2009/099:502 A1 |1 I 00 T 0010 O A 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

.. TN
(19) World Intellectual Property Organization /25 |]| HINIHND DO W0 10 0 0 OO0 O 0
A 5 (10) International Publication Number
(43) International Publication Date Vs
13 August 2009 (13.08.2009) WO 2009/099502 Al
(51) International Patent Classification: NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
HO4L 12/28 (2006.01) SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,

UG, US, UZ ZA, M, ZW.
(21) International Application Number: - US, UZ, VC, VN, ZA, ZM, ZW

PCT/US2008/088640 (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(22) International Filing D"‘te}: | Decetber 2008 (31122008 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ccemoer (31.12.2008) ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(25) Filing Language: English TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
L . ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(26) Publication Language: English MC, MT, NL, NO, PL, PT, RO, SE, SI SK, TR), OAPI
(30) Priority Data: (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
12/023,843 31 January 2008 (31.01.2008) US NE, SN, TD, TG).
(71) Applicant (for all designated States except US): MI- Declarations under Rule 4.17:
CROSOFT CORPORATION [US/US]; One Microsoft — as to applicant’s entitlement to apply for and be granted
Way, Redmond, Washington 98052-6399 (US). a patent (Rule 4.17(i1))
(72) Imventor: KHOSRAVY, Moe; One Microsoft Way, Red- — as to the applicant’s entitlement to claim the priority of
mond, Washington 98052-6399 (US). the earlier application (Rule 4.17(iii))

(81) Designated States (unless otherwise indicated, for every Published:
kind of national protection available): AE, AG, AL, AM,

— ith int 1 [h t (Art. 21(3
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, with international search report (Art. 21(3))

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, — before the expiration of the time limit for amending the
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, claims and to be republished in the event of receipt of
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, amendments (Rule 48.2(h))

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

(54) Title: INITIATION AND EXPIRATION OF OBJECTS IN A KNOWLEDGE BASED FRAMEWORK FOR A MULTI-
MASTER SYNCHRONIZATION ENVIRONMENT

Common
Information 102

Dedicated Synchronization o
Email Server 100 [« » Email Client 110

FIG. 1

(57) Abstract: The subject disclosure relates to synchronizing among network nodes in a multi-master synchronization environ-
ment where a knowledge based synchronization framework is extended to include notions of initiation and/or expiration of syn-
chronized object(s). Advantageously, according to the synchronization framework, endpoints can synchronize data in a way that
allows a definition of when one or more objects of the synchronized data should come into existence for purposes of a knowledge
exchange and/or when one or more objects of the synchronized data should cease to exist for purposes of a knowledge exchange.
In one embodiment, additional dimension(s) are placed on a knowledge vector for a given object that represent incremental life-
time information for the object, which is accounted for during the synchronization process to allow operations on the object by
synchronizing applications or processes during its lifetime.

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

INITIATION AND EXPIRATION OF OBJECTS IN A KNOWLEDGE
BASED FRAMEWORK FOR A MULTI-MASTER
SYNCHRONIZATION ENVIRONMENT
TECHNICAL FIELD

[0001] The subject disclosure relates to initiation and/or expiration of
synchronized object(s) in a knowledge based synchronization framework for a
multi-master synchronization environment.

BACKGROUND
[0002] The popularity of mobile computing and communications devices has
created a corresponding wish for the ability to deliver and receive information
whenever wanted by users. Put simply, users want ubiquitous access to
information and applications from a variety of devices, wherever, whenever, and
whatever the devices’ capabilities, and in addition, users want to be able to access
and update such information on the fly, and they want guarantees that the data is as
correct and up to date as can be.
[0003] There are a variety of distributed data systems that have attempted to have
devices and objects share replicas of data with one another. For instance, music
sharing systems may synchronize music between a PC, a Cell phone, a gaming
console and an MP3 player. Email data may be synchronized among a work server,
a client PC, and a portable email device. However, today, to the extent such
devices synchronize a set of common information with each other, the
synchronization takes place according to a static setup among the devices.
However, when these devices become disconnected frequently or intermittently,
1.e., when they are loosely coupled such that they may become disconnected from
communicating with each other, e.g., when a cell phone is in a tunnel, or when the
number of devices to be synchronized is dynamic, it becomes desirable to have a
topology independent way for the devices to determine what changes each other
device needs when they re-connect to one another, or as they join the network.
[0004] As shown in Fig. 1, there are various examples today where a master node
100 synchronizes in a dedicated manner with a client node 110, such as when an

email server synchronizes with an email client. Due to the dedicated

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

synchronization between the two devices, the information 102 needed to
synchronize between the two devices can be tracked by the master node 100. Such
information 102 can also optionally be tracked by client node 110 as well, however,
when the connection between master node 100 and client node 110 becomes
disconnected at times, or when the number of synchronizing devices can suddenly
increase or decrease, tracking the necessary information of the common
information that each device needs across all of those devices becomes a difficult
problem.

[0005] Current solutions often base their synchronization semantics solely on
clocks or logical watermarks for a specific node (e.g., the email server), as opposed
to any node. These systems can work well in cases of a single connecting node or
master. However, they run into problems when the topology or pattern in which
the nodes connect can change unpredictably.

[0006] Other systems build proprietary synchronization models for specific kinds
of data objects, tracking an enormous amount of primitive metadata specific to the
data format across the devices in order to handle the problem. For instance, to
synchronize objects of a particular Word processing document format, a lot of
overhead and complexity goes into representing a document and its fundamental
primitives as they change over time, and representing that information efficiently to
other devices wishing to synchronize according to a common set of Word
processing documents. In addition to such systems being expensive and complex
to build and non-extendible due to the custom data format upon which they are
based, such systems are inherently unscalable due to large amounts of metadata that
must be generated, analyzed and tracked.

[0007] In addition, such solutions apply only to the one specific domain, e.g.,
Word processing documents. When synchronization objects of all kinds are
considered, e.g., pictures, videos, emails, documents, database stores, etc., one can
see that implementing custom synchronization solutions based on each object type
for tracking evolution of such objects across all devices in a multi-master
environment is unworkable today. Accordingly, such solutions inextricably link

synchronization semantics with the data semantics.

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0008] Thus, there is a need for node-independent synchronization knowledge
when computers in a topology change the way they connect to each other or as the
number of computers grows. For instance, with a media player, it might be
desirable to synchronize among multiple computers and multiple websites. In most
instances, most applications can only synchronize data between a few well-known
endpoints (home PC and media player). As the device community evolves over
time for a user of the media player application, however, the need for data
synchronization flexibility for the music library utilized by the devices increases,
thereby creating the need for a more robust system.

[0009] The need becomes even more complex when one considers that the vast
majority of computing objects are in some sense ephemeral, i.e., of use for a limited
lifetime. The ability to represent when to bring an object into and out of existence
n a knowledge exchange in a complex multi-master network topology of devices
would thus be desirable for a myriad of synchronization scenarios. In addition to
enabling an enriched set of synchronization scenarios, being able to represent and
combine information about, and control, the lifetime of an object in a multi-master
synchronization environment would enable a more intelligent and efficient
representation of objects across all nodes by initiating objects when they become
relevant, or removing objects when they are no longer relevant.

[0010] In this regard, conventional systems have only performed “deletion”
operations only as part of a custom process operating on a specific identifiable set
of objects, such as an email data store. For instance, as part of a retention policy,
an application, such as an email program, can specifically implement custom code
that by default deletes all email older than 6 months, except those email objects
flagged for saving. However, such custom code operates as part of a static
workflow and policy across all objects in the domain managed by the application,
which is not very flexible. As a result, changing the way objects are deleted
requires changing the workflow of the application.

[0011] Thus, what 1s desired is a way to specify when objects are to be removed
from the knowledge of the device, or an application of the device. Similarly, it

would be desirable to specify when objects are to be incorporated into the

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

knowledge of the device, or an application of the device. In other words, it would
be desirable to incorporate the general notions of initiation and destruction of
objects into the synchronization metadata that describes the objects itself, so that
the notion of initiation and destruction can be interpreted independently of which
device acquires knowledge of an object. It would thus be desirable to
instantiate/initiate and destruct objects as part of the overall synchronization model,
so that initiation and destruction of objects can be applied on a per object basis, and
independently of which node stores the object, as part of a multi-master
synchronization experience.
[0012] The above-described deficiencies of today’s synchronization models are
merely intended to provide an overview of some of the problems of conventional
systems, and are not intended to be exhaustive. Other problems with conventional
systems and corresponding benefits of the various non-limiting embodiments
described herein may become further apparent upon review of the following
description.

SUMMARY
[0013] A simplified summary is provided herein to help enable a basic or general
understanding of various aspects of exemplary, non-limiting embodiments that
follow in the more detailed description and the accompanying drawings. This
summary is not intended, however, as an extensive or exhaustive overview.
Instead, the sole purpose of this summary is to present some concepts related to
some exemplary non-limiting embodiments in a simplified form as a prelude to the
more detailed description of the various embodiments that tollow.
[0014] Various embodiments provide synchronization among a plurality of
network nodes in a multi-master synchronization environment are described herein
that extend a knowledge based synchronization framework to include notions of
initiation and/or expiration of synchronized object(s). Advantageously, according
to the synchronization framework, endpoints can synchronize data in a way that
allows a definition of when one or more objects of the synchronized data should
come into existence for purposes of a knowledge exchange and/or when one or

more objects of the synchronized data should cease to exist for purposes of a

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

knowledge exchange. In one embodiment, additional dimension(s) are placed on a
knowledge vector for a given object that represent incremental lifetime information
for the object, which is accounted for during the synchronization process to allow
operations on the object by synchronizing applications or processes during its
lifetime.
[0015] These and other embodiments are described in more detail below.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Various non-limiting embodiments are further described with reference to
the accompanying drawings in which:
[0017] Figure 1 illustrates a dedicated synchronization system that provides
synchronization between two well defined endpoints of the system;
[0018] Figure 2 illustrates a high level block diagram of an infrastructure for
multi-master synchronization that incorporates synchronization metadata including
lifetime information for synchronized objects;
[0019] Figure 3 is a flow diagram illustrating an exemplary, non-limiting process
for synchronizing based on lifetime synchronization metadata in the presence of
nodes that connect and disconnect from a network;
[0020] Figure 4 is another flow diagram illustrating an exemplary, non-limiting
process for synchronizing based on lifetime synchronization metadata;
[0021] Figure 5 illustrates exemplary non-limiting knowledge exchange between
four nodes of a loosely connected network of nodes;
[0022] Figure 6 illustrates exemplary non-limiting knowledge exchange between
four nodes of a loosely connected network of nodes when some of the devices
become disconnected from one another;
[0023] Figures 7, 8 and 9 illustrate exemplary knowledge exchange in the context
of multiple objects shared among nodes of a network;
[0024] Figure 10 is an exemplary non-limiting flow diagram illustrating the
process for knowledge exchange in the context of multiple objects shared among
nodes of a network;
[0025] Figure 11 is a general architecture illustrating the framework for requesting

and conveying changes based on knowledge;

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0026] Figures 12 and 13 are general flow diagrams illustrating initiation and
expiration of synchronizing objects, respectively;
[0027] Figure 14 illustrates state transitions for an object according to a
synchronization life cycle in the knowledge based synchronization framework;
[0028] Figure 15 is a flow diagram illustrating the progression of an object from
not initiated to initiated to expired in accordance with various embodiments
described herein;
[0029] Figure 16 is a block diagram of an exemplary non-limiting implementation
of a device for performing a knowledge exchange with another node via a common
set of APIs;
[0030] Figure 17 is a block diagram representing exemplary non-limiting
networked environments in which various embodiments described herein can be
implemented; and
[0031] Figure 18 is a block diagram representing an exemplary non-limiting
computing system or operating environment in which one or more aspects of
various embodiments described herein can be implemented.

DETAILED DESCRIPTION
OVERVIEW
[0032] As discussed in the background, among other things, conventional systems
perform deletion of objects only as part of an external workflow implementing one
or more deletion policies across all data. As a result, flexibility exists only to the
extent built in for different objects in advance, and one can see that as the number
of classes of objects, and different policies proliferate, such a deletion process can
become extraordinarily complex. Thus, what is desired is a way to incorporate the
notions of initiation of objects and removal of objects into the language of
synchronization itself, so that “when to instantiate an object” and “when to delete
an object” are defined as part of synchronization knowledge, which efficiently
represents synchronization metadata for the object, and can be used for
synchronization in a multi-master synchronization environment.
[0033] Accordingly, in various non-limiting embodiments, an efficient

representation of synchronization metadata is provided for multi-master

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

synchronization of data among devices that describes when to initiate an object to
start its lifetime and/or when to delete the object to end its lifetime. In contrast to
conventional systems that require a specific initiation or destruction policy that is
applied as part of an application workflow across all objects within the domain of
the application, the initiation and deletion notions are incorporated as part of the
knowledge framework that describes synchronization metadata for objects, e.g.,
object identifiers, versions, etc.

[0034] In this respect, the vast majority of computing objects are in some sense
ephemeral. Thus, the ability to represent when to bring an object into and out of
existence in a knowledge exchange in a complex multi-master network topology of
devices enables a myriad of synchronization scenarios, including, but not limited
to, digital rights management (DRM) for expiration of rights to an object,
scheduling applied for objects, such as delaying the instantiation of calendar
objects, and so on.

[0035] Any time an application can benefit from something other than a perpetual
view over data, and can further benefit from being freed from the management of
initiation and deletion of objects by moving the intelligence into the
synchronization metadata held for the objects, the various embodiments described
herein can be applied effectively. Being able to represent and combine information
in synchronization knowledge about the lifetime of an object in a multi-master
synchronization environment is thus advantageous for a variety of scenarios where
objects can be of a limited lifetime.

[0036] As aroadmap for what follows, first, an overview of some of the
embodiments described herein is presented. Then, some supplemental context is
given for a general mechanism for efficiently representing knowledge in multi-
master data synchronization systems. Next, exemplary, non-limiting embodiments
and features are discussed in more detail for supplemental context and
understanding of such multi-master data synchronization systems, followed by
representative network and computing environments in which such embodiments

can be implemented.

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0037] Fig. 2 is a block diagram generally illustrating the concept of objects that
synchronize in a multi-master synchronization environment where the objects are
initiated or destructed according to synchronization metadata defined for the
objects. As shown, a device 200 and a device 210 are shown synchronizing, having
connected to one another via network(s) 220, via synchronization components 202,
212, respectively. Each sync component 202, 212 stores objects in storage 204,
214 as well as maintains synchronization knowledge 206, 216, respectively, of
those objects as described in more detail below. In this regard, the synchronization
knowledge 206, 216 used for synchronizing independent of data type and network
topology can be augmented to include metadata describing when to start and when
to end objects.

[0038] In the case of metadata describing the start of an object, this can mean that
the object will be created at some time in the future, and then participate in
synchronization of objects, or this can mean that the object is created, or has
already been created, and that the object will not yet participate in synchronization
until it is started. In the case of metadata describing the end of an object, this can
mean that the object ceases to participate in synchronization where implicated in a
set of objects being synchronized, or this can mean that the object and any metadata
about the object is deleted, or that the object can be deleted, but not the metadata
describing the object.

[0039] Fig. 3 is a general flow diagram describing the “start” or “end” of objects
as “lifetime” information for an object for purposes of synchronizing in a multi-
master synchronization environment among various nodes. At 300, at some point,
synchronization metadata is defined for objects to have a limited lifetime, and a
node connects to other node via one or more networks arranged according to any
network topology in a multi-master synchronization environment. At 310, the node
can learn synchronization metadata, i.e., by receiving, or requesting and receiving
from another node, or the node can send synchronization metadata to another node
where the metadata describes versioning information for the set of objects to be
synchronized and includes lifetime information including information about the

start and/or termination of the objects.

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0040] At 320, the synchronization metadata of the two nodes is compared to
determine collective knowledge of lifetime information for the objects. At 330,
optionally, based on the collective knowledge of lifetime information for the set of
objects, the objects that have begun, but not ended, life are synchronized. At 340,
objects that have ended life can be deleted. At 350, optionally, some objects that
have not started can be synchronized anyway, e.g., to ready video data for display
on another node where it can be predicted the other node will soon need the video
data.

[0041] Fig. 4 is a flow chart illustration showing a representative implementation
of the lifetime information as synchronization metadata in a knowledge framework
for synchronizing in a multi-master environment. At 400, a node connects to other
node via one or more networks arranged according to any network topology in a
multi-master synchronization environment. At 410, synchronizing begins
according to a knowledge exchange described in more detail below.

[0042] At 420, from each object’s metadata, a synchronization component of the
node determines if an object initiate tickcount of the object represented in the
metadata is equal to or greater than an object start number. If so, the object has
been initiated and will be synchronized. At 430, similarly, from each object’s
metadata, a synchronization component of the node determines if an object
terminate tickcount of the object represented in the metadata is equal to or greater
than an object expire number. If so, the object is expired and will be synchronized
as part of a knowledge exchange. This is reflected at 440 where objects that are
initiated and not expired are synchronized. Optionally, at 450, other operations can
be performed on objects that are not yet initiated (e.g., sync anyway), or on objects
that are expired (e.g., delete the object).

EFFICIENT KNOWLEDGE REPRESENTATION AND EXCHANGE

[0043] As a prelude to describing the initiation and deletion of objects via
synchronization metadata represented as knowledge in a multi-master
synchronization environment in accordance with various non-limiting
embodiments, in this section, an overview is presented of a general mechanism for

efficiently representing knowledge in data synchronization systems.

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0044] The general mechanism includes (1) an efficient exchange of knowledge
between connected devices by requiring only the minimum data needed by a first
node from a second node to be sent, (2) the ability to efficiently and correctly
recognize disagreements over the state of data, i.e., conflicts, between a first node
and a second node, (3) the ability to synchronize an arbitrary number of nodes and
(4) the ability to synchronize any node via any other node, i.e., the ability to work
in a peer to peer, multi-master synchronization environment.

[0045] With the general mechanism, any number of changes can be made to some
information that is to be shared between the two devices. At any time they become
connected, by exchanging their knowledge with one another, they become aware of
at least the minimum amount of information needed to reconstruct what each other
knows and does not know to facilitate of changes between the devices. It is noted
that where more than two devices are involved, knowledge may be incomplete
knowledge of a greater base of information to be shared, but as more knowledge is
shared around the multiple devices, collective knowledge continues to be accrued
by the devices as they connect to the other devices over time.

[0046] Advantageously, in various non-limiting embodiments, synchronization is
performed for a set of devices, or a subset of devices, all interested in maintaining
the latest versions of a set of objects, but also allows such devices to come into
connection and out of connection with the other objects of the set. Whenever a
device comes back into connection with other device(s) of the set of devices via
one or more networks, the device regains collective knowledge that is as up to date
as the other device(s) represent with their collective knowledge. In this fashion,
even loosely connected devices may come into and out of contact with a set of
devices, and then relearn all the knowledge missed by coming into contact with any
set of devices that possess the latest set of collective knowledge.

[0047] Fig. 5 illustrates that knowledge exchanges are generalizable, or scalable,
to any number of devices. As shown, four devices 500, 510, 520 and 530 are
shown with knowledge representations 502, 512, 522 and 532 that respectively
indicate what each device knows and doesn’t know about a set of common

information to be shared across the devices.

10

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0048] Advantageously, as shown by Fig. 6, even where connections in the
network become disconnected, a complete set of knowledge can nonetheless be
gained by all of the devices 500, 510, 520, and 530, as long as at least one
connection directly or indirectly exists to the other devices. For instance, as shown,
knowledge 532 of device 530 still reaches device 500 via the knowledge exchange
with device 520, then via the knowledge exchange between device 520 and 510,
and finally via the knowledge exchange between device 510 and 500.

[0049] With more devices sharing knowledge about common information to be
shared, all of the devices benefit because knowledge exchange(s) in accordance
with various non-limiting embodiments are agnostic about from which device
collective knowledge comes. The devices each independently operate to try to gain
as much knowledge about information to be shared among the devices from any of
the other devices to which it 1s connected.

[0050] In exemplary non-limiting detail, a method is described in further detail for
two nodes to engage in a conversation and at the end of the conversation to have
equivalent knowledge for the concerned data set. The method 1s scalable beyond
two nodes by creating a knowledge exchange capability for each new device
entering the peer-to-peer network/multi-master environment.

[0051] Thus, as shown in Fig. 7, node 700 of a peer-to-peer network having any
number of nodes wants to exchange data with Node 710. Node A begins by
requesting changes from Node 710 and in order to do so Node 700 sends its
knowledge (represented as Ky70) to Node 710 as shown.

[0052] Knowledge of a device or node is represented by labeling each object to be
shared among devices with a letter identifier, and then the trailing number
represents the latest version for this object. For instance, Ky700 as shown in Fig. 7
includes objects A, B, C and D each to be synchronized between nodes 700 and
710, and the number following each of the objects represents the latest version of
the object known on the device. For instance, knowledge Ky70 at a time t =1
includes the 5™ version of A, the 4™ version of B, the 7% version of C, and the 1*

version of D, notated as A4, B3, C6, DO in Fig. 7. In contrast, knowledge Ky719 of

11

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

node 710 at a time t = 1 may include the 4™ version of A, the 7™ version of B, the
7% version of C, and the 3" version of D, notated as A3, B6, C6, D2 in Fig. 7.
[0053] As shown in Fig. 8, at time T =2, node 710 compares knowledge Kn7oo
received from node 700 against its own knowledge Ky710 and determines what
needs to be sent to node 700. In this example, as a result, node 710 will send node
700 the changes relating to B and D since node 700’s knowledge of B3, DO is
behind node 710’s knowledge of B6 and D2. When node 710 sends node 700 the
changes between B6 and B3, and the changes between D2 and DO, it also sends
along the latest version of knowledge Ky710 1t has (reflecting whenever the last
change on node 710 was made).

[0054] As shown in Fig. 9, representing time t = 3, sending knowledge Ky71o to
node 700 allows node 700 to detect conflicts (e.g., store them for later resolution) if
it later finds out that both node 700 and node 710 made a change to an object while
they were on the same version. This allows for autonomous updating, efficient
enumeration, but also correct conflict detection when the nodes meet and exchange
changes. For instance, in the example, 1f C6 is not the same object in both
knowledge K710 and K7y, €.g., if both independently evolved from C5 to C6, then
which C6 is the correct C6 can be set aside for conflict resolution, e.g., according to
pre-set policy resolution that befits the synchronization scenario and devices
involved.

[0055] An exemplary knowledge exchange process between any two nodes of a
distributed multi-master synchronization environment using the above described
general mechanism is shown in the flow diagram of Fig. 10. At 1000, node A
requests synchronization with node B, thereby asking node B for changes node A
does not know about. In order to equip node B, at 1010, node A sends its
knowledge to node B. At 1020, node B compares the knowledge received from
node A with its own knowledge to determine what changes node B knows about
that should be sent to node A. At 1030, node B sends such changes to node A, and
in addition, node B sends its knowledge to node A so that node A can perform a

similar knowledge comparison at 1040. Consistent with embodiments described

12

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

herein, objects that are ended or not started according to the metadata are not
synchronized.

[0056] At 1050, node A detects any potential conflicts between latest versions
reflected in the knowledge of node B and latest versions reflected in the knowledge
of node A, in the event that independent evolution of versions has occurred on node
A and node B. Optionally, any conflict resolution policy may be applied to
determine which node trumps the other node in the event of a conflict. At 1060, the
latest changes from node A that are not possessed by node B are sent to node B.
The conflict resolution policy will additionally dictate whether any changes are sent
from node B to node A, or node A to node B, to maintain common information
between the nodes. If independent versioning is OK, or desirable, no conflict
resolution is another option. Consistent with embodiments described herein,
objects that are ended or not started according to the metadata are not synchronized.
[0057] Fig. 11 illustrates the generalized mechanism for exchanging knowledge
when filtered knowledge is possible, i.e., where a subset of a node’s knowledge is
to be synchronized with one or more of the other nodes. As shown, each replica A
and B has a synchronization provider PA and provider PB, respectively. In this
regard, each replica A and B maintains knowledge K, and Kp, respectively, and
potentially also maintains filtered knowledge F5 and Fg. Similar to the case with
no subsetting, any of the replicas can request changes 1100 of another replica and
receive changes 1110 in response to the other replica conveying changes. As
illustrated, replica A can request changes for a set of objects of a given scope at
1100, sending its knowledge including information about the lifetimes of the
objects of the set. Similarly, at 1110, based on an analysis of the knowledge K,
and K, at 1110, the changes that replica B knows, but replica A does not know
about, are sent to replica A for the objects that are within their lifetime. If the
filtered knowledge F, and filtered knowledge Fy are of the same scope, then as
with the generalized knowledge exchange:

[0058] Ki=KiuUKsp

[0059] If the filtered knowledge F, and filtered knowledge Fp are not of the same

scope, then instead the knowledge is a function of existing knowledge plus the

13

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

knowledge of the other replica as projected onto the intersection of their respective
Filters F, and Fg, as follows:

[0060] K, =K, (Kg— (Fy Fp))

[0061] Among other applications, an exemplary, non-limiting application for
these types of filters is for filtering columns, or any change units of a
synchronization framework. This is particularly applicable since column changes
are not likely to be subject to move operations in the system. There are two
considerations for this scenario worth noting: filter representation and knowledge
consolidation.

[0062] With respect to filter representation, filter representation for the case of no
move filters 1s as follows. Each filter is represented as a list of the change units
contained within the filter. This representation provides a convenient means of
representation as well as the ability to combine filters when necessary. The ability
to combine filters is useful for consolidating knowledge.

[0063] With respect to knowledge consolidation, in order to keep knowledge in its
most concise form the ability to consolidate knowledge must be maintained. In this
regard, fragments of filtered knowledge can be consolidated so that knowledge can
be maintained in its most compact form.

[0064] Considering the ability to combine filters, since filters can be represented
as a set of change units, overlaps in filters can be reconciled by isolating the sets of
change units that exist in both filters.

[0065] Also, since the vector for a filter applies to each of the individual change
units within the filter, the combination of the filters can be performed by finding
the combined vector for the change unit for each change unit in both filters. Then
once all of the vectors are known, the change units that have a common vector are
recombined into a new filter.

[0066] Accordingly, the notion of knowledge can be used to efficiently represent
data for knowledge exchanges among multiple nodes of a multi-master
synchronization network, any node of which may independently evolve common
information, or subsets of common information, to be synchronized across the

nodes. The above-described knowledge based framework can be implemented for

14

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

a multi-master synchronization environment and as described in more detail below,
the framework is extendible to incorporate the notions of initiation and deletion of

objects via efficient synchronization metadata.

KNOWLEDGE BASED INITIATION AND/OR DESTRUCTION OF OBJECTS
[0067] As mentioned, various embodiments of knowledge based initiation of
objects and/or deletion of objects are provided herein by augmenting metadata
included in a knowledge framework, an overview of which was provided above.
For the avoidance of doubt, the term “initiation” as used herein is meant broadly,
and refers to any way in which data can come to be accessible, created, stored or
synchronized in a computing system. For instance, the initiation capabilities
described can be applied to scenarios where it is desirable to delay the presence of
an object as part of synchronization, but nonetheless specify future synchronization
when certain criteria are satisfied.

[0068] Similarly, the terms “deletion” or “destruction” refers broadly to any way
in which data can become removed, unreadable, or otherwise inaccessible, or not
synchronized along with other objects being synchronized in a computing system.
For instance, the deletion capabilities described can be applied to scenarios where it
1s desirable for data to expire after a predetermined number of events occur.

[0069] Various embodiments provide synchronization among a plurality of
network nodes in a multi-master synchronization environment are described herein
that extend a knowledge based synchronization framework to include notions of
initiation and/or expiration of synchronized object(s). Advantageously, according
to the synchronization framework, endpoints can synchronize data in a way that
allows a definition of when one or more objects of the synchronized data should
come into existence for purposes of a knowledge exchange or when one or more
objects of the synchronized data should cease to exist for purposes of a knowledge
exchange.

[0070] As mentioned, in one embodiment, additional dimension(s) can be placed
on a knowledge vector for a given object that represent lifetime information for the

object, which 1s accounted for during the synchronization process to allow

15

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

operations on the object by synchronizing applications only during its lifetime. For
instance, with respect to the start of an object, where an object is represented as O5
according to the knowledge based framework described above, indicating
knowledge of the fifth version of an object O, an additional initiation item can be
added to the knowledge vector, as OSI3, indicating knowledge of the fifth version
of an object O, which is to be initiated after 3 initiation count ticks. With respect to
the end of an object, e.g., for an object O5, an additional expiration item can be
added to the knowledge vector, as OSE7, indicating knowledge of the fifth version
of an object O, which is to be initiated after 7 expiration count ticks. Accordingly,
based on the additional dimension(s) placed on the knowledge vector, knowledge
of objects incorporates the notion of initiation and destruction of objects in a
knowledge based synchronization framework.

[0071] As described above, a synchronization framework for multi-master
synchronization defines a model for synchronization based on the concept of
knowledge, defining the summary of the state based synchronization of a replica.
In many cases it 1s useful to synchronize data in a way that allows an endpoint to
define when one or more objects of the synchronized data should come into
existence for purposes of a knowledge exchange (e.g., to synchronize an email
object at a future date) or when one or more objects of the synchronized data
should cease to exist for purposes of a knowledge exchange.

[0072] Either scenario can be accomplished with an additional dimension placed
on the knowledge vector for a given object.

[0073] For instance, where knowledge of an object is Ix: AS on a device, to make
the object become synchronized as part of a knowledge exchange in the future,
knowledge of the object can be augmented simply as Ix: AS F4, which means that
an interpreting endpoint receiving knowledge of the object from the device as part
of a synchronization will not treat the object Ix: A5 as existing until the conditions
pre-supposing F1, F2, and F3 have been satistied. These conditions can be time
passing according to intervals, number of hops by the object to intervening
endpoints, number of times rendered, number of times modified or edited, number

of times operated on by a particular application, number of occurrences of a

16

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

particular external event, etc., i.e., any future function F is contemplated that would
bring the object into existence for purpose of synchronizing data in the future, after
counting a number of occurrences defined by the function F.

[0074] For another example, where knowledge of an object is Ix: C8, to stop the
object from being synchronized as part of a knowledge exchange in the future,
knowledge of the object can be simply augmented as Ix: C8 S6, which means that
an interpreting endpoint receiving knowledge of the object from the device as part
of a synchronization will synchronize the object data until the conditions pre-
supposing S1, S2, S3, S4, S5 and S6 have been satisfied. Again, the conditions can
be time passing according to intervals, number of hops by the object to intervening
endpoints, number of times rendered, number of times modified or edited, number
of times operated on by a particular application, number of occurrences of a
particular external event, etc., 1.¢., any function S to which a tick count can be
assigned in consideration of which it can be determined whether to sunset the
object or not by an interpreting device.

[0075] Various embodiments can include the expiration metadata for objects, or
the initiation metadata for objects, or both. Fig. 12 is a flow diagram of an
embodiment where expiration metadata for objects is included, but not initiation
metadata. Such an approach employing expiration metadata in a knowledge
exchange would be useful, for instance, as a digital rights management (DRM)
implementation for content where, content expires, and ceases to synchronize
among a user’s device after 3 device shares to limit the amount of sharing among
devices, or where it is desirable to have promotional material expire after a pre-set
number of renderings. Another use for expiring data is to implement a document
expiration policy for periodic deletion of data on a server, e.g., after 6 months pass
from creation of the object. For the avoidance of doubt, these are non-limiting
scenarios, and the number of scenarios where it is desirable to expire data as part of
a synchronization experience are limitless.

[0076] In Fig. 12, at 1200, an expiration count is defined for an object in
synchronization metadata maintained for the object whereby the object expires after

the expiration count for the object attains an expiration number defined for the

17

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

object. Then, at 1210, for purposes of synchronizing, it is determined whether each
object to be synchronized has expired by comparing the expiration count of the
metadata with the expiration number. The expiration count for the object increases
any time a pre-defined function is satisfied (e.g., each time a month passes, or each
time the object is modified, etc.). At 1220, the objects that are not expired are
synchronized with other node(s) in the multi-master synchronization environment.
At 1230, since there may be objects that have expired, optionally the objects can be
deleted. Also, once the object is deleted, the metadata describing the object can
also optionally be deleted. At 1240, i.e., between synchronizations, any number of
events may occur which increment the expiration counts associated with a set of
objects being synchronized. In short, as expiration counts indicate expiration, such
objects no longer synchronize.

[0077] Fig. 13 1s a flow diagram of an embodiment where initiation metadata for
objects is included, but not expiration metadata (though as mentioned, initiation
and expiration metadata can be implemented independently in a single
embodiment). Such an approach employing initiation metadata in a knowledge
exchange would be useful, for instance, as a digital rights management (DRM)
implementation for content where, the content owner has not yet authorized the
release of the content, e.g., as part of a press release, but wishes to set the wheels in
motion in the future to synchronize the content of the press release. Another use
for delaying the initiation of synchronization of data is to encourage the user to take
certain acts before the content synchronizes, e.g., registering the user before
allowing synchronization. Another use for delaying the initiation of an object is to
delay a transmission to a particular time in the future, e.g., to delay transmission of
an email. For the avoidance of doubt, these are non-limiting scenarios, and the
number of scenarios where it is desirable to initiate data in the future as part of a
synchronization experience are limitless.

[0078] In Fig. 13, at 1300, an initiation count is defined for an object in
synchronization metadata maintained for the object whereby the object expires after
the initiation count for the object attains an initiation number defined for the object.

Then, at 1310, for purposes of synchronizing, it is determined whether each object

18

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

to be synchronized is initiated by comparing the initiation count of the metadata
with the initiation number. The initiation count for the object increases any time a
pre-defined function is satisfied (e.g., each time a month passes, after some other
object is acted on, after related objects come into existence, etc.). At 1320, the
objects that are initiated are synchronized with other node(s) in the multi-master
synchronization environment.

[0079] At 1330, for objects that have become initiated, since initiation metadata
can be considered irrelevant at that point, optionally knowledge (sync metadata) of
the objects in terms of when initiated can be deleted. Such knowledge can also be
preserved. Moreover, at this junction, for an embodiment where expiration
metadata is also used, the point at which an object becomes initiated is also a
suitable time to define expiration metadata for the object, where desirable. In this
regard, once the object is initiated, the initiation metadata describing the object can
thus optionally be deleted. At 1340, i.e., between synchronizations, any number of
events may occur which increment the initiation counts associated with a set of
objects. In short, as initiation counts indicate initiation, such objects begin to
synchronize. Such objects can be created at initiation time, or can be created
beforehand, but not synchronized until initiation.

[0080] Fig. 14 sets forth these concepts in terms of a state transition diagram
based on the synchronization metadata described above for initiating and
terminating the synchronization of data related to objects in the system. For
instance, starting in the upper left state, an object having knowledge vector

O1 _IT1_ETO indicating a second version of object O, having an initiation tickcount
of 1 and an expiration tickcount of 0 is illustrated in the not started state 1400 (i.e.,
the object does not synchronize). In the example, a synchronizing process defines
an 1nitiation target number of 3, such that when a pre-defined function is satisfied 2
more times, i.e., when the initiation tickcount associated with object O reaches 3,
object O becomes initiated, and enters the synchronizes state 1402 whereby the
object O synchronizes according to a typical knowledge exchange in a multi-master

environment as described above.

19

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0081] Once initiated and synchronizing in state 1402, then the expiration
tickcount can come into play. In this regard, the synchronizing process can define
an expiration target number for the object, e.g., 10. After the object undergoes 10
expiration tickcount increments after a pre-defined function is satistied 10 times
(e.g., passage of 10 months, or occurrence of 10 events, such as 10 renderings or
edits), the object expires and enters the expired state 1404. As shown, it may be a
different version of the object that expires such as O6 after the object O1 undergoes
five independent modifications. As mentioned above, in the not started state 1400,
it is optional to include expiration tickcount metadata for an object and in the
synchronizes state 1402 or expired state 1404, it 1s optional to include initiation
tickcount metadata.

[0082] Fig. 15 illustrates the transitions for an object being synchronized through
synchronization life cycle as a non-limiting flow diagram describing one
implementation. At 1500, an object is created and an initiation count number can
be defined for the object that determines when the object is to become live for
synchronization purposes. The synchronization metadata includes an initiation
count that is set to zero, ready for incrementing until the object becomes live. At
1510, as pre-defined initiation events occur, the initiation count represented in the
knowledge vector for the object is incremented, until the initiation count number is
reached and the object becomes live. At this stage, the object moves from not-
initiated yet to initiated.

[0083] At 1520, an object is initiated and thus, an expiration count number can be
defined for the object that determines when the object is to be ignored or deleted
for synchronization purposes. The synchronization metadata includes an expiration
count that is set to zero, ready for incrementing until the object expires. At 1530,
synchronization of the initiated object takes place according to the knowledge
exchange principles enumerated in Figs. 5 to 11. At 1540, as pre-defined
expiration events occur, the expiration count represented in the knowledge vector
for the object is incremented, until the expiration count number 1s reached and the
object expires at 1550. At this stage, the object moves from initiated to expired,

and thus the object no longer synchronizes even where the object is within scope of

20

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

a knowledge exchange request. For storage savings, expired objects can optionally
be deleted.

[0084] Fig. 16 is a block diagram of an exemplary non-limiting implementation of
a device 1600 for performing a full or partial knowledge exchange via a set of
APIs. As shown, device 1600 includes a sync module 1620 that performs
knowledge exchange techniques for synchronizing a set of objects 1630 with
another device in accordance with non-limiting embodiments. The set of objects
1630 can also be stored in a cache (not shown) for efficient operations, and then set
of objects 1630 can be later updated by offline applications. Sync module 1620
may include a sync communications module 1622 for generally transmitting and
receiving data in accordance with knowledge exchange techniques to and from
other nodes as described herein.

[0085] Sync communications module 1622 may also include a sync initiation
module 1624 which may initiate synchronization with a second device if
authorized, e.g., via optional authorization module 1640, and connect to the second
device. Sync module 1622 may also include an I/O module 1626 responsive to the
initiation of synchronization by sending full and/or partial knowledge 1602 about
the set of objects 1630 to a second device via APlIs, e.g., for getting or sending
knowledge or for getting or sending changes. Similarly, I/O module 1626 can
receive requested knowledge or changes 1612 of the second device and changes to
be made to the set of objects 1630 originating from the second device. In turn, a
sync analysis module 1628 operates to apply any changes to be made to the set of
objects 1630 and to compare knowledge 1612 received from the second device with
the knowledge 1602 of the first device in order to determine changes to be made
locally or to send to the second device to complete synchronization between the
devices.

[0086] In accordance with embodiments herein, knowledge 1602 possessed by a
node of a set of objects 1630, such as versioning knowledge 1603 as described in
connection with Figs. 5 to 11, 1s augmented to include initiation knowledge 1604,

which defines when an object begins to synchronize in the knowledge based

21

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

framework, and/or expiration knowledge 1605, which defines when an object
ceases to synchronize in the knowledge based framework.

EXEMPLARY NETWORKED AND DISTRIBUTED ENVIRONMENTS

[0087] One of ordinary skill in the art can appreciate that the various
embodiments of the synchronization infrastructure described herein can be
implemented in connection with any computer or other client or server device,
which can be deployed as part of a computer network or in a distributed computing
environment, and can be connected to any kind of data store. In this regard, the
various embodiments described herein can be implemented in any computer system
or environment having any number of memory or storage units, and any number of
applications and processes occurring across any number of storage units. This
includes, but is not limited to, an environment with server computers and client
computers deployed in a network environment or a distributed computing
environment, having remote or local storage.

[0088] Distributed computing provides sharing of computer resources and
services by communicative exchange among computing devices and systems.
These resources and services include the exchange of information, cache storage
and disk storage for objects, such as files. These resources and services also
include the sharing of processing power across multiple processing units for load
balancing, expansion of resources, specialization of processing, and the like.
Distributed computing takes advantage of network connectivity, allowing clients to
leverage their collective power to benefit the entire enterprise. In this regard, a
variety of devices may have applications, objects or resources that may use the
synchronization infrastructure as described for various embodiments of the subject
disclosure.

[0089] Fig. 17 provides a schematic diagram of an exemplary networked or
distributed computing environment. The distributed computing environment
comprises computing objects 1710, 1712, etc., and computing objects or devices
1720, 1722, 1724, 1726, 1728, etc., which may include programs, methods, data
stores, programmable logic, etc., as represented by applications 1730, 1732, 1734,
1736, 1738. It can be appreciated that objects 1710, 1712, etc., and computing

22

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

objects or devices 1720, 1722, 1724, 1726, 1728, etc., may comprise different
devices, such as PDAs, audio/video devices, mobile phones, MP3 players, personal
computers, laptops, etc.

[0090] Each object 1710, 1712, etc., and computing objects or devices 1720,
1722, 1724, 1726, 1728, etc., can communicate with one or more other objects
1710, 1712, etc., and computing objects or devices 1720, 1722, 1724, 1726, 1728,
etc., by way of the communications network 1740, either directly or indirectly.
Even though illustrated as a single element in Fig. 17, network 1740 may comprise
other computing objects and computing devices that provide services to the system
of Fig. 17, and/or may represent multiple interconnected networks, which are not
shown. Each object 1710, 1712, etc., or 1720, 1722, 1724, 1726, 1728, etc., can
also contain an application, such as applications 1730, 1732, 1734, 1736, 1738, that
might make use of an API, or other object, software, firmware and/or hardware,
suitable for communication with or implementation of the synchronization
infrastructure provided in accordance with various embodiments of the subject
disclosure.

[0091] There are a variety of systems, components, and network configurations
that support distributed computing environments. For example, computing systems
can be connected together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many networks are coupled to the Internet,
which provides an infrastructure for widely distributed computing and encompasses
many different networks, though any network infrastructure can be used for
exemplary communications made incident to the synchronization infrastructure as
described in various embodiments.

[0092] Thus, a host of network topologies and network infrastructures, such as
client/server, peer-to-peer, or hybrid architectures, can be utilized. The “client” is a
member of a class or group that uses the services of another class or group to which
it is not related. A client can be a process, i.e., roughly a set of instructions or
tasks, that requests a service provided by another program or process. The client
process utilizes the requested service without having to “know” any working details

about the other program or the service itself.

23

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

[0093] In a client/server architecture, particularly a networked system, a client is
usually a computer that accesses shared network resources provided by another
computer, e.g., a server. In the illustration of Fig. 17, as a non-limiting example,
computers 1720, 1722, 1724, 1726, 1728, etc., can be thought of as clients and
computers 1710, 1712, etc., can be thought of as servers where servers 1710, 1712,
etc., provide data services, such as receiving data from client computers 1720,
1722, 1724, 1726, 1728, etc., storing of data, processing of data, transmitting data
to client computers 1720, 1722, 1724, 1726, 1728, etc., although any computer can
be considered a client, a server, or both, depending on the circumstances. Any of
these computing devices may be processing data, synchronizing or requesting
services or tasks that may implicate the synchronization infrastructure as described
herein for one or more embodiments.
[0094] A server is typically a remote computer system accessible over a remote or
local network, such as the Internet or wireless network infrastructures. The client
process may be active in a first computer system, and the server process may be
active in a second computer system, communicating with one another over a
communications medium, thus providing distributed functionality and allowing
multiple clients to take advantage of the information-gathering capabilities of the
server. Any software objects utilized pursuant to the synchronization infrastructure
can be provided standalone, or distributed across multiple computing devices or
objects.
[0095] In a network environment in which the communications network/bus 1740
is the Internet, for example, the servers 1710, 1712, etc., can be Web servers with
which the clients 1720, 1722, 1724, 1726, 1728, etc., communicate via any of a
number of known protocols, such as the hypertext transfer protocol (HTTP).
Servers 1710, 1712, etc., may also serve as clients 1720, 1722, 1724, 1726, 1728,
etc., as may be characteristic of a distributed computing environment.
EXEMPLARY COMPUTING DEVICE
[0096] As mentioned, advantageously, the techniques described herein can be
applied to any device where it is desirable to synchronize with other objects in a

computing system. It should be understood, therefore, that handheld, portable and

24

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

other computing devices and computing objects of all kinds are contemplated for
use in connection with the various embodiments, i.e., anywhere that a device may
synchronize. Accordingly, the below general purpose remote computer described
below in Fig. 18 is but one example of a computing device.

[0097] Although not required, embodiments can partly be implemented via an
operating system, for use by a developer of services for a device or object, and/or
included within application software that operates to perform one or more
functional aspects of the various embodiments described herein. Software may be
described in the general context of computer-executable instructions, such as
program modules, being executed by one or more computers, such as client
workstations, servers or other devices. Those skilled in the art will appreciate that
computer systems have a variety of configurations and protocols that can be used to
communicate data, and thus, no particular configuration or protocol should be
considered limiting.

[0098] Fig. 18 thus illustrates an example of a suitable computing system
environment 1800 in which one or aspects of the embodiments described herein can
be implemented, although as made clear above, the computing system environment
1800 is only one example of a suitable computing environment and is not intended
to suggest any limitation as to scope of use or functionality. Neither should the
computing environment 1800 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the
exemplary operating environment 1800.

[0099] With reference to Fig. 18, an exemplary remote device for implementing
one or more embodiments includes a general purpose computing device in the form
of a computer 1810. Components of computer 1810 may include, but are not
limited to, a processing unit 1820, a system memory 1830, and a system bus 1822
that couples various system components including the system memory to the
processing unit 1820.

[00100] Computer 1810 typically includes a variety of computer readable media
and can be any available media that can be accessed by computer 1810. The

system memory 1830 may include computer storage media in the form of volatile

25

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

and/or nonvolatile memory such as read only memory (ROM) and/or random
access memory (RAM). By way of example, and not limitation, memory 1830 may
also include an operating system, application programs, other program modules,
and program data.

[00101] A user can enter commands and information into the computer 1810
through input devices 1840. A monitor or other type of display device is also
connected to the system bus 1822 via an interface, such as output intertace 1850.

In addition to a monitor, computers can also include other peripheral output devices
such as speakers and a printer, which may be connected through output interface
1850.

[00102] The computer 1810 may operate in a networked or distributed environment
using logical connections to one or more other remote computers, such as remote
computer 1870. The remote computer 1870 may be a personal computer, a server,
a router, a network PC, a peer device or other common network node, or any other
remote media consumption or transmission device, and may include any or all of
the elements described above relative to the computer 1810. The logical
connections depicted in Fig. 18 include a network 1872, such local area network
(LAN) or a wide area network (WAN), but may also include other networks/buses.
Such networking environments are commonplace in homes, offices, enterprise-
wide computer networks, intranets and the Internet.

[00103] As mentioned above, while exemplary embodiments have been described
in connection with various computing devices and network architectures, the
underlying concepts may be applied to any network system and any computing
device or system in which it is desirable to synchronize.

[00104] Also, there are multiple ways to implement the same or similar
functionality, e.g., an appropriate API, tool kit, driver code, operating system,
control, standalone or downloadable software object, etc., which enables
applications and services to use the synchronization infrastructure. Thus,
embodiments herein are contemplated from the standpoint of an API (or other
software object), as well as from a software or hardware object that provides

synchronization capabilities. Thus, various embodiments described herein can

26

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

have aspects that are wholly in hardware, partly in hardware and partly in software,
as well as in software.

[00105] The word “exemplary” is used herein to mean serving as an example,
instance, or illustration. For the avoidance of doubt, the subject matter disclosed
herein is not limited by such examples. In addition, any aspect or design described
herein as “exemplary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs, nor is it meant to preclude equivalent
exemplary structures and techniques known to those of ordinary skill in the art.

b IN13

Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other
similar words are used in either the detailed description or the claims, for the
avoidance of doubt, such terms are intended to be inclusive in a manner similar to
the term “comprising” as an open transition word without precluding any additional
or other elements.

[00106] The term “limited lifetime” shall refer to a restriction on existence of an
object in a synchronizing system such that the start and/or end of existence of the
object is restricted.

[00107] As mentioned, the various techniques described herein may be
implemented in connection with hardware or software or, where appropriate, with a

99 ¢¢

combination of both. As used herein, the terms “component,” “system” and the
like are likewise intended to refer to a computer-related entity, either hardware, a
combination of hardware and software, software, or software in execution. For
example, a component may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application running on computer
and the computer can be a component. One or more components may reside within
a process and/or thread of execution and a component may be localized on one
computer and/or distributed between two or more computers.

[00108] The aforementioned systems have been described with respect to
interaction between several components. It can be appreciated that such systems

and components can include those components or specified sub-components, some

of the specified components or sub-components, and/or additional components, and

27

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

according to various permutations and combinations of the foregoing. Sub-
components can also be implemented as components communicatively coupled to
other components rather than included within parent components (hierarchical).
Additionally, it should be noted that one or more components may be combined
into a single component providing aggregate functionality or divided into several
separate sub-components, and that any one or more middle layers, such as a
management layer, may be provided to communicatively couple to such sub-
components in order to provide integrated functionality. Any components
described herein may also interact with one or more other components not
specifically described herein but generally known by those of skill in the art.
[00109] In view of the exemplary systems described supra, methodologies that
may be implemented in accordance with the described subject matter will be better
appreciated with reference to the flowcharts of the various figures. While for
purposes of simplicity of explanation, the methodologies are shown and described
as a series of blocks, it is to be understood and appreciated that the claimed subject
matter 1s not limited by the order of the blocks, as some blocks may occur in
different orders and/or concurrently with other blocks from what is depicted and
described herein. Where non-sequential, or branched, flow is illustrated via
flowchart, it can be appreciated that various other branches, flow paths, and orders
of the blocks, may be implemented which achieve the same or a similar result.
Moreover, not all illustrated blocks may be required to implement the
methodologies described hereinafter.

[00110] In addition to the various embodiments described herein, it is to be
understood that other similar embodiments can be used or modifications and
additions can be made to the described embodiment(s) for performing the same or
equivalent function of the corresponding embodiment(s) without deviating
therefrom. Still further, multiple processing chips or multiple devices can share the
performance of one or more functions described herein, and similarly, storage can
be effected across a plurality of devices. Accordingly, the invention should not be
limited to any single embodiment or set of embodiments, but rather should be

construed in breadth, spirit and scope in accordance with the appended claims.

28

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

CLAIMS

What is claimed is:
1. A method for synchronizing a set of objects between a first node and a
second node of a plurality of nodes communicatively coupled via one or more
networks in a multi-master synchronization environment, comprising:

Defining 300 by the first node at least one object of the set of objects to have
a limited lifetime and updating synchronization knowledge metadata of the first
node concerning the set of objects represented on the first node to include lifetime
metadata indicating the limited lifetime of the at least one object, wherein
representation of the synchronization knowledge metadata is independent of data
type; and

synchronizing 330 by the first node with the second node, the synchronizing
including transmitting, by the first node to the second node, the updated
synchronization knowledge metadata of the first node including transmitting
corresponding version metadata for the objects of the set of objects representing
versions of the set of objects represented on the first node and any corresponding
lifetime metadata for the objects.
2. The method of claim 1, wherein the defining 300 includes defining an
expiration number for the at least one object whereby the at least one object expires
after the expiration number of pre-defined events occur, the lifetime metadata
including the predetermined number.
3. The method of claim 1, wherein the defining 300 includes defining an
initiation number for the at least one object whereby the at least one object does not
join the set of objects for purposes of operating on the at least one object by a
synchronizing application or service until the initiation number of pre-defined
events occur, the lifetime metadata including the initiation number.
4, The method of claim 1, further comprising:

Analyzing 320, by the first node, the synchronization knowledge metadata,
and determining at least one object having corresponding lifetime metadata that

indicates expiration of the at least one object; and

29

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

Deleting 340, by the first node, the at least one object and updating the
synchronization knowledge metadata to remove any knowledge of the at least one
object.

3. The method of claim 1, further comprising:

analyzing 320, by the first node, the synchronization knowledge metadata,
and determining at least one object having corresponding lifetime metadata that
indicates initiation of the at least one object; and

updating 350 the synchronization knowledge metadata to reflect that the at
least one object is initiated as part of the set of objects.

6. The method of claim 5, wherein the updating 350 includes deleting the
lifetime metadata representing the initiation of the at least one object from the
synchronization knowledge metadata.

7. A method for synchronizing a set of objects between a second node and a
first node of a plurality of nodes communicatively coupled via one or more
networks in a multi-master synchronization environment, comprising:

Receiving 310 external synchronization knowledge, by the first node from
the second node, concerning the set of objects represented on the second node, the
synchronization knowledge including a data scope for the set of objects,
corresponding versions for the objects of the set of objects represented on the
second node and corresponding expiration information for at least one of the
objects of the set of objects, wherein representation of the synchronization
knowledge is independent of data type;

comparing 320 local synchronization knowledge of the first node concerning
the set of objects represented on the first node with the external synchronization
knowledge of the second node; and

determining 1210 if the expiration information for an object of the at least
one of the objects indicates expiration of the object.

8. The method of claim 7, further comprising;:

if the expiration information for the object indicates expiration, updating

1230 the local synchronization knowledge to remove the object from the set of

objects represented on the first node within the data scope.

30

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

0. The method of claim &8, wherein the updating 1230 the local synchronization
knowledge to remove the object further includes deleting the object from the first
node.
10. The method of claim 8, wherein the updating 1230 the local synchronization
knowledge to remove the object further includes deleting any synchronization
metadata concerning the object from the local synchronization knowledge.
11. The method of claim 7, further comprising:

determining 320 changes to the external knowledge of the set of objects
represented on the second node and corresponding changes to the set of objects
represented on the second node based on the comparing step; and

transmitting 330 the changes to the external knowledge and the
corresponding changes to the set of objects to the second node.
12. The method of claim 7, wherein the determining 1210 includes determining
by the first node if a function of a number represented by the expiration information
for the object has been satisfied.
13. The method of claim 7, wherein the determining 1210 includes determining
by the first node if a number of pre-detined operations on the object have been
performed.
14. The method of claim 7, wherein the determining 1210 includes determining
by the first node if a number of pre-defined time periods have passed relative to a
start time for the object.
15. The method of claim 7, wherein the determining 1210 includes determining
by the first node if a number of pre-defined events external to the object have been
performed.
16. A node of a plurality of nodes connectable via one or more networks that
synchronizes a set of objects between the node and another node of the plurality of
nodes in a multi-master synchronization environment, comprising:

a synchronization component 1620 for synchronizing the set of objects
between the node and the other node of the plurality of nodes, including:

a synchronization communications component 1622 that initiates

synchronization with the other node via a synchronization protocol that

31

10

15

20

25

30

WO 2009/099502 PCT/US2008/088640

defines, independent of data type, metadata structure for a knowledge
exchange between the other node and the node, that transmits to the other
node a request to synchronize with the set of objects based on the
synchronization protocol and that receives external knowledge of the set of
objects from the other node in response including other node object
versioning information corresponding to the set of objects represented on the
other node and other node object initiation information corresponding to at
least one object of the set of objects represented on the other node indicating
when the at least one object initiates in the multi-master synchronization
environment for purposes of synchronizing; and
a synchronization analysis component 1628 that updates local
knowledge of the set of objects represented on the node and corresponding
node object versioning information by comparing the external knowledge of
the set of objects, corresponding other node object versioning information
and corresponding other node object initiation information with the local
knowledge of the set of objects, corresponding node object versioning
information and corresponding node object initiation information to
determine what changes should be reflected by updated local knowledge of
the set of objects, corresponding node object versioning information and
corresponding node object initiation information.
17. The node of claim 16, wherein, for each object of the set of objects
represented by the updated local knowledge having corresponding node object
initiation information, the synchronization analysis component 1628 determines
whether a function of a number specified in the node object initiation information is
satisfied for the object.
18. The node of claim 17, wherein, if the function is not satisfied for the object,
the synchronization analysis component 1628 prevents processes of the multi-
master synchronization environment pertaining to the set of objects to access the
object.
19. The node of claim 16, wherein the synchronization analysis component 1628

analyzes the external knowledge of the set of objects, corresponding other object

32

WO 2009/099502 PCT/US2008/088640

versioning information and corresponding other object initiation information with
the local knowledge of the set of objects, corresponding node object versioning
information and corresponding node object initiation information to determine what
changes should be sent to the other node about which the other node does not
know.

20. The node of claim 16, wherein the synchronization protocol does not
prescribe any schema of the actual data being synchronized between the node 700

and the other node 710.

33

WO 2009/099502

Common
Information 102

Email Server 100

¢

1/18

Dedicated Synchronization

PCT/US2008/088640

FIG. 1

>

Email Client 110

PCT/US2008/088640

WO 2009/099502

2/18

] ¥4
abpajmouy
JuAg

= &

y1Z abeiolg

4X4 <

¢'OM

s399/q0
pu3z oy usaym

pue jiels 03 usym
buiquasaqg ejepeloy

buipnjour s30afqo
40 198 10} ejepeIapy

2uAs jo abueyosxzg
juapuadapuj apoN

902
abpajmouy
JuAg

y0Z 9beio)s

)

c0¢

jusuodwo9 suAg

01¢ 331A3Q

02z (shaomiaN

jusuodwo9 suAg

00Z 921A2Q

WO 2009/099502 PCT/US2008/088640

3/18

300

Connect to one or more networks in any
topological framework. Define synchronization
metadata including lifetime information.

i 310

Learn, by receiving or requesting and receiving, or send
to another device (convey), synchronization metadata
describing versioning information for a set of objects to
be synchronized, including lifetime information.

i 320

Analyze locally stored synchronization metadata
and received synchronization metadata for the
set of objects to determine up to date lifetime

information for the set of objects.

i 330

Based on the up to date lifetime information,
perform synchronization with respect to objects
that have begun life, and which have not ended life,
for purposes of synchronizing the set of objects.

l 340

Optionally delete objects of the set of objects
that have ended life.

i 350

Optionally synchronize with respect to some
(e.g. objects near start) objects, or all objects,
that have not yet begun life, but will.

FIG. 3

WO 2009/099502 PCT/US2008/088640

4/18

400

Connect to one or more networks in any
topological framework.

i 410

Begin synchronizing between two or more nodes via a
knowledge exchange.

i 420

From each object’s synchronization metadata,
determine if object initiate tickcount of object is
equal to or greater than an object start number.

l 430

From each object’s synchronization metadata,
determine if object terminate tickcount of object is
greater than an object expire number.

l 440

For objects that are initiated and not expired,
synchronize the objects.

l 450

Optionally perform other operations on objects
that are not yet initiated, or on objects that are
expired.

FIG. 4

PCT/US2008/088640

WO 2009/099502

5/18

S O

2GS abpajmouy

Z2s abpajmouy

[AAY
Bpajmouy

c0s
obpajmouy

20G abpajmouy

> 0€S 931A3Q

2GS abpajmouy

A
LS
pajmouy|
A% A1
abpaimouy abpamouy
Y

-
026 921A9(Q
Z2Zs abpajmouy
A
ecs
obpajmouy
ces
obpajmouy
) J
0LSG 921A3(Q

Z1G abpajmouy

Z1G abpajmouy

» 00G 9321h9Q

20G abpajmouy

PCT/US2008/088640

WO 2009/099502

6/18

9 "OId

26 abpajmouy

0¢G 331A3Q

zZzs abpaimouy |\

Z2s abpajmouy

0€G 331A3Q

26 abpajmouy

N
y o |
~ |
N e _
N e |
[AAY rAX uayoug
uayoug
suoljodauuo
abpajmouy abpajmouy n 2 uol}oauUuU0)
S AN
s N |
- _
e
s |
e
L s N _
205 abpajmouy|
-t
015 991A9(006 9d1A9Q
Z1LS abpajmouy|
Z1G aBpajmouyy 205 dbpajmouy

PCT/US2008/088640

WO 2009/099502

7/18

O0LINy abpajmou-

01L 9PON

<a
90
9d
14

L"OIA

0d
90
¢d
124

00Ny afpajmouyy

oonz!

00. PON

PCT/US2008/088640

WO 2009/099502

8/18

O0LINy 9Bpajmoud-

0l 3PON

<a
90
9d
14

8 "OIA

-00.Ny; afpajmouy]

o_L.Z!

00. 3PON

PCT/US2008/088640

WO 2009/099502

9/18

O0LINy abBpajmoud

0l 3PON

6 "Old

0o 20D _ O
10 dWes
od od
LYV X = LY
/ \

-00.Ny; afpajmouyy

00. 3PON

WO 2009/099502 PCT/US2008/088640

10/18

1000

Node A Requests changes from Node B

¢ 1010

Node A Sends K, to Node B

¢ 1020

Node B compares K, to Kg.

¢ 1030

For objects not ended (and/or started),
send latest changes from Node B to Node
A of which Node A is unaware. Also, send

Kg to Node A.

¢ 1040

Node A compares Kg to Ka.

l 1050

Detect any conflicts between changes
reflected in Kg and changes reflected in
Ka.

l 1060

For objects not ended (and/or started),
send latest changes from Node A to Node
B of which Node B is unaware.

FIG. 10

PCT/US2008/088640

WO 2009/099502

11/18

AR K|

0LLL (84°9y)sabueynhanuo)
‘awnay ui s309[qo 104

dd Japinoid aq

g eoljdey

0011 (Y4°Y)) sawmnayi 3199(qo jo
abpaimouy Buipnjoul sabueyoisanboy

vd Japiroid

v eoljdey

(84U Yq) <8N Vy =Wy

9s|3
m_v._ e <V._ = <V._

(E4cvy) Y

WO 2009/099502 PCT/US2008/088640

12/18

1200

Defining an expiration count in synchronization
metadata for an object whereby the object expires after
the expiration count for the object attains a pre-defined

expiration number.

l 1210

Determine, for each object of a set of objects to be
synchronized, whether the object has expired by comparing
the expiration count with the expiration number

l 1220

Synchronize objects that have not expired
with another node in the multi-master
synchronization environment.

i 1230

Optionally delete any objects that have
expired.

l 1240

For each occurrence of a pre-defined event (e.g., passage
of pre-set time, number of renderings of media object,
number of shares among nodes, i.e., any event affecting
lifetime of object) with respect to an object, increment the
expiration count.

FIG. 12

WO 2009/099502 PCT/US2008/088640

13/18

1300

At object creation, optionally define an initiation count in
synchronization metadata for an object whereby the object begins
participating in synchronization processes after the initiation count

for the object attains a pre-defined initiation number.

' 1310

Receive external synchronization metadata from
another node, and update initiation counts of objects
based on external synchronization metadata, where
applicable.

l 1320

Determine, for each object of a set of objects to be
synchronized, whether the object has initiated by comparing
the initiation count with the initiation number

l 1330

Synchronize objects that are initiated with
another node in the multi-master
synchronization environment.

l 1340

Optionally update synchronization metadata to remove
initiation count metadata for objects that have been initiated.

l 1350

For each occurrence of a pre-defined event (e.g., passage
of pre-set time, number of renderings of media object,
number of shares among nodes, i.e., any event affecting
lifetime of object) with respect to an object, increment the
initiation count.

FIG. 13

WO 2009/099502 PCT/US2008/088640

14/18

Not Started
1400

Synchronizes
1402

IT Number is IT3

O1_IT1 -> O1_IT3

Typical Object Life Cycle for
Synchronization from Initiation

to Expiration Synchronizes

1402

Not Started

ET Number is ET10 T]

O1_IT3_ETO -> O6_IT3_ET1 i/

Synchronizes

Not Started
1400 e

FIG. 14

Expired
1404

WO 2009/099502 PCT/US2008/088640

15/18

1500

At object creation, define initiation count number for
object, and set initiation count to zero.

l 1510

Initiation events occur, which increment the initiation count for the
object to the initiation count number.

\ / 1520

Define an expiration count for the object, and
set expiration count to zero.

l 1530

Object synchronizes in knowledge exchanges in multi-master
synchronization environment for conveying node and type
independent syncrhronization metadata about set of objects
being synchronized.

l 1540

Expiration events occur, which increment the expiration
count for the object to the expiration count number.

l 1550

The object expires, and no longer synchronizes with the
associated set of objects.

FIG. 15

PCT/US2008/088640

WO 2009/099502

16/18

91 "Old

2091 9bpamouy

Z191 9bpamouy

8291
a|npo sisAjeuy sukg [«
‘/
/
oyl [L (]
PO 9291 3INPO O/
yiny | [T
291 3INpo Hu| suhs
ZZ91 SINPO wwo) JuAg
0291 3INpo\ duAs
009} 3d1A8(Q

0£91
s309[qO jJo 19S

2091
abpajmouy

€091
abpajmouy
Bujuoisiapn

091
abpajmouy
uoneniuj

G091l
abpajmouy
uornjeaidx3g

WO 2009/099502 PCT/US2008/088640

17/18

Object
1724

Computing |~ | i

Device 7
1720 n e
/ i/
\\ : // \\
\\ | ,’
\\ : //
N | (1740 //
\ | ,
Object \\ ' — Computing
1726 | ______ Communications Device
Network/Bus 1728
\
/// \\\
// AN
\
o AN 1712
// 7 - 777]\;‘\
= I
] DJ"") 91 e
HHHHHHH |- . Server Object
/UUUHHHU\ 1

Server Object

Data
Store(s)
1730

FIG. 17

PCT/US2008/088640

WO 2009/099502

18/18

0481

(SI¥IINdWOD
310Ny

0981
(S)aoeiaiu] |«

81 "OIA

FTOMION

o
Yo,
0|
—

Aefdsig
B0 INAIN0

A
4 2281 sng WaIsAS ,

h 4

A

08l

Nd9 NdO

3 (SHIUN
BUISSa50ig

AIOWIS [y WAISAS

0081 JUSWIUOIIAU

3 bupnawioy

f——_—_—_——_- —_—_ e, —————

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2008/088640

A. CLASSIFICATION OF SUBJECT MATTER

HO41 12/28(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC HO4B, HO4L, HO4W

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
KOREAN UTILITY MODELS AND APPLICATIONS FOR UTILITY MODELS SINCE 1975

¢KOMPASS, DELPHION, ESPACENET & Keywords :
metadata, expiration, initiation and similar terms.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
synchronization, object, plurality of nodes, networks, lifetime, knowledge,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

17
See sections 4, 5.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2006-0010096 A1 (ADAM CROSSLAND et al.) 12 January 2006 1-20
See abstract, claims 1,4, 16, 17,22, paragraphs [27], [28], [31], [33], [38], [41], [44] and figs.1-3.
A US 2007-0255854 A1 (MOE KHOSRAVY et al.) 01 November 2007 1-20
See abstract, claims 1-4, 9, paragraphs [28], [35], [42], [46], [59], [60], and figs.1-2.
A US 2007-0067349 A1 (VIVEK JAWAHIR JHAVERI et al.) 22 March 2007 1-20
See abstract, claim 1, paragraphs [9]-[13], [81]-[83], [86], [91], [125], [126], and figs.3-5,16,18.
A LEV NOVIK et al. 'Peer-to-Peer Replication in WinFS', MSR-TR-2006-78, June, 2006 Pages: 1- 1-20

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of citation or other

special reason (as specified)

document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later
than the priority date claimed

Q"

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

e

yn

ng"

Date of the actual completion of the international search

21 JULY 2009 (21.07.2009)

Date of mailing of the international search report

22 JULY 2009 (22.07.2009)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo-
gu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

KIM Dae Sung

Telephone No. 82-42-481-8237

Form PCT/ISA/210 (second sheet) (July 2008)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2008/088640

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2006-0010096 A1l 12.01.2006 NONE

US 2007-0255854 A1 01.11.2007 NONE

US 2007-0067349 A1 22.03.2007 AU 2006-284414 A1 20.07.2006
CA 2616242 A1 01.03.2007
EP 1917608 A2 07.05.2008
JP 2009-506423 A 12.02.2009
KR 10-2008-0047361 A 28.05.2008
WO 2007-024380 A3 01.03.2007
WO 2007-024380 A2 01.03.2007

Form PCT/ISA/210 (patent family annex) (July 2008)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report

