a9y United States

US 20220067025A1

a2y Patent Application Publication o) Pub. No.: US 2022/0067025 A1
Terry et al.

43) Pub. Date: Mar. 3, 2022

(54) ORDERING TRANSACTION REQUESTS IN A
DISTRIBUTED DATABASE ACCORDING TO

AN INDEPENDENTLY ASSIGNED
SEQUENCE

(71) Applicant: Amazon Technologies, Inc., Seattle,

(72) Inventors:

(73) Assignee:

(21) Appl. No.:

(22) Filed:

request to
perform
transaction
301

transaction
aborted/
completed
309

WA (US)

Douglas Brian Terry, San Carlos, CA
(US); Tate Andrew Certain, Seattle,

WA (US); Amit Gupta, Redmond, WA
(US); Rishabh Jain, Seattle, WA (US);

Vaibhav Jain, Seattle, WA (US);

Alexander Richard Keyes, Scattle, WA
(US); Somasundaram Perianayagam,
Seattle, WA (US); Nathan Pellegrom
Riley, Seattle, WA (US); Akshat Vig,
Seattle, WA (US); Ming-Chuan Wu,
Bellevue, WA (US)

Amazon Technologies, Inc., Seattle,

WA (US)

17/472,449

Sep. 10, 2021

request

routing node

310

4

Related U.S. Application Data

(63) Continuation of application No. 16/014,890, filed on
Jun. 21, 2018, now Pat. No. 11,120,006.

Publication Classification

(51) Int. CL
GOGF 16/23 (2006.01)
GOGF 16/182 (2006.01)
GOGF 16/18 (2006.01)
GOGF 9/48 (2006.01)
GOGF 9/50 (2006.01)
(52) US.CL
CPC ... GOGF 16/2365 (2019.01); GOGF 16/182

(2019.01); GO6F 9/5038 (2013.01); GO6F
16/1805 (2019.01); GOGF 9/4881 (2013.01);
GO6F 16/2379 (2019.01)

(57) ABSTRACT

Transaction requests may be ordered in a distributed data-
base according to an independently assigned sequence.
Different distributed system nodes, such as a transaction
coordinator and a storage node may independently assign
sequence numbers to requests to access a distributed data-
base. A storage node may receive the request from a trans-
action coordinator with an assigned sequence number and
another request to which the storage node may assign a
sequence number. The storage node can then order perfor-
mance of the requests based on the sequence numbers.

transaction
protocol
3305
»| storage
o node
- 330
rzcgﬁsrt,‘?:o transaction - > 3205 de
fransaction coordinator E i : 3308
303 node i —
20 ;
»| storage
transaction . node
aborted/ - 330n
completed)

307

US 2022/0067025 A1l

Mar. 3,2022 Sheet 1 of 13

Patent Application Publication

Loy uonoRsSUL)

L 'Ol4

T ——me—————————————
| 001 eseqejep painglysip 501)
| sjsenbai “
| $$9008 |
| UOOBSUR-IOU |
— p—
I ¢ :
_ w2l |
_ saueuiousd |
_ 2L 1s8nba.i paIspIo |
_ Bugiapio 1sonbas { :
“ Juapuadapur) .

g — |
_ or7 .
_ (s)apou
_ JOJBUIDI00D m
_ 07T Sopou abei0)s 200 uopoesyEl] 201
_ — ssenbar |Ceee————' sjsonba
_ I ssequinu sousnbes $S8008
“ paubisse ym sisenbal uooesuEs
|
!

-~

Patent Application Publication = Mar. 3, 2022 Sheet 2 of 13 US 2022/0067025 A1

| |
t database service(s) 210 t
t i i i t
| I i f |
| |
| |
: database storage :
234
| |
| |
| transaction request I
I coordinator nodes routing nodes |
| _ 240 250 |
| request processing |
| = |
| |
| I
: storage nodes 230 L i :
| |
| I
i fransaction recovery node recovery f
| 222 224 |
| |
| controf plane 220 |
| |
| |
| |
t provider network 200 |
M e e e o e . — — — —— — — o —— — — —— —— —— — — ——— —— — — — —

client(s)
270

FIG. 2

Patent Application Publication = Mar. 3, 2022 Sheet 3 of 13 US 2022/0067025 Al
transaction
protocol
3305
X - storage
. node
>] 330
request to request to , storage
perform request perform transaction . node
transaction | routing node | transaction | 00" dinator «i— 330
301 310 303 node ¥ —
e 320 X
storage
transaction transaction . node
aborted/ aborted/ -« 3300
completed completed
309 307
FIG. A
>
request to read/ request to read/
insert/update/ request insert/update/ storage
delete individual | routing node | delete individual node
item 340 item 350
341 343
=
request request
completed/ completed/
failed failed
347 345

FIG. 3B

US 2022/0067025 A1l

Mar. 3,2022 Sheet 4 of 13

Patent Application Publication

HOHOBSUL] WA
108fauyndaace

v "Old

9
voneidwos

o /7

3087
apou
obeo)s

Gocy
opou
9b..i0}8

B0Ey
apou
abrios

0cr
JeBps;
uonoesUR]

w >

99¢
pojadiioo
uonoesues)
454
uogoestes
wioped o} jsanba)
A
oiv
gpou
1OJRUIPSO0D
uonoBsUEy

Patent Application Publication = Mar. 3, 2022 Sheet 5 of 13 US 2022/0067025 A1

4 transaction ledger i()\
'assigned timestamp 522a‘ i precondition(s) 526a ransaction _‘5126:
P ® assigned transaction
: fransaction state 524a operations(s) 528a coordinator 532a :

i [assigned timestamp 5220 [precondition(s) 526b | ransaction 312b
) . “| assigned transaction
{ransaction state 524b operations(s) 528b coordinator 532b
- y,
FIG. 5A
4 item 540)
system data Q_G_Q
r latest committed transaction timestamp 542 1
[identifier of transaction coordinator of latest committed transaction timestamp 544 ‘
§ Jatest timestamp of non-transaction write 546
r latest timestamp of non-transaction read 548
timestamp of pending transaction 552 ;
' successtully checked precondition for the pending transaction 5§54
tombstone 556 1
, accepted transaction(s) 558
application data 570
\. Y,

FIG. 5B

Patent Application Publication = Mar. 3, 2022 Sheet 6 of 13 US 2022/0067025 A1
scan for stalled >
fransaction transactions not committed transaction
recovery » 622 ledger
222 - - 610
stalted transaction not committed Rt
624 >
update transaction as
aborted
fransaction abgr/t_eg 626
notification
628
storage node(s)
620
FIG. 6A
scan for stalled »
transaction committed transactions transaction
recovery > 632 ledger
222 . . 610
stalled committed transaction s
634 -
update fransaction
assign transaction coordinator assignment
fo new fransaction 636
’ \/‘\
coordinalor
638
Y
fransaction
coordinator node
630

FIG. 6B

Patent Application Publication = Mar. 3, 2022 Sheet 7 of 13 US 2022/0067025 A1

Receive a first request to access a distributed
database that corresponds to a transaction
coordinator node and is assigned a first
sequence number by the transaction
coordinator to order performance of the first
request at a storage node of the distributed
database
710

Receive a second request to access the
distributed database that corresponds to the
storage node and is assigned a second
sequence number by the storage node to
order performance of the second request at
the storage node
720

Perform the first request and the second request at the storage node
according to an order determined based, at least in part, on the assigned
sequence numbers
730

FIG. 7

Patent Application Publication

Mar. 3,2022 Sheet 8 of 13

US 2022/0067025 A1l

Receive a request to perform a transaction
810

i

Assign a timestamp fo the fransaction
812

Y

Record the transaction in a transaction ledger
814

v

Send prepare request(s) to storage node(s) for item
request(s} in the transaction
816

no

Retry the prepare request(s)
820

response(s) from each

storage node?

818

Update the transaction
ledger to abort transaction
824

Transaction
accepted?
822

v

yes

Send a notification of the

aborted transactions for a

client and storage node(s)
826

Update transaction ledger to commit the transaction
828

L]

Send perform request(s) to storage node(s) for item

request(s} in the transaction
830

Received

Retry the perform request(s)
834

completion(s) from each
storage node?

yes

Update the transaction ledger to identify the transaction
as complete
836

Y

Send a notification that the transaclion completed for a
client
838

FIG. 8

Patent Application Publication

Receive a request to write an item as part of
a fransaction assigned a timestamp from a
transaction coordinator
210

Any

pending prepared yes

Mar. 3,2022 Sheet 9 of 13 US 2022/0067025 A1l

fransactions for the item?
920

no

Any

preconditions for the ite yes

not satisfied?
930

write o item does not yes

have a later timestamp?,

Any

prior read with a yes

later timestamp?
950

Write request valid? yes

960

y

Update system data for the item to indicate
that the transaction is pending to write the
item and the precondition for the ifem was
satisfied
970

Y

Acknowledge the request as
rejected
990

Acknowledge the request as accepted at the
storage node
980

FIG. 9

Patent Application Publication = Mar. 3, 2022 Sheet 10 of 13 US 2022/0067025 A1l

Receive a request to read an item
1010

:

Assign a timestamp to the request
1020

ltem

written with a later yes

timestamp?
1030

10

Any
pending or accepte yes
ransactions earlier timestamps? >
1040
Y

Update system data for the item to identify
the assigned timestamp as the latest read
1050

Fail the request fo read the item
1070

l

Perform the request to read the item
1060

FIG. 10

Patent Application Publication

Mar. 3, 2022 Sheet 11 of 13

Receive a request to insert an item
1110

:

Assign a timestamp to the request to insert
the item
1120

Assigned
timestamp later than latest
ransaction and write?
1130

Assigned
timestamp later than latest

0

US 2022/0067025 A1l

Identify the request as obsolete
1132

read of the item?
1140

Pending
transaction with later
timestamp and an evaluated
precondition?
1150

yes

Y

Fail the request
1152

Perform the request to insert the item
1160

FIG.

11

Patent Application Publication = Mar. 3, 2022 Sheet 12 of 13 US 2022/0067025 A1l

Receive a request to write/delete an item
1210

:

Assign a timestamp to the request to write the
item
1220

Assigned
timestamp later than latest
transaction and write?
1230

ldentify the request as obsolete
1232

Assigned
timestamp later than latest
read of the item?
1240

no

Pending
transaction{s) with eatlier
timestamp complete?
1250

no

Pending
transaction with later
timestamp and an evaluated
precondition?
1260

Y

yes Fail the request
1262

Perform the request to write/delete the item
1270

FIG. 12

Patent Application Publication = Mar. 3, 2022 Sheet 13 of 13 US 2022/0067025 A1l
computing system 2000
processor processor processor
2010a 2010b T 2010n
A 3 4
Y \ Y
/O interface
2030
Y Y Y
memory network :
2020 interface e
2040 2050
program [
instructions dat2a0§§)re
2025 e

FIG. 13

\

\J

to/from communication
devices, external storage
devices, input/output
devices and/or other
computing devices

US 2022/0067025 Al

ORDERING TRANSACTION REQUESTS IN A
DISTRIBUTED DATABASE ACCORDING TO
AN INDEPENDENTLY ASSIGNED
SEQUENCE

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/014,890, filed Jun. 21, 2018, which
is hereby incorporated by reference herein in its entirety.

BACKGROUND

[0002] Different database systems offer different features
for performing operations with respect to data in the data-
base system. In some scenarios, some features may provide
some functionality at the cost of other capabilities or per-
formance. For example, transactions offered as a feature of
a database may provide facilitate the construction of correct
and reliable applications that wish to maintain multi-item
invariants. Thus, highly performant techniques for imple-
menting transaction feature may be desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 11is a logical block diagram illustrating order-
ing transaction requests in a distributed database according
to an independently assigned sequence, according to some
embodiments.

[0004] FIG. 2 is a logical block diagram illustrating a
provider network that implements a database service that
may implement ordering transaction requests according to
an independently assigned sequence, according to some
embodiments.

[0005] FIGS. 3A and 3B are logical block diagrams illus-
trating different routing paths for transactions and non-
transaction requests, according to some embodiments.
[0006] FIG. 4 is a sequence diagram illustrating a trans-
action protocol, according to some embodiments.

[0007] FIG. 5A is an example transaction ledger for per-
forming a transaction protocol, according to some embodi-
ments.

[0008] FIG. 5B is an example item that includes system
data for ordering transaction requests according to an inde-
pendently assigned sequence and application data, according
to some embodiments.

[0009] FIGS. 6A and 6B are logical block diagrams illus-
trating interactions between transaction recovery and stor-
age nodes or transaction coordinator nodes, according to
some embodiments.

[0010] FIG. 7 is a high-level flowchart illustrating various
methods and techniques to implement ordering transaction
requests in a distributed database according to an indepen-
dently assigned sequence, according to some embodiments.
[0011] FIG. 8 is a high-level flowchart illustrating various
methods and techniques to coordinate the performance of a
transaction across storage nodes that order transaction
requests, according to some embodiments.

[0012] FIG. 9 is a high-level flowchart illustrating various
methods and techniques to handle a request to write an item
as part of a transaction, according to some embodiments.
[0013] FIG. 10 is a high-level flowchart illustrating vari-
ous methods and techniques to handle a request to read an
item, according to some embodiments.

[0014] FIG. 11 is a high-level flowchart illustrating vari-
ous methods and techniques to handle a request to insert an
item, according to some embodiments.

Mar. 3, 2022

[0015] FIG. 12 is a high-level flowchart illustrating vari-
ous methods and techniques to handle a request to write or
delete an item, according to some embodiments.

[0016] FIG. 13 is a block diagram illustrating an example
computing system, according to some embodiments.
[0017] While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that the embodiments
are not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion is to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limit
the scope of the description or the claims. As used through-
out this application, the word “may” is used in a permissive
sense (i.e., meaning having the potential to), rather than the
mandatory sense (i.e., meaning must). Similarly, the words
“include”, “including”, and “includes” mean including, but
not limited to.

DETAILED DESCRIPTION

[0018] The systems and methods described herein may be
employed in various combinations and in various embodi-
ments to implement ordering transaction requests in a dis-
tributed database according to an independently assigned
sequence, according to some embodiments. Distributed
database systems can offer many performance advantages to
users, in various embodiments. By distributing the data and
work to access the data amongst multiple storage locations,
a distributed database system can offer scalable, available,
and highly performant storage, in some embodiments. To
support transactions in addition to requests for individual
items, distributed database systems may order the perfor-
mance of requests, including transaction operations in order
to ensure that Atomicity Consistency Isolation and Durabil-
ity (ACID) principles are satisfied in order to ensure that
transactions are perceived as a single logical operation in the
distributed database, in various embodiments. Ordering
transaction requests according to an independently assigned
sequence, as discussed below, may reduce work and inter-
system traffic between nodes of a distributed database sys-
tem in order to perform ACID compliant transactions, and
thus may improve the performance of a distributed database
system, in various embodiments. FIG. 1 is a logical block
diagram illustrating ordering transaction requests in a dis-
tributed database according to an independently assigned
sequence, according to some embodiments.

[0019] Distributed database 100 may store data for a
database (e.g., a partition of a database table) across one or
multiple locations, such as at different storage nodes 120, in
some embodiments. Distributed database 100 may be any of
various types of database systems, including relational and
non-relational database systems that may allow transaction
requests, in some embodiments. In order to ensure that a
transaction request performed across multiple locations in
distributed database 100 is fully compliant with ACID
principles, a transaction coordinator may be implemented,
such as transaction coordinator 110. Transaction access
requests 102 may be submitted, routed, or dispatched to
transaction coordinator node(s) 110 which may interact with
storage nodes 120 to perform the requested transactions.

US 2022/0067025 Al

Non-transaction access requests 104, however, may be sub-
mitted, routed, or dispatched directly to storage nodes 120,
in some embodiments.

[0020] In order to ensure that the performance of transac-
tions that may occur across multiple storage nodes 120 does
not impede the performance of non-transaction access
requests 104 (which may only access data at a single
location), storage nodes 120 may implement independent
request ordering 122 in order to determine an ordering for
performing received access requests, as indicated by ordered
request performance 124, in some embodiments. Each stor-
age node 120 may determine whether to accept a proposed
request (e.g., whether the request can be performed without
violating ACID properties for transactions or the perfor-
mance of non-transaction access requests), and in what order
the request should be performed relative to other received
requests without consulting or relying upon other storage
nodes 120 and/or transaction coordinator 110, in some
embodiments. For example, a non-transaction access request
104 can be accepted or rejected (if conflicting) at storage
node 120 which may also be performing a transaction
received from one of transaction coordinator nodes 110
without requesting information from transaction coordinator
node 110 to determine if and when the non-transaction
access request 104 should be performed, as discussed below
with regard to FIGS. 3B, 7, and 10-12, in some embodi-
ments. Similarly, transactions submitted to transaction coor-
dinator nodes 112 may be performed by the transaction
coordinator nodes 112 across multiple locations without
having to coordinate with the non-transaction requests
received at the storage nodes 120 involved in a given
transaction, as discussed below with regard to FIGS. 3A, 4,
7,8, and 9, in some embodiments. For example, as discussed
below with regard to FIG. 7, sequence numbers for ordering
requests may be independently assigned, for transactions at
transaction coordination nodes and for non-transactions at
storage nodes 120, and then ordered based on the sequence
values, in some embodiments. In this way, synchronization
to implement a global sequence across all transaction coor-
dinator nodes and/or storage nodes 120 does not have to be
implemented, in some embodiments, reducing work and
traffic between nodes of a distributed database. Instead, each
storage node 120 can reason independently about the order
in which the requests received at the storage node 120
should be performed (or if they should be performed)
without violating ACID principles for transactions, in some
embodiments.

[0021] Please note that previous descriptions of imple-
menting ordering transaction requests in a distributed data-
base according to an independently assigned sequence are
not intended to be limiting, but are merely provided as
logical examples.

[0022] This specification begins with a general description
of'a provider network that may implement a database service
that may implement ordering transaction requests in a dis-
tributed database according to an independently assigned
sequence. Then various examples of a database service are
discussed, including different components/modules, or
arrangements of components/module, that may be employed
as part of implementing the database service, in one embodi-
ment. A number of different methods and techniques to
implement ordering transaction requests in a distributed
database according to an independently assigned sequence
are then discussed, some of which are illustrated in accom-

Mar. 3, 2022

panying flowcharts. Finally, a description of an example
computing system upon which the various components,
modules, systems, devices, and/or nodes may be imple-
mented is provided. Various examples are provided through-
out the specification.

[0023] FIG. 2 is a logical block diagram illustrating a
provider network that implements a database service that
may implement ordering transaction requests according to
an independently assigned sequence, according to some
embodiments. Provider network 200 may be a private or
closed system, in one embodiment, or may be set up by an
entity such as a company or a public sector organization to
provide one or more services (such as various types of
cloud-based storage) accessible via the Internet and/or other
networks to clients 250, in another embodiment. In one
embodiment, provider network 200 may be implemented in
a single location or may include numerous data centers
hosting various resource pools, such as collections of physi-
cal and/or virtualized computer servers, storage devices,
networking equipment and the like (e.g., computing system
2000 described below with regard to FIG. 13), needed to
implement and distribute the infrastructure and storage
services offered by the provider network 200. In one
embodiment, provider network 200 may implement various
computing resources or services, such as database service(s)
210 (e.g., relational or non-relational (NoSQL) database
query engines), and other services (not illustrated), such as
a map reduce service, data warchouse service, data flow
processing service, and/or other large scale data processing
techniques), data storage services (e.g., an object storage
service, block-based storage service, or data storage service
that may store different types of data for centralized access),
virtual compute services, and/or any other type of network-
based services (which may include various other types of
storage, processing, analysis, communication, event han-
dling, visualization, and security services).

[0024] In various embodiments, the components illus-
trated in FIG. 2 may be implemented directly within com-
puter hardware, as instructions directly or indirectly execut-
able by computer hardware (e.g., a microprocessor or
computer system), or using a combination of these tech-
niques. For example, the components of FIG. 2 may be
implemented by a system that includes a number of com-
puting nodes (or simply, nodes), in one embodiment, each of
which may be similar to the computer system embodiment
illustrated in FIG. 13 and described below. In one embodi-
ment, the functionality of a given system or service com-
ponent (e.g., a component of database service(s) 210) may
be implemented by a particular node or may be distributed
across several nodes. In some embodiments, a given node
may implement the functionality of more than one service
system component (e.g., more than one data store compo-
nent).

[0025] Database service(s) 210 may include various types
of database services, in one embodiment, (both relational
and non-relational) for storing, querying, and updating data.
Such services may be enterprise-class database systems that
are highly scalable and extensible. In one embodiment,
queries may be directed to a database in database service(s)
210 that is distributed across multiple physical resources,
and the database system may be scaled up or down on an as
needed basis. The database system may work effectively
with database schemas of various types and/or organiza-
tions, in different embodiments. In one embodiment, clients/

US 2022/0067025 Al

subscribers may submit queries in a number of ways, e.g.,
interactively via a SQL interface to the database system. In
other embodiments, external applications and programs may
submit queries using Open Database Connectivity (ODBC)
and/or Java Database Connectivity (JDBC) driver interfaces
to the database system. In one embodiment, database service
(s) 210 may provide a RESTful programmatic interface in
order to submit access requests (e.g., to get, insert, delete, or
query data). In one embodiment, database service(s) 210
may also be any of various types of data processing services
that implement or allow transactions.

[0026] In one embodiment, clients 250 may encompass
any type of client configurable to submit network-based
requests to provider network 200 via network 260, including
requests for database service(s) 210 (e.g., to perform a
transaction to a database hosted in database service 210). For
example, in one embodiment a given client 250 may include
a suitable version of a web browser, or may include a plug-in
module or other type of code module that executes as an
extension to or within an execution environment provided
by a web browser. Alternatively in a different embodiment,
a client 250 may encompass an application such as a
database client/application (or user interface thereof), a
media application, an office application or any other appli-
cation that may make use of a database in database service(s)
210 to store and/or access the data to implement various
applications. In one embodiment, such an application may
include sufficient protocol support (e.g., for a suitable ver-
sion of Hypertext Transfer Protocol (HTTP)) for generating
and processing network-based services requests without
necessarily implementing full browser support for all types
of network-based data. That is, client 250 may be an
application that interacts directly with provider network 200,
in one embodiment. In one embodiment, client 250 may
generate network-based services requests according to a
Representational State Transfer (REST)-style network-
based services architecture, a document- or message-based
network-based services architecture, or another suitable
network-based services architecture. Note that in some
embodiments, clients of database service(s) 210 may be
implemented within provider network 200 (e.g., applications
hosted on a virtual compute service).

[0027] In one embodiment, a client 250 may provide
access to provider network 200 to other applications in a
manner that is transparent to those applications. For
example, client 250 may integrate with a database on
database service(s) 210. In such an embodiment, applica-
tions may not need to be modified to make use of the storage
system service model. Instead, the details of interfacing to
the database service(s) 210 may be coordinated by client
250.

[0028] Client(s) 250 may convey network-based services
requests to and receive responses from provider network 200
via network 260, in one embodiment. In one embodiment,
network 260 may encompass any suitable combination of
networking hardware and protocols necessary to establish
network-based-based communications between clients 250
and provider network 200. For example, network 260 may
encompass the various telecommunications networks and
service providers that collectively implement the Internet. In
one embodiment, network 260 may also include private
networks such as local area networks (LANs) or wide area
networks (WANs) as well as public or private wireless
networks. For example, both a given client 250 and provider

Mar. 3, 2022

network 200 may be respectively provisioned within enter-
prises having their own internal networks. In such an
embodiment, network 260 may include the hardware (e.g.,
modems, routers, switches, load balancers, proxy servers,
etc.) and software (e.g., protocol stacks, accounting soft-
ware, firewall/security software, etc.) necessary to establish
a networking link between given client(s) 250 and the
Internet as well as between the Internet and provider net-
work 200. It is noted that in one embodiment, client(s) 250
may communicate with provider network 200 using a pri-
vate network rather than the public Internet.

[0029] Database service 210 may implement request rout-
ing nodes 250, in one embodiment. Request routing nodes
250 may receive, authenticate, parse, throttle and/or dispatch
service or other access requests, among other things, in one
embodiment. For example, FIGS. 3A and 3B illustrate
different routing paths for transactions and non-transaction
requests, according to some embodiments. As discussed
below with regard to FIGS. 3A and 4-12, a transaction
coordinator node, such as one of transaction coordinator
nodes 240, may be included in the path for a request to
perform a transaction, in some embodiments, while a non-
transaction request may be sent directly to an appropriate
storage node.

[0030] Inoneembodiment, request routing nodes 250 may
support handling requests formatted according to an inter-
face to support different types of web services requests. For
example, in one embodiments, database service 210 may
implement a particular web services application program-
ming interface (API) that supports a variety of operations on
tables (or other data objects) that are maintained and man-
aged on behalf of clients/users by the data storage service
system (and/or data stored in those tables). In one embodi-
ment, database service 210 may support different types of
services requests. For example, in one embodiments, data-
base service 210 may implement a particular web services
application programming interface (API) that supports a
variety of operations on tables (or other data objects) that are
maintained and managed on behalf of clients/users by the
data storage service system (and/or data stored in those
tables), such as a request to perform a transaction that
includes operations (e.g., requests to read, write, update,
delete, add, or insert items in a table) with respect to one or
multiple items across one or multiple partitions of a table
hosted at one or multiple storage nodes. Similarly, a request
may be a request to perform operations on individual items
(e.g., requests to read, write, update, delete, add, or insert
items in a table, according to a specified consistency level or
characteristic). In one embodiment, request routing nodes
250 may perform parsing and/or throttling of service
requests, authentication and/or metering of service requests,
dispatching service requests, and/or maintaining partition
assignments that map storage nodes to partitions of tables
hosted in database service(s) 210.

[0031] In one embodiment, database service 210 may
implement control plane 220 to implement one or more
administrative components, such as automated admin
instances which may provide a variety of visibility and/or
control functions). Control plane 220 may provide visibility
and control to system administrators, detect split events for
partitions of tables at storage nodes, and/or anomaly control,
resource allocation, in one embodiment. In one embodiment,
control plane 220 may also include an admin console,
through which system administrators may interact with

US 2022/0067025 Al

database service 210 (and/or the underlying system). In one
embodiment, the admin console may be the primary point of
visibility and control for database service 210 (e.g., for
configuration or reconfiguration of tables by system admin-
istrators). For example, the admin console may be imple-
mented as a relatively thin client that provides display and
control functionally to system administrators and/or other
privileged users, and through which system status indicators,
metadata, and/or operating parameters may be observed
and/or updated. Control plane 220 may provide an interface
or access to information stored about one or more detected
control plane events, such as split requests to be processed,
at database service 210, in one embodiment.

[0032] Control plane 320 may direct the performance of
different types of control plane operations among the nodes,
systems, or devices implementing database service 210, in
one embodiment. For instance, control plane 220 may
communicate with processing nodes to initiate the perfor-
mance of various control plane operations, such as moves,
splits, update tables, delete tables, create indexes, etc.
In one embodiment, control plane 220 may include a node
recovery feature or component that handles failure events
for storage nodes 230, transaction coordinator nodes 240,
and request routing nodes 250 (e.g., adding new nodes,
removing failing or underperforming nodes, deactivating or
decommissioning underutilized nodes, etc). As discussed in
more detail below with regard to FIGS. 6A and 6B, control
plane 220 may implement transaction recovery 222 to detect
or handle the failure of aborted, stalled, or other transactions,
in some embodiments.

[0033] In one embodiment, database service 210 may also
implement a plurality of storage nodes 230, each of which
may manage one or more partitions of a database table on
behalf of clients/users or on behalf of database service 210
which may be stored in database storage 234 (on storage
devices attached to storage nodes 230 or in network storage
accessible to storage nodes 230).

[0034] Storage nodes 230 may implement request process-
ing 232, in one embodiment. Request processing 232 may
create, update, define, query, and/or otherwise administer
databases, in one embodiment. For instance, request pro-
cessing 232 may maintain a database according to a database
model (e.g., a relational or non-relational database model).
In one embodiment, request processing 232 may allow a
client to manage data definitions (e.g., Data Definition
Language (DDL) requests to describe column definitions,
requests to add item attributes, etc.). In one embodiment,
request processing 232 may handle requests to access the
data (e.g., to perform transactions, to insert, modify, add, or
delete data, and requests to query for data by generating
query execution plans to determine which partitions of a
database may need to be evaluated or searched in order to
service the query). In one embodiment, request processing
232 may also perform other management functions, such as
enforcing access controls or permissions, concurrency con-
trol, or recovery operations.

[0035] In one embodiment, database service 210 may
provide functionality for creating, accessing, and/or manag-
ing tables at nodes within a single-tenant environment than
those that provide functionality for creating, accessing,
and/or managing tables maintained in nodes within a multi-
tenant environment. In another embodiment, functionality to
support both multi-tenant and single-tenant environments
may be included in any or all of the components illustrated

Mar. 3, 2022

in FIG. 2. Note also that in one embodiment, one or more
storage nodes 230 process access requests on behalf of
clients directed to tables. Some of these processing nodes
may operate as if they were in a multi-tenant environment,
and others may operate as if they were in a single-tenant
environment. In some embodiments, storage nodes 230 that
operate as in a multi-tenant environment may be imple-
mented on different processing nodes (or on different virtual
machines executing on a single host) than processing nodes
that operate as in a single-tenant environment.

[0036] In addition to dividing or otherwise distributing
data (e.g., database tables) across storage nodes 230 in
separate partitions, storage nodes 230 may also be used in
multiple different arrangements for providing resiliency
and/or durability of data as part of larger collections or
groups of resources. A replica group, for example, may be
composed of a number of storage nodes maintaining a
replica of a particular portion of data (e.g., a partition of a
table) for the database service 210. Moreover, different
replica groups may utilize overlapping nodes, where a
storage node 230 may be a member of multiple replica
groups, maintaining replicas for each of those groups whose
other storage node 230 members differ from the other replica
groups.

[0037] Different models, schemas or formats for storing
data for database tables in database service 210 may be
implemented, in some embodiments. For example, in some
embodiments, a relational data model that stores database
tables structured as rows with fields for a defined number of
columns may be implemented. In some embodiments, non-
relational (e.g., NoSQL), key-value, or semi structured data
may be implemented. In at least some embodiments, the data
model may include tables containing items that have one or
more attributes. In such embodiments, each table maintained
on behalf of a client/user may include one or more items, and
each item may include a collection of one or more attributes.
The attributes of an item may be a collection of one or more
key (or key)-value pairs, in any order, in some embodiments.
In some embodiments, each attribute in an item may have a
name, a type, and a value. In some embodiments, the items
may be managed by assigning each item a primary key value
(which may include one or more attribute values), and this
primary key value may also be used to uniquely identify the
item. In some embodiments, a large number of attributes
may be defined across the items in a table, but each item may
contain a sparse set of these attributes (with the particular
attributes specified for one item being unrelated to the
attributes of another item in the same table), and all of the
attributes may be optional except for the primary key
attribute(s). In other words, the tables maintained by the
database service 210 (and the underlying storage system)
may have no pre-defined schema other than their reliance on
the primary key, in some embodiments. As discussed below
with regard to FIG. 5, in some embodiments, items in a table
may include attributes that are either system data or appli-
cation data.

[0038] Database service 210 may provide an application
programming interface (API) for requesting various opera-
tions targeting tables, indexes, items, and/or attributes main-
tained on behalf of storage service clients. In some embodi-
ments, the service (and/or the underlying system) may
provide both control plane APIs and data plane APIs. The
control plane APIs provided by database service 210 (and/or
the underlying system) may be used to manipulate table-

US 2022/0067025 Al

level entities, such as tables and indexes and/or to re-
configure various tables These APIs may be called relatively
infrequently (when compared to data plane APIs). In some
embodiments, the control plane APIs provided by the ser-
vice may be used to create tables or secondary indexes for
tables at separate storage nodes, import tables, export tables,
delete tables or secondary indexes, explore tables or sec-
ondary indexes (e.g., to generate various performance
reports or skew reports), modify table configurations or
operating parameter for tables or secondary indexes (e.g., by
modifying the amount of throughput capacity, adding stor-
age capacity for additional read replicas, splitting partitions
or moving partitions), and/or describe tables or secondary
indexes. In some embodiments, control plane APIs that
perform updates to table-level entries may invoke asynchro-
nous workflows to perform a requested operation. Methods
that request “description” information (e.g., via a descri-
beTables API) may simply return the current known state of
the tables or secondary indexes maintained by the service on
behalf of a client/user. The data plane APIs provided by
database service 210 (and/or the underlying system) may be
used to perform item-level operations, such as transactions,
storing, deleting, retrieving, and/or updating items and/or
their attributes, or performing index-based search-type
operations across multiple items in a table, such as queries
and scans.

[0039] The APIs provided by the service described herein
may support request and response parameters encoded in
one or more industry-standard or proprietary data exchange
formats, in different embodiments. For example, in various
embodiments, requests and responses may adhere to a
human-readable (e.g., text-based) data interchange standard,
(e.g., JavaScript Object Notation, or JSON), or may be
represented using a binary encoding (which, in some cases,
may be more compact than a text-based representation). In
various embodiments, the system may supply default values
(e.g., system-wide, user-specific, or account-specific default
values) for one or more of the input parameters of the APIs
described herein.

[0040] Database service 210 may include support for some
or all of the following operations on data maintained in a
table (or index) by the service on behalf of a storage service
client: perform a transaction (inclusive of one or more
operations on one or more items in one or more tables), put
(or store) an item, get (or retrieve) one or more items having
a specified primary key, delete an item, update the attributes
in a single item, query for items using an index, and scan
(e.g., list items) over the whole table, optionally filtering the
items returned, or conditional variations on the operations
described above that are atomically performed (e.g., condi-
tional put, conditional get, conditional delete, conditional
update, etc.). For example, the database service 210 (and/or
underlying system) described herein may provide various
data plane APIs for performing item-level operations, such
as a Transactltems API, Putltem API, a Getltem (or Get-
Items) API, a Deleteltem API, and/or an Updateltem API, as
well as one or more index-based seek/traversal operations
across multiple items in a table, such as a Query API and/or
a Scan APL

[0041] FIG. 3A illustrates a routing path for requests to
perform transactions. A request routing node 310 may
receive a request 301 to perform a transaction (e.g., a
Transactltems request). In some embodiments, the request
301 may include one or more operations to perform as part

Mar. 3, 2022

of the transaction (e.g., read/get, write/update, insert/add,
delete/remove operations). In at least some embodiments,
the request 301 may include preconditions to be met in order
for the transaction to commit. For instance, a precondition
may check that an attribute exists or that it has a specific
value or that its value begins with a particular string.
Preconditions may involve any items in any tables and are
not limited to the items being updated in the transaction
(e.g., a transaction is performed upon table A but a precon-
dition can be specified and evaluated with respect to table
B). As an example, suppose that an application wishes to
transfer $50 from Bob’s bank account to Mary’s account.
This application may first read both Bob’s and Mary’s
account balances, compute the adjusted amounts, and then
submit a transaction that writes new balances with the
condition that the balances did not change between when
they were read and when the transaction was processed.

[0042] Request routing node 310 may dispatch or send the
request 303 to perform the transaction 303 to a selected
transaction coordination node 320 (e.g., according to various
load balancing or other request distribution techniques), in
some embodiments. Transaction coordinator node 320 may
perform a transaction protocol 305, discussed in detail
below with regard to FIGS. 4 and 8, in some embodiments.
Request may be sent to one or multiple storage nodes, such
as storage nodes 330a, 3305, and 330n. Storage nodes 330
may order the transaction (or reject/abort/fail it) according to
a timestamp value or other sequence value assigned to it by
transaction coordinator node 320, as discussed above with
regard to FIG. 1 and below with regard to FIGS. 4, 5, 7, and
9-12 along with other transactions received from transaction
coordinator 320 and/or directly from request routing node
310 (or other request routing node). Transaction coordinator
node 320 may return an indication as to whether the trans-
action aborted or completed successfully to request routing
node 310, which in turn may return an indication as to
whether the transaction aborted or completed 309 (e.g., to a
requesting client).

[0043] FIG. 3B illustrates a routing path for requests to
perform non-transactions, according to some embodiments.
As indicated at 341, a request routing node 340 may receive
a request to read, inset, update, or delete an individual item
in a database table, in some embodiments. Instead of routing
the request to a transaction coordinator, like transaction
coordinator 320 in FIG. 3A, request routing node 340 may
direct the request 343 directly to a storage node that stores
the item (e.g., in the appropriate partition of a database
table), in some embodiments. For example, request routing
node 340 may maintain a listing or other information
describing a partitioning scheme for a table (e.g., a primary
key value and hash function to determine a hash value that
may be mapped to one partition of the table. Storage node
350 may determine whether to complete or fail the request
to read, insert, update, or delete the individual item, accord-
ing to the techniques discussed below with regard to FIGS.
9-12, independently from other storage nodes or a transac-
tion coordinator perform a transaction that includes an
operation to be performed at storage node 350. As indicated
at 345 and 347, an indication that the request completed or
failed may be provided to request routing node 340, which
may in turn provide the request completion/failure notifica-
tion to a client.

[0044] FIG. 4 is a sequence diagram illustrating a trans-
action protocol, according to some embodiments. In at least

US 2022/0067025 Al

some embodiments, a two-phase protocol may be imple-
mented for a transaction coordinator to determine whether a
transaction can be committed to a distributed database. A
request to perform a transaction may be received 432 at
transaction coordinator node 410, in some embodiments.
Transaction coordinator 410 may record the transaction 434
in transaction ledger 420, in some embodiments. FIG. 5A is
an example transaction ledger for performing a transaction
protocol, according to some embodiments.

[0045] In various embodiments, transaction ledger 420
may be maintained to ensure the survival of transactions
beyond the failure of individual transaction coordinators.
For example, to ensure that a failure of a transaction
coordinator, such as transaction coordinator 410, does not
result in a partially executed transaction, which would
violate an atomicity guarantee for the transaction that all (or
none) of a transaction completes, the transaction coordinator
may store various information about the transaction so that
the transaction can be resumed by another transaction coor-
dinator in some embodiments. In FIG. 5A, transaction
ledger 510 (which may be similar to transaction ledger 420
in FIG. 4) may store transactions across database service 210
(or a portion thereof), in some embodiments.

[0046] A transaction entry, such as entries 512a and 51254,
may include, a timestamp assigned to the transaction by the
transaction coordinator 522a and 5225, preconditions (if
any) of operations performed in the transaction 526a and
5265, the operations to be performed (e.g., reads, writes,
updates, inserts, additions, deletions, etc.) 5284 and 52854
and an identifier of the assigned transaction coordinator
532a and 532b, in some embodiments. The state of the
transaction, transaction state 524a and 524b, may be
included and updated, in some embodiments. For example,
the possible states of transaction state 524 may include
“Started,” “Committed,” “Completed,” or “Aborted.”
[0047] A transaction ledger may be implemented using
various storage technologies or systems, in some embodi-
ments. For example, transaction ledger 420 may be imple-
mented as another table in database service 210 or hosted in
another type of storage system or service in provider net-
work 200. In at least some embodiments, transaction ledge
may be organized as an append-only log. In some embodi-
ments, transaction ledger 420 may support operations for
scanning and truncating the log. For example, scanning may
be used for transaction recovery, as discussed below with
regard to FIGS. 6A and 6B. In some embodiments, portions
of the ledger that contain already committed or aborted
transactions can be discarded using truncation to reclaim
space and to reduce the number of records (e.g., when
scanned for transaction recovery). In some embodiments,
transaction records may be retained for a period of time to
support additional features such as monitoring and/or debug-
ging. In some embodiments, transactions on different tables
may share the same transaction ledger. In some embodi-
ments, multiple transaction ledgers could be used in parallel.
In some embodiments, transactions can be assigned to a
ledger using a fixed assignment, e.g. all transactions on
tables in a specific customer account use a specific ledger, or
can be randomly assigned to a transaction ledger. In at least
some embodiments, transaction ledgers may be used to
provide a stream of transactions performed in database
and/or table that are sent to another system.

[0048] Turning back to FIG. 4, transaction coordinator
may send requests to prepare an individual item within the

Mar. 3, 2022

transaction, such as requests 436, 440, and 444, for the
transaction to the storage nodes that store the transaction,
such as storage nodes 430qa, 4305, and 430c¢. Storage nodes
430 may also receive a timestamp value assigned to the
transaction, as well as further information, for determining
whether the storage node 430 can accept the transaction for
the item, in some embodiments, based on an evaluation of
the timestamp and other information maintained for the item
by storage nodes 430aq.

[0049] FIG. 5B is an example item that includes system
data for ordering transaction requests according to an inde-
pendently assigned sequence and application data, according
to some embodiments. Item 540 may maintain system data
560 (e.g., as attributes of the item 540 or in a separate
collection of data describing one or multiple items) and
application data 570 (e.g., application visible data used by an
application when interacting with item 540), in some
embodiments. System data 560 may include various infor-
mation for ordering, accepting, and/or rejecting transaction
requests and non-transaction requests at storage nodes. For
example, system data 560 may include a timestamp of a
latest committed transaction operation 542 that has written
to the item, an identifier 544 of a transaction coordinator that
submitted the transaction of the latest committed transaction
operation 542 that has written to the item, a timestamp of the
latest non-transaction write to the item 546, a timestamp of
the latest read of the item 548, a timestamp of pending
transaction 552 that intends to write to the item, an indica-
tion of a successfully checked precondition for the pending
transaction 554, an indication of whether item has been
deleted according to a tombstone marker 556, and a history
or set of transactions 558 that have been accepted but not yet
performed, in some embodiments.

[0050] Returning to FIG. 4, storage nodes 430 may send
respective determinations 438, 442, and 446 to transaction
coordinator node 410, indicating whether the transaction for
the item is accepted or rejected by the storage node. If
transaction coordinator node 410 does not receive a
response, transaction coordinator node 410 may retry a
number of times before aborting the transaction. Based on
the responses, transaction coordinator 410 may determine
whether the transaction can be committed or aborted, in
some embodiments. An update to transaction ledger 420 to
reflect the decision 448 may be made, in some embodiments.
The first phase 402 may be complete. Please note that further
interactions as discussed below with regard to FIG. 8 may be
performed if the transaction aborts which are not illustrated.
[0051] If the transaction is committed, second phase 404
may be performed by transaction coordinator node 410.
Transaction coordinator node 410 may send respective
requests to perform the item transactions, 452, 456, and 460,
to storage nodes 430. Once storage nodes 430 have per-
formed the item transactions (which may be performed
according to an ordering or timing determined by storage
nodes 430 after receipt of requests 452, 456, and 460, in
some embodiments, then storage nodes 430 may return
responses indicating completion, such as responses 454,
458, and 462. Transaction coordinator 410 may record 464
the state of the transaction as completed in transaction ledger
420 and send a completion indication 466 for the transaction
(e.g., to a client or request routing node to forward to a
client).

[0052] Transaction recovery may be implemented in vari-
ous embodiments. Transaction recovery, such as transaction

US 2022/0067025 Al

recovery 222 illustrated in FIGS. 2, 6A, and 6B may scan a
transaction ledger for transactions for which there are
“started” records but no subsequent “completed” or
“aborted” records, in some embodiments. For example, as
illustrated in FIG. 6A transaction recovery 222 may perform
one or more requests to scan for stalled transactions that are
“started” but have not progressed to a “committed” state, as
indicated at 622. Those stalled transactions not committed in
transaction ledger 610 may be indicated to transaction
recovery 222. Transaction recovery 222 may then abort
these transactions. For example, transaction recovery 222
may update 626 the transaction in transaction ledger 610 to
an “aborted” state. Transaction recovery 222 may, in some
embodiments, send notifications 628 to the storage nodes
620 that may have pending requests for the transaction that
the transaction has been aborted.

[0053] FIG. 6B may illustrate scenarios where transaction
recovery can account for failures of transaction coordinator
nodes. For example, as indicated at 632, transaction recov-
ery may scan for stalled transactions that have a “commit-
ted” state. These stalled committed transactions 634 may be
indicated to transaction recovery 222. Transaction recovery
222 can then assign a new transaction coordinator 638 to the
transaction. For example, transaction coordinator may send
a request (e.g., via a load balancer) to assign a transaction
638 (as if the request were dispatched by a request routing
node). The transaction coordinator node 630 may then check
the state in transaction ledger 610 and begin the second
phase of the transaction, in some embodiments. Transaction
recovery 222 may update the transaction coordinator assign-
ment 636 in transaction ledger 610, in some embodiments.
Multiple failures of a transaction coordinator can be handled
in similar fashion to the techniques discussed above, in some
embodiments.

[0054] Ifin a scenario where two transaction coordinators
were executing the same transaction at the same time,
storage nodes may implement idempotent performance of
transaction operations to ensure that duplicated requests will
be rejected as obsolete since the transaction timestamp is not
greater than that of previously written items, as discussed
below, in some embodiments. The same situation could
occur if a coordinator fails and the new coordinator repeats
some of the previously completed work. Therefore, trans-
action coordinators may interpret “obsoleted” responses
from storage nodes the same as a “succeeded” response in
order to progress through the transaction protocol, in some
embodiments.

[0055] The examples of a database service that imple-
ments as discussed in FIGS. 2-6B above have been given in
regard to a database service (e.g., a non-relational or NoSQL
database service or a relational database service). However,
various other types of data access, management, or control
systems or data processing systems may implement trans-
actions across a distributed database and thus may imple-
ment ordering transaction requests in a distributed database
according to an independently assigned sequence, in other
embodiments. FIG. 7 is a high-level flowchart illustrating
various methods and techniques to implement ordering
transaction requests in a distributed database according to an
independently assigned sequence, according to some
embodiments. These techniques, as well as the techniques
discussed with regard to FIGS. 8-12, may be implemented
using components or systems as described above with regard
to FIGS. 2-6B, as well as other types of databases, storage

Mar. 3, 2022

engines, or systems, and thus the following discussion is not
intended to be limiting as to the other types of systems that
may implement the described techniques.

[0056] As indicated at 710, a first request may be received
to access a distributed database that corresponds to a trans-
action coordinator node and is assigned a first sequence
number by the transaction coordinator node to order perfor-
mance of the first request at a storage node of the distributed
database, in various embodiments. For example, a request to
perform a transaction, as discussed above with regard to
FIGS. 1, 3A, and 8, and FIG. 8 below may be received at a
database system and dispatched or routed to a transaction
coordinator node. In some embodiments, the request may be
explicitly pointed to the transaction coordinator node (e.g.,
in scenarios where the transaction coordinator node may be
identified to a client application as a transaction engine for
the database).

[0057] The request may be formatted according to a
protocol, interface (e.g., API), or other structure that iden-
tifies the request as a transaction, in some embodiments. The
request may include the types of operation(s) to perform, in
some embodiments, as a batch request. In some embodi-
ments, the request may be the first of many requests asso-
ciated with the transaction (e.g., after a BEGIN TRANS-
ACTION SQL statement) which may subsequently submit
additional operations to be included in the transaction, in
some embodiments. Other information, such as precondi-
tions for performing operations may also be included, in
some embodiments. The transaction coordinator node may
assign the transaction a sequence number (e.g., based on a
monotonically increasing sequence or a timestamp value
based on clock accessible to the transaction coordinator
node), in some embodiments. The transaction coordinator
node may forward the request to the storage node (or a
portion thereof) to the storage node, in some embodiments.
[0058] As indicated at 720, a second request may be
received to access the distributed database that corresponds
to the storage node and is assigned a second sequence
number by the storage node to order performance of the
second request at the storage node, in some embodiments.
The second request may, for example not be a transaction
request but may be a request to access an individual item
(e.g., a request to read, add, insert, update, modify, write, or
delete an item), in some embodiments. The storage node
may assign the second sequence number to the second
request independently from the assignment of the first
sequence number by the transaction coordinator node, in
some embodiments. For example, the storage node may use
a different clock (e.g., its own clock) to assign a timestamp
of receipt of the second request as the second sequence
number for the request. In some embodiments, the storage
node may assign a sequence number that is provided to the
storage node in the request (e.g., from a request routing node
or client) but one that is not received from a storage node.
[0059] As indicated at 730, the first and second requests
may be performed at the storage node according to an order
determined based, at least in part, on the assigned sequence
numbers. For example, sequence number comparisons (e.g.,
like the timestamp comparisons discussed below) may be
performed in order to order the requests. In some scenarios,
the ordering may be further determined based on other
factors, such as the arrival of the requests at the storage node
and/or the type of request (e.g., a transaction or non-
transaction, what type of non-transaction request, etc.).

US 2022/0067025 Al

Because the storage node can perform the ordering (and/or
rejecting of requests, in some instances), non-transaction
requests may not have to be performed using a transaction
protocol, improving the performance of the non-transaction
requests (and reducing burdens on a transaction coordinator
node), in some embodiments.

[0060] A transaction coordinator node may implement
various transaction protocols to determine whether a trans-
action can be performed or aborted at distributed database.
FIG. 8 is a high-level flowchart illustrating various methods
and techniques to coordinate the performance of a transac-
tion across storage nodes that order transaction requests,
according to some embodiments. As indicated at 810, a
request to perform a transaction may be received, in some
embodiments. The request may be received at a transaction
coordinator node, for instance, which may assign a time-
stamp to the transaction, as indicated at 812. As indicated at
814, the transaction may be recorded in a transaction ledger,
in some embodiments. For example, an entry for the trans-
action identifying the state of the transaction (e.g., “started”)
may be created, along with other information, such as a
timestamp assigned to the transaction by the transaction
coordinator, preconditions (if any) of operations performed
in the transaction, the operations to be performed (e.g.,
reads, writes, updates, inserts, additions, deletions, etc.), and
an identifier of the assigned transaction coordinator node, in
some embodiments.

[0061] The transaction may be divided into slices or other
portions so that the performance of an operation may be
individually coordinated, in some embodiments. As indi-
cated at 816, prepare request(s) may be sent to storage
node(s) for item request(s) in the transaction, in some
embodiments. For example, a key value for each item
operated on in the transaction may be used to identify a
partition of the database table at which the item is stored
(and a corresponding storage node for the partition), in some
embodiments. The request(s) may include the assigned
timestamp for storage node decision-making, as discussed
below.

[0062] As indicated at 818, if responses are not received
from each storage node, then, the prepare requests (for the
non-responsive storage nodes) may be retried, in some
embodiments, as indicated at 820. In some embodiments,
not illustrated, a transaction may be aborted if the storage
nodes do not respond within a threshold period of time. If all
responses are received, then a determination may be made as
to whether the transaction was accepted, as indicated at 822.
For example, if all storage nodes do not indicate that the
individual requests to prepare the items for the transactions
were accepted, then the transaction is to be aborted, as
indicated by the negative exit from 822. As indicated at 824,
in such a scenario, the transaction ledger may be updated to
abort the transaction and a notification of the aborted trans-
action may be send to a client (or request routing node) and
storage node(s) to remove the transaction, as indicated at
826, in some embodiments.

[0063] If the transaction is accepted, then as indicated at
828, the transaction ledger may be updated to indicate that
the transaction is accepted, in some embodiments. As indi-
cated at 830, requests to perform the item requests in the
transaction, as indicated at 830, in some embodiments. As
indicated at 832, a determination may be made as to whether
completion acknowledgements have been received from
each storage node. If not, then the requests to perform may

Mar. 3, 2022

be retried as indicated at 834. Once completions are received
from each storage node, then as indicated at 836, the
transaction ledger may be updated to identify the transaction
as complete, in some embodiments. As indicated at 838, a
notification may be sent that the transaction completed for a
client, in some embodiments (e.g., to a client directly or
request routing node).

[0064] As noted above, storage nodes may determine the
ordering and/or performance of requests independently from
other storage nodes (or a transaction coordinator node for
non-transaction requests), in some embodiments. FIG. 9 is a
high-level flowchart illustrating various methods and tech-
niques to handle a request to write an item as part of a
transaction, according to some embodiments. As indicated at
910, a request to write an item as part of a transaction is
received that is assigned a timestamp from a transaction
coordinator, in some embodiments. Various checks may be
performed to determine whether the request can be acknowl-
edged as accepted.

[0065] For example, as indicated at 920 the storage node
checks that there are no pending, already prepared, transac-
tions involving this item, in one embodiment. As indicated
at 930, the storage checks that the preconditions (if existent)
for the given item are met, in some embodiments. For
example, if a precondition specifies a value for another
attribute of another item in another table (e.g.,
value=="TRUE”), then the precondition may be satisfied.
As indicated at 940, the storage node may check that the
latest write performed on the item, either by a transaction or
a singleton operation (e.g., a write, delete, update, add, etc.),
did not have a later timestamp, thereby rendering the current
transaction obsolete, in some embodiments. For example, a
timestamp comparison may be made alone, but if a tied
value is found (which would be impossible if the transac-
tions were from the same transaction coordinator node), then
the transaction coordinator identifier may be used as a
tie-break value (e.g., the lesser of the transaction identifier
values being the “winner”).

[0066] As indicated at 950, the storage node may check
that a prior read did not have a later timestamp than this
proposed transaction, in some embodiments. By checking
for this scenario, the storage node may prevent the transac-
tion from performing a write that would have affect the
result of that read, in some embodiments. As indicated at
960, the storage node may check to determine if the write
request is valid. For example, by determining that writing
the item would not raise any validation errors such as
exceeding the maximum item size or adding a numerical
value to a string attribute.

[0067] For a request that fails any one of the checks, the
request may be acknowledged by the storage node as
rejected, in some embodiments, as indicated at 990. For
requests that satisfy the checks, system data may be updated,
as indicated at 970 in order to allow for proper evaluation of
future requests (e.g., transactions and other non-transaction
requests). The system data for the item may be updated to
indicate that the transaction is pending to write the item and
the precondition for the item was satisfied, in some embodi-
ments. As indicated at 980, the request may be acknowl-
edged as accepted at the storage node, in some embodi-
ments.

[0068] Application of the described checks can lead to
various different acceptance/rejection scenarios. Consider
the case of a new transaction (Tx2) whose prepare message

US 2022/0067025 Al

arrives at a storage node after a previously completed
transaction (Tx1) and writes at least one of the same items.
If Tx2 was assigned an earlier timestamp than that of Tx1,
then Tx2 may be rejected. In this scenario, executing Tx2
after Tx1 may leave the table in a state that is not consistent
with the respective assigned timestamps. Thus, in some
cases ordering of transactions different from their respective
timestamps can occur if different transaction coordinator
nodes assigned timestamps to Tx1 and Tx2, and these
coordinators have clocks that are out-of-sync. However, in
other scenarios where Tx2 has a later commit time, Tx2 will
be accepted unless Tx2 has a precondition on the item that
is not currently satisfied, as evaluated at 930.

[0069] Consider another example. Suppose that Tx2
arrives after Tx1 at a storage node, and Tx1 has been
accepted but not completed. Transactions Tx1 and Tx2 are
concurrent transactions that are attempting to write the same
item, and thus are conflicting. But that does not mean that
Tx2 is necessarily rejected. For example, if Tx2 was
assigned an earlier timestamp than that of conflicting trans-
action Tx1, then Tx2 may likely be rejected. If Tx2 had been
executed before Tx1 arrived, Tx2 would have left the table
in a different state, and preconditions for Tx1 that were
satisfied without Tx2 may have been violated with Tx2’s
prior execution. This could lead to Tx2 being rejected.
However, it may be the case that Tx1 had no conditions on
this item, in which case Tx2 can be accepted even though
Tx1 has also been accepted. When accepting multiple con-
current transactions, the storage node may ensure that the
concurrent transaction writes are performed in the correct
order during a phase two protocol, similar to that discussed
above with regard to FIG. 8, in some embodiments.

[0070] Another scenario may be where Tx2 has a commit
time that is later than Tx1. In this case, Tx2 can also be
accepted if it has no preconditions on this item. On the other
hand, if Tx2 has a precondition, it is possible that the
execution of Tx1 will affect whether this condition is met.
While the storage node could delay making a decision about
Tx2 until after Tx1 completes, in some embodiments, in
other embodiments the storage node may reject Tx2.

[0071] In various embodiments, a storage node may
always perform the writes of any transactions that it has
accepted and that were committed. However, the storage
node may not necessarily physically perform the writes in
the order defined by their timestamps. The storage node can,
for instance, ensure that the order in which transactions are
executed leaves the tables in the equivalent state as if the
transactions were executed serially. For example, suppose
that two transactions Tx1 and Tx2 have both been accepted
by some storage node, and that transaction Tx1 has a
timestamp less than that of transaction Tx2. If the phase two
for Tx1 is performed before phase two for Tx2, then the
writes may be performed in the correct order as defined by
the timestamps. However, if the storage node is asked to
perform Tx2 while Tx1 is still in the accepted state, then Tx2
can be processed immediately as long as it is performing a
request to add/put/insert the item or delete the item. Later,
when the writes for Tx1 are requested, these operations can
be ignored since they were made obsolete by Tx2’s actions.
On the other hand, if Tx2’s write is a write/update/modify
operation, then its outcome may be determined based on
Tx1’s write. In this case, the request to perform Tx2 may be
rejected. The transaction coordinator node may wait a small

Mar. 3, 2022

amount of time to give Tx1 a chance to complete before
retrying phase two for Tx2, in some embodiments.

[0072] In some embodiments, read requests may not wait
for in-progress transactions, even if they desire strong con-
sistency. A consistency level specified for a read request that
is “strongly consistent” may return the result of any previ-
ously completed transaction or non-transactional write, and
may observe the result of a committed in-progress transac-
tion, in some embodiments. A consistency level specified for
a read request that is “eventually consistent” may be ser-
viced by reading the current value of an item even if there
are pending transactions. Since items may not be written
until after a transaction has reached the commit decision,
read requests can read the latest value that was written, in
some embodiments. FIG. 10 is a high-level flowchart illus-
trating various methods and techniques to handle a request
to read an item, according to some embodiments.

[0073] As indicated at 1010, a request to read an item may
be received, in some embodiments. A timestamp may be
assigned to the read request, in some embodiments, as
indicated at 1020. For example, timestamps may be assigned
that are later than any completed transactions and earlier
than any accepted transactions, in some embodiments. In
other embodiments, the timestamp may be based on the
clock of the storage node.

[0074] As indicated at 1030, if the item was written with
a later timestamp than the assigned timestamp (e.g., as
described in the system data for the item), then the request
to read the item may be failed, as indicated at 1070. In some
embodiments, as indicated at 1040, if there any pending or
accepted transactions with earlier timestamps than the
assigned timestamp, then the request to read the item may be
failed, as indicated at 1070.

[0075] For non-failed writes, system metadata for the item
may be updated to identify the assigned timestamp as the
latest read, as indicated at 1050, in some embodiments. As
indicated at 1060, the request to read the item may then be
performed, in some embodiments. Alternatively, if storage
nodes maintained a multi-version store for items, reads with
timestamps in the past could be serviced even if later writes
have already been performed, in some embodiments. In
some embodiments, queries, scans, or batch read requests
may not be transactionally consistent.

[0076] In wvarious embodiments, when storage nodes
receive requests to insert/put an item, update/write an item,
or delete an item outside of a transaction, these operations
may be assigned timestamps by the storage node, which may
assign a timestamp in a manner that avoids conflicts with
in-process transactions whenever possible, in some embodi-
ments. For example, consider a scenario in which a request
to put an item is received after transaction Tx1 has com-
pleted its write to this item and after transaction Tx2 has
been accepted. If the newly received request to put the item
is unconditional, then it can be assigned a later time than Tx2
and performed immediately. If Tx2 has no precondition on
the item, then the new put item request can be assigned a
timestamp that is between Tx1 and Tx2 and be processed
immediately. If Tx2 and the request to put the item are both
conditional writes to the same item, then the request to put
the item may be rejected since Tx2 has already been
accepted, in some embodiments. When the item is written,
the timestamp that was assigned to the request to put the
item may be stored as a system attribute on the item, as noted
above in FIG. 5B, in some embodiments.

US 2022/0067025 Al

[0077] FIG. 11 is a high-level flowchart illustrating vari-
ous methods and techniques to handle a request to insert an
item, according to some embodiments. As indicated at 1110,
a request to insert or put an item may be received, in some
embodiments. The request may be assigned a timestamp, as
indicated at 1120, in some embodiments. As indicated at
1130, if the assigned timestamp is not later than the latest
transaction and write to the item’s respective timestamps,
the request may be identified as obsolete, as indicated at
1132 in some embodiments.

[0078] As indicated at 1140, a determination may be made
as to whether the assigned timestamp for the request is later
than the latest read of the item, if not, then the request may
be failed, as indicated at 1152, in some embodiments. As
indicated at 1150, a determination may be made as to
whether a transaction is pending with a later timestamp and
an evaluated precondition. If so, then as indicated at 1152,
the request may be failed. If not, then as indicated at 1160,
the request to insert the item may be performed, in some
embodiments.

[0079] Consider again the examples discussed above with
regard to Tx1 and Tx2. Requests to update or write items
may not be assigned a timestamp that is later than Tx2
without waiting for Tx2 to complete, in some embodiments.
So a request to update or write an item may be rejected if
Tx2 has a precondition that prevents the request from
jumping ahead in the serialization order, in some embodi-
ments. In various embodiments, requests to delete items may
be handled in a similar manner, except that the item may not
be deleted immediately. The timestamp system attribute may
be retained for some period of time as a tombstone, in some
embodiments.

[0080] FIG. 12 is a high-level flowchart illustrating vari-
ous methods and techniques to handle a request to write or
delete an item, according to some embodiments. As indi-
cated at 1210, a request to write or delete an item may be
received, in some embodiments. The request may be
assigned a timestamp, as indicated at 1220, in some embodi-
ments. As indicated at 1230, if the assigned timestamp is not
later than the latest transaction and write to the item’s
respective timestamps, the request may be identified as
obsolete, as indicated at 1232 in some embodiments.
[0081] As indicated at 1240, a determination may be made
as to whether the assigned timestamp for the request is later
than the latest read of the item, if not, then the request may
be failed, as indicated at 1262, in some embodiments. As
indicated at 1250, a determination may be made as to
whether a transaction is pending with an earlier timestamp
is complete. If so, then as indicated at 1262, the request may
be failed. As indicated at 1260, a determination may be made
as to whether a transaction is pending with a later timestamp
and an evaluated precondition. If so, then as indicated at
1262, the request may be failed. If not, then as indicated at
1270, the request to write or delete the item may be
performed, in some embodiments.

[0082] The methods described herein may in various
embodiments be implemented by any combination of hard-
ware and software. For example, in one embodiment, the
methods may be implemented by a computer system (e.g., a
computer system as in FIG. 13) that includes one or more
processors executing program instructions stored on a com-
puter-readable storage medium coupled to the processors.
The program instructions may implement the functionality
described herein (e.g., the functionality of various servers

Mar. 3, 2022

and other components that implement the distributed sys-
tems described herein). The various methods as illustrated in
the figures and described herein represent example embodi-
ments of methods. The order of any method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

[0083] Embodiments to implement ordering transaction
requests in a distributed database according to an indepen-
dently assigned sequence as described herein may be
executed on one or more computer systems, which may
interact with various other devices. One such computer
system is illustrated by FIG. 13. In different embodiments,
computer system 2000 may be any of various types of
devices, including, but not limited to, a personal computer
system, desktop computer, laptop, notebook, or netbook
computer, mainframe computer system, handheld computer,
workstation, network computer, a camera, a set top box, a
mobile device, a consumer device, video game console,
handheld video game device, application server, storage
device, a peripheral device such as a switch, modem, router,
or in general any type of computing node or compute node,
computing device, compute device, or electronic device.
[0084] In the illustrated embodiment, computer system
2000 includes one or more processors 2010 coupled to a
system memory 2020 via an input/output (I/O) interface
2030. Computer system 2000 further includes a network
interface 2040 coupled to 1/O interface 2030, and one or
more input/output devices 2050, such as cursor control
device, keyboard, and display(s). Display(s) may include
standard computer monitor(s) and/or other display systems,
technologies or devices, in one embodiment. In some
embodiments, it is contemplated that embodiments may be
implemented using a single instance of computer system
2000, while in other embodiments multiple such systems, or
multiple nodes making up computer system 2000, may host
different portions or instances of embodiments. For
example, in one embodiment some elements may be imple-
mented via one or more nodes of computer system 2000 that
are distinct from those nodes implementing other elements.
[0085] In various embodiments, computer system 2000
may be a uniprocessor system including one processor 2010,
or a multiprocessor system including several processors
2010 (e.g., two, four, eight, or another suitable number).
Processors 2010 may be any suitable processor capable of
executing instructions, in one embodiment. For example, in
various embodiments, processors 2010 may be general-
purpose or embedded processors implementing any of a
variety of instruction set architectures (ISAs), such as the
x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable
ISA. In multiprocessor systems, each of processors 2010
may commonly, but not necessarily, implement the same
ISA.

[0086] In some embodiments, at least one processor 2010
may be a graphics processing unit. A graphics processing
unit or GPU may be considered a dedicated graphics-
rendering device for a personal computer, workstation, game
console or other computing or electronic device, in one
embodiment. Modern GPUs may be very efficient at
manipulating and displaying computer graphics, and their
highly parallel structure may make them more effective than
typical CPUs for a range of complex graphical algorithms.
For example, a graphics processor may implement a number
of graphics primitive operations in a way that makes execut-
ing them much faster than drawing directly to the screen

US 2022/0067025 Al

with a host central processing unit (CPU). In various
embodiments, graphics rendering may, at least in part, be
implemented by program instructions for execution on one
of, or parallel execution on two or more of, such GPUs. The
GPU(s) may implement one or more application program-
mer interfaces (APIs) that permit programmers to invoke the
functionality of the GPU(s), in one embodiment.

[0087] System memory 2020 may store program instruc-
tions 2025 and/or data accessible by processor 2010, in one
embodiment. In various embodiments, system memory 2020
may be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory,
or any other type of memory. In the illustrated embodiment,
program instructions and data implementing desired func-
tions, such as those described above are shown stored within
system memory 2020 as program instructions 2025 and data
storage 2035, respectively. In other embodiments, program
instructions and/or data may be received, sent or stored upon
different types of computer-accessible media or on similar
media separate from system memory 2020 or computer
system 2000. A computer-accessible medium may include
non-transitory storage media or memory media such as
magnetic or optical media, e.g., disk or CD/DVD-ROM
coupled to computer system 2000 via /O interface 2030.
Program instructions and data stored via a computer-acces-
sible medium may be transmitted by transmission media or
signals such as electrical, electromagnetic, or digital signals,
which may be conveyed via a communication medium such
as a network and/or a wireless link, such as may be imple-
mented via network interface 2040, in one embodiment.

[0088] In one embodiment, 1/O interface 2030 may be
coordinate [/O traffic between processor 2010, system
memory 2020, and any peripheral devices in the device,
including network interface 2040 or other peripheral inter-
faces, such as input/output devices 2050. In some embodi-
ments, 1/O interface 2030 may perform any necessary pro-
tocol, timing or other data transformations to convert data
signals from one component (e.g., system memory 2020)
into a format suitable for use by another component (e.g.,
processor 2010). In some embodiments, /O interface 2030
may include support for devices attached through various
types of peripheral buses, such as a variant of the Peripheral
Component Interconnect (PCI) bus standard or the Universal
Serial Bus (USB) standard, for example. In some embodi-
ments, the function of I/O interface 2030 may be split into
two or more separate components, such as a north bridge and
a south bridge, for example. In addition, in some embodi-
ments some or all of the functionality of /O interface 2030,
such as an interface to system memory 2020, may be
incorporated directly into processor 2010.

[0089] Network interface 2040 may allow data to be
exchanged between computer system 2000 and other
devices attached to a network, such as other computer
systems, or between nodes of computer system 2000, in one
embodiment. In various embodiments, network interface
2040 may support communication via wired or wireless
general data networks, such as any suitable type of Ethernet
network, for example; via telecommunications/telephony
networks such as analog voice networks or digital fiber
communications networks; via storage areca networks such
as Fibre Channel SANs, or via any other suitable type of
network and/or protocol.

Mar. 3, 2022

[0090] Input/output devices 2050 may, in some embodi-
ments, include one or more display terminals, keyboards,
keypads, touchpads, scanning devices, voice or optical rec-
ognition devices, or any other devices suitable for entering
or retrieving data by one or more computer system 2000, in
one embodiment. Multiple input/output devices 2050 may
be present in computer system 2000 or may be distributed on
various nodes of computer system 2000, in one embodiment.
In some embodiments, similar input/output devices may be
separate from computer system 2000 and may interact with
one or more nodes of computer system 2000 through a wired
or wireless connection, such as over network interface 2040.

[0091] As shown in FIG. 13, memory 2020 may include
program instructions 2025, that implement the various
embodiments of the systems as described herein, and data
store 2035, comprising various data accessible by program
instructions 2025, in one embodiment. In one embodiment,
program instructions 2025 may include software elements of
embodiments as described herein and as illustrated in the
Figures. Data storage 2035 may include data that may be
used in embodiments. In other embodiments, other or dif-
ferent software elements and data may be included.

[0092] Those skilled in the art will appreciate that com-
puter system 2000 is merely illustrative and is not intended
to limit the scope of the embodiments as described herein.
In particular, the computer system and devices may include
any combination of hardware or software that can perform
the indicated functions, including a computer, personal
computer system, desktop computer, laptop, notebook, or
netbook computer, mainframe computer system, handheld
computer, workstation, network computer, a camera, a set
top box, a mobile device, network device, internet appliance,
PDA, wireless phones, pagers, a consumer device, video
game console, handheld video game device, application
server, storage device, a peripheral device such as a switch,
modem, router, or in general any type of computing or
electronic device. Computer system 2000 may also be
connected to other devices that are not illustrated, or instead
may operate as a stand-alone system. In addition, the func-
tionality provided by the illustrated components may in
some embodiments be combined in fewer components or
distributed in additional components. Similarly, in some
embodiments, the functionality of some of the illustrated
components may not be provided and/or other additional
functionality may be available.

[0093] Those skilled in the art will also appreciate that,
while various items are illustrated as being stored in memory
or on storage while being used, these items or portions of
them may be transferred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, in other embodiments some or all of
the software components may execute in memory on another
device and communicate with the illustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as instructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-readable medium separate from computer system 2000
may be transmitted to computer system 2000 via transmis-
sion media or signals such as electrical, electromagnetic, or
digital signals, conveyed via a communication medium such
as a network and/or a wireless link. This computer readable

US 2022/0067025 Al

storage medium may be non-transitory. Various embodi-
ments may further include receiving, sending or storing
instructions and/or data implemented in accordance with the
foregoing description upon a computer-accessible medium.
Accordingly, the present invention may be practiced with
other computer system configurations.

[0094] Various embodiments may further include receiv-
ing, sending or storing instructions and/or data implemented
in accordance with the foregoing description upon a com-
puter-accessible medium. Generally speaking, a computer-
accessible medium may include storage media or memory
media such as magnetic or optical media, e.g., disk or
DVD/CD-ROM, non-volatile media such as RAM (e.g.
SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc., as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

[0095] The various methods as illustrated in the Figures
and described herein represent example embodiments of
methods. The methods may be implemented in software,
hardware, or a combination thereof. The order of method
may be changed, and various elements may be added,
reordered, combined, omitted, modified, etc.

[0096] Various modifications and changes may be made as
would be obvious to a person skilled in the art having the
benefit of this disclosure. It is intended that the invention
embrace all such modifications and changes and, accord-
ingly, the above description to be regarded in an illustrative
rather than a restrictive sense.

What is claimed is:

1. A system, comprising:

a memory to store program instructions which, if per-
formed by at least one processor, cause the at least one
processor to perform a method to at least:
receive, by a transaction coordinator node, a request to

perform a transaction at a distributed database;
assign, by the transaction coordinator node, a first
sequence number to order performance of the trans-
action at a storage node of the distributed database;
receive, by the storage node, a non-transactional
request to access the distributed database;
assign, by the storage node, a second sequence number
by the storage node to order performance of the
non-transactional request at the storage node; and
perform, by the storage node, the transaction request
and the non-transactional request at the storage node
according to an order determined based, at least in
part, on the assigned sequence numbers.

2. The system of claim 1, wherein the program instruc-
tions cause the at least one processor to further perform the
method to at least:

send, by the transaction coordinator node a request to the
storage node to prepare the storage node to perform the
transaction; and

after receipt of responses from the storage node and one
or more other storage nodes that acknowledge accep-
tance of the transaction for performance, send, by the
transaction coordinator a request to the storage node to
perform the transaction, wherein the performance of
the transaction request is performed after receipt of the
request to perform the transaction.

3. The system of claim 2, wherein the program instruc-

tions cause the at least one processor to further perform the
method to at least:

Mar. 3, 2022

responsive to the receipt of the request to perform the
transaction, store an entry for the transaction in a
transaction ledger;
responsive to the receipt of the responses from the storage
node and the one or more other storage nodes that
acknowledge acceptance of the transaction for perfor-
mance, update the entry for the transaction in the
transaction ledger to indicate that the transaction is
committed; and
responsive to receipt of completions of the transaction
from the storage node and the one or more other storage
nodes, update the entry for the transaction in the
transaction ledger to indicate that the transaction is
completed.
4. The system of claim 1, wherein the distributed database
is a non-relational database service offered by a provider
network, wherein the request to perform the transaction and
the non-transactional request are received via a program-
matic interface for the non-relational database service, and
wherein the wherein the request to perform the transaction
and the non-transactional request are routed to the transac-
tion coordinator node and the storage node respectively by
a request routing node implemented as part of the database
service.
5. A method, comprising:
receiving a first request to access a distributed database
that corresponds to a transaction coordinator node and
is assigned a first sequence number by the transaction
coordinator node to order performance of the first
request at a storage node of the distributed database;

receiving a second request to access the distributed data-
base that corresponds to the storage node and is
assigned a second sequence number by the storage
node to order performance of the second request at the
storage node; and

performing the first request and the second request at the

storage node according to an order determined based, at
least in part, on the assigned sequence numbers.

6. The method of claim 5, further comprising:

sending, by the transaction coordinator node, a request to

the storage node to prepare the storage node to perform
the first request; and

after receiving responses from the storage node and one or

more other storage nodes that acknowledge acceptance
of the first request for performance, sending a request
to the storage node to perform the first request, wherein
the performance of the transaction request is performed
after receipt of the request to perform the transaction.
7. The method of claim 6, further comprising:
responsive to receiving the request to perform the first
request, storing an entry for the first request in a
transaction ledger;

responsive to receiving the responses from the storage

node and the one or more other storage nodes that
acknowledge acceptance of the first request for perfor-
mance, updating the entry for the first request in the
transaction ledger to indicate that the first request is
committed; and

responsive to receiving completions of the first request

from the storage node and the one or more other storage
nodes, updating the entry for the transaction in the
transaction ledger to indicate that the first request is
completed.

US 2022/0067025 Al

8. The method of claim 7, wherein the updating the entry
for the first request in the transaction ledger to indicate that
the first request is committed is performed by the transaction
coordinator node, and wherein the updating the entry for the
transaction in the transaction ledger to indicate that the first
request is completed is performed by a second transaction
coordinator node.

9. The method of claim 6, further comprising sending, by
the transaction coordinator node, a second request to the
storage node to prepare the storage node to perform the first
request.

10. The method of claim 5, further comprising:

receiving a third request to access the distributed database

that corresponds to a second transaction coordinator
node and is assigned a third sequence number by the
second transaction coordinator node to order perfor-
mance of the first request at a storage node of the
distributed database;

after receiving an indication that the third request is

rejected by the storage node, sending, by the second
transaction coordinator node, an indication that the
third request is aborted for a client that submitted the
third request.

11. The method of claim 10, further comprising sending,
by the second transaction node to at least one other storage
node that acknowledged the third request as accepted a
notification that the third request is aborted.

12. The method of claim 5, wherein the second request is
a request to read data, wherein the second request specifies
a consistency level for the request to read data, and wherein
the order is further determined based on the consistency
level for the request to read data.

13. The method of claim 5, wherein the first sequence
number is a first timestamp assigned according to a first
clock for the transaction coordinator and wherein the second
sequence number is a second timestamp assigned according
to a second clock for the storage node.

14. A non-transitory, computer-readable storage medium,
storing program instructions that when executed by one or
more computing devices cause the one or more computing
devices to implement:

receiving a first request to access a distributed database

that corresponds to a transaction coordinator node;
assigning a first sequence number by the transaction
coordinator node to order performance of the first
request at a storage node of the distributed database;
receiving a second request to access the distributed data-
base that corresponds to the storage node;
assigning a second sequence number by the storage node
to order performance of the second request at the
storage node; and

performing the first request and the second request at the

storage node according to an order determined based, at
least in part, on the assigned sequence numbers.

15. The non-transitory, computer-readable storage
medium of claim 14, wherein the program instructions cause
the one or more computing devices to further implement:

Mar. 3, 2022

sending, by the transaction coordinator node a request to
the storage node to prepare the storage node to perform
the first request; and

after receiving responses from the storage node and one or

more other storage nodes that acknowledge acceptance
of the first request for performance, sending, by the
transaction coordinator, a request to the storage node to
perform the first request, wherein the performance of
the transaction request is performed after receipt of the
request to perform the transaction.

16. The non-transitory, computer-readable storage
medium of claim 14, wherein the program instructions cause
the one or more computing devices to further implement:

responsive to receiving the request to perform the first

request, storing an entry for the first request in a
transaction ledger;

responsive to receiving the responses from the storage

node and the one or more other storage nodes that
acknowledge acceptance of the first request for perfor-
mance, updating the entry for the first request in the
transaction ledger to indicate that the first request is
committed; and

responsive to receiving completions of the first request

from the storage node and the one or more other storage
nodes, updating the entry for the transaction in the
transaction ledger to indicate that the first request is
completed.

17. The non-transitory, computer-readable storage
medium of claim 14, wherein the program instructions cause
the one or more computing devices to further implement:

receiving a third request to access the distributed database

that corresponds to a second transaction coordinator
node and is assigned a third sequence number by the
second transaction coordinator node to order perfor-
mance of the first request at a storage node of the
distributed database;

after receiving an indication that the third request is

rejected by the storage node, sending, by the second
transaction coordinator node, an indication that the
third request is aborted.

18. The non-transitory, computer-readable storage
medium of claim 14, wherein the second sequence number
assigned to the second request by the storage node is
received from a request routing node that routed the second
request to the storage node.

19. The non-transitory, computer-readable storage
medium of claim 14, wherein the second request is a request
to read data, wherein the second request specifies a consis-
tency level for the request to read data, and wherein the order
is further determined based on the consistency level for the
request to read data.

20. The non-transitory, computer-readable storage
medium of claim 14, wherein the distributed database is a
database service offered by a provider network and wherein
the request to perform the transaction and the non-transac-
tional request are received via a programmatic interface for
the non-relational database service.

#* #* #* #* #*

