quelle und die Ziele Register). Während bei einer Ausführungsform dieses Feld auch
zwischen unterschiedlichen Arten des Durchführens von Speicheradressenberechnungen wählt, können alter-
native Ausführungsformen mehr, weniger oder unterschiedliche Arten zum Durchführen von Speicheradres-
senberechnungen unterstützen.

[0223] Ergänzungsoperationsfeld 3650 - sein Inhalt unterscheidet zwischen einer Vielzahl verschiedener Ope-
rationen, die zusätzlich zu der Basisoperation durchzuführen sind. Dieses Feld ist kontextspezifisch. In einer
Ausführungsform der Offenbarung ist dieses Feld in ein Klassenfeld 3668, ein Alphafeld 3652 und ein Betafeld
3654. Das Ergänzungsoperationsfeld 3650 ermöglicht, dass gemeinsame Gruppen von Operationen in einem
einzigen Befehl statt in 2, 3 oder 4 Befehlen durchgeführt werden.

[0224] Skalierungsfeld 3660 - sein Inhalt ermöglicht die Skalierung des Inhalts des Indexfelds für eine Spei-
cheradressenerzeugung (z. B. für eine Adressenerzeugung, die 2Skalierung * Index + Basis verwendet).

[0225] Verschiebungsfeld 3662A- sein Inhalt wird als Teil der Speicheradressenerzeugung verwendet (z. B.
für eine Adressenerzeugung, die 2Skalierung * Index + Basis + Verschiebung).



DE 10 2018 005 216 A1    2019.02.21

51/134

[0226] Verschiebungsfaktorfeld 3662B (man beachte, dass die Nebeneinanderstellung des Verschiebungs-
felds 3662A direkt über dem Verschiebungsfaktorfeld 3662B anzeigt, dass das eine oder das andere verwen-
det wird) - sein Inhalt wird als Teil der Adressenerzeugung verwendet; er spezifiziert einen Verschiebungsfak-
tor, der durch die Größe eines Speicherzugriffs (N) zu skalieren ist - wobei N die Anzahl der Bytes im Speicher-
zugriff ist (z. B. für eine Adressenerzeugung, die 2Skalierung * Index + Basis + skalierte Verschiebung). Redun-
dante Bits niedriger Ordnung werden ignoriert und daher wird der Inhalt des Verschiebungsfaktorfelds mit der
Speicheroperandengesamtgröße (N) multipliziert, um die abschließende Verschiebung zu erzeugen, die beim
Berechnen einer effektiven Adresse zu verwenden ist. Der Wert von N wird durch die Prozessorhardware zur
Laufzeit basierend auf dem vollständigen Opcode-Feld 3674 (das hierin später beschrieben wird) und dem Da-
tenmanipulationsfeld 3654C bestimmt. Das Verschiebungsfeld 3662A und das Verschiebungsfaktorfeld 3662B
sind optional in dem Sinne, dass sie nicht für Befehltemplates ohne Speicherzugriff 3605 verwendet werden
und/oder unterschiedliche Ausführungsformen können nur eines oder keines der beiden implementieren.

[0227] Datenelementbreitenfeld 3664 - sein Inhalt unterscheidet, welche von einer Anzahl an Datenelement-
breiten zu verwenden ist (bei manchen Ausführungsformen für alle Befehle; bei anderen Ausführungsformen
für nur manche der Befehle). Dieses Feld ist in dem Sinne optional, dass es nicht benötigt wird, falls nur ei-
ne Datenelementbreite unterstützt wird und/oder Datenelementbreiten unterstützt werden, die einen gewissen
Aspekt der Opcodes verwenden.

[0228] Schreibmaskenfeld 3670 - sein Inhalt steuert auf einer Basis je Datenelementposition, ob die Daten-
elementposition in dem Zielvektoroperanden das Ergebnis der Basisoperation und der Ergänzungsoperati-
on reflektiert. Klasse-A-Befehlstemplates unterstützen Zusammenlegungsschreibmaskierung, während Klas-
se-B-Befehlstemplates sowohl Zusammenlegungs- als auch Nullungsschreibmaskierung unterstützen. Beim
Zusammenlegen ermöglichen Vektormasken, dass jeder Satz von Elementen im Ziel während der Ausfüh-
rung einer Operation (spezifiziert durch die Basisoperation und die Augmentationsoperation) vor Aktualisie-
rungen geschützt wird; in einer anderen Ausführungsform, dass der alte Wert jedes Elements des Ziels be-
wahrt wird, wenn das entsprechende Maskenbit eine 0 aufweist. Demgegenüber ermöglichen Nullungsvektor-
masken, dass jeder Satz von Elementen im Ziel während der Ausführung einer Operation (spezifiziert durch
die Basisoperation und die Augmentationsoperation) genullt wird; in einer anderen Ausführungsform, dass ein
Element des Ziels auf 0 gesetzt wird, wenn das entsprechende Maskenbit einen 0-Wert aufweist. Ein Untersatz
dieser Funktion ist die Fähigkeit, die Vektorlänge der ausgeführten Operation zu steuern (d. h. die Spanne
der Elemente, die modifiziert werden, von der ersten bis zur letzten); es ist jedoch nicht notwendig, dass die
Elemente, die modifiziert werden, konsekutiv sind. Somit erlaubt das Schreibmaskenfeld 3670 Teilvektorope-
rationen, einschließlich Lade-, Speicher-, Arithmetik-, Logikoperationen usw. Während Ausführungsformen der
Offenbarung beschrieben werden, in denen der Inhalt des Schreibmaskenfelds 3670 eines aus einer Anzahl
von Schreibmaskenregistern auswählt, welche die zu verwendende Schreibmaske (und somit der Inhalt des
Schreibmaskenfelds 3670 indirekt die auszuführende Maskierung identifiziert) enthält, ermöglichen alternative
Ausführungsformen stattdessen oder zusätzlich, dass der Inhalt des Maskenschreibfelds 3670 direkt die aus-
zuführende Maskierung spezifiziert.

[0229] Unmittelbarfeld 3672 - sein Inhalt ermöglicht die Spezifikation eines Unmittelbaren. Dieses Feld ist in
dem Sinne optional, dass es bei einer Implementierung des allgemeinen vektorfreundlichen Formats, das einen
Unmittelbaren nicht unterstützt, nicht vorhanden ist und bei Befehlen, die keinen Unmittelbaren verwenden,
nicht vorhanden ist.

[0230] Klassenfeld 3668 - sein Inhalt unterscheidet zwischen unterschiedlichen Klassen von Befehlen. Mit Be-
zug auf Fig. 36A-B wählen die Inhalte dieses Feldes zwischen Klasse A- und Klasse B-Befehlen. In Fig. 36A-B
werden gerundete Eckenquadrate zum Anzeigen verwendet, dass ein spezifischer Wert in einem Feld (z. B.
Klasse A 3668A bzw. Klasse B 3668B für das Klassenfeld 3668 in Fig. 36A-B) vorhanden ist.

Befehlstemplates der Klasse A

[0231] Im Fall der Klasse-A-Befehlstemplates ohne Speicherzugriff 3605wird das Alphafeld 3652 als ein RS-
Feld 3652A interpretiert, dessen Inhalt unterscheidet, welche der unterschiedlichen Augmentationsoperations-
typen auszuführen sind (z. B. Rundung 3652A.1 und Datentransformation 3652A.2 sind jeweils für die Run-
dungstypoperation ohne Speicherzugruff 3610 und den Transformationstypoperations-Befehlstemplates ohne
Speicherzugriff 3615 spezifiziert), während das Betafeld 3654 unterscheidet, welche der Operationen des spe-
zifizierten Typs durchzuführen sind. In den Befehlstemplates ohne Speicherzugriff 3605 sind das Skalierungs-
feld 3660, das Verschiebungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B nicht vorhanden.



DE 10 2018 005 216 A1    2019.02.21

52/134

Befehlstemplates ohne Speicherzugriff - Vollrundungssteuertypoperation

[0232] In dem Befehlstemplate der Vollrundungssteuerungstypoperation ohne Speicherzugriff 3610 wird das
Betafeld 3654 als ein Rundungssteuerfeld 3654A interpretiert, dessen Inhalt(e) eine statische Rundung bereit-
stellt/en. Während in den beschriebenen Ausführungsformen der Offenbarung das Rundungssteuerungsfeld
3654A ein Feld 3656 zur Unterdrückung aller Gleitkomma-Ausnahmen (SAE) und ein Rundungsoperations-
steuerfeld 3658 aufweist, können alternative Ausführungsformen beide Konzepte in das gleiche Feld codieren/
unterstützen oder nur eines oder das andere dieser Konzepte/Felder aufweisen (z. B. nur das Rundungsope-
rationssteuerfeld 3658 aufweisen).

[0233] SAE-Feld 3656 - sein Inhalt unterscheidet, ob die Ausnahmeereignisberichte deaktiviert werden oder
nicht; wenn der SAE-Feld 3656-Inhalt anzeigt, dass die Unterdrückung aktiviert ist, gibt eine gegebener Befehl
keine Art von Gleitkomma-Ausnahmeflag an und ruft keinen Gleitkomma-Ausnahmehandler auf.

[0234] Rundungsoperationssteuerfeld 3658 - sein Inhalt unterscheidet, welche einer Gruppe von Rundungs-
operationen durchzuführen ist (z. B. Aufrunden, Abrunden, Runden zu Null und Runden zum Nächsten). Dem-
entsprechend ermöglicht das Rundungssteuerfeld 3658 das Ändern des Rundungsmodus auf einer Basis je
Befehl. In einer Ausführungsform der Offenbarung, in der ein Prozessor ein Steuerregister zum Spezifizieren
von Rundungsmodi aufweist, übergeht der Rundungsoperationssteuerfeld 3650-Inhalt diesen Registerwert.

Befehlstemplates ohne Speicherzugriff - Datentransformationstypoperation

[0235] In der Befehlstemplate-Datentransformationstypoperation ohne Speicherzugriff 3615 wird das Betafeld
3654 als ein Datentransformationsfeld 3654B interpretiert, dessen Inhalt unterscheidet, welche einer Anzahl
von Datentransformationen auszuführen ist (z. B. keine Datentransformation, Swizzle, Broadcast).

[0236] Im Fall eines A-Klasse-Befehltemplates mit Speicherzugriff 3620 wird das Alphafeld 3652 als Räu-
mungshinweisfeld 3652B interpretiert, dessen Inhalt unterscheidet, welcher der Räumungshinweise zu ver-
wenden ist (in Fig. 36A, werden Temporär 3652B.1 und Nicht-Temporär 3652B.2 jeweils für das temporäre
Befehlstemplate mit Speicherzugriff 3625 und das nicht nicht temporäre Befehlstemplate mit Speicherzugriff
3630 spezifiziert, während das Betafeld 3654 als Datenmanipulationsfeld 3654C interpretiert wird, dessen In-
halt unterscheidet, welche einer Anzahl von Datenmanipulationsoperationen (auch als Primitive bekannt) aus-
zuführen ist (z. B. keine Manipulation; Broadcast; Aufwärtsumwandlung einer Quelle; und Abwärtsumwandlung
eines Ziels). Die Befehlstemplates mit Speicherzugriff 3620 weisen das Skalierungsfeld 3660, das Verschie-
bungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B auf.

[0237] Vektorspeicherbefehle führen Vektorladen aus dem und Vektorspeichern in den Speicher mit Umwand-
lungsunterstützung durch. Wie bei regulären Vektorbefehlen übertragen Vektorspeicherbefehle Daten von
dem/in den Speicher auf eine datenelementweise Art, wobei die Elemente, die tatsächlich übertragen werden,
durch die Inhalte der Vektormaske diktiert werden, die als die Schreibmaske ausgewählt wird.

Speicherzugriffsbefehlstemplates - Temporal

[0238] Temporale Daten werden wahrscheinlich bald genug wiederverwendet, um von Caching zu profitieren.
Dies ist jedoch ein Hinweis und verschiedene Prozessoren können ihn auf verschiedene Weisen, einschließlich
vollständigen Ignorierens des Hinweises, implementieren.

Speicherzugriffsbefehlstemplates - Nichttemporal

[0239] Nichttemporale Daten werden wahrscheinlich nicht bald genug wiederverwendet, um von einem Ca-
ching in dem 1.-Level-Cache zu profitieren und sollten Priorität zum Ausräumen erhalten. Dies ist jedoch ein
Hinweis und verschiedene Prozessoren können ihn auf verschiedene Weisen, einschließlich vollständigen
Ignorierens des Hinweises, implementieren.

Befehlstemplates der Klasse B

[0240] Im Fall der Klasse-B-Befehlstemplates wird das Alphafeld 3652 als ein Schreibmaskensteuerfeld (Z)
3652C interpretiert, dessen Inhalt unterscheidet, ob die durch das Schreibmaskenfeld 3670 gesteuerte Schreib-
maskierung eine Zusammenlegung oder eine Nullung sein sollte.



DE 10 2018 005 216 A1    2019.02.21

53/134

[0241] Im Fall der Klasse-B-Befehlstemplates ohne Speicherzugriff 3605 wird ein Teil des Betafelds 3654 als
ein RL-Feld 3657A interpretiert, dessen Inhalt unterscheidet, welche der unterschiedlichen Augmentations-
operationstypen auszuführen sind (z. B. Rundung 3657A.1 und Vektorlänge (VSIZE) 3657A.2 sind jeweils für
das Befehlstemplate der Schreibmaskensteuerungs-Teilrundungstypoperation ohne Speicherzugriff 3612 und
das Befehlstemplate für die Schreibmaskensteuerungs-VSIZE-Typoperation ohne Speicherzugriff 3617 spe-
zifiziert), während der Rest des Betafelds 3654 unterscheidet, welche der Operationen des spezifizierten Typs
durchzuführen sind. In den Befehlstemplates ohne Speicherzugriff 3605 sind das Skalierungsfeld 3660, das
Verschiebungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B nicht vorhanden.

[0242] In dem Befehlstemplate der Schreibmaskensteuerungs-Teilrundungssteuertypoperation ohne Spei-
cherzugriff 3610 wird der Rest des Beta-Feldes 3654 als ein Rundungsoperationsfeld 3659A interpretiert, und
der Ausnahmeereignisbericht deaktiviert (ein gegebener Befehl meldet keine Art von Gleitkomma-Ausnahme-
Flag und löst keinen Gleitkomma-Ausnahme-Handler aus).

[0243] Rundoperationssteuerfeld 3659A - ebenso wie das Rundungsoperationssteuerfeld 3658 unterscheidet
sein Inhalt, welche von einer Gruppe von Rundungsoperationen auszuführen ist (z. B. Aufrunden, Abrunden,
Runden zu Null und Runden zum Nächsten). Daher erlaubt das Rundungsoperationssteuerfeld 3659A das
Verändern des Rundungsmodus auf einer Basis je Befehl. In einer Ausführungsform der Offenbarung, in der
ein Prozessor ein Steuerregister zum Spezifizieren von Rundungsmodi aufweist, übergeht der Inhalt des Run-
dungsoperationssteuerfelds 3650 diesen Registerwert.

[0244] In dem Befehlstemplate Schreibmaskensteuerungs-VSIZE-Typoperation 3617 wird der Rest des Be-
tafelds 3654 als ein Vektorlängenfeld 3659B interpretiert, dessen Inhalt unterscheidet, welche einer Anzahl
von Datenvektorlängen auszuführen ist (z. B. 128, 256 oder 512 Byte).

[0245] Im Fall eines Klasse-B-Befehlstemplates mit Speicherzugriff 3620 wird ein Teil des Betafeldes 3654 als
ein Broadcast-Feld 3657B interpretiert, dessen Inhalt unterscheidet, ob die Datenmanipulationsoperation des
Broadcast-Typs auszuführen ist oder nicht, während der Rest des Betafeldes 3654 als das Vektorlängenfeld
3659B interpretiert wird. Die Befehlstemplates mit Speicherzugriff 3620 weisen das Skalierungsfeld 3660, das
Verschiebungsfeld 3662A und das Verschiebungsskalierungsfeld 3662B auf.

[0246] Mit Bezug auf das allgemeine vektorfreundliche Befehlsformat 3600 ist ein Voll-Opcode-Feld 3674
einschließlich des Formatfelds 3640, des Basisoperationsfelds 3642 und des Datenelementbreitenfelds 3664
gezeigt. Während eine Ausführungsform gezeigt ist, bei der das Voll-Opcode-Feld 3674 alle dieser Felder
beinhaltet, beinhaltet das Voll-Opcode-Feld 3674 bei Ausführungsformen, die nicht alle von ihnen unterstützen,
weniger als alle dieser Felder. Das Voll-Opcode-Feld 3674 stellt den Operationscode (Opcode) bereit.

[0247] Das Ergänzungsoperationsfeld 3650, das Datenelementbreitenfeld 3664 und das Schreibmaskenfeld
3670 ermöglichen, dass diese Merkmale auf Basis je Befehl in dem allgemeinen vektorfreundlichen Befehls-
format spezifiziert werden.

[0248] Die Kombination aus Schreibmaskenfeld und Datenelementbreitenfeld erschafft insofern typisierte Be-
fehle, als dass sie ermöglicht, dass die Maske basierend auf unterschiedlichen Datenelementbreiten ange-
wandt wird.

[0249] Die verschiedenen Befehlstemplates, die innerhalb von Klasse A und Klasse B gefunden werden, sind
in verschiedenen Situationen vorteilhaft. In einigen Ausführungsformen der Offenbarung können unterschied-
liche Prozessoren oder unterschiedliche Kerne innerhalb eines Prozessors nur Klasse A, nur Klasse B oder
beide Klassen unterstützen. Zum Beispiel kann ein Hochleistungs-Allzweck-Außer-Reihenfolge-Kern, der für
allgemeine Rechenzwecke gedacht ist, nur Klasse B unterstützen, ein Kern, der primär für Grafik- und/oder
wissenschaftliches (Durchsatz-) Berechnung gedacht ist, nur Klasse A unterstützen, und ein Kern, der für bei-
de gedacht ist, beide unterstützen (natürlich ist ein Kern, der eine Mischung aus Templates und Befehlen
von beiden Klassen, aber nicht allen Templates und Befehlen von beiden Klassen aufweist, innerhalb des
Geltungsbereichs der Offenbarung). Außerdem kann ein einziger Prozessor mehrere Kerne beinhalten, von
denen alle die gleiche Klasse unterstützen oder bei denen unterschiedliche Kerne eine unterschiedliche Klasse
unterstützen. Zum Beispiel kann in einem Prozessor mit separaten Grafik- und Mehrzweckkernen einer der
Grafikkerne, der primär für Grafik- und/oder wissenschaftliches Rechnen gedacht ist, nur Klasse A unterstüt-
zen, während einer oder mehrere der Mehrzweckkerne Hochleistungs-Allzweckkerne mit Außer-Reihenfolge-
Ausführung und Registerumbenennung sein können, die für Allzweck-Berechnung gedacht sind, die nur Klas-
se B unterstützen. Ein anderer Prozessor, der keinen separaten Grafikkern aufweist, kann einen oder mehrere



DE 10 2018 005 216 A1    2019.02.21

54/134

allgemeine In-Reihenfolge- oder Außer-Reihenfolge-Kerne aufweisen, die sowohl Klasse A als auch Klasse B
unterstützen. Natürlich können Merkmale aus einer Klasse auch in der anderen Klasse in unterschiedlichen
Ausführungsformen der Offenbarung implementiert sein. Programme, die in einer höheren Sprache geschrie-
ben sind, würden in eine Vielzahl unterschiedlicher ausführbarer Formen gelegt werden (z. B. just-in-time-
kompiliert oder statisch kompiliert), die Folgendes beinhalten: 1) eine Form, die nur Befehle der Klasse(n) ent-
hält, die durch den Zielprozessor zur Ausführung unterstützt wird/werden; oder 2) eine Form mit alternativen
Routinen, die unter Verwendung unterschiedlicher Kombinationen der Befehle aller Klassen geschrieben sind
und einen Steuerflusscode aufweisen, der die auszuführenden Routinen basierend auf den Befehlen auswählt,
die von dem Prozessor unterstützt werden, der gerade den Code ausführt.

Beispielhaftes spezielles vektorfreundliches Befehlsformat

[0250] Fig. 37 ist ein Blockdiagramm, das ein beispielhaftes spezifisches vektorfreundliches Befehlsformat
gemäß Ausführungsformen der Offenbarung veranschaulicht. Fig. 37 zeigt ein spezifisches vektorfreundliches
Befehlsformat 3700, das in dem Sinne spezifisch ist, dass es den Ort, die Größe, die Interpretation und Rei-
henfolge von Feldern sowie Werten von manchen dieser Felder spezifiziert. Das spezielle vektorfreundliche
Befehlsformat 3700 kann verwendet werden, um den x86-Befehlssatz zu erweitern, und dementsprechend
sind manche der Felder jenen, die in dem existierenden x86-Befehlssatz und einer Erweiterung davon (z. B.
AVX) verwendet werden, ähnlich oder die gleichen wie diese. Das Format bleibt konsistent mit dem Präfixco-
dierungsfeld, Real-Opcode-Byte-Feld, MOD-R/M-Feld, SIB-Feld, Verschiebungsfeld und den Unmittelbarfel-
dern des existierenden x86-Befehlssatzes mit Erweiterungen. Die Felder aus Fig. 36, in welche die Felder aus
Fig. 37 abgebildet werden, sind veranschaulicht.

[0251] Es versteht sich, dass, obwohl Ausführungsformen der Offenbarung unter Bezugnahme auf das spe-
zifische vektorfreundliche Befehlsformat 3700 in dem Kontext des allgemeinen vektorfreundlichen Befehlsfor-
mats 3600 zu Veranschaulichungszwecken beschrieben sind, die Offenbarung nicht auf das spezifische vek-
torfreundliche Befehlsformat 3700 beschränkt ist, sofern nicht anderweitig beansprucht. Zum Beispiel beab-
sichtigt das allgemeine vektorfreundliche Befehlsformat 3600 eine Vielzahl möglicher Größen für die verschie-
denen Felder, während das spezielle vektorfreundliche Befehlsformat 3700 als Felder mit speziellen Größen
aufweisend gezeigt ist. Wenngleich ein spezifisches Beispiel das Datenelementbreitenfeld 3664 als ein Ein-
Bit-Feld in dem spezifischen vektorfreundlichen Befehlsformat 3700 veranschaulicht, ist die Offenbarung nicht
darauf beschränkt (das heißt, das allgemeine vektorfreundliche Befehlsformat 3600 berücksichtigt andere Grö-
ßen des Datenelementbreitenfelds 3664).

[0252] Das allgemeine vektorfreundliche Befehlsformat 3600 weist die folgenden Felder auf, die unten in der
in Fig. 37A aufgelisteten Reihenfolge veranschaulicht sind.

[0253] EVEX-Präfix (Bytes 0-3) 3702 - ist in einer Vier-Bit-Form codiert.

[0254] Formatfeld 3640 (EVEX Byte 0, Bits [7: 0]) - das erste Byte (EVEX Byte 0) ist das Formatfeld 3640
und enthält 0x62 (der eindeutige Wert, der zum Unterscheiden des vektorfreundlichen Befehlsformats in einer
Ausführungsform der Offenbarung verwendet wird).

[0255] Die zweiten bis vierten Bytes (EVEX-Bytes 1-3) beinhalten eine Anzahl an Bitfeldern, die eine spezielle
Fähigkeit bereitstellen.

[0256] REX-Feld 3705 (EVEX Byte 1, Bits [7-5]) - besteht aus einem EVEX.R-Bitfeld (EVEX Byte 1, Bit [7]
-R), EVEX.X-Bitfeld (EVEX Byte 1, Bit [6]-X), und 3657BEX Byte 1, Bit [5]-B). Die EVEX.R-, EVEX.X- und
EVEX.B-Bitfelder stellen die gleiche Funktionalität wie die entsprechenden VEX-Bitfelder bereit und sind unter
Verwendung einer Einerkomplementform codiert, d. h. ZMM0 ist als 1111B codiert, ZMM15 ist als 0000B
codiert. Andere Felder der Befehle codieren die unteren drei Bits der Registerindices wie in der Technik bekannt
(rrr, xxx und bbb), so dass Rrrr, Xxxx und Bbbb durch Hinzufügen von EVEX.R, EVEX.X und EVEX.B gebildet
werden können.

[0257] REX‘-Feld 3610 - dies ist der erste Teil des REX‘-Felds 3610 und ist das EVEX.R‘-Bitfeld (EVEX-
Byte 1, Bit [4] - R'), das verwendet wird, um entweder die oberen 16 oder die unteren 16 des erweiterten
32-Register-Satzes zu codieren. In einer Ausführungsform der Offenbarung wird dieses Bit zusammen mit
anderen, wie unten angegeben, in einem bitinvertierten Format gespeichert, um sich (in dem bekannten x86
32-Bit-Modus) von dem BOUND-Befehl zu unterscheiden, dessen reales Opcode-Byte 62 ist, aber akzeptiert
im MOD R/M-Feld (unten beschrieben) nicht den Wert 11 im MOD-Feld; alternative Ausführungsformen der



DE 10 2018 005 216 A1    2019.02.21

55/134

Offenbarung speichern dies und die anderen angezeigten Bits in dem invertierten Format nicht. Ein Wert von
1 wird verwendet, um die unteren 16 Register zu codieren. Mit anderen Worten wird R'Rrrr durch Kombinieren
von EVEX.R', EVEX.R und des anderen RRR von anderen Feldern gebildet.

[0258] Opcode-Map-Feld 3715 (EVEX-Byte 1, Bits [3:0] - mmmm) - sein Inhalt codiert ein impliziertes führen-
des Opcode-Byte (0F, 0F 38 oder 0F 3).

[0259] Datenelementbreitenfeld 3664 (EVEX-Byte 2, Bit [7] - W) - wird durch die Notation EVEX.W repräsen-
tiert. EVEX.W wird verwendet, um die Granularität (Größe) des Datentyps (entweder 32-Bit-Datenelemente
oder 64-Bit-Datenelemente) zu definieren.

[0260] EVEX.vvv 3720 (EVEX-Byte 2, Bits [6:3]-vvvv) - die Rolle von EVEX.vvvv kann das Folgende beinhal-
ten: 1) EVEX.vvvv codiert den ersten Quellregisteroperanden, der in invertierter (ls-Komplement-) Form spe-
zifiziert ist und für Befehle mit 2 oder mehr Quelloperanden gültig ist; 2) EVEX.vvvv codiert den Zielregister-
operanden, der für bestimmte Vektorverschiebungen in Is-Komplementform spezifiziert ist; oder 3) EVEX.vvvv
codiert keinen Operanden, das Feld ist reserviert und sollte 1111b enthalten. Dementsprechend codiert das
EVEX.vvvv-Feld 3720 die 4 Bits niedriger Ordnung des ersten Quellenregisterspezifikationssymbols, die in in-
vertierter (Einerkomplement) Form gespeichert werden. In Abhängigkeit von dem Befehl wird ein zusätzliches
verschiedenes EVEX-Bitfeld verwendet, um die Spezifikationssymbolgröße auf 32 Register zu erweitern.

[0261] EVEX.U 3668 Klassenfeld (EVEX-Byte 2, Bit [2]-U) - falls EVEX.U = 0, gibt es Klasse A oder EVEX.U0
an; falls EVEX.U = 1, gibt es Klasse B oder EVEX.U1 an.

[0262] Präfixcodierungsfeld 3725 (EVEX-Byte 2, Bits [1:0]-pp) - stellt zusätzliche Bits für das Basisoperations-
feld bereit. Zusätzlich zu dem Bereitstellen einer Unterstützung für die veralteten SSE-Befehle in dem EVEX-
Präfix-Format weist dies auch den Vorteil des Kompaktierens des SIMD-Präfixes auf (statt ein Byte zum Aus-
drücken des SIMD-Präfixes zu benötigen, benötigt das EVEX-Präfix nur 2 Bit). In einer Ausführungsform wer-
den zum Unterstützen der veralteten SSE-Befehle, die ein SIMD-Präfix (66H, F2H, F3H) sowohl im veralteten
Format als auch im EVEX-Präfixformat verwenden, diese veralteten SIMD-Präfixe in das SIMD-Präfix-Codier-
feld codiert; und zur Laufzeit werden sie in das veraltete SIMD-Präfix expandiert, bevor sie der PLA des Deco-
dierers bereitgestellt werden (so kann die PLA sowohl das veraltete als auch das EVEX-Format dieser veralte-
ten Befehle ohne Modifikation ausführen). Obwohl neuere Befehle den Inhalt des EVEX-Präfixcodierungsfeld
direkt als eine Opcode-Erweiterung verwenden könnten, erweitern bestimmte Ausführungsformen zur Konsis-
tenz auf eine ähnliche Weise, erlauben aber, dass unterschiedliche Bedeutungen durch diese veralteten SIMD-
Präfixe spezifiziert werden. Eine alternative Ausführungsform kann den PLA umgestalten, um die 2-Bit-SIMD-
Präfixcodierungen zu unterstützen, und benötigt dementsprechend die Erweiterung nicht.

[0263] Alphafeld 3652 (EVEX-Byte 3, Bit [7]-EH; auch bekannt als EVEX.EH, EVEX.rs, EVEX.RL, EVEX.-
Schreibmaskensteuerung und EVEX.N; ebenfalls mit α veranschaulicht) - wie zuvor beschrieben ist dieses
Feld kontextspezifisch.

[0264] Betafeld 3654 (EVEX-Byte 3, Bits [6: 4]-SSS, auch bekannt als EVEX.s2-0, EVEX.r2-0, EVEX.rr1, EVEX.
LL0, EVEX.LLB; auch veranschaulicht mit βββ) - wie zuvor beschrieben, ist dieses Feld kontextspezifisch.

[0265] REX'-Feld 3610 - dies ist der Rest des REX'-Felds und ist das EVEX.V'-Bitfeld (EVEX-Byte 3, Bit [3] -
V'), das verwendet werden kann, um entweder die oberen 16 oder die unteren 16 des erweiterten 32-Register-
Satzes zu codieren. Dieses Bit wird in bitinvertiertem Format gespeichert. Ein Wert von 1 wird verwendet,
um die unteren 16 Register zu codieren. Mit anderen Worten wird V'VVVV durch Kombinieren von EVEX.V',
EVEX.vvvv gebildet.

[0266] Schreibmaskenfeld 3670 (EVEX-Byte 3, Bits [2:0]-kkk) - sein Inhalt spezifiziert den Index eines Regis-
ters in den Schreibmaskenregistern, wie zuvor beschrieben wurde. In einer Ausführungsform der Offenbarung
hat der spezifische Wert EVEX.kkk = 000 ein spezielles Verhalten, das impliziert, dass keine Schreibmaske
für den bestimmten Befehl verwendet wird (dies kann auf eine Vielzahl von Arten einschließlich der Verwen-
dung einer für alle Einsen fest verdrahteten Schreibmaske oder Hardware, welche die Maskierungshardware
umgeht, implementiert werden).

[0267] Real-Opcode-Feld 3730 (Byte 4) ist auch als das Opcode-Byte bekannt. Ein Teil des Opcodes ist in
diesem Feld spezifiziert.



DE 10 2018 005 216 A1    2019.02.21

56/134

[0268] MOD-R/M-Feld 3740 (Byte 5) beinhaltet MOD-Feld 3742, Reg-Feld 3744 und R/M-Feld 3746. Wie zu-
vor beschrieben, unterscheidet der Inhalt des MOD-Felds 3742 zwischen Operationen mit Speicherzugriff und
Operationen ohne Speicherzugriff. Die Rolle des Reg-Felds 3744 kann in zwei Situationen zusammengefasst
werden: Codieren von entweder dem Zielregisteroperanden oder einem Quellenregisteroperanden oder als
eine Opcode-Erweiterung behandelt werden und nicht zum Codieren irgendeines Befehlsoperanden verwen-
det werden. Die Rolle des R/M-Felds 3746 kann das Folgende beinhalten: Codieren des Befehlsoperanden,
der eine Speicheradresse referenziert, oder Codieren von entweder dem Zielregisteroperanden oder einem
Quellenregisteroperanden.

[0269] Byte für Skalierung, Index, Basis (SIB) (Byte 6) - Wie zuvor beschrieben, wird der Inhalt des Skalie-
rungsfelds 3650 für eine Speicheradressenerzeugung verwendet. SIB.xxx 3754 und SIB.bbb 3756 - auf die
Inhalte dieser Felder wurde zuvor mit Bezug auf die Registerindices Xxxx und Bbbb Bezug genommen.

[0270] Verschiebungsfeld 3662A (Bytes 7-10) - wenn das MOD-Feld 3742 10 enthält, sind die Bytes 7-10
das Verschiebungsfeld 3662A, und es funktioniert genauso wie die veraltete 32-Bit-Verschiebung (disp32) und
funktioniert auf Bytegranularität.

[0271] Verschiebungsfaktorfeld 3662B (Byte 7) - wenn das MOD-Feld 3742 01 enthält, ist Byte 7 das Ver-
schiebungsfaktorfeld 3662B. Der Ort dieses Felds ist der gleiche wie jener der veralteten 8-Bit-Verschiebung
(disp8) des X86-Befehlssatzes, die auf Bytegranularität funktioniert. Da disp8 vorzeichenerweitert ist, kann es
nur zwischen -128 und 127 Bytes Offsets adressieren; in Bezug auf 64-Byte-Cache-Zeilen verwendet disp8 8
Bits, die auf nur vier wirklich nützliche Werte eingestellt werden können -128, -64, 0 und 64; da oft ein größerer
Bereich benötigt wird, wird disp32 verwendet; disp32 benötigt jedoch 4 Bytes. Im Gegensatz zu disp8 und disp
32 ist das Verschiebungsfaktorfeld 3662B eine Neuinterpretation von disp8; bei Verwendung des Verschie-
bungsfaktorfelds 3662B wird die tatsächliche Verschiebung durch den Inhalt des Verschiebungsfaktorfeldes
mit der Größe des Speicheroperandenzugriffs (N) multipliziert. Die Verschiebung wird als disp8*N bezeichnet.
Dies reduziert die durchschnittliche Befehlslänge (es wird ein einzelnes Byte für die Verschiebung verwendet,
aber mit einem viel größeren Bereich). Eine solche komprimierte Verschiebung basiert auf der Annahme, dass
die effektive Verschiebung ein Vielfaches der Granularität des Speicherzugriffs ist, und daher die redundanten
Bits niedriger Ordnung des Adressenoffsets nicht codiert zu werden brauchen. Mit anderen Worten ersetzt
das Verschiebungsfaktorfeld 3662B die veraltete x86-Befehlssatz-8-Bit-Verschiebung. Somit ist das Verschie-
bungsfaktorfeld 3662B auf die gleiche Weise wie eine x86-Befehlssatz-8-Bit-Verschiebung (also keine Ände-
rungen in den ModRM/SIB-Codierregeln) mit der einzigen Ausnahme codiert, dass disp8 zu disp8*N überladen
ist. Mit anderen Worten gibt es keine Änderungen in den Codierungsregeln oder Codierungslängen, sondern
nur in der Interpretation des Verschiebungswertes durch Hardware (die die Verschiebung mit der Größe des
Speicheroperanden skalieren muss, um einen byteweisen Adressenversatz zu erhalten). Unmittelbarfeld 3672
arbeitet wie zuvor beschrieben.

Voll-Opcode-Feld

[0272] Fig. 37B ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats
3700 veranschaulicht, das ein Voll-Opcode-Feld 3674 gemäß einer Ausführungsform der Offenbarung aus-
macht. Speziell beinhaltet das Voll-Opcode-Feld 3674 das Formatfeld 3640, das Basisoperationsfeld 3642 und
das Datenelementbreiten(W)-Feld 3664. Das Basisoperationsfeld 3642 beinhaltet das Präfixcodierungsfeld
3725, das Opcode-Map-Feld 3715 und das Real-Opcode-Feld 3730.

Registerindexfeld

[0273] Fig. 37C ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats
3700 veranschaulicht, das ein Registerindexfeld 3644 gemäß einer Ausführungsform der Offenbarung aus-
macht. Speziell beinhaltet das Registerindexfeld 3644 das REX-Feld 3705. das REX'-Feld 3710, das M.DR/
M.reg-Feld 3744, das MODR/M.r/m-Feld 3746, das VVVV-Feld 3720, das xxx-Feld 3754 und das bbb-Feld
3756.

Erweiterungsoperationsfeld

[0274] Fig. 37D ist ein Blockdiagramm, das die Felder des spezifischen vektorfreundlichen Befehlsformats
3700 veranschaulicht, das ein Augmentationsoperationsfeld 3650 gemäß einer Ausführungsform der Offenba-
rung ausmacht. Wenn das Feld 3668 der Klasse (U) 0 enthält, bedeutet es EVEX.U0 (Klasse A 3668A); wenn
es 1 enthält, bedeutet dies EVEX.U1 (Klasse B 3668B). Wenn U=0 ist und das MOD-Feld 3742 11 enthält



DE 10 2018 005 216 A1    2019.02.21

57/134

(was eine Nicht-Speicherzugriffsoperation bedeutet), wird das Alphafeld 3652 (EVEX-Byte 3, Bit [7]-EH) als
das rs-Feld 3652A interpretiert. Wenn das rs-Feld 3652A eine 1 enthält (gerundet 3652A.1), wird das Betafeld
3654 (EVEX-Byte 3, Bits [6:4]-SSS) als das Rundungssteuerfeld 3654A interpretiert. Das Rundungssteuerfeld
3654A enthält ein Ein-Bit-SAE-Feld 3656 und ein Zwei-Bit-Rundungsoperationsfeld 3658. Wenn das rs-Feld
3652A eine 0 enthält (Datentransformation 3652A.2), wird das Betafeld 3654 (EVEX-Byte 3, Bits [6:4]-SSS)
als ein Drei-Bit-Datentransformationsfeld 3654B interpretiert. Wenn U=0 ist und das MOD-Feld 3742 00, 01
oder 10 enthält (was eine Speicherzugriffsoperation bedeutet), wird das Alphafeld 3652 (EVEX-Byte 3, Bit [7]
- EH) als das Räumungshinweis (EH) -Feld 3652B interpretiert und das Betafeld 3654 (EVEX-Byte 3, Bits [6:
4]- SSS) wird als ein 3-Bit-Datenmanipulationsfeld 3654C interpretiert.

[0275] Wenn U=1 ist, wird das Alphafeld 3652 (EVEX-Byte 3, Bit [7]-EH) als das Schreibmaskensteuerfeld
(Z) 3652C interpretiert. Wenn U=1 ist und das MOD-Feld 3742 11 (was eine Nicht-Speicherzugriffsoperation
bedeutet) enthält, wird ein Teil des Betafelds 3654 (EVEX-Byte 3, bit [4]- S0) als das RL-Feld 3657A interpre-
tiert; wenn es eine 1 (gerundet 3657A.1) enthält, wird der Rest des Betafelds 3654 (EVEX-Byte 3, Bit [6-5]-
S2-1) als das Rundungsoperationsfeld 3659A interpretiert, während, wenn das RL-Feld 3657A eine 0 (VSIZE
3657.A2) enthält, der Rest des Betafelds 3654 (EVEX-Byte 3, bit [6-5]- S2-1) als das Vektorlängenfeld 3659B
(EVEX-Byte 3, bit [6-5]- L1-0) interpretiert wird. Wenn U=1 ist und das MOD-Feld 3742 00, 01 oder 10 enthält
(was eine Speicherzugriffsoperation bedeutet), wird das Beta-Feld 3654 (EVEX-Byte 3, Bits [6: 4] - SSS) als
Vektorlängenfeld 3659B (EVEX-Byte 3, Bit [6-5] - L1-0) und das Broadcastfeld 3657B (EVEX-Byte 3, Bit [4] -
B) interpretiert.

Beispielhafte Registerarchitektur

[0276] Fig. 38 ist ein Blockdiagramm einer Registerarchitektur 3800 gemäß einer Ausführungsform der Of-
fenbarung. Bei der veranschaulichten Ausführungsform gibt es 32 Vektorregister 3810, die 512 Bit breit sind;
diese Register werden als zmm0 bis zmm31 bezeichnet. Die 256 Bit niedriger Ordnung der unteren 16 zmm-
Register werden auf Register ymm0-16 überlagert. Die 128 Bit niedriger Ordnung der unteren 16 zmm-Regis-
ter (die 128 Bit niedriger Ordnung der ymm-Register) werden auf Register xmm0-15 überlagert. Das spezielle
vektorfreundliche Befehlsformat 3700 arbeitet auf diesen überlagerten Registerbänken, wie in den Tabellen
unten veranschaulicht ist.

Anpassbare Vektorlänge Klasse Operationen Register
A (
Fig. 36A;
U=0)

3610, 3615,
3625, 3630

zmm-Register (die Vektorlänge beträgt 64
Byte)

Befehlstemplates, die kein
Vektorlängenfeld 3659B auf-
weisen

B (
Fig. 36B;
U=1)

3612 zmm-Register (die Vektorlänge beträgt 64
Byte)

Befehlstemplates, die ein
Vektorlängenfeld 3659B auf-
weisen

B (
Fig. 36B;
U=1)

3617,3627 zmm-, ymm- oder xmm-Register (die Vek-
torlänge beträgt 64 Byte, 32 Byte oder 16
Byte), abhängig von dem Vektorlängenfeld
3659B

[0277] Mit anderen Worten wählt das Vektorlängenfeld 3659B zwischen einer maximalen Länge und einer
oder mehreren anderen kürzeren Längen aus, wobei jede solche kürzere Länge die Hälfte der Länge der
vorhergehenden Länge ist; und Befehlstemplates ohne das Vektorlängenfeld 3659B arbeiten bei maximaler
Vektorlänge. Ferner arbeiten die Klasse-B-Befehlstemplates des speziellen vektorfreundlichen Befehlsformats
3700 bei einer Ausführungsform an gepackten oder skalaren Single/Double-Precision-Gleitkommadaten und
gepackten oder skalaren Integerdaten. Skalare Operationen sind Operationen, die an der Datenelementposi-
tion niedrigster Ordnung in einem zmm-/ymm-/xmm-Register ausgeführt werden; die Datenelementpositionen
höherer Ordnung bleiben entweder gleich wie vor dem Befehl oder werden in Abhängigkeit von der Ausfüh-
rungsform auf Null gesetzt.

[0278] Schreibmaskenregister 3815 - bei der veranschaulichten Ausführungsform gibt es 8 Schreibmasken-
register (k0 bis k7), jeweils mit einer Größe von 64 Bit. Bei einer alternativen Ausführungsform weisen die
Schreibmaskenregister 3815 eine Größe von 16 Bit auf. Wie zuvor beschrieben, kann in einer Ausführungs-
form der Offenbarung das Vektormaskenregister k0 nicht als eine Schreibmaske verwendet werden; wenn
die Codierung, die normalerweise k0 angeben würde, für eine Schreibmaske verwendet wird, wählt sie eine



DE 10 2018 005 216 A1    2019.02.21

58/134

festverdrahtete Schreibmaske von OxFFFF aus, wodurch die Schreibmaskierung für diesen Befehl wirksam
deaktiviert wird.

[0279] Mehrzweckregister 3825 - bei der veranschaulichten Ausführungsform gibt es sechzehn 64-Bit-Mehr-
zweckregister, die zusammen mit den existierenden x86-Adressierungsmodi zum Adressieren von Speicher-
operanden verwendet werden. Diese Register werden mit den Namen RAX, RBX, RCX, RDX, RBP, RSI, RDI,
RSP und R8 bis R15 bezeichnet.

[0280] Skalare Gleitkommastapel-Registerdatei (x87-Stapel) 3845, auf der die MMXgepackte ganzzahlige fla-
che Registerdatei 3850 aliasiert ist - in der dargestellten Ausführungsform ist der x87-Stapel ein Stapel mit acht
Elementen, der zur Durchführung von skalaren Gleitkomma-Operationen auf 32/64/80-Bit-Gleitkommadaten
unter Verwendung der x87-Befehlssatzerweiterung verwendet wird; während die MMX-Register verwendet
werden, um Operationen an gepackten 64-Bit-Integerdaten durchzuführen, sowie um Operanden für manche
Operationen zu halten, die zwischen den MMX- und XMM-Registern durchgeführt werden.

[0281] Alternative Ausführungsformen der Offenbarung verwenden breitere oder engere Register. Außerdem
können alternative Ausführungsformen mehr, weniger oder andere Registerdateien oder Register verwenden.

Beispielhafte Kernarchitekturen, Prozessoren und Computerarchitekturen

[0282] Prozessorkerne können auf verschiedene Arten, für verschiedene Zwecke und in unterschiedlichen
Prozessoren implementiert werden. Beispielsweise können Implementierungen solcher Kerne Folgendes be-
inhalten: 1) einen Allzweck-In-Reihenfolge-Kern, der zur Allzweckberechnung gedacht ist; 2) ein Hochleis-
tungs-Allzweck-Außer-Reihenfolge-Kern, der zur Allzweckberechnung gedacht ist; 3) ein Spezialzweck-Kern,
der primär zur Grafik- und/oder wissenschaftlichen (Durchsatz-) Berechnung gedacht ist. Implementierungen
unterschiedlicher Prozessoren können Folgendes beinhalten: 1) eine CPU, die einen oder mehrere Allzweck-
In-Reihenfolge-Kerne, die zur Allzweckberechnung gedacht sind, und/oder einen oder mehrere Allzweck-Au-
ßer-Reihenfolge-Kerne, die zur Allzweckberechnung gedacht sind; und 2) einen Koprozessor, der einen oder
mehrere Spezialzweck-Kerne aufweist, die primär für Grafik und/oder Wissenschaft (Durchsatz) gedacht sind.
Solche unterschiedlichen Prozessoren führen zu unterschiedlichen Computersystemarchitekturen, die Folgen-
des beinhalten können: 1) den Koprozessor auf einem separaten Chip von der CPU; 2) den Koprozessor auf
einem separaten Die im gleichen Gehäuse wie die CPU; 3) den Koprozessor auf dem gleichen Die wie die CPU
(in welchem Fall solch ein Koprozessor manchmal als eine Spezialzwecklogik bezeichnet wird, wie eine inte-
grierte Grafik- und/oder wissenschaftliche (Durchsatz-) Logik oder als Spezialzweckkerne); und 4) ein System-
On-Chip, das auf dem gleichen Die die beschriebene CPU aufweist (die manchmal als der bzw. die Anwen-
dungskerne oder Anwendungsprozessoren, der oben beschriebene Koprozessor und zusätzliche Funktionen
bezeichnet wird). Beispielhafte Kernarchitekturen sind als Nächstes beschrieben, gefolgt von Beschreibungen
beispielhafter Prozessoren und Computerarchitekturen.

Beispielhafte Kernarchitekturen

In-Reihenfolge- und Außer-Reihenfolge-Kern-Blockdiagramm

[0283] Fig. 39A ist ein Blockdiagramm, das sowohl eine beispielhafte In-Reihenfolge-Pipeline als auch ei-
ne beispielhafte Außer-Reihenfolge-Ausgabe/Ausführungspipeline mit Registerumbenennung gemäß Ausfüh-
rungsformen der Offenbarung veranschaulicht; Fig. 39B ist ein Blockdiagramm, das sowohl ein Ausführungs-
beispiel eines In-Reihenfolge-Architekturkerns als auch einen beispielhafte Außer-Reihenfolge-Ausgabe/Aus-
führungsarchitekturkern, der in einem Prozessor enthalten sein soll, gemäß Ausführungsformen der Offenba-
rung veranschaulicht. Die Boxen mit durchgezogener Linie aus Fig. 39A-B veranschaulichen eine In-Reihen-
folge-Pipeline und einen In-Reihenfolge-Kern, während die optionale Addition der gestrichelten Boxen die Re-
gisterumbenennung, Außer-Reihenfolge-Ausgabe/Ausführungspipeline und -kern veranschaulicht. Unter der
Annahme, dass der In-Reihenfolge-Aspekt eine Untersatz des Außer-Reihenfolge-Aspekts ist, wird der Außer-
Reihenfolge-Aspekt beschrieben.

[0284] In Fig. 39A weist eine Prozessorpipeline 3900 eine Abrufstufe 3902, eine Längendecodierstufe 3904,
eine Decodierstufe 3906, eine Zuweisungsstufe 3908, eine Umbenennungsstufe 3910, eine Planungsstufe
(auch bekannt als Versende- oder Ausgabestufe) 3912, eine Register-Lese-/Speicher-Lese-Stufe 3914, eine
Ausführungsstufe 3916, eine Rückschreib-/Speicher-Schreib-Stufe 3918, eine Ausnahmehandhabungsstufe
3922 und eine Festschreibungsstufe 3924 auf.



DE 10 2018 005 216 A1    2019.02.21

59/134

[0285] Fig. 39B zeigt den Prozessorkern 3990, der eine Frontend-Einheit 3930 aufweist, die mit einer Ausfüh-
rungs-Engine-Einheit 3950 gekoppelt ist, und beide mit einer Speichereinheit 3970 gekoppelt sind. Der Kern
3990 kann ein RISC-Kern (RISC: Reduced Instruction Set Computing -Berechnung mit reduziertem Befehls-
satz), ein CISC-Kern (CISC: Complex Instruction Set Computing - Berechnung mit komplexem Befehlssatz),
ein VLIW-Kern (VLIW: Very Long Instruction Word - sehr langes Befehlswort) oder ein hybrider oder alternati-
ver Kerntyp sein. Als noch eine andere Option kann der Kern 3990 ein Spezialkern, wie etwa zum Beispiel ein
Netz- oder Kommunikationskern, eine Kompression-Engine, ein Koprozessorkern, ein GPGPU-Kern (GPGPU:
General Purpose Computing Graphics Processing Unit - Vielzweck-Berechnung-Grafikverarbeitung-Einheit)
oder dergleichen sein.

[0286] Die Frontend-Einheit 3930 beinhaltet eine Zweigprädiktionseinheit 3932, die mit einer Befehls-Cache-
einheit 3934 gekoppelt ist, die mit einem Übersetzungspuffer (TLB: Translation Lookaside Buffer) 3936 gekop-
pelt ist, der mit einer Befehlsabrufeinheit 3938 gekoppelt ist, die mit einer Decodierungseinheit 3940 gekoppelt
ist. Die Decodierungseinheit 3940 (oder der Decodierer oder Decodierereinheit) kann Befehle decodieren (z. B.
Makrobefehle) und als eine Ausgabe eine oder mehrere Mikrooperationen, Mikrocode-Eintrittspunkte, Mikro-
befehle, andere Befehle oder andere Steuersignale erzeugen, die von den ursprünglichen Befehlen decodiert
werden oder die in anderer Weise davon reflektiert werden oder von diesen abgeleitet sind. Die Decodierungs-
einheit 3940 kann unter Verwendung zahlreicher verschiedener Mechanismen implementiert werden. Beispie-
le für geeignete Mechanismen schließen ein, sind aber nicht beschränkt auf, Nachschlagetabellen, Hardware-
Implementierungen, programmierbare Logik-Arrays (PLAs), Mikrocode-Nur-Lese-Speicher (ROMs) usw. In ei-
ner Ausführungsform enthält der Kern 3990 einen Mikrocode-ROM oder ein anderes Medium, das Mikrocode
für bestimmte Makrobefehle speichert (z. B. in der Decodierungseinheit 3940 oder anderweitig in der Front-
End-Einheit 3930). Die Decodierungseinheit 3940 ist mit einer Umbenennung/Zuordnung-Einheit 3952 in der
Ausführung-Engine-Einheit 3950 gekoppelt.

[0287] Die Ausführung-Engine-Einheit 3950 beinhaltet die Umbenennung/Zuordnung-Einheit 3952, die mit ei-
ner Zurückzieheinheit 3954 und einem Satz aus einer oder mehreren Planereinheit(en) 3956 gekoppelt ist.
Die Planereinheit(en) 3956 repräsentiert/en eine beliebige Anzahl unterschiedlicher Planer, einschließlich Re-
servierungsstationen, zentraler Instruktionsfenster usw. Die Planereinheit(en) 3956 ist (sind) mit der/den phy-
sikalischen Registerdatei(en) -Einheit(en) 3958 gekoppelt. Jede der physikalischen Registerdatei(en)-Einhei-
ten 3958 repräsentiert eine oder mehrere physische Registerdateien, von denen verschiedene einen oder
mehrere unterschiedliche Datentypen speichern, wie zum Beispiel skalare Integer, skalare Gleitkommazahl,
gepackte Integer, gepackte Gleitkommazahl, Vektorzahl, Vektor-Gleitkomma, Status (z. B. ein Befehlszeiger,
der die Adresse des nächsten auszuführenden Befehls ist) usw. In einer Ausführungsform umfasst die physi-
kalische Registerdatei(en)-Einheit 3958 eine Vektorregistereinheit, eine Schreibmaskenregistereinheit und ei-
ne Skalarregistereinheit. Diese Registereinheiten können Architekturvektorregister, Vektormaskenregister und
Mehrzweckregister bereitstellen. Die physikalische(n) Registereinheit(en) 3958 wird (werden) von der Rück-
halteeinheit 3954 überlappt, um verschiedene Wege zu veranschaulichen, wie Registerumbenennung und
Außer-Reihenfolge-Ausführung implementiert werden können (z. B. unter Verwendung eines oder mehrerer
Neuordnungspuffer und Auslagerungsregisterdatei(en); Verwenden einer oder mehrerer zukünftiger Dateien,
eines oder mehrerer Verlaufspuffer und einer oder mehrerer Auslagerungsregisterdateien; Verwenden einer
Registerkarte und eines Registerpools; usw.). Die Zurückzieheinheit 3954 und die physische(n) Registerbank
(en)einheit(en) 3958 sind mit dem (den) Ausführungscluster(n) 3960 gekoppelt. Das/die Ausführungscluster
3960 beinhaltet/beinhalten einen Satz aus einer oder mehreren Ausführungseinheiten 3962 und einen Satz
aus einer oder mehreren Speicherzugriffseinheiten 3964. Die Ausführungseinheiten 3962 können verschie-
dene Operationen (z. B. Verschiebungen, Addition, Subtraktion, Multiplikation) und an verschiedenen Typen
von Daten (z. B. Skalargleitkomma, gepackter Integer, gepacktes Gleitkomma, Vektorinteger, Vektorgleitkom-
ma) durchführen. Während manche Ausführungsformen eine Anzahl an Ausführungseinheiten beinhalten kön-
nen, die für spezielle Funktionen oder Sätze von Funktionen dediziert sind, können andere Ausführungsfor-
men nur eine Ausführungseinheit oder mehrere Ausführungseinheiten, die alle Funktionen durchführen, be-
inhalten. Die Planereinheit(en) 3956, die physische(n) Registerbank(en)einheit(en) 3958 und das (die) Aus-
führungscluster 3960 sind als möglicherweise mehrere gezeigt, weil gewisse Ausführungsformen getrennte
Pipelines für gewisse Typen von Daten/Operationen erschaffen (z. B. eine Skalarinteger-Pipeline, eine Skalar-
gleitkomma-/Gepackter-Integer-/Gepacktes-Gleitkomma-/Vektorinteger-/Vektorgleitkomma-Pipeline und/oder
eine Speicherzugriff-Pipeline, die jeweils ihre/n eigene/n Planereinheit, physische Registerbank(en)einheit und/
oder Ausführungscluster aufweisen - und im Fall einer getrennten Speicherzugriff-Pipeline sind gewisse Aus-
führungsformen implementiert, bei denen nur der Ausführungscluster dieser Pipeline die Speicherzugriffsein-
heit(en) 3964 aufweist). Es versteht sich auch, dass, wenn getrennte Pipelines verwendet werden, eine oder
mehrere dieser Pipelines eine Außer-Reihenfolge-Ausgabe/Ausführung und der Rest In-Reihenfolge sein kön-
nen.



DE 10 2018 005 216 A1    2019.02.21

60/134

[0288] Der Satz von Speicherzugriffseinheiten 3964 ist mit der Speichereinheit 3970 gekoppelt, die eine Da-
ten-TLB-Einheit 3972 beinhaltet, die mit einer Datencacheeinheit 3974 gekoppelt ist, die mit einer Level-2(L2)
-Cache-Einheit 3976 gekoppelt ist. Bei einem Ausführungsbeispiel können die Speicherzugriffseinheiten 3964
eine Ladeeinheit, eine Adressenspeichereinheit und eine Datenspeichereinheit beinhalten, von denen jede
mit der Daten-TLB-Einheit 3972 in der Speichereinheit 3970 gekoppelt ist. Die Befehlscacheeinheit 3934 ist
ferner mit einer Level-2(L2)-Cache-Einheit 3976 in der Speichereinheit 3970 gekoppelt. Die L2-Cache-Einheit
3976 ist mit einem oder mehreren anderen Leveln eines Caches und schlussendlich mit einem Hauptspeicher
verbunden.

[0289] Beispielsweise kann die beispielhafte Registerumbenennung-Außer-Reihenfolge-Ausgabe/Ausfüh-
rung-Kern-Architektur die Pipeline 3900 wie folgt implementierten: 1) der Befehlsabruf 3938 führt den Abruf
und die Längendecodierungsstufen 3902 und 3904 durch; 2) die Decodierungseinheit 3940 führt die Deco-
dierungsstufe 3906 durch; 3) die Umbenennung/Zuweisung-Einheit 3952 führt die Zuweisungsstufe 3908 und
Umbenennungsstufe 3910 durch; 4) die Planereinheit(en) 3956 führt (führen) die Planungsstufe 3912 durch; 5)
die physische Registerdateieinheit(en) 3958 und die Speichereinheit 3970 führen die Register-Lese-/Speicher-
Lese-Stufe 3914 durch; die Ausführungscluster 3960 führen die Ausführungsstufe 3916 durch; 6) die Speiche-
reinheit 3970 und die eine oder mehreren physischen Registerdateieinheiten 3958 führen die Rückschreibe-/
Speicher-Schreib-Stufe 3918 durch; 7) verschiedene Stufen können an der Ausnahmehandhabungsstufe 3922
beteiligt sein; und 8) die Auslagerungseinheit 3954 und die eine oder mehreren physischen Registerdateiein-
heiten 3958 führen die Festschreibungsstufe 3924 durch.

[0290] Der Kern 3990 kann einen oder mehrere Befehlssätze unterstützen (z. B. den x86-Befehlssatz (mit ei-
nigen Erweiterungen, die mit neueren Versionen hinzugefügt wurden), den MIPS-Befehlssatz von MIPS Tech-
nologies aus Sunnyvale, CA, den ARM-Befehlssatz (mit optionalen zusätzlichen Erweiterungen wie NEON) von
ARM Holdings aus Sunnyvale, CA), einschließlich der hierin beschriebenen Befehle. Bei einer Ausführungs-
form beinhaltet der Kern 3990 eine Logik zum Unterstützen einer Gepackte-DatenBefehlssatzerweiterung (z.
B. AVX1, AVX2), wodurch ermöglicht wird, dass die Operationen, die durch viele Multimediaanwendungen
verwendet werden, unter Verwendung gepackter Daten durchgeführt werden.

[0291] Es versteht sich, dass der Kern Multithreading (Ausführen von zwei oder mehr parallelen Sätzen von
Operationen oder Threads) unterstützen kann und dies auf vielfältige Weisen vornehmen kann, einschließlich
Zeitscheiben-Multithreading, Simultan-Multithreading (wobei ein einziger physischer Kern einen logischen Kern
für jeden der Threads bereitstellt, die der physische Kern simultan im Multithreading behandelt), oder eine
Kombination davon (z. B. Zeitscheiben-Abruf und -Decodierung und simultanes Multithreading danach, wie
etwa bei der Hyperthreading-Technologie von Intel®).

[0292] Während eine Registerumbenennung in dem Zusammenhang einer Außer-Reihenfolge-Ausführung
beschrieben ist, versteht es sich, dass eine Registerumbenennung in einer In-Reihenfolge-Architektur verwen-
det werden kann. Während die veranschaulichte Ausführungsform des Prozessors auch getrennte Befehls-
und Datencacheeinheiten 3934/3974 und eine geteilte L2-Cache-Einheit 3976 beinhaltet, können alternative
Ausführungsformen einen einzigen internen Cache für sowohl Befehle als auch Daten aufweisen, wie etwa
zum Beispiel einen internen Level-1(L1)-Cache oder mehrere Level eines internen Caches. Bei manchen Aus-
führungsformen kann das System eine Kombination eines internen Caches und eines externen Caches, der
extern zu dem Kern und/oder dem Prozessor ist, beinhalten. Alternativ dazu kann der gesamte Cache extern
zu dem Kern und/oder dem Prozessor sein.

Spezielle beispielhafte In-Reihenfolge-Kernarchitektur

[0293] Fig. 40A-B zeigen ein Blockdiagramm einer spezifischeren beispielhaften In-Reihenfolge-Kernarchi-
tektur, wobei der Kern einer von mehreren Logikblöcken (einschließlich anderer Kerne desselben Typs und/
oder unterschiedlichen Typs) in einem Chip sein würde. Die Logikblöcke kommunizieren durch ein Zwischen-
verbindungsnetz mit hoher Bandbreite (z. B. ein Ringnetz) mit, in Abhängigkeit von der Anwendung, einer fes-
ten Funktionslogik, Speicher-E/A-Schnittstellen und anderer notwendiger E/A-Logik.

[0294] Fig. 40A ist ein Blockdiagramm eines einzelnen Prozessorkerns zusammen mit seiner Verbindung mit
On-Die-Zwischenverbindungsnetzen 4002 und mit seinem lokalen Untersatz des Level 2 (L2) -Caches 4004
gemäß Ausführungsformen der Offenbarung. In einer Ausführungsform unterstützt eine Befehlsdecodierungs-
einheit 4000 den x86-Befehlssatz mit einer gepackten Datenbefehlssatzerweiterung. Ein L1-Cache 4006 er-
möglicht Zugriffe mit geringer Latenz auf einen Cachespeicher in die Skalar- und Vektoreinheiten. Während in
einer Ausführungsform (zur Vereinfachung der Ausgestaltung) eine Skalareinheit 4008 und eine Vektoreinheit



DE 10 2018 005 216 A1    2019.02.21

61/134

4010 separate Registersätze (jeweils Skalarregister 4012 und Vektorregister 4014) verwenden und Daten, die
dazwischen übertragen werden, in den Speicher geschrieben und dann aus einem Level 1 (L1)-Cache 4006
zurückgelesen werden, können alternative Ausführungsformen der Offenbarung einen anderen Ansatz ver-
wenden (z. B. einen Einzelregistersatz verwenden oder einen Kommunikationspfad aufweisen, der die Über-
tragung von Daten zwischen den zwei Registerdateien ermöglicht, ohne dass diese geschrieben und zurück-
gelesen werden).

[0295] Die lokale Untersatz des L2-Caches 4004 ist Teil eines globalen L2-Caches, der in getrennte lokale
Teilsätze, einen pro Prozessorkern, unterteilt ist. Jeder Prozessorkern weist einen direkten Zugriffspfad auf
seine eigene lokale Untersatz des L2-Caches 4004 auf. Daten, die durch einen Prozessorkern gelesen werden,
werden in seiner L2-Cache-Untersatz 4004 gespeichert und auf sie kann schnell parallel zu anderen Prozes-
sorkernen, die auf ihre eigenen lokalen L2-Cache-Teilsätze zugreifen, zugegriffen werden. Daten, die durch
einen Prozessorkern geschrieben werden, werden in seiner eigenen L2-Cache-Untersatz 4004 gespeichert
und werden bei Bedarf aus anderen Teilsätzen ausgeräumt. Das Ringnetz stellt eine Kohärenz für geteilte
Daten sicher. Das Ringnetz ist bidirektional, um zu ermöglichen, dass Agenten, wie etwa Prozessorkerne, L2-
Caches und andere Logikblöcke, miteinander innerhalb des Chips kommunizieren. Jeder Ringdatenpfad ist
pro Richtung 1012 Bit breit.

[0296] Fig. 40B ist eine auseinander gezogene Ansicht des Teils des Prozessorkerns in Fig. 40A gemäß
Ausführungsformen der Offenbarung; Fig. 40B weist einen Ll-Datencache 4006A auf, der Teil des L1-Cache
4004 ist, sowie mehr Details im Hinblick auf die Vektoreinheit 4010 und die Vektorregister 4014. Speziell ist
die Vektoreinheit 4010 eine 16-breite Vektorverarbeitungseinheit (VPU: Vector Processing Unit) (siehe die 16-
breite ALU 4028), die Integer- und/oder Single-Precision-Gleit- und/oder Double-Precision-Gleitbefehle aus-
führt. Die VPU unterstützt das Swizzling von Registereingaben mit der Swizzle-Einheit 4020, die numerische
Umwandlung mit den numerischen Umwandlungseinheiten 4022A-B und die Replikation mit der Replikations-
einheit 4024 auf der Speichereingabe. Schreibmaskenregister 4026 ermöglichen eine Vorhersage resultieren-
der Vektorschreibvorgänge.

[0297] Fig. 41 ist ein Blockdiagramm eines Prozessors 4100, der mehr als einen Kern aufweisen kann, ei-
ne integrierte Speichersteuerung aufweisen kann und der eine integrierte Grafik gemäß Ausführungsformen
der Offenbarung aufweisen kann. Die durchgezogenen Boxen in Fig. 41 veranschaulichen einen Prozessor
4100 mit einem einzelnen Kern 4102A, einem Systemagenten 4110, einem Satz von einer oder mehreren
Busssteuerungseinheiten 4116, während die optionale Hinzunahme der gestrichelten Boxen einen alternativen
Prozessor 4100 mit mehreren Kernen 4102A-N, einen Satz aus einer oder mehreren integrierten Speicher-
steuereinheit 4114 in der Systemagenteneinheit 4110 und eine Spezialzwecklogik 4108 veranschaulicht.

[0298] Dementsprechend können unterschiedliche Implementierungen des Prozessors 4100 Folgendes be-
inhalten: 1) eine CPU mit der Spezialzwecklogik 410, die eine integrierte Grafik- und/oder wissenschaftliche
(Durchsatz-) Logik ist (die einen oder mehrere Kerne aufweisen kann), und die Kerne 4102A-N, die einer oder
mehrere Mehrzweckkerne sind (z. B. Allzweck-In-Reihenfolge-Kerne, Allzweck-Außer-Reihenfolge-Kerne, ei-
ne Kombination aus den zwei); 2) einen Koprozessor mit den Kernen 4102A-N, die eine große Anzahl von
Spezialzweckkernen sind, die primär für Grafik und/oder Wissenschaft (Durchsatz) gedacht sind; und 3) einen
Koprozessor mit den Kernen 4102A-N, der eine große Anzahl aus Allzweck-In-Reihenfolge-Kernen ist. Dem-
entsprechend kann der Prozessor 4100 ein Mehrzweckprozessor, ein Koprozessor oder Spezialprozessor,
wie etwa ein Netz- oder Kommunikationsprozessor, eine Kompression-Engine, ein Grafikprozessor, GPGPU
(Mehrzweckgrafikverarbeitungseinheit), ein Hochdurchsatz-MIC-Koprozessor (MIC: Many Integrated Core -
viele integrierte Kerne) (der 30 oder mehr Kerne beinhaltet), ein eingebetteter Prozessor oder dergleichen sein.
Der Prozessor kann auf einem oder mehreren Chips implementiert sein. Der Prozessor 4100 kann Teil eines
oder mehrerer Substrate, die eine beliebige einer Anzahl an Prozesstechnologien verwenden, wie etwa zum
Beispiel BiCMOS, CMOS oder NMOS, sein und/oder auf solchen implementiert sein.

[0299] Die Speicherhierarchie beinhaltet ein oder mehrere Levels eines Caches innerhalb der Kerne, eine
Menge aus einem oder mehreren geteilten Cacheeinheiten 4106 und einen (nicht gezeigten) externen Spei-
cher, der mit dem Satz aus integrierten Speichersteuereinheiten 4114 gekoppelt ist. Die Menge geteilter Ca-
che-Einheiten 4106 kann einen oder mehrere Mid-Level-Caches, wie etwa Level 2 (L2), Level 3 (L3), Level 4
(L4) oder andere Level eines Caches, einen Last-Level-Cache (LLC) und/oder Kombinationen davon beinhal-
ten. Während bei einer Ausführungsform eine ringbasierte Zwischenverbindungseinheit 4112 die integrierte
Grafiklogik 4108, die Menge geteilter Cacheeinheiten 4106 und die Systemagentenheinheit 4110/integrierte
Speichersteuereinheit(en) 4114 miteinander verbindet, können alternative Ausführungsformen eine beliebige
Anzahl wohlbekannter Techniken zum Zwischenverbinden solcher Einheiten verwenden. Bei einer Ausfüh-



DE 10 2018 005 216 A1    2019.02.21

62/134

rungsform wird eine Kohärenz zwischen einer oder mehreren Cacheeinheiten 4106 und Kernen 4102-A-N
beibehalten.

[0300] In einigen Ausführungsformen können einer oder mehrere der Kerne 4102A-N multithreadingfähig sein.
Der Systemagent 4110 enthält die Komponenten, welche die Kerne 4102A-N koordinieren und betreiben. Die
Systemagenteinheit 4110 kann beispielsweise eine Leistungssteuereinheit (PCU) und eine Anzeigeeinheit auf-
weisen. Die PCU kann eine Logik und Komponenten sein oder aufweisen, die zum Regeln des Leistungszu-
stands der Kerne 4102A-N und der integrierten Grafiklogik 4108 benötigt werden. Die Anzeigeeinheit dient
dem Ansteuern einer oder mehrerer extern verbundener Anzeigen.

[0301] Die Kerne 4102A-N können hinsichtlich des Architekturbefehlssatzes homogen oder heterogen sein;
das heißt, zwei oder mehr der Kerne 4102A-N können den gleichen Befehlssatz ausführen, während andere
nur einen Untersatz dieses Befehlssatzes oder einen anderen Befehlssatz ausführen können.

Beispielhafte Computerarchitekturen

[0302] Fig. 42-45 sind Blockdiagramme beispielhafter Computerarchitekturen. Andere Systemgestaltungen
und Konfigurationen, die in der Technik für Laptops, Desktops, Handheld PCs, persönliche digitale Assistenten,
technische Workstations, Server, Netzwerkvorrichtungen, Netzwerk-Hubs, Switches, eingebettete Prozesso-
ren, digitale Signalprozessoren (DSPs), Grafikvorrichtungen, Videospielvorrichtungen, Set-Top-Boxes, Mikro-
controller, Mobiltelefone, portable Medienabspieler, tragbare Vorrichtungen und verschiedene andere elektro-
nische Vorrichtungen bekannt sind, sind ebenfalls geeignet. Allgemein ist eine große Vielzahl an Systemen
oder elektronischen Vorrichtungen, die zum Einbinden eines Prozessors und/oder einer anderen Ausführungs-
logik, wie hier offenbart, fähig sind, allgemein geeignet.

[0303] Mit Bezug auf Fig. 42 ist ein Blockdiagramm eines Systems 4200 gemäß einer Ausführungsform der
vorliegenden Offenbarung gezeigt. Das System 4200 kann einen oder mehrere Prozessoren 4210, 4215 be-
inhalten, die mit einem Steuer-Hub 4220 gekoppelt sind. In einer Ausführungsform weist der Steuerungs-Hub
4220 einen Grafikspeicher-Steuerungs-Hub (GMCH) 4290 und einen Eingabe/Ausgabe-Hub (IOH) 4250 auf
(die sich auf separaten Chips befinden können); der GMCH 4290 weist Speicher- und Grafiksteuerungen auf,
mit denen ein Speicher 4240 und ein Koprozessor 4245 verbunden sind; der IOH 4250 koppelt Eingabe/Aus-
gabe (I/O) -Geräte 4260 mit dem GMCH 4290. Alternativ dazu sind eine oder beide der Speicher- und Gra-
fiksteuerungen in dem Prozessor integriert (wie hierin beschrieben), der Speicher 4240 und der Koprozessor
4245 sind direkt mit dem Prozessor 4210 gekoppelt und der Steuerungs-Hub 4220 ist in einem einzigen Chip
mit dem IOH 4250 integriert. Der Speicher 4240 kann ein Kompilierermodul 4240A aufweisen, z. B. zum Spei-
chern von Code, der beim Ausführen davon einen Prozessor veranlasst, jedes Verfahren dieser Offenbarung
durchzuführen.

[0304] Die optionale Natur zusätzlicher Prozessoren 4215 ist in Fig. 42 mit gestrichelten Linien gekennzeich-
net. Jeder Prozessor 4210, 4215 kann einen oder mehrere hier beschriebene Verarbeitungskerne beinhalten
und kann irgendeine Version des Prozessors 4100 sein.

[0305] Der Speicher 4240 kann zum Beispiel dynamischer Direktzugriffsspeicher (DRAM: Direct Random Ac-
cess Memory), Phasenwechselspeicher (PCM: Phase Change Memory) oder eine Kombination von den beiden
sein. Für wenigstens eine Ausführungsform kommuniziert der Steuer-Hub 4220 mit dem(den) Prozessor(en)
4210, 4215 über einen Multi-Drop-Bus, wie etwa einen Front-Side-Bus (FSB), eine Punkt-zu-Punkt-Schnitt-
stelle, wie etwa QuickPath-Interconnect (QPI) oder eine ähnliche Verbindung 4295.

[0306] Bei einer Ausführungsform ist der Koprozessor 4245 ein Spezialprozessor, wie etwa zum Beispiel
ein Hochdurchsatz-MIC-Prozessor, ein Netz- oder Kommunikationsprozessor, eine Kompression-Engine, ein
Grafikprozessor, eine GPGPU, ein eingebetteter Prozessor oder dergleichen. Bei einer Ausführungsform kann
der Steuer-Hub 4220 einen integrierten Grafikbeschleuniger beinhalten.

[0307] Die physikalischen Ressourcen 4210, 4215 können sehr unterschiedlich im Hinblick auf das Spektrum
der Leistungsmetrik, einschließlich Architektur-, Mikroarchitektur-, Wärme-, Stromverbrauchsmerkmale und
dergleichen sein.

[0308] Bei einer Ausführungsform führt der Prozessor 4210 Befehle aus, die Datenverarbeitungsoperationen
eines allgemeinen Typs steuern. Eingebettet in die Befehle können Koprozessorbefehle sein. Der Prozessor
4210 erkennt diese Koprozessorbefehle als von einem Typ, der durch den angehängten Koprozessor 4245



DE 10 2018 005 216 A1    2019.02.21

63/134

ausgeführt werden sollte. Entsprechend gibt der Prozessor 4210 diese Koprozessorbefehle (oder Steuersi-
gnale, die Koprozessorbefehle repräsentieren) auf einem Koprozessorbus oder einer anderen Zwischenver-
bindung an den Koprozessor 4245 aus. Der/die Koprozessor(en) 4245 nehmen die empfangen Koprozessor-
befehle an und führen diese aus.

[0309] Mit Bezug auf Fig. 43 ist ein Blockdiagramm eines ersten spezifischeren beispielhaften Systems 4300
gemäß einer Ausführungsform der vorliegenden Offenbarung gezeigt. Wie in Fig. 43 gezeigt, ist das Mehr-
fachprozessorsystem 4300 ein Punkt-zu-Punkt-Zwischenverbindungssystem und beinhaltet einen ersten Pro-
zessor 4370 und einen zweiten Prozessor 4380, der über eine Punkt-zu-Punkt-Zwischenverbindung 4350 ge-
koppelt ist. Jeder der Prozessoren 4370 und 4380 kann irgendeine Version des Prozessors 4100 sein. In einer
Ausführungsform der Offenbarung, sind die Prozessoren 4370 und 4380 jeweils Prozessoren 4210 und 4215,
während der Prozessor 4338 der Koprozessor 4245 ist. Bei einer anderen Ausführungsform sind die Prozes-
soren 4370 und 4380 der Prozessor 4210 bzw. der Koprozessor 4245.

[0310] Die Prozessoren 4370 und 4380 sind einschließlich IMC-Einheiten (IMC: Integrated Memory Controller
- Integrierter-Speicher-Steuerung) 4372 bzw. 4382 gezeigt. Der Prozessor 4370 weist auch, als Teil seiner
Bussteuereinheiten, die Punkt-zu-Punkt- (P-P)-Schnittstellen 4376 und 4378 auf; in ähnlicher Weise weist der
zweite Prozessor 4380 die P-P-Schnittstellen 4386 und 4388 auf. Die Prozessoren 4370 und 4380 können
Daten über eine Punkt-zu-Punkt(P-P)-Schnittstelle 4350 unter Verwendung von P-P-Schnittstellenschaltungen
4378 bzw. 4388 austauschen. Wie in Fig. 43 gezeigt, koppeln IMCs 4372 und 4382 die Prozessoren mit
jeweiligen Speichern, nämlich einem Speicher 4332 und einem Speicher 4334, die Teile eines Hauptspeichers
sein können, die lokal an die jeweiligen Prozessoren angehängt sind.

[0311] Die Prozessoren 4370, 4380 können jeweils Informationen über individuelle P-P-Schnittstellen 4352,
4354 mit einem Chipsatz 4390 unter Verwendung von Punkt-zu-Punkt-Schnittstelle-Schaltkreisen 4376, 4394,
4386, 4398 austauschen. Der Chipsatz 4390 kann optional Informationen mit dem Koprozessor 4338 über
eine Hochleistungsschnittstelle 4339 austauschen. Bei einer Ausführungsform ist der Koprozessor 4338 ein
Spezialprozessor, wie etwa zum Beispiel ein Hochdurchsatz-MIC-Prozessor, ein Netz- oder Kommunikations-
prozessor, eine Kompression-Engine, ein Grafikprozessor, eine GPGPU, ein eingebetteter Prozessor oder
dergleichen.

[0312] Ein (nichtgezeigter) geteilter Cache kann in beiden Prozessoren oder außerhalb beider Prozessoren
enthalten sein, jedoch über eine P-P-Zwischenverbindung mit den Prozessoren verbunden sein, so dass loka-
le Cacheinformationen von einem oder beiden der Prozessoren in dem geteilten Cache gespeichert werden
können, falls ein Prozessor in einen Niederleistungsmodus gesetzt wird.

[0313] Der Chipsatz 4390 kann über eine Schnittstelle 4396 mit einem ersten Bus 4316 gekoppelt werden. In
einer Ausführungsform kann der erste Bus 4316 ein PCI-(Peripheral Component Interconnect)-Bus oder ein
Bus wie ein PCI Express-Bus oder ein anderer I/O-Interconnect-Bus der dritten Generation sein, wenngleich
der Schutzumfang der vorliegenden Offenbarung nicht darauf eingeschränkt ist.

[0314] Wie in Fig. 43 gezeigt, können verschiedene E/A-Vorrichtungen 4314 zusammen mit einer Busbrücke
4318, die den ersten Bus 4316 mit einem zweiten Bus 4320 koppelt, mit dem ersten Bus 4316 gekoppelt sein.
Bei einer Ausführungsform sind ein oder mehrere zusätzliche Prozessoren 4315, wie etwa Koprozessoren,
Hochdurchsatz-MIC-Prozessoren, GPGPUs, Beschleuniger (wie etwa z. B. Grafikbeschleuniger oder DSP-
Einheiten (DSP: Digital Signal Processing - digitale Signalverarbeitung)), vor Ort programmierbare Gate-Arrays
oder ein beliebiger anderer Prozessor, mit dem ersten Bus 4316 gekoppelt. In einer Ausführungsform kann der
zweite Bus 4320 ein LPC-Bus (Low Pin Count) sein. Verschiedene Vorrichtungen können mit einem zweiten
Bus 4320 gekoppelt sein, der zum Beispiel eine Tastatur und/oder Maus 4322, Kommunikationsvorrichtungen
4327 und eine Speichereinheit 4328 wie ein Plattenlaufwerk oder eine andere Massenspeichervorrichtung, die
Befehle/Code und Daten 4330 aufweisen kann, in einer Ausführungsform umfassen. Ferner kann ein Audio-
E/A 4324 mit dem zweiten Bus 4320 gekoppelt sein. Es wird angemerkt, dass andere Architekturen möglich
sind. Zum Beispiel kann ein System statt der Punkt-zu-Punkt-Architektur aus Fig. 43 einen Multi-Drop-Bus
oder eine andere solche Architektur implementieren.

[0315] Mit Bezug auf Fig. 44 ist ein Blockdiagramm eines zweiten spezifischeren beispielhaften Systems
4400 gemäß einer Ausführungsform der vorliegenden Offenbarung gezeigt. Gleiche Elemente in Fig. 43 und
Fig. 44 tragen gleiche Bezugsziffern und gewisse Aspekte aus Fig. 43 wurden in Fig. 44 weggelassen, um
eine Verschleierung anderer Aspekte von Fig. 44 zu vermeiden.



DE 10 2018 005 216 A1    2019.02.21

64/134

[0316] Fig. 44 veranschaulicht, dass die Prozessoren 4370, 4380 eine Integrierter-Speicher-und-E/A-Steuer-
logik („CL“: Control Logic) 4372 bzw. 4382 beinhalten können. Dementsprechend beinhaltet die CL 4372, 4382
integrierte Speichersteuereinheiten und beinhaltet eine E/A-Steuerlogik. Fig. 44 veranschaulicht ferner, dass
nicht nur die Speicher 4332, 4334 mit der CL 4372, 4382 gekoppelt sind, sondern auch, dass die E/A-Vorrich-
tungen 4414 ebenfalls mit der Steuerlogik 4372, 4382 gekoppelt sind. Veraltete E/A-Vorrichtungen 4415 sind
mit dem Chipsatz 4390 gekoppelt.

[0317] Mit Bezug auf Fig. 45 ist ein Blockdiagramm eines SoC 4500 gemäß einer Ausführungsform der vor-
liegenden Offenbarung gezeigt. Gleiche Elemente in Fig. 41 tragen gleiche Bezugsziffern. Außerdem Kästen
sind mit Kästen gestrichelten Linien optionale Merkmale auf fortschrittlicheren SoCs. In Fig. 45 ist eine Ver-
bindungseinheit 4502 gekoppelt mit: einem Anwendungsprozessor 4510, der einen Satz von einem oder meh-
reren Kernen 202A-N und gemeinsame Cache-Einheit(en) 4106 aufweist; eine Systemagenteneinheit 4110;
eine Bussteuereinheit 4116; eine integrierte Speichersteuereinheit 4114; einen Satz von oder einen oder meh-
rere Koprozessoren 4520, die integrierte Grafiklogik, einen Bildprozessor, einen Audioprozessor und einen
Videoprozessor aufweisen kann/können; eine SRAM-Einheit (SRAM - statischer Zufallszugriffspeicher) 4530;
eine DMA-Einheit (DMA - Direktzugriffsspeicher) 4532; und eine Anzeigeeinheit 4540 zum Koppeln mit einer
oder mehreren externen Anzeigen aufweist. In einer Ausführungsform weist/weisen der/die Koprozessor(en)
4520 einen Spezialprozessor auf, wie zum Beispiel einen Netzwerk- oder Kommunikationsprozessor, eine
Kompressions-Engine, GPGPU, einen Hochdurchsatz-MIC-Prozessor, einen eingebetteten Prozessor oder
dergleichen.

[0318] Hierin offenbarte Ausführungsformen (z. B. der Mechanismen) können in Hardware, Software, Firm-
ware oder einer Kombination solcher Implementierungsansätze implementiert werden. Ausführungsformen der
Offenbarung können als Computerprogramme oder Programmcode implementiert werden, die auf program-
mierbaren Systemen ausgeführt werden, die mindestens einen Prozessor, ein Speichersystem (einschließlich
flüchtiger und nichtflüchtiger Speicher und/oder Speicherelemente), mindestens eine Eingabevorrichtung und
mindestens eine Ausgabevorrichtung umfassen.

[0319] Ein Programmcode, wie etwa der in Fig. 43 veranschaulichte Code 4330, kann auf Eingabebefehle
angewandt werden, um die hier beschriebenen Funktionen durchzuführen und Ausgabeinformationen zu er-
zeugen. Die Ausgabeinformationen können auf eine oder mehrere Ausgabevorrichtungen auf bekannte Weise
angewandt werden. Zum Zweck dieser Anmeldung beinhaltet ein Verarbeitungssystem ein beliebiges System,
das einen Prozessor aufweist, wie etwa zum Beispiel einen digitalen Signalprozessor (DSP), einen Mikrocon-
troller, einen anwendungsspezifischen integrierten Schaltkreis (ASIC: Application Specific Integrated Circuit)
oder einen Mikroprozessor.

[0320] Der Programmcode kann in einer höheren prozeduralen oder objektorientierten Programmiersprache
implementiert werden, um mit einem Verarbeitungssystem zu kommunizieren. Der Programmcode kann, falls
gewünscht, auch in einer Assembler- oder Maschinensprache implementiert werden. Tatsächlich sind die hier
beschriebenen Mechanismen in dem Schutzumfang nicht auf irgendeine bestimmte Programmiersprache be-
schränkt. In jedem Fall kann die Sprache eine kompilierte oder interpretierte Sprache sein.

[0321] Ein oder mehrere Aspekte von mindestens einer Ausführungsform können durch repräsentative Befeh-
le, die auf einem maschinenlesbaren Medium gespeichert sind, das verschiedene Logik innerhalb des Prozes-
sors repräsentiert, implementiert sein, welche, wenn sie durch eine Maschine gelesen werden, die Maschine
veranlassen, Logik zu fabrizieren zum Durchführen der hier beschriebenen Techniken. Derartige Repräsenta-
tionen, als „IP-Kerne“ bekannt, können auf einem greifbaren maschinenlesbaren Medium gespeichert sein und
an verschiedene Kunden oder Herstellungseinrichtungen geliefert werden, um in die Fabrikationsmaschinen
geladen zu werden, die tatsächlich die Logik oder den Prozessor herstellen.

[0322] Solche maschinenlesbaren Speichermedien können ohne Einschränkung nichtflüchtige, greifbare An-
ordnungen von Artikeln einschließen, die durch eine Maschine oder ein Gerät hergestellt oder gebildet wer-
den, einschließlich Speichermedien wie Festplatten, jede andere Art von Laufwerken, einschließlich Disketten,
optische Disketten, CD-ROMs, CD-RWs und magnetooptische Platten, Halbleitervorrichtungen wie Nur-Lese-
Speicher (ROMs), Direktzugriffsspeicher (RAMs) wie dynamische Direktzugriffsspeicher (DRAMs), statische
Direktzugriffsspeicher (SRAMs), löschbare programmierbare Nur-Lese-Speicher (EPROMs), Flash-Speicher,
elektrisch löschbare programmierbare Nur-Lese-Speicher (EEPROMs), Phasenwechselspeicher (PCM), ma-
gnetische oder optische Karten oder dergleichen oder jede andere Art von Medien, die zum Speichern elek-
tronischer Anweisungen geeignet sind.



DE 10 2018 005 216 A1    2019.02.21

65/134

[0323] Dementsprechend schließen Ausführungsformen der Offenbarung auch nicht transitorische, greifbare
maschinenlesbare Medien ein, die Befehle enthalten oder Ausgestaltungsdaten enthalten, wie zum Beispiel
Hardware Description Language (HDL), die hierin beschriebene Strukturen, Schaltungen, Vorrichtungen, Pro-
zessoren und/oder Systemmerkmale definiert. Solche Ausführungsformen können als Programmprodukte be-
zeichnet werden.

Emulation (einschließlich Binärübersetzung, Codeumformung usw.)

[0324] In manchen Fällen kann ein Befehlsumwandler verwendet werden, um einen Befehl von einem Quel-
lenbefehlssatz zu einem Zielbefehlssatz umzuwandeln. Zum Beispiel kann der Befehlsumwandler einen Befehl
in einen oder mehrere andere Befehle, die durch den Kern zu verarbeiten sind, übersetzen (z. B. unter Ver-
wendung statischer Binärübersetzung, dynamischer Binärübersetzung einschließlich dynamischer Kompilati-
on), umformen, emulieren oder anderweitig umwandeln. Der Befehlsumwandler kann in Software, Hardware,
Firmware oder einer Kombination davon implementiert sein. Der Befehlsumwandler kann auf dem Prozessor,
außerhalb des Prozessors oder teilweise auf und teilweise außerhalb des Prozessors sein.

[0325] Fig. 46 ist ein Blockdiagramm, das die Verwendung eines Softwarebefehlumwandlers zum Umwan-
deln von binären Befehlen einem Quellbefehlssatz zu binären Befehlen in einem Zielbefehlssatz gemäß Aus-
führungsformen der Offenbarung kontrastiert. Bei der veranschaulichten Ausführungsform ist der Befehlsum-
wandler ein Softwarebefehlsumwandler, obwohl alternativ dazu der Befehlsumwandler in Software, Firmware,
Hardware oder verschiedenen Kombinationen davon implementiert werden kann. Fig. 46 zeigt ein Programm
in einer höheren Sprache 4602, das unter Verwendung eines x86-Kompilierers 4604 kompiliert werden kann,
um einen x86-Binärcode 4606 zu erzeugen, der durch einen Prozessor mit wenigstens einem x86-Befehlsatz-
Kern 4616 nativ ausgeführt werden kann. Der Prozessor mit wenigstens einem x86-Befehlssatz-Kern 4616
repräsentiert einen beliebigen Prozessor, der im Wesentlichen die gleichen Funktionen wie ein Intel-Prozes-
sor mit wenigstens einem x86-Befehlssatz-Kern durch kompatibles Ausführen oder anderweitiges Verarbeiten
(1) eines wesentlichen Teils des Befehlssatzes des Intel-x86-Befehlssatz-Kerns oder (2) von Objektcodever-
sionen von Anwendungen oder anderer Software, die auf einem Intel-Prozessor mit wenigstens einem x86-
Befehlssatz-Kern ablaufen soll, durchführen kann, um im Wesentlichen das gleiche Ergebnis wie ein Intel-Pro-
zessor mit einem x86-Befehlssatz-Kern zu erreichen. Der x86-Kompilierer 4604 repräsentiert einen Kompilie-
rer, der dazu funktionsfähig ist, einen x86-Binärcode 4606 (z. B. Objektcode) zu erzeugen, der mit oder ohne
zusätzliche Verknüpfungsverarbeitung auf dem Prozessor mit wenigstens einem x86-Befehlssatz-Kern 4616
ausgeführt werden kann. Gleichermaßen zeigt Fig. 46, dass das Programm in der höheren Sprache 4602 unter
Verwendung eines Alternativer-Befehlssatz-Kompilierers 4608 kompiliert werden kann, um einen Alternativer-
Befehlssatz-Binärcode 4610 zu erzeugen, der durch einen Prozessor ohne wenigstens einen x86-Befehlssatz-
Kern 4614 (z. B. einen Prozessor mit Kernen, die den MIPS-Befehlssatz von MIPS Technologies of Sunnyvale,
CA, USA ausführen und/oder den ARM-Befehlssatz von ARM Holdings of Sunnyvale, CA, USA ausführen)
nativ ausgeführt werden kann. Der Befehlsumwandler 4612 wird verwendet, um den x86-Binärcode 4606 in
einen Code umzuwandeln, der durch den Prozessor ohne einen x86 Befehlssatz-Kern 4614 nativ ausgeführt
werden kann. Dieser umgewandelte Code ist wahrscheinlich nicht der gleiche wie der alternative Befehlssatz-
Binärcode 4610, da ein Befehlsumwandler, der dies kann, schwierig herzustellen ist; der umgewandelte Code
wird jedoch die allgemeine Operation ausführen und aus Befehlen aus dem alternativen Befehlssatz bestehen.
Dementsprechend repräsentiert der Befehlsumwandler 4612 Software, Firmware, Hardware oder eine Kom-
bination davon, die durch Emulation, Simulation oder einen beliebigen anderen Prozess ermöglicht, dass ein
Prozessor oder eine andere elektronische Vorrichtung, der/die keinen x86-Befehlssatz-Prozessor oder -Kern
aufweist, den x86-Binärcode 4606 ausführt.

Patentansprüche

1.  Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
führungseinheit, um den decodierten Befehl auszuführen, damit eine erste Operation durchgeführt wird;
mehrere Verarbeitungselemente;
ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Da-
tenflussgraphen zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenver-
bindungsnetz und die mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Daten-
flussoperator in den mehreren Verarbeitungselementen repräsentiert ist, die mehreren Verarbeitungselemente
eine zweite Operation durchzuführen haben, wenn ein eingehender Operandensatz bei den mehreren Verar-
beitungselementen eingeht, wobei die zweite Operation eine atomare Operation ist.



DE 10 2018 005 216 A1    2019.02.21

66/134

2.  Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
führungseinheit, um den decodierten Befehl auszuführen, damit eine erste Operation durchgeführt wird;
mehrere Verarbeitungselemente;
ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Da-
tenflussgraphen zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenver-
bindungsnetz und die mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Daten-
flussoperator in den mehreren Verarbeitungselementen repräsentiert ist, die mehreren Verarbeitungselemente
eine zweite Operation durchzuführen haben, wenn ein eingehender Operandensatz bei den mehreren Verar-
beitungselementen eingeht; und
eine Transaktionssteuerung, um mehrere Speicherzugriffe zu gruppieren, die mit der zweiten Operation in
Zusammenhang stehen.

3.   Prozessor nach Anspruch 2, wobei die Transaktionssteuerung die mehreren Speicherzugriffe in eine
Transaktion durch Markieren, mit einem Transaktionsidentifizierer, einer Cache-Zeile, die durch die zweite
Operation zu modifizieren ist, zu gruppieren hat.

4.  Prozessor nach Anspruch 3, wobei eine erste Nachricht zu der Transaktionssteuerung in Verbindung mit
einem Start der Transaktion zu senden ist.

5.  Prozessor nach Anspruch 4, wobei eine zweite Nachricht zu der Transaktionssteuerung in Verbindung
mit einem Ende der Transaktion zu senden ist.

6.  Prozessor nach Anspruch 5, wobei die Transaktionssteuerung als Reaktion auf die zweite Nachricht den
Transaktionsidentifizierer aus der Cache-Zeile zu löschen hat.

7.  Prozessor nach Anspruch 2, wobei die mehreren Speicherzugriffe einen Lesezugriff durch ein erstes der
mehreren Verarbeitungselemente einschließen.

8.  Prozessor nach Anspruch 7, wobei die mehreren Speicherzugriffe einen Schreibzugriff durch ein zweites
der mehreren Verarbeitungselemente einschließen.

9.  Prozessor nach Anspruch 8, wobei das erste und das zweite der mehreren Verarbeitungselemente un-
terschiedliche Verarbeitungselemente sind.

10.  Prozessor nach Anspruch 8, wobei das erste und das zweite der mehreren Verarbeitungselemente das
gleiche Verarbeitungselement sind.

11.  Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
führungseinheit, um den decodierten Befehl auszuführen, damit eine erste Operation durchgeführt wird;
mehrere Verarbeitungselemente;
ein Zwischenverbindungsnetz zwischen den mehreren Verarbeitungselementen, um einen Eingang eines Da-
tenflussgraphen zu empfangen, der mehrere Knoten umfasst, wobei der Datenflussgraph in das Zwischenver-
bindungsnetz und die mehreren Verarbeitungselemente zu überlagern ist, wobei jeder Knoten als ein Daten-
flussoperator in den mehreren Verarbeitungselementen repräsentiert ist, die mehreren Verarbeitungselemente
eine zweite Operation durchzuführen haben, wenn ein eingehender Operandensatz bei den mehreren Verar-
beitungselementen eingeht; und
einen Cache, wobei der Cache in einem Speicheruntersystem einzuschließen ist, das Speicheruntersystem
auch einen Speicher einzuschließen hat, in dem mehrere alte Datenwerte zu speichern sind, um eine Ausfüh-
rung vom Start einer Epoche zu wiederholen, wobei die Epoche die Operation einzuschließen hat.

12.  Prozessor nach Anspruch 11, wobei ein erster der mehreren alten Datenwerte bis zum Ende der Epoche
im Speicher zu bewahren ist, als Reaktion darauf, dass ein entsprechender neuer Datenwert in einer Zeile des
Cache durch eines der mehreren Verarbeitungselemente gespeichert wird.

13.  Prozessor nach Anspruch 12, wobei der neue Datenwert von einem Schreibzugriff von einem der meh-
reren Verarbeitungselemente ist.



DE 10 2018 005 216 A1    2019.02.21

67/134

14.  Prozessor nach Anspruch 13, wobei der erste der mehreren alten Datenwerte gemäß einem Cache-
Kohärenzprotokoll zu bewahren ist.

15.  Verfahren, umfassend:
Decodieren eines Befehls mit einem Decodierer eines Kerns eines Prozessors in einen decodierten Befehl;
Ausführen des decodierten Befehls mit einer Ausführungseinheit des Kerns des Prozessors, damit eine erste
Operation durchgeführt wird;
Empfangen eines Eingangs eines Datenflussgraphen, der mehrere Knoten umfasst;
Überlagern des Datenflussgraphen in mehrere Verarbeitungselemente des Prozessors und ein Zwischenver-
bindungsnetz zwischen den mehreren Verarbeitungselementen des Prozessors, wobei jeder Knoten als ein
Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert ist;
Durchführen einer zweiten Operation des Datenflussgraphen mit dem Zwischenverbindungsnetz und den meh-
reren Verarbeitungselementen, wenn ein eingehender Operandensatz bei den mehreren Verarbeitungsele-
menten eingeht; und
Bewahren mehrerer alter Datenwerte in einem Speicher während einer Epoche, wobei die Epoche ein Schrei-
ben eines neuen Datenwerts von einem der mehreren Verarbeitungselemente einschließt, wobei der neue
Wert einem der mehreren alten Datenwerte entspricht.

16.   Verfahren nach Anspruch 15, ferner umfassend Erhalten, durch einen Cache gemäß einem Cache-
Kohärenzprotokoll, des Besitzes einer Cache-Zeile, in die der neue Datenwert zu speichern ist.

17.  Verfahren nach Anspruch 16, ferner umfassend, als Reaktion auf das Bestimmen, dass die Cache-Zeile
kohärent in Besitz des Cache ist, Schreiben der Cache-Zeile in den Speicher.

18.  Verfahren nach Anspruch 17, ferner umfassend Aktualisieren der Cache-Zeile zu dem neuen Wert nach
dem Schreiben der Cache-Zeile in den Speicher.

19.   Verfahren nach Anspruch 18, ferner umfassend Ändern der Cache-Zeile von kohärent in Besitz zu
spekulativ in Besitz nach dem Schreiben der Cache-Zeile in den Speicher.

20.  Verfahren nach Anspruch 16, ferner umfassend, als Reaktion auf das Bestimmen, dass die Cache-Zeile
spekulativ in Besitz des Cache ist, Aktualisieren der Cache-Zeile zu dem neuen Wert, ohne ein Schreiben der
Zeile in den Speicher.

21.  Prozessor, umfassend:
einen Kern mit einem Decodierer, um einen Befehl in einen decodierten Befehl zu decodieren, und eine Aus-
führungseinheit, um den decodierten Befehl auszuführen, damit eine erste Operation durchgeführt wird;
mehrere Verarbeitungselemente;
Mittel zum Empfangen eines Eingangs eines Datenflussgraphen, der mehrere Knoten umfasst, wobei der
Datenflussgraph in die Mittel und die mehreren Verarbeitungselemente zu überlagern ist,
wobei jeder Knoten als ein Datenflussoperator in den mehreren Verarbeitungselementen repräsentiert ist; die
mehreren Verarbeitungselemente eine zweite Operation durchzuführen haben, wenn ein eingehender Ope-
randensatz bei den mehreren Verarbeitungselementen eingeht; und
eine Transaktionssteuerung, um mehrere Speicherzugriffe zu gruppieren, die mit der zweiten Operation in
Zusammenhang stehen.

22.  Prozessor nach Anspruch 21, wobei die Transaktionssteuerung die mehreren Speicherzugriffe in eine
Transaktion durch Markieren, mit einem Transaktionsidentifizierer, einer Cache-Zeile, die durch die zweite
Operation zu modifizieren ist, zu gruppieren hat.

23.  Prozessor nach Anspruch 22, wobei eine erste Nachricht zu der Transaktionssteuerung in Verbindung
mit einem Start der Transaktion zu senden ist.

24.  Prozessor nach Anspruch 23, wobei eine zweite Nachricht zu der Transaktionssteuerung in Verbindung
mit einem Ende der Transaktion zu senden ist.

25.  Prozessor nach Anspruch 24, wobei die Transaktionssteuerung als Reaktion auf die zweite Nachricht
den Transaktionsidentifizierer aus der Cache-Zeile zu löschen hat.

Es folgen 67 Seiten Zeichnungen



DE 10 2018 005 216 A1    2019.02.21

68/134

Anhängende Zeichnungen



DE 10 2018 005 216 A1    2019.02.21

69/134



DE 10 2018 005 216 A1    2019.02.21

70/134



DE 10 2018 005 216 A1    2019.02.21

71/134



DE 10 2018 005 216 A1    2019.02.21

72/134



DE 10 2018 005 216 A1    2019.02.21

73/134



DE 10 2018 005 216 A1    2019.02.21

74/134



DE 10 2018 005 216 A1    2019.02.21

75/134



DE 10 2018 005 216 A1    2019.02.21

76/134



DE 10 2018 005 216 A1    2019.02.21

77/134



DE 10 2018 005 216 A1    2019.02.21

78/134



DE 10 2018 005 216 A1    2019.02.21

79/134



DE 10 2018 005 216 A1    2019.02.21

80/134



DE 10 2018 005 216 A1    2019.02.21

81/134



DE 10 2018 005 216 A1    2019.02.21

82/134



DE 10 2018 005 216 A1    2019.02.21

83/134



DE 10 2018 005 216 A1    2019.02.21

84/134



DE 10 2018 005 216 A1    2019.02.21

85/134



DE 10 2018 005 216 A1    2019.02.21

86/134



DE 10 2018 005 216 A1    2019.02.21

87/134



DE 10 2018 005 216 A1    2019.02.21

88/134



DE 10 2018 005 216 A1    2019.02.21

89/134



DE 10 2018 005 216 A1    2019.02.21

90/134



DE 10 2018 005 216 A1    2019.02.21

91/134



DE 10 2018 005 216 A1    2019.02.21

92/134



DE 10 2018 005 216 A1    2019.02.21

93/134



DE 10 2018 005 216 A1    2019.02.21

94/134



DE 10 2018 005 216 A1    2019.02.21

95/134



DE 10 2018 005 216 A1    2019.02.21

96/134



DE 10 2018 005 216 A1    2019.02.21

97/134



DE 10 2018 005 216 A1    2019.02.21

98/134



DE 10 2018 005 216 A1    2019.02.21

99/134



DE 10 2018 005 216 A1    2019.02.21

100/134



DE 10 2018 005 216 A1    2019.02.21

101/134



DE 10 2018 005 216 A1    2019.02.21

102/134



DE 10 2018 005 216 A1    2019.02.21

103/134



DE 10 2018 005 216 A1    2019.02.21

104/134



DE 10 2018 005 216 A1    2019.02.21

105/134



DE 10 2018 005 216 A1    2019.02.21

106/134



DE 10 2018 005 216 A1    2019.02.21

107/134



DE 10 2018 005 216 A1    2019.02.21

108/134



DE 10 2018 005 216 A1    2019.02.21

109/134



DE 10 2018 005 216 A1    2019.02.21

110/134



DE 10 2018 005 216 A1    2019.02.21

111/134



DE 10 2018 005 216 A1    2019.02.21

112/134



DE 10 2018 005 216 A1    2019.02.21

113/134



DE 10 2018 005 216 A1    2019.02.21

114/134



DE 10 2018 005 216 A1    2019.02.21

115/134



DE 10 2018 005 216 A1    2019.02.21

116/134



DE 10 2018 005 216 A1    2019.02.21

117/134



DE 10 2018 005 216 A1    2019.02.21

118/134



DE 10 2018 005 216 A1    2019.02.21

119/134



DE 10 2018 005 216 A1    2019.02.21

120/134



DE 10 2018 005 216 A1    2019.02.21

121/134



DE 10 2018 005 216 A1    2019.02.21

122/134



DE 10 2018 005 216 A1    2019.02.21

123/134



DE 10 2018 005 216 A1    2019.02.21

124/134



DE 10 2018 005 216 A1    2019.02.21

125/134



DE 10 2018 005 216 A1    2019.02.21

126/134



DE 10 2018 005 216 A1    2019.02.21

127/134



DE 10 2018 005 216 A1    2019.02.21

128/134



DE 10 2018 005 216 A1    2019.02.21

129/134



DE 10 2018 005 216 A1    2019.02.21

130/134



DE 10 2018 005 216 A1    2019.02.21

131/134



DE 10 2018 005 216 A1    2019.02.21

132/134



DE 10 2018 005 216 A1    2019.02.21

133/134



DE 10 2018 005 216 A1    2019.02.21

134/134


	Titelseite
	Beschreibung
	Ansprüche
	Anhängende Zeichnungen

