

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/091483 A1

(43) International Publication Date
24 May 2018 (24.05.2018)

(51) International Patent Classification:
A24D 3/02 (2006.01)

(21) International Application Number:
PCT/EP2017/079239

(22) International Filing Date:
15 November 2017 (15.11.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
P.419518 19 November 2016 (19.11.2016) PL

(71) Applicant: INTERNATIONAL TOBACCO MACHINERY POLAND SP. Z O. O. [PL/PL]; ul. Warsztatowa 19A, 26-600 Radom (PL).

(72) Inventors: CIESLIKOWSKI, Bartosz; Wiejska 16, 26-400 Przysucha (PL). LISOWSKI, Andrzej; Klonowa 38/11, 25-553 Kielce (PL).

(74) Agent: PAWLowski, Adam; Kancelaria EUPATENT.PL Sp. z o.o., Kilinskiego 185, 90-348 Lodz (PL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: A FEEDING DEVICE FOR FEEDING A CONTINUOUS STRIP INTO A CONTINUOUS FIBROUS BAND IN A TOBACCO INDUSTRY MACHINE FOR MANUFACTURING ROD-LIKE ELEMENTS AND A MACHINE FOR MANUFACTURING ROD-LIKE ELEMENTS

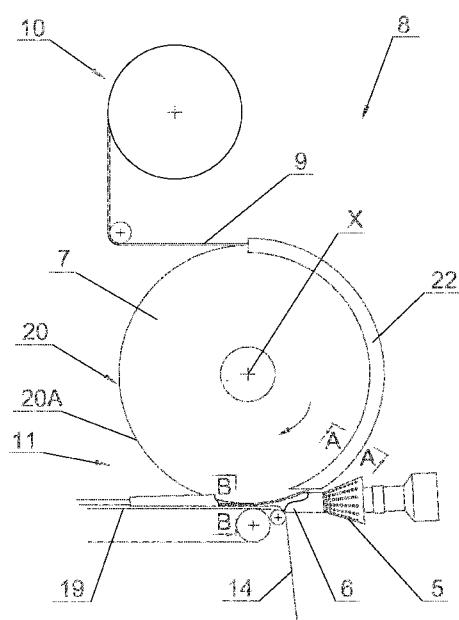


Fig. 2

(57) Abstract: A feeding device (8, 8', 8", 8'') for feeding a continuous strip (9) into a continuous fibrous band, in a tobacco industry machine for manufacturing rod-like elements, wherein the fibrous band is formed to a form of a continuous rod (CR) comprising the continuous strip (9) surrounded by the continuous fibrous band, the feeding device (8, 8', 8", 8'') comprising: a strip supply unit (10) for feeding the continuous strip (9); a strip feeding unit (11) for feeding the continuous strip (9) into the middle of the continuous fibrous band; wherein the feeding device (8, 8', 8", 8'') is configured such that the strip feeding unit (11) is located in the machine for manufacturing the rod-like elements between a fibrous band preparation unit (4) and a garniture unit (15) for forming the continuous rod. The feeding device (8, 8', 8", 8'') further comprises: a feeding wheel (7), having a circumferential surface (20) comprising a cylindrical guiding surface (20A) for guiding the continuous strip (9); and guiding surfaces (21A; 22A; 31A; 32A; 41A; 42A; 51A; 52A). The guiding surfaces (21A; 22A; 31A; 32A; 41A; 42A; 51A; 52A) and the cylindrical guiding surface (20A) form a duct for guiding the continuous strip (9).

Declarations under Rule 4.17:

- *as to the identity of the inventor (Rule 4.17(i))*
- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*
- *of inventorship (Rule 4.17(iv))*

Published:

- *with international search report (Art. 21(3))*
- *with amended claims and statement (Art. 19(1))*

A FEEDING DEVICE FOR FEEDING A CONTINUOUS STRIP INTO A
CONTINUOUS FIBROUS BAND IN A TOBACCO INDUSTRY MACHINE FOR
MANUFACTURING ROD-LIKE ELEMENTS AND A MACHINE FOR
MANUFACTURING ROD-LIKE ELEMENTS

5

TECHNICAL FIELD

The present invention relates to a feeding device for feeding a continuous strip into a continuous fibrous band in a tobacco industry machine for manufacturing rod-like elements.

BACKGROUND

Tobacco industry plants manufacture various kinds of smoking products, among others cigarettes. The cigarettes usually comprise filters to filter tobacco smoke and eliminate harmful substances. Typically, acetate fibers are used as a filtering material. The acetate fibers are usually fed in a form of a continuous band. Nowadays, cigarettes often have multi-segment filters, which may comprise different kinds of rod-like segments for filtering tobacco smoke, as well as segments for providing other functions. For example, aromatizing segments may be provided, the aromatizing segments having scent capsules, scent threads or strips, which are usually located in a central portion of segments. The threads or strips may also serve a decorative function, since they are visible at the front surface of the filter. Other segments may be used for directing the stream of tobacco smoke - they may comprise longitudinal, hollow strips forming a flow duct. Therefore, manufacturers have a need for a device for feeding a continuous strip into a continuous fibrous band.

US patents US7074170 and US7691043 disclose a device for feeding a continuous strip saturated with an aromatic substance, into a continuous filtering material, to form a filter rod which is then cut to single filter rods.

Machines for manufacturing filter rod-like elements, known from the prior art, are typically provided with feeding units which do not guarantee uniform positioning of the fed continuous material. The present invention aims to provide an improved device for feeding a continuous strip for use in machines for manufacturing rod-like

30

elements. The prior art does not comprise devices adapted specifically for inserting a continuous strip into a continuous fibrous band.

SUMMARY

5 There is disclosed a feeding device for feeding a continuous strip into a continuous fibrous band, in a tobacco industry machine for manufacturing rod-like elements, wherein the fibrous band is formed to a form of a continuous rod comprising the continuous strip surrounded by the continuous fibrous band, the feeding device comprising: a strip supply unit for feeding the continuous strip; a strip feeding unit for feeding the continuous strip into the middle of the continuous fibrous band; wherein the feeding device is configured such that the strip feeding unit is located in the machine for manufacturing the rod-like elements between a fibrous band preparation unit and a garniture unit for forming the continuous rod. The feeding device further comprises: a feeding wheel, having a circumferential surface 10 comprising a cylindrical guiding surface for guiding the continuous strip; and guiding surfaces; wherein the guiding surfaces and the cylindrical guiding surface form a duct 15 for guiding the continuous strip.

The guiding surfaces may have a form of stationary side guiding surfaces positioned at the rotary cylindrical guiding surface.

20 The stationary side guiding surfaces may be perpendicular to a rotation axis of the feeding wheel.

The stationary side guiding surfaces may be conical.

25 The circumferential surface of the feeding wheel may have a circumferential groove configured to guide the continuous strip, the circumferential groove comprising the cylindrical guiding surface and the side guiding surfaces.

The device may comprise a side guiding surface in a form of at least one rotary roller located at the rotary cylindrical guiding surface.

The device may comprise a stationary guiding surface in a form of a portion of a cylinder, located in parallel to the cylindrical guiding surface.

30 There is also disclosed a machine for manufacturing rod-like elements, the machine comprising: a fibrous band supply unit for feeding a continuous fibrous band; a fibrous band preparation unit for preparing the fibrous band; a feeding device for feeding a continuous strip; a wrapper feeding unit for feeding a wrapper; a garniture unit for forming a continuous rod, wherein the continuous rod comprises the

fibrous band and the continuous strip and is wrapped by the wrapper; a cutting head for cutting the continuous rod into the rod-like elements, wherein the feeding device is the feeding device as described herein.

5 The device according to the invention allows positioning a continuous strip in a continuous fibrous band without slipping, wherein the strip is fed synchronically into the fibrous band, i.e. with the speed of transfer of the fibrous band.

BRIEF DESCRIPTION OF FIGURES

10 The system is shown by means of example embodiments in a drawing, in which:

Fig. 1 shows a machine for manufacturing filter rods;

Fig. 2 shows a feeding device according to the invention in a first embodiment;

15 Fig. 3 shows a cross-section of a feeding wheel and strip guides of the feeding device of Fig. 2;

Fig. 4 shows a cross-section of the feeding wheel of the feeding device of Fig. 2 at a point wherein the strip is placed into the fibrous band;

Fig. 5 shows the feeding device according to the invention in a second embodiment;

20 Fig. 6 shows a cross-section of the feeding wheel and the strip guides of the feeding device of Fig. 5;

Fig. 7 shows the feeding device according to the invention in a third embodiment;

Fig. 8 shows a cross-section of the feeding wheel and the strip guides of the feeding device of Fig. 7;

Fig. 9 shows the feeding device according to the invention in a fourth embodiment;

25 Fig. 10 shows a cross-section of the feeding wheel and the strip guides of the feeding device of Fig. 9;

Fig. 11 shows a machine for manufacturing tobacco rods.

Fig. 1 shows schematically a machine 1 for manufacturing filter rods R. Fibers 30 of a filtering material, for example acetate fibers in a form of a band that forms the filtering material 2, may be fed by a fibrous band supply unit 17 from a container in a form of a bale 3. The fibers of the filtering material may be compressed in the bale 3. The fibers of the filtering material band 2 are stretched and loosened by means of compressed air and cylinders of a fibrous band preparation unit 4 for preparing a

filtering material band. As a result of stretching and loosening, the fibers of the filtering band 2 detach from each other and may accommodate more air in between. In the preparation unit 4, the fibers may be soaked with a softening fluid (for example, triacetin). The machine 1 for manufacturing filter rods R has an inserting element 5 in 5 a form of a funnel, through which the band of the filtering material 2 is passed from the preparation unit 4. While the band of the filtering material 2 passes through the inserting element 5, the fibers are initially compacted. The inserting element 5 may have openings, which facilitate discharging the excess of air from between the fibers of the filtering material band 2. The inserting element 5 is followed by a guiding 10 element 6 for guiding the filtering material band 2, wherein the band is initially formed. The guiding element 6 is configured to cooperate with a feeding wheel 7 of a feeding device 8 for feeding a continuous strip 9 by a strip feeding unit 11, wherein the continuous strip 9 is fed from a strip supply unit 10.

The feeding device 8, in a direction of the filtering material band 2, is followed 15 by a glue feeding unit 12 and a forming unit 13 for winding the band 2 into a wrapper 14. The glue feeding unit 12 and the forming unit 13, which are components of a garniture unit 15, have guides for guiding the wrapper 14. The wrapper 14 is fed by a wrapper feeding unit 18. The machine 1 further comprises a rotary cutting head 16 for cutting a continuous filter rod CR to single filter rods R.

20 The continuous strip 9 is a material of a cross-section having a width greater than its height. Preferably, the width is at least two times greater than the height. The strip 9 may have a cross-section in a form of a rectangle, a rectangle with rounded corners or an ellipse.

Fig. 2 shows an enlarged view of a first embodiment of the feeding device 8 for 25 feeding the continuous strip 9. The continuous strip 9 is fed from the strip supply unit 10. The strip may be supplied from a reel and fed by any type of strip feeding unit. The feeding device 8 comprises a feeding wheel 7 having a rotation axis X. The circumferential surface 20 of the feeding wheel 7 has a cylindrical guiding surface 20A for guiding the continuous strip 9. The continuous strip 9 may be also guided in 30 alternative ways. The device 8 comprises two stationary guides 21, 22 as shown in the A-A cross-section in enlarged view in Fig. 3. Surfaces 21A, 22A of the guides 21, 22 at the cylindrical guiding surface 20A are used for guiding the strip 9 and for preventing the strip from slipping away from the cylindrical guiding surface 20A. The guiding surfaces 21A, 22A are substantially perpendicular to the rotation axis X of the

feeding wheel 7. The cross-section B-B (Fig. 4) shows the strip 9 being placed into the filtering material band 2. Further on during the movement of the continuous filtering material 2 together with the wrapper 14 on a garniture belt 19, the continuous strip 9 is wrapped by the filtering material 2. In that embodiment, the continuous strip 5 9 contacts (encircles) the feeding wheel 7 along a half of its cylindrical guiding surface 20A. The large contact angle allows the continuous strip to be fed without slipping, i.e. with a circumferential speed of the feeding wheel 7, which corresponds to the speed of the movement of the band 2.

Fig. 5 shows a second embodiment of the feeding device 8', wherein the 10 supply unit for feeding the continuous strip 9 is not visible. The feeding device 8' comprises two stationary side guides 31, 32 which have guiding surfaces 31A, 32A shown in cross-section C-C in Fig. 6, wherein the guiding surfaces 31A, 32A have a conical shape, which helps to keep the strip on the guiding surface 20A with a limited action of the guiding surfaces 31A, 32A on the edges of the strip 9. The feeding 15 device 8' comprises a stationary guide 23 having a guiding surface 23A, which is a portion of a cylinder. The stationary guide 23 presses the strip 9 against the guiding surface 20A. The stationary guide 23 is located along at least a portion of the length of the side guiding surfaces 31A, 32A, preferably along the whole length thereof.

In a third embodiment shown in Fig. 7, the feeding device 8" comprises two 20 stationary side guides 41, 42 which have guiding surfaces 41A, 42A shown in cross-section D-D in Fig. 8. The feeding device 8" comprises a rotary roller 24, having a cylindrical side surface 24A that forms a guiding surface for the continuous strip 9 and presses the strip 9 against the guiding surface 20A. The guiding surfaces 41A, 42A may have recesses 25 for placing the roller 24.

25 In a fourth embodiment shown in Fig. 9, the feeding device 8"" comprises a feeding wheel 7' having a groove 51 on its circumferential surface 20, as shown in a cross-section E-E in Fig. 10. The groove has a cylindrical guiding surface 20A and two guiding side surfaces 51A, 52A formed by rims 51, 52.

Fig. 11 shows a machine for manufacturing rod-like elements from shredded 30 tobacco. The tobacco material is fed by a fibrous band supply unit 17'. A continuous band of tobacco material is fed on the wrapper 14 and passes through the region of operation of the feeding device 8, that feeds the continuous strip 9 into the band of tobacco material.

Further embodiments are possible, that comprise one or more of the features of the embodiments discussed above combined with each other.

CLAIMS

1. A feeding device (8, 8', 8", 8'') for feeding a continuous strip (9) into a continuous fibrous band, in a tobacco industry machine for manufacturing rod-like elements, wherein the fibrous band is formed to a form of a continuous rod (CR) comprising the continuous strip (9) surrounded by the continuous fibrous band, the feeding device (8, 8', 8", 8'') comprising:

- a strip supply unit (10) for feeding the continuous strip (9);
- a strip feeding unit (11) for feeding the continuous strip (9) into the middle of the continuous fibrous band;
- wherein the feeding device (8, 8', 8", 8'') is configured such that the strip feeding unit (11) is located in the machine for manufacturing the rod-like elements between a fibrous band preparation unit (4) and a garniture unit (15) for forming the continuous rod;

15 the feeding device (8, 8', 8", 8'') being characterized by further comprising:

- a feeding wheel (7), having a circumferential surface (20) comprising a cylindrical guiding surface (20A) for guiding the continuous strip (9); and
- guiding surfaces (21A; 22A; 31A; 32A; 41A; 42A; 51A; 52A);
- wherein the guiding surfaces (21A; 22A; 31A; 32A; 41A; 42A; 51A; 52A) and the cylindrical guiding surface (20A) form a duct for guiding the continuous strip (9).

2. The device according to claim 1, wherein the guiding surfaces have a form of stationary side guiding surfaces (21A, 22A, 31A, 32A, 41A, 42A) positioned at the rotary cylindrical guiding surface (20A).

25

3. The device according to claim 2, wherein the stationary side guiding surfaces (21A, 22A, 41A, 42A) are perpendicular to a rotation axis (X) of the feeding wheel (7).

30

4. The device according to claim 2, wherein the stationary side guiding surfaces (31A, 32A) are conical.

5. The device according to claim 1, wherein the circumferential surface of the feeding wheel has a circumferential groove (51) configured to guide the continuous

strip (9), the circumferential groove (51) comprising the cylindrical guiding surface (20A) and the side guiding surfaces (51A, 52A).

6. The device according to any of claims 1-5, comprising a side guiding surface

5 (24A) in a form of at least one rotary roller (24) located at the rotary cylindrical guiding surface (20A).

7. The device according to any of claims 1-6, comprising a stationary guiding

surface (23) in a form of a portion of a cylinder, located in parallel to the cylindrical

10 guiding surface (20A).

8. A machine (1) for manufacturing rod-like elements (R), the machine (1)

comprising:

- a fibrous band supply unit (17, 17') for feeding a continuous fibrous band (2, 2');

15 - a fibrous band preparation unit (4, 4') for preparing the fibrous band (2, 2');

- a feeding device (8, 8', 8'', 8''') for feeding a continuous strip (9);

- a wrapper feeding unit (18) for feeding a wrapper (14);

- a garniture unit (15) for forming a continuous rod (CR), wherein the continuous

rod (CR) comprises the fibrous band (2, 2') and the continuous strip (9) and is

20 wrapped by the wrapper (14);

- a cutting head (16) for cutting the continuous rod (CR) into the rod-like elements

(R);

characterized in that

- the feeding device (8, 8', 8'', 8''') is the feeding device according to any of claims

25 from 1 to 7.

AMENDED CLAIMS
received by the International Bureau
on 25 April 2018 (25.04.2018)

1. A feeding device (8, 8', 8'', 8''') for feeding a continuous strip (9) into a continuous fibrous band, in a tobacco industry machine for manufacturing rod-like elements, wherein the fibrous band is formed to a form of a continuous rod (CR) comprising the continuous strip (9) surrounded by the continuous fibrous band, the feeding device (8, 8', 8'', 8''') comprising:
 - a strip supply unit (10) for feeding the continuous strip (9);
 - a strip feeding unit (11) for feeding the continuous strip (9) into the middle of the continuous fibrous band;
 - wherein the feeding device (8, 8', 8'', 8''') is configured such that the strip feeding unit (11) is located in the machine for manufacturing the rod-like elements between a fibrous band preparation unit (4) and a garniture unit (15) for forming the continuous rod;
- 15 the feeding device (8, 8', 8'', 8''') being characterized by further comprising:
 - a feeding wheel (7), having a circumferential surface (20) comprising a cylindrical guiding surface (20A) for guiding the continuous strip (9); and
 - guiding surfaces (21A; 22A; 31A; 32A; 41A; 42A; 51A; 52A);
 - wherein the guiding surfaces (21A; 22A; 31A; 32A; 41A; 42A; 51A; 52A) and the cylindrical guiding surface (20A) form a duct for guiding the continuous strip (9), and
 - a side guiding surface (24A) in a form of at least one rotary roller (24) located at the rotary cylindrical guiding surface (20A)..
- 25 2. The device according to claim 1, wherein the guiding surfaces have a form of stationary side guiding surfaces (21A, 22A, 31A, 32A, 41A, 42A) positioned at the rotary cylindrical guiding surface (20A).
- 30 3. The device according to claim 2, wherein the stationary side guiding surfaces (21A, 22A, 41A, 42A) are perpendicular to a rotation axis (X) of the feeding wheel (7).
4. The device according to claim 2, wherein the stationary side guiding surfaces (31A, 32A) are conical.

5. The device according to claim 1, wherein the circumferential surface of the feeding wheel has a circumferential groove (51) configured to guide the continuous strip (9), the circumferential groove (51) comprising the cylindrical guiding surface (20A) and the side guiding surfaces (51A, 52A).

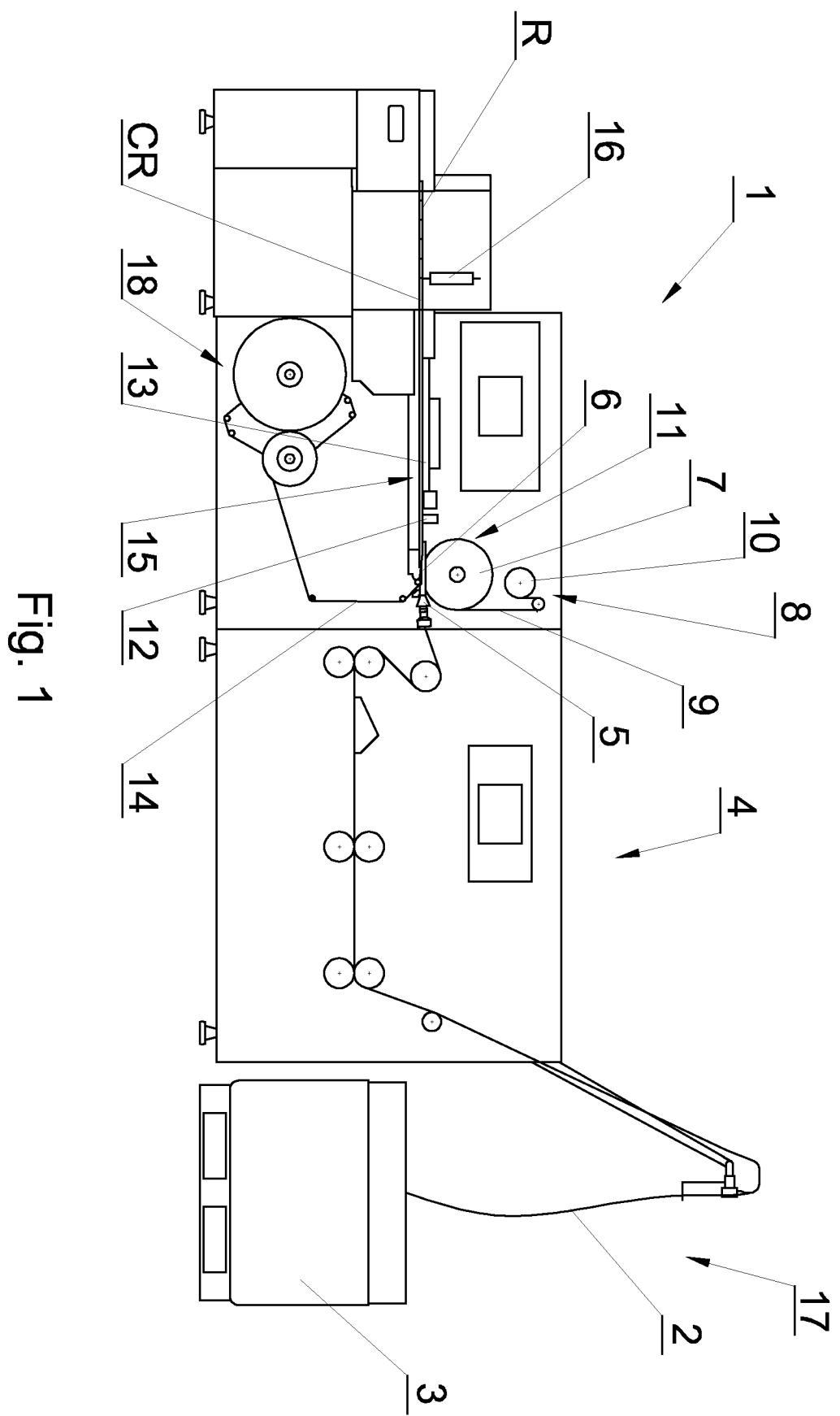
5

6. The device according to any of claims 1-5, comprising a stationary guiding surface (23) in a form of a portion of a cylinder, located in parallel to the cylindrical guiding surface (20A).

10

7. A machine (1) for manufacturing rod-like elements (R), the machine (1) comprising:

- a fibrous band supply unit (17, 17') for feeding a continuous fibrous band (2, 2');
- a fibrous band preparation unit (4, 4') for preparing the fibrous band (2, 2');
- a feeding device (8, 8', 8'', 8''') for feeding a continuous strip (9);
- a wrapper feeding unit (18) for feeding a wrapper (14);
- a garniture unit (15) for forming a continuous rod (CR), wherein the continuous rod (CR) comprises the fibrous band (2, 2') and the continuous strip (9) and is wrapped by the wrapper (14);
- a cutting head (16) for cutting the continuous rod (CR) into the rod-like elements (R);


characterized in that

- the feeding device (8, 8', 8'', 8''') is the feeding device according to any of claims from 1 to 6.

25

Statement under Article 19(1)

Replacement pages which replace the original pages 7-8 of the International application as filed, contain amended claims under Article 19 PCT. The original claim 1 is amended. The original claim 6 is cancelled. The original claims 7 and 8 are renumbered. Basis for amendments: amended claim 1 is based on original claims 1 and 6; cancelled original claim 6 is combined with claim 1; amended claims 6-7 are based on original claims 7-8, respectively.

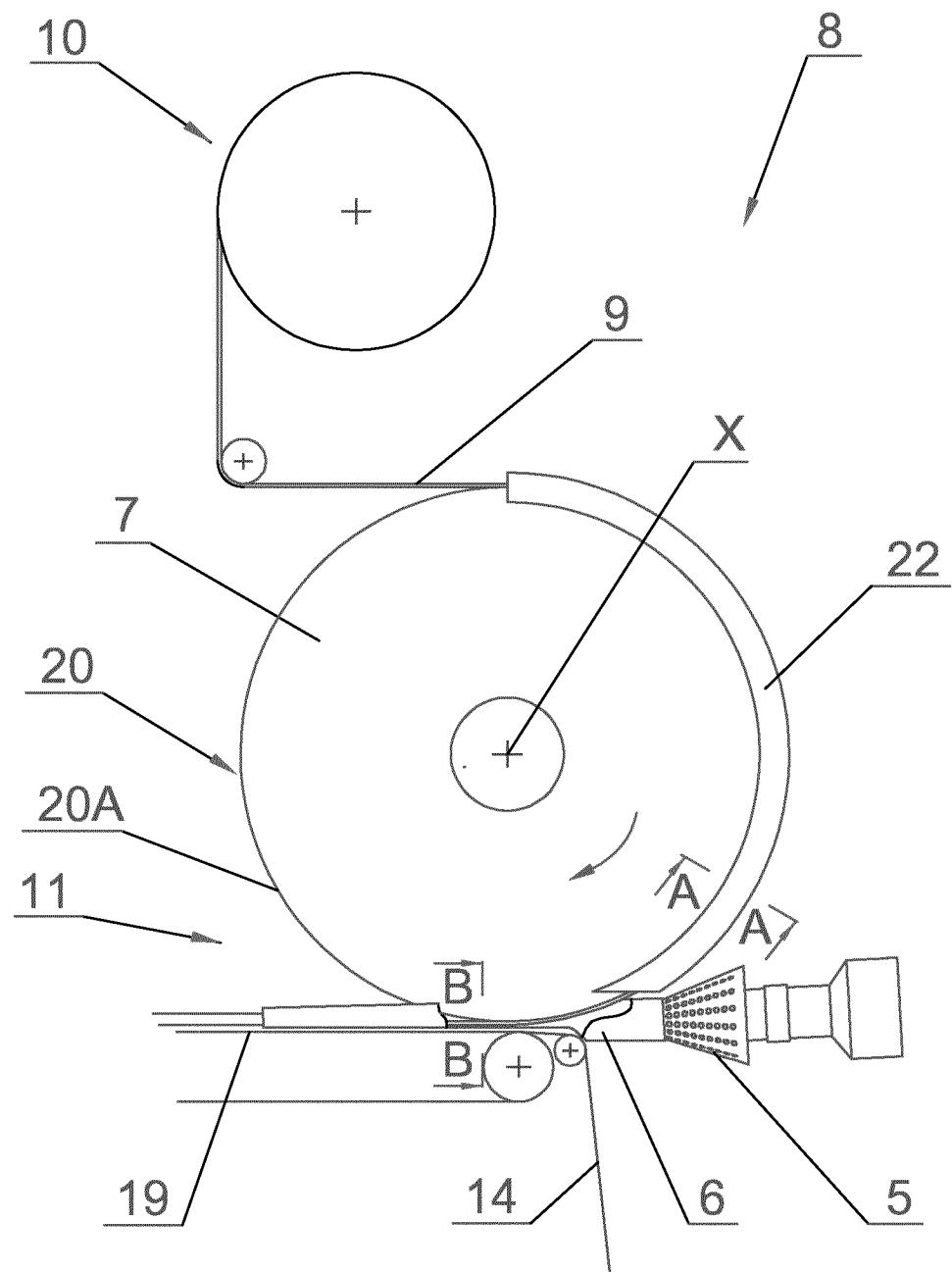


Fig. 2

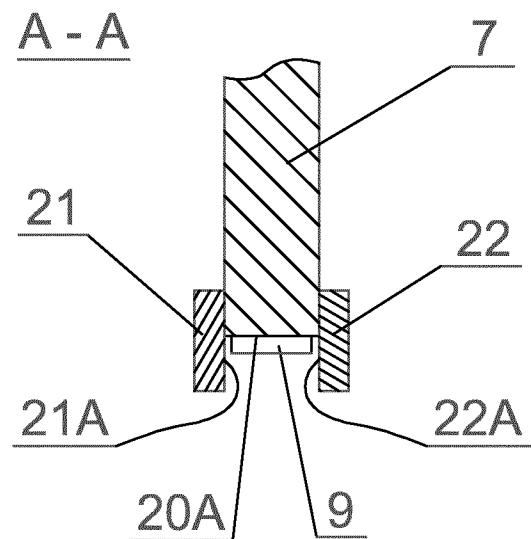


Fig. 3

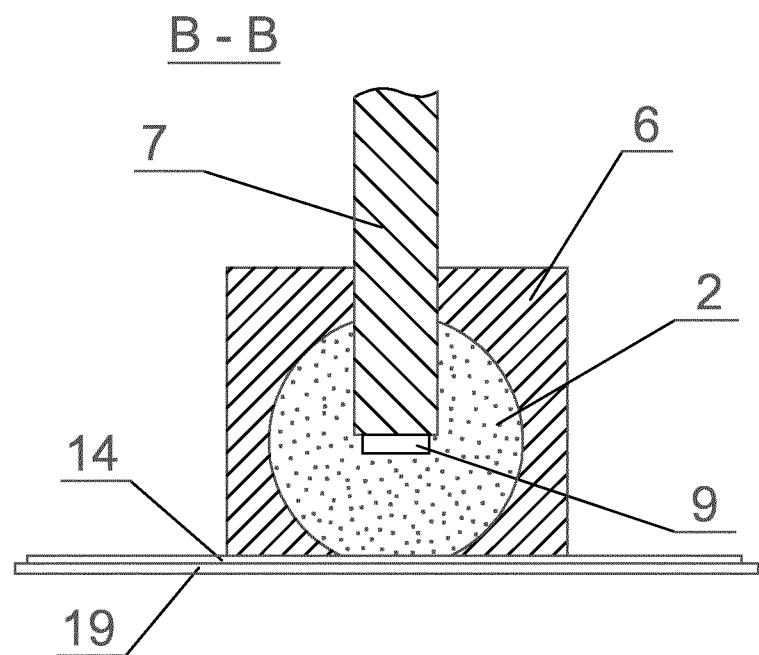


Fig. 4

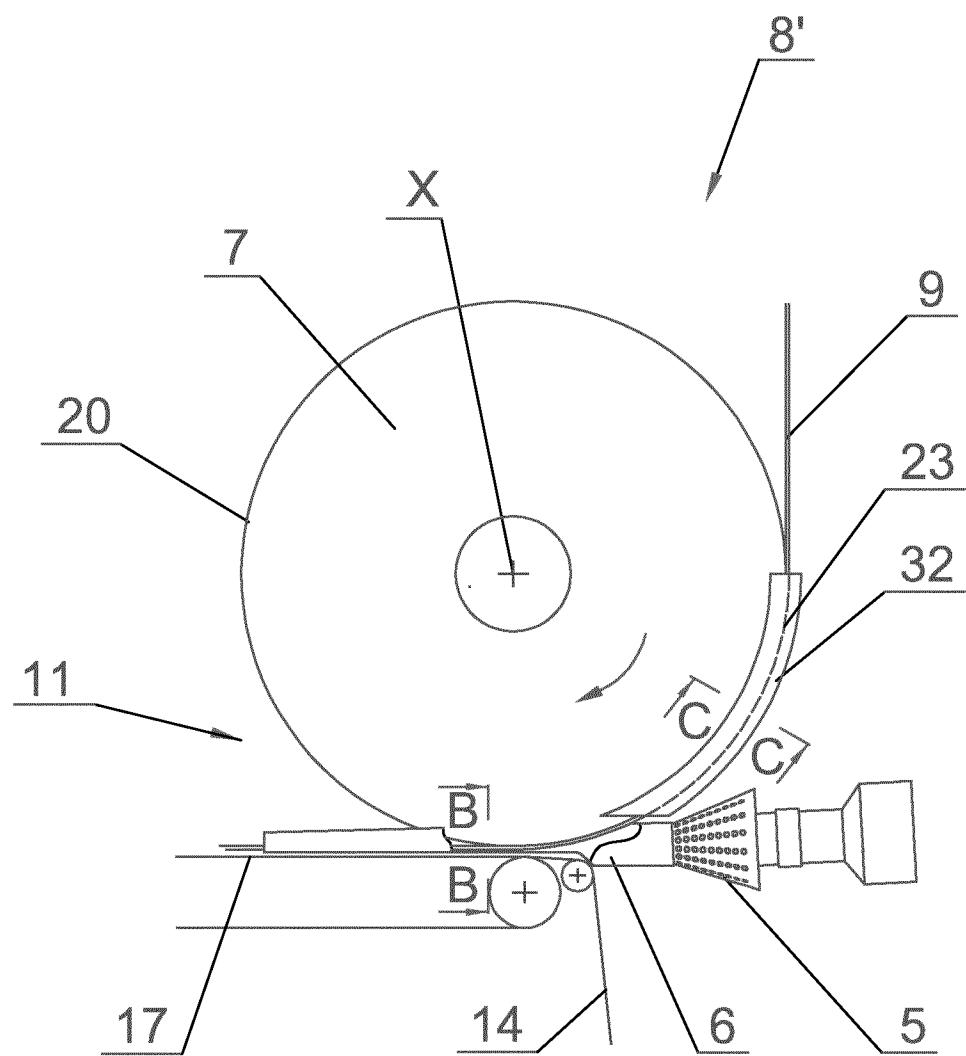


Fig. 5

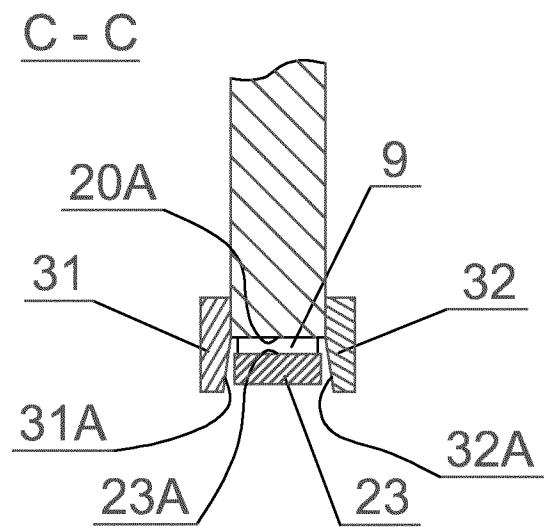


Fig. 6

5/7

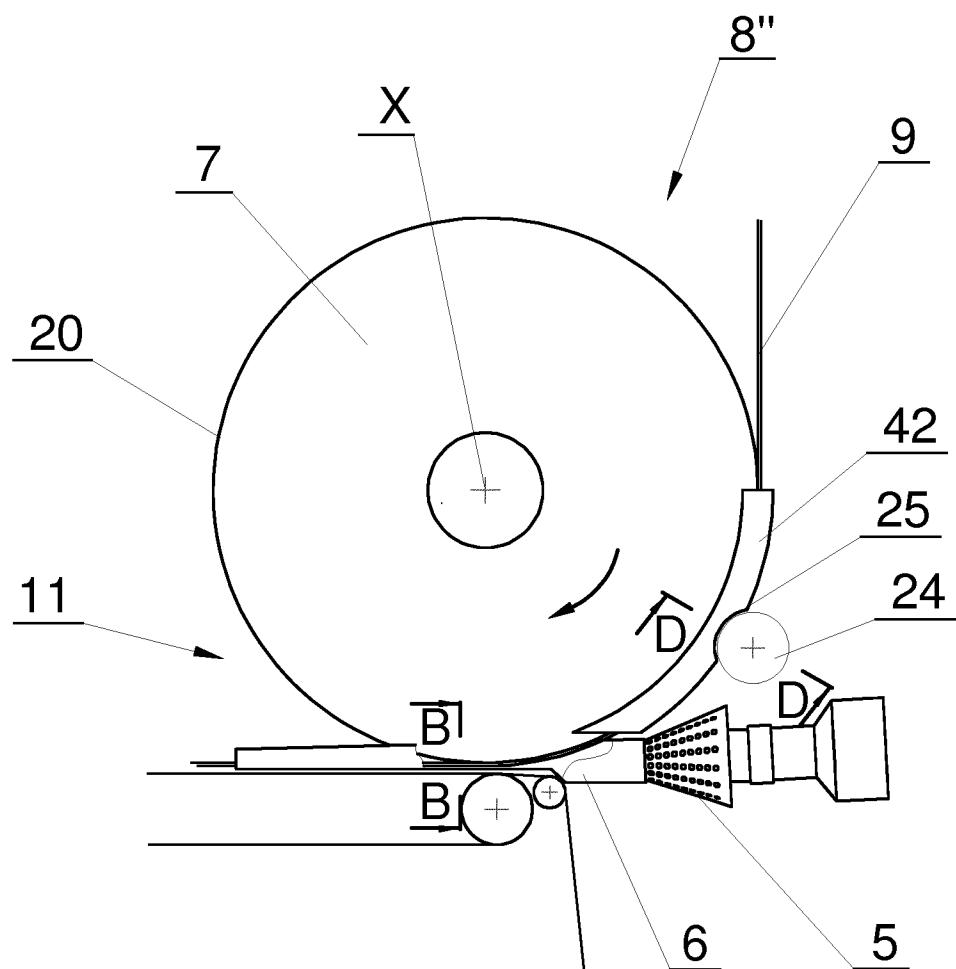


Fig. 7

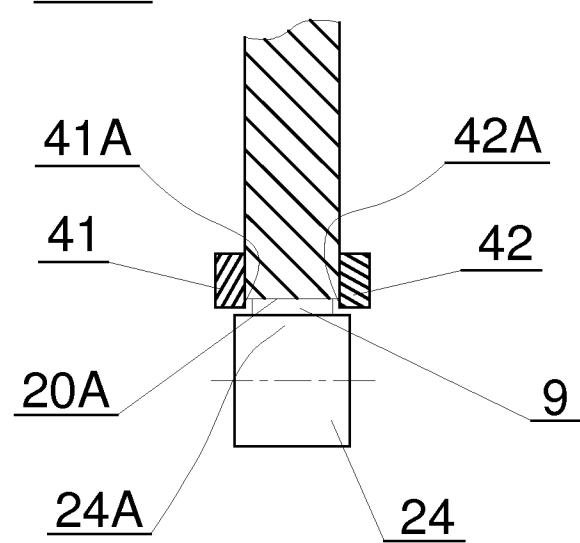

D - D

Fig. 8

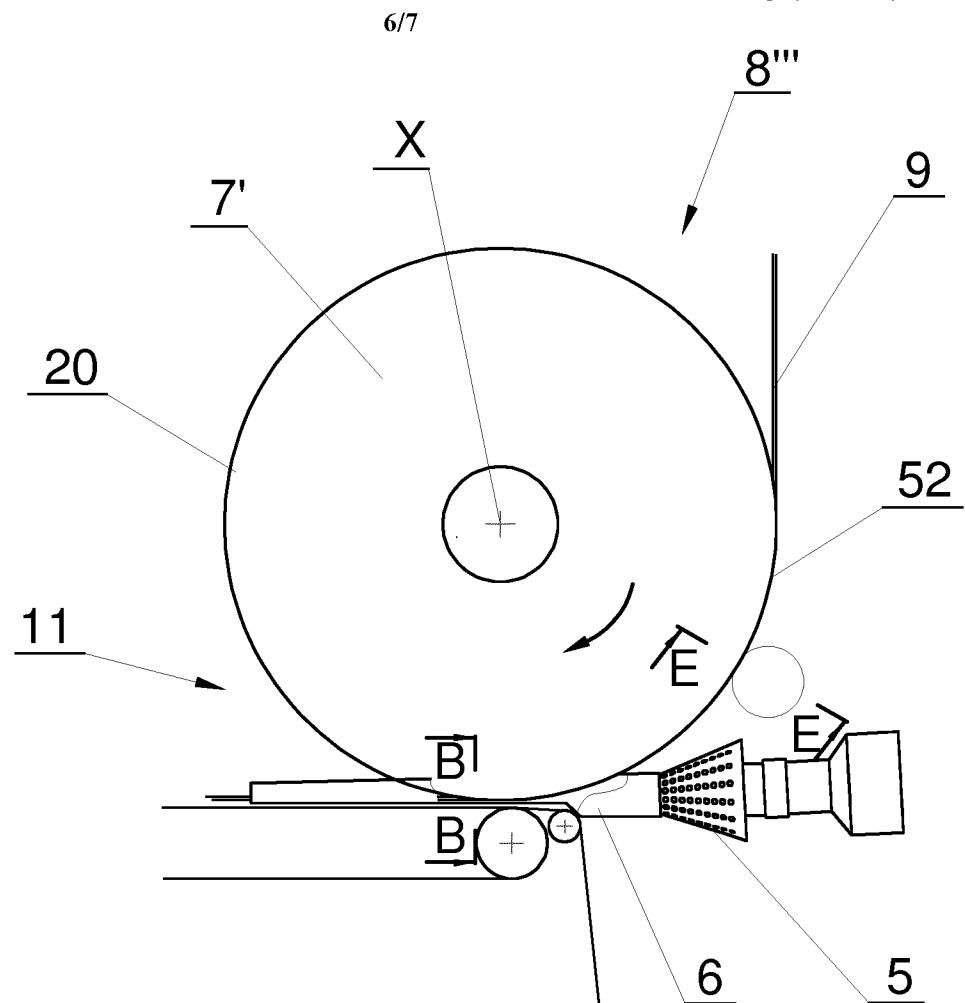


Fig. 9

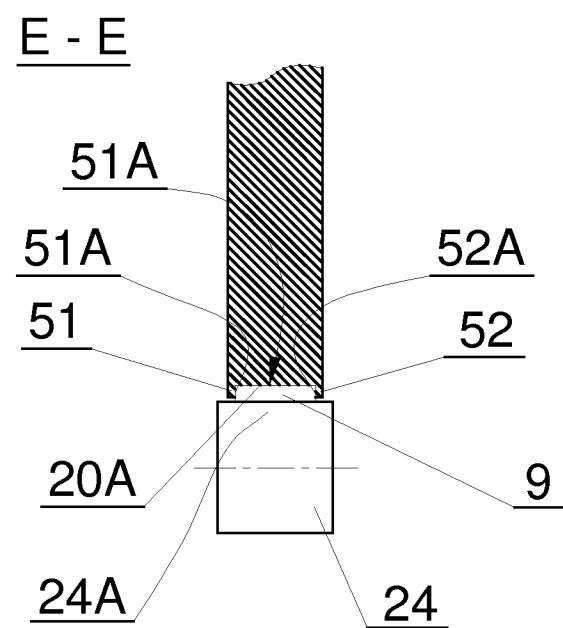
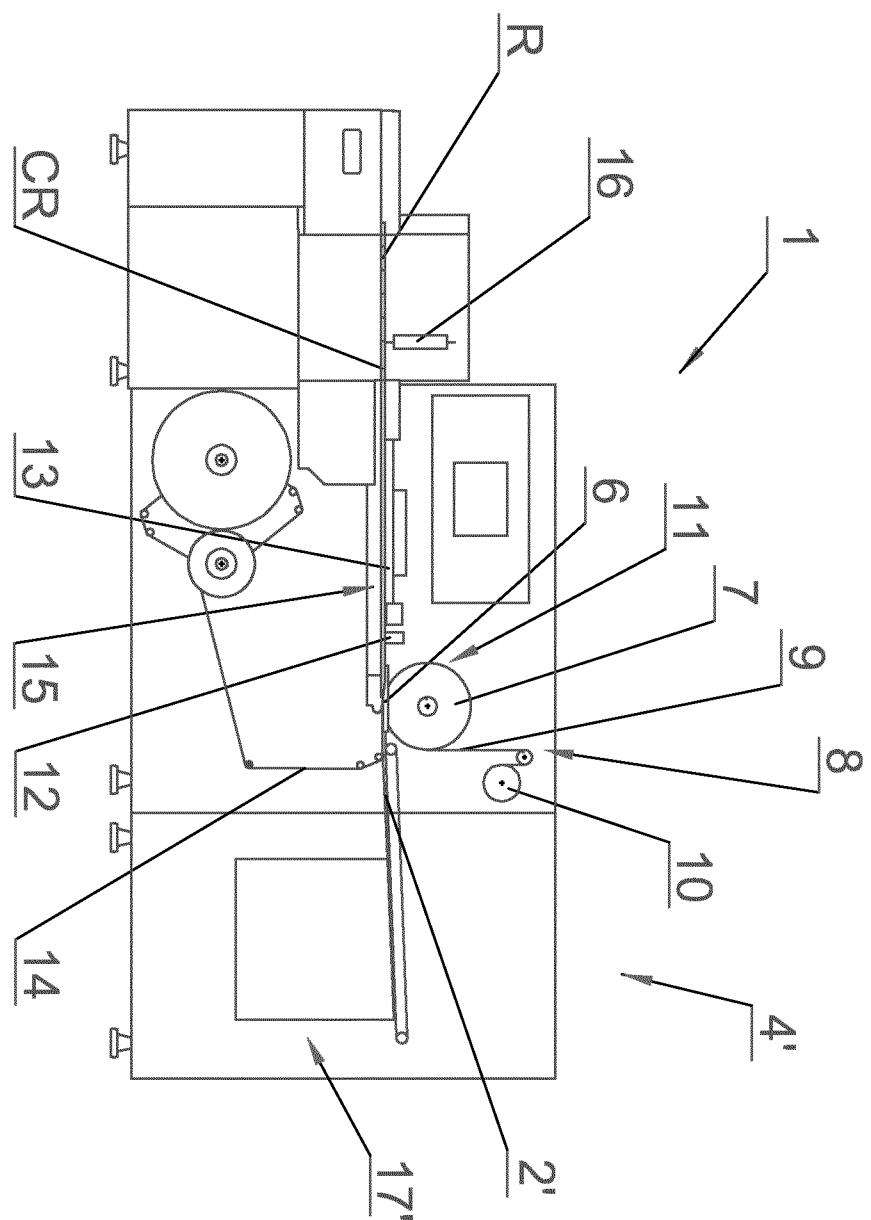



Fig. 10

Fig. 11

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2017/079239

A. CLASSIFICATION OF SUBJECT MATTER
INV. A24D3/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A24D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2015/197674 A1 (ESSENTRA FILTER PRODUCTS DEV CO PTE LTD [SG]; ESSENTRA FILTER PRODUCTS) 30 December 2015 (2015-12-30) figures 3,4,5,6 page 8, lines 5-6,12-13,35-36 page 13, line 35 - page 14, line 4 page 18, line 7 - page 19, line 3 page 19, line 21 - page 20, line 4 page 21, lines 4-11, 20 page 22, lines 19-30 -----	1-3,5,8
A	US 2014/209111 A1 (RUSSELL DAVID MORRISON [GB] ET AL) 31 July 2014 (2014-07-31) figures 4-7 paragraphs [0034], [0036], [0041] - [0043], [0047] - [0049] -----	4,6,7
A		1-8
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
13 February 2018	01/03/2018

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Kirchmayr, Katrin

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2017/079239

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 10 2006 025738 B3 (HAUNI MASCHINENBAU AG [DE]) 8 November 2007 (2007-11-08) figures paragraphs [0044], [0047], [0048] -----	1-8
A	EP 2 606 755 A1 (GD SPA [IT]) 26 June 2013 (2013-06-26) figures paragraphs [0015], [0019], [0027], [0028] -----	1-8

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2017/079239

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2015197674	A1	30-12-2015	NONE	
US 2014209111	A1	31-07-2014	EP 2706877 A1 JP 5940649 B2 JP 2014513976 A JP 2016178934 A RU 2013155225 A US 2014209111 A1 WO 2012156708 A1	19-03-2014 29-06-2016 19-06-2014 13-10-2016 20-06-2015 31-07-2014 22-11-2012
DE 102006025738	B3	08-11-2007	NONE	
EP 2606755	A1	26-06-2013	NONE	