A firearm grip with a rest is provided, which at least has a grip body with a hollow portion, a shell encasing and combined with an outside of the grip body and exposing a bottom of the grip body, and a rest received in the grip body and capable of being projected from the bottom of the grip body to position and support the firearm grip against a setting surface. The grip body and the rest can be coupled to each other by an elastic member that allows the rest to be resiliently retracted back into the grip body. Alternatively, the rest can be pivotally coupled to the grip body and rotatably retracted into the grip body. The above firearm grip eliminates the shortcomings of the prior art.
FIG. 1 (PRIOR ART)
FIG. 2A (PRIOR ART)

FIG. 2B (PRIOR ART)
FIG. 3A
FIG. 6D
FIREARM GRIP WITH REST

FIELD OF THE INVENTION

[0001] The present invention relates to firearm grips, and more particularly, to a firearm grip with a rest.

BACKGROUND OF THE INVENTION

[0002] Generally, when rifles are used for long-range shooting, supporting structures are needed for precise shooting in addition to optical sights.

[0003] Referring to FIG. 1, U.S. Pat. No. 6,763,627 discloses a bipod. The bipod comprises a supporting body 10; a yoke 12 rotatably combined with the supporting body 10 to hold a barrel; and two legs 11a, 11b that can be stretched open or close. A user is able to fix a firearm by the yoke 12 holding the barrel in place and the two legs supporting the barrel while shooting so as to make the shooting more precise.

[0004] However, the bipod disclosed in the above prior art requires the user to manually stretch open or close the two legs when the bipod is in use or not in use. This is very inconvenient especially when the user is carrying out a sniping task. Moreover, the bipod merely supports the barrel, such that the user has to hold protective wood for the barrel. As such, the position for the user’s hand to exert force on the firearm and the position of the bipod supporting the firearm are different, thereby easily causing torque and increasing shooting difficulty.

[0005] Thus, a grip pod shown in FIGS. 2A and 2B has been proposed. The grip pod 2 is hollow and a bipod 21 is engaged therein. The bipod 21 has two legs 210, 211 that can be correspondingly opened or closed. The bipod 21 and the grip pod 2 are connected to each other via a spring (not shown). When the bipod 21 is engaged in the grip pod 2, the spring is compressed. Under this condition, the grip pod 2 can be gripped by the user while walking or without any support. When the user wishes to use the bipod 21, an actuating button 22 on a side of the grip pod 2 can be pressed down to release the engagement between the bipod 21 and the grip pod 2, such that the bipod 21 is projected out due to elasticity of the spring. An elastic structure is provided between the legs 210, 211 so as to allow the legs 210, 211 to automatically separate from each other after the bipod 21 is projected.

[0006] Although the grip pod 2 solves the problem of inconvenience encountered when using the traditional bipod 1 shown in FIG. 1, the legs 210, 211 need to be folded first and then pushed towards the grip pod 2 when the user wishes to retract the bipod 21 back into the grip pod 2. The user has to overcome the elasticity between the legs 210, 211 and the elasticity of the spring exerted on the bipod 21; this is still rather inconvenient and laborious. It may possibly occur that the user retracts the bipod 21 into the grip pod 2 with too much force, causing structural damage in the long term.

[0007] Moreover, although the bipod that can be quickly projected out of the grip pod 2 allows the user to get in a shooting position quickly, which satisfies the requirement for an infantry to quickly get in a fighting position, however when changing the shooting position, it requires certain effort to retract the bipod into the grip pod, which does not satisfy the tactics of immediately changing a position after sniping. For example, a sniper has ample time to set the bipod before shooting since the enemy is not aware of the sniper’s position, but after shooting, the sniper’s position may be exposed such that he needs to retract the bipod as quickly as possible in order to switch to a new position.

[0008] In addition, the legs 210, 211 of the bipod 21 can only be separated apart by a fixed angle, and the grip pod 2 cannot turn in relation to the bipod 21, such that a tilted firearm located on an uneven surface cannot be adjusted. Furthermore, the tilting angle of the firearm combined to the grip pod 2 cannot be adjusted. In real aiming, the angle of the firearm often needs to be swung to adjust its vertical shooting direction so as to more accurately aim at a target. However, the grip pod 2 cannot swing in relation to the bipod 21. As a result, the whole grip pod 2 along with the bipod 21 would have to be moved to adjust the direction of shooting.

[0009] Further, the projection of the bipod 21 from the grip pod 2 is controlled by the actuating button 22. The actuating button 22 is designed at a location that can be easily reached by the thumb of the user, such that it may be easily pressed unintentionally, which causes the bipod 21 to project abruptly. Additionally, the engaging mechanism inside the grip pod 2 for engaging the bipod 21 may wear out over time due to friction, such that the bipod 21 may be easily projected due to vibration or dropping of the firearm.

[0010] Moreover, the material of the grip pod 2 must be metal or alloy that is strong enough to support the firearm. However, heat may be easily conducted from a barrel of the firearm to the grip pod 2. Consequently, after continuous firing, the temperature of the grip pod 2 may be increased. When the temperature exceeds the user’s tolerance, it would affect the performance of shooting. Similarly, when the grip pod 2 is used at a cold area, such as a high altitude or high elevation area, the surface of the metal may easily be frosted, which if touched by bare hands may possibly result in frostbite or stripping of the hand.

[0011] Therefore, there is a need for a solution that addresses the abovementioned shortcomings.

SUMMARY OF THE INVENTION

[0012] In the light of the foregoing drawbacks of the prior art, an objective of the present invention is to provide a firearm grip with a rest, in which the rest can be quickly retracted to facilitate a tactics requirement for quickly changing a shooting position.

[0013] Another objective of the present invention is to provide a firearm grip with a rest, which is heat- and frost-insulated.

[0014] Still another objective of the present invention is to provide a firearm grip with a rest that is prevented from being unintentionally projected from a grip body of the firearm grip.

[0015] A further objective of the present invention is to provide a firearm grip with a rest, which allows a process of retracting the rest into the grip body to be simple and less laborious, such that damage to structure of the firearm grip is eliminated.

[0016] In accordance with the above and other objectives, the present invention provides a firearm grip with a rest, comprising: a grip body having a hollow portion; a shell encasing and combined with an outside of the grip body and exposing a bottom of the grip body; a rest received in the grip body and capable of being projected from the bottom of the grip body to position and support the firearm grip against
a setting surface; and an elastic member for coupling the grip body to the rest and for resiliently retracting the rest back into the grip body.

[0017] The material of the grip body can be aluminum alloy with the advantages of high strength and light weight. The shell may be a rubber, plastic or heat-insulating shell to insulate the grip body against heat from the barrel during shooting and reduces the possibility of frostbite in the winter.

[0018] An assembly block is provided on the top of the grip body, and a slot is provided on the top of the shell to correspondingly receive the assembly block, wherein an upward protrusion is disposed on a top edge of the assembly block, and a positioning portion is provided on the top of the shell and corresponds to the protrusion. Additionally, a through hole and a combining hole are respectively formed in the protrusion and the positioning portion, which are combined with a fastener to firmly fix the assembly block in place and combine the shell to the grip body.

[0019] Moreover, the assembly block has a positioning through hole linked with the inside of the grip body to rotatably couple a positioning block to the assembly block, such that the assembly block is connected to an end of the elastic member via the positioning block.

[0020] In an embodiment, the rest comprises a bearing mount and at least two legs pivotally coupled to the bearing mount via a pivotal pin. The bearing mount is coupled to an end of the elastic member. Further, the two legs can be joined together to form a column for retraction into the grip body. A torsion spring is provided at coupling points of the two legs so as to resiliently keep the two legs apart at the time the rest has been projected from the bottom of the grip body. An operating flange is provided at an end of each of the two legs, such that when the column is received in the grip body, the operating flanges are blocked by the bottom of the grip body and can be operated by a user. The operating flanges can also abut against the ground to allow the two legs to more firmly support the firearm. When the column is completely moved out from the bottom of the grip body and has the two legs separated, the grip body can be swung with a small angle in relation to the rest, allowing the firearm to be adjusted to a non-slanting position on an uneven ground and allowing the firearm to be adjusted in a vertical shooting direction.

[0021] In another embodiment, the rest is a column with a combining portion formed on a top thereof, such that the column is coupled to an end of the elastic member via the combining portion. The hollow portion of the grip body for receiving the column and the column are structures with corresponding non-circular cross sections, allowing the column to vertically move inside the grip body, and upon moving out of the grip body, rotate to abut against the bottom of the grip body.

[0022] In yet another embodiment, the rest is a column and the top of the column is coupled to an end of the elastic member.

[0023] An elastic operating member is provided on the bottom of the grip body. The elastic operating member comprises a first engaging part extended into the grip body, and a second engaging part is provided on a side of the column and corresponding to the first engaging part. The column can be received in or projected from the grip body according to an engagement status between the first engaging part and the second engaging part, wherein engagement between the first engaging part and the second engaging part can be released by operating the elastic operating element, thereby allowing the column to be resiliently retracted back into the grip body by the elastic member.

[0024] In accordance with the above and other objectives, the present invention provides another firearm grip with a rest, comprising: a grip body having a hollow portion, wherein an opening is formed on a side of the grip body and vertically extended to a bottom of the grip body; a shell encasing and combined with an outside of the grip body and exposing the opening and the bottom of the grip body; and a rest pivotally coupled to the grip body and for being projected from the bottom of the grip body to position and support the firearm grip against a setting surface, wherein the rest is rotatably retracted into the grip body via the opening. Additionally, the combination manner and the material of the grip body and the shell are similar to those in the above embodiments.

[0025] Compared to the conventional single-body grip configuration that conducts heat quickly to the user, the firearm grip with a rest as in the present invention comprises a shell with poor heat conductivity for encasing the grip body made of aluminum to reduce heat conduction as well as prevent frostbite when used in a cold environment. Besides, the shell can be designed to have a shape that is easy to be gripped by the user.

[0026] Furthermore, although the grip of the prior art may have an automatically projected bipod controlled by a button, however this type of configuration may easily be triggered by an accident or unintentionally pressing the button, and its internal structural is prone to wear out over time, gradually losing its functionality for engaging the bipod such that the projection of the bipod becomes even more easily triggered unintentionally. In comparison, for the firearm grip with a rest as in the present invention, when the rest is not in use, the rest is received in the grip body and is prevented from falling out of the grip body by means of the elastic member. Even if elastic fatigue of the elastic member occurs, the user can easily find out the problem and replace the elastic member.

[0027] In addition, the bipod of the conventional grip cannot be easily and quickly retracted into the grip pod, whereas the firearm grip with a rest as in the present invention allows the rest to be quickly and easily retracted into the grip body via the elasticity of the elastic member. In another embodiment, the rest of the firearm grip of the present invention is rotatably retracted into the grip body, which does not require the user to apply force against the elasticity of the spring as in the prior art, such that the rest can be retracted without strenuous effort that may cause structural damage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:

[0029] FIG. 1 (PRIOR ART) is a schematic diagram of a bipod for light-weight machine gun as disclosed in U.S. Pat. No. 6,763, 627;

[0030] Figs. 2A to 2B (PRIOR ART) are schematic diagrams showing a conventional grip pod with a bipod;
FIG. 3A is an explosive view of a firearm grip with a rest according to a first embodiment of the present invention;

FIG. 3B is a cross-sectional view of the firearm grip with a rest according to the first embodiment of the present invention;

FIGS. 3C to 3D are schematic diagrams showing the operations of the firearm grip with a rest according to the first embodiment of the present invention;

FIG. 3E is a bottom oblique view of the firearm grip with a rest according to the first embodiment of the present invention;

FIG. 3F is a schematic diagram showing swing of a grip body in relation to a rest in the firearm grip with a rest according to the first embodiment of the present invention;

FIG. 4A is an explosive view of a firearm grip with a rest according to a second embodiment of the present invention;

FIG. 4B is a cross-sectional view of the firearm grip with a rest according to the second embodiment of the present invention;

FIG. 4C is a bottom oblique view of the firearm grip with a rest according to the second embodiment of the present invention;

FIG. 5A is an explosive view of a firearm grip with a rest according to a third embodiment of the present invention;

FIG. 5B is a schematic diagram showing the firearm grip with a rest according to the third embodiment of the present invention in which the rest can be adjusted to project by different lengths;

FIG. 6A is an explosive view of a firearm grip with a rest according to a fourth embodiment of the present invention;

FIGS. 6B and 6C are schematic diagrams showing the operations of the firearm grip with a rest according to the fourth embodiment of the present invention; and

FIG. 6D is a schematic diagram showing swing of a grip body in relation to a rest in the firearm grip with a rest according to the fourth embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

First Embodiment

Referring to FIG. 3A, a schematic diagram of a firearm grip with a rest according to a first embodiment of the present invention is shown. The firearm grip 3 of the present invention comprises: a grip body 30 having a hollow portion; a shell 31 for enclosing and combined with an outside of the grip body 30 and exposing a bottom 300 of the grip body 30; a rest received in the grip body 30 and capable of being projected from the bottom 300 of the grip body 30 to position the firearm grip 3 on a setting surface (not shown); and an elastic member 33 for connecting the grip body 30 and the rest and for providing elasticity to retract the rest into the grip body 30.

The material of the grip body 30 is aluminum alloy. The shell 31 is a rubber, plastic or heat-insulating shell to insulate the grip body 30 again heat conducted from the barrel during shooting. Additionally, the shell 31 can be formed as an ergonomic shape that facilitates gripping of the shell 31 by a user.

An assembly block 302 is provided on the top of the grip body 30, and a slot 311 is provided on the top of the shell 31 for correspondingly receiving the assembly block 302. A protrusion 309 is disposed on a top edge of the assembly block 302, and a positioning portion 312 is provided on the top of the shell 31 and corresponds to the protrusion 309. Additionally, a through hole 3091 and a combining hole 3121 are respectively formed in the protrusion 309 and the positioning portion 312, which are combined with a fastener 39 to firmly fix the assembly block 302 in place and combine the shell 31 to the grip body 30. As can be seen from the drawing, a top surface of the assembly block 302 is formed with a horizontal slot for positioning the fastener 39. Additionally, a side of the assembly body 302 may abut against a side-abutting plate 38. The fastener 39 penetrates the side-abutting plate 38 and is fastened to the combining hole 3121 to average out the force received by the assembly block 302.

The rest comprises a bearing mount 32 and legs 341 and 343 pivotally coupled to the bearing mount 32 via a pivotal pin 345. The bearing mount 32 is coupled to one end of the elastic member 33. The assembly block 302 has a positioning through hole 308 linked to the inside of the grip body 30 to rotatably couple a positioning block 37 to the assembly block 302, such that the assembly block 302 is fastened to the other end of the elastic member 33 by the positioning block 37. The bearing mount 32 may be hollow and is coupled to one end of the elastic member 33 via a laterally disposed rod 35. It should be understood that the bearing mount 32 may be coupled to the elastic member 33 alternatively by any other conventional connecting methods such as soldering, sleeving, etc., which are well known and not further detailed herein.

In addition, the two legs can be joined together to form a column 34. A torsion spring 36 is provided at coupling points of the two legs so as to resiliently keep the two legs apart at the time the rest has been projected from the grip body 30. An operating flange 3411, 3413 is respectively provided at an end of each of the legs 341, 343, such that when the column 34 is received in the grip body 30, the operating flange 3411, 3413 are blocked by the bottom 300 of the grip body 30 and can be operated by the user. The two operating flanges can also abut against the ground to allow the two legs to more firmly support the firearm.

As can be seen from FIG. 3B, the hollow portion of the grip body 30 for receiving the column 34 and the column 34 have corresponding non-circular cross-sectional structures, such that the column 34 may move vertically inside the grip body 30.

Referring in conjunction to FIGS. 3C and 3D, since the column 34 has a non-circular cross section, it can move out of the grip body 30 and then rotate to abut against the bottom 300 of the grip body 30. Further, since the above positioning block 37 coupled to the elastic member 33 has a rotating characteristic, the elastic member 33 and the rest can be rotated simultaneously without being tangled.

Referring to FIG. 3E, a positioning portion 303 can be further formed at the bottom 300 of the grip body 30, allowing the column 34 moving out of the bottom 300 of the grip body 30 and rotating by 90 degrees to be positioned. The positioning portion 303 can be a shallow slot. When the column 34 has the two legs separated, the depth of posi-
tioning becomes shallower, such that the user only needs to apply a small force to rotate the firearm and adjust a horizontal shooting direction.

[0052] Referring in conjunction with FIG. 3F, since the positioning portion 303 is not fully engage with the rest and the column 34 has moved out of the hollow portion of the grip body 30, the user may laterally swing the firearm together with the grip body 30 by about 20 degrees in relation to the rest in order to adjust the tilting of the firearm when the ground is uneven. Of course, the grip body 30 may be swung back and forth by about 20 degrees in relation to the rest to adjust the vertical shooting direction, and the separating angle between the two legs may be adjusted in accordance with the swing of the grip body 30. As shown in FIG. 3F, the legs 341, 343 with the same line type represent a swing angle of the grip body 30 in relation to the rest.

[0053] On the other hand, when the user wishes to retract the two legs back into the grip body 30, the two legs are first joined together into the column 34, and then the column 34 is rotated until it is resiliently retracted back into the grip body 30.

Second Embodiment

[0054] Referring to FIGS. 4A to 4C, a firearm grip with a rest according to a second embodiment of the present invention is shown.

[0055] As shown in FIG. 4A, the second embodiment is similar to the first embodiment, with differences in that in the second embodiment, the rest is a column 41 with a combining portion 411 formed on a top surface thereof, such that the rest is coupled to an end of the elastic member 43 via the combining portion 411, wherein the combining portion 411 may for example be hollow and is coupled to the end of the elastic member 43 by a laterally disposed rod 42.

[0056] Additionally, a protrusion 412 can be provided at the bottom of the column 41, for being inserted in soft ground. The protrusion 412 may also function as a pivot point when adjusting the shooting direction of the barrel. A protruding step 413 can also be formed on the bottom of the column 41 so as to be blocked at the bottom 400 of the grip body 40 when the column 41 is received in the grip body 40, for the user to pull the protruding step 413.

[0057] As shown in FIG. 4B, the hollow portion of the grip body 40 for receiving the column 41 and the column 41 have corresponding non-circular cross-sectional structures, such that the column 41 may move vertically inside the grip body 40.

[0058] As shown in FIG. 4C, since the horizontal cross-section of the column 41 is non-circular, the column 41 after moving out of the grip body 40 can rotate to abut against the bottom 400 of the grip body 40. Further, a positioning portion 403 can be formed at the bottom 400 to correspondingly position the rotated column 41. The positioning portion 403 can be a shallow slot that allows the column 41 to be positioned after being rotated by 90 degrees.

Third Embodiment

[0059] Referring to FIG. 5A, a firearm grip with a rest according to a third embodiment of the present invention is shown.

[0060] The third embodiment is a modification of the second embodiment, with differences in that in the third embodiment, the rest is a column 53, the top of which is coupled to an end of the elastic member 54. More specifically, a rod 52 can be laterally disposed in the dent 530 to couple the column 53 to the end of the elastic member 54.

[0061] An elastic operating member 51 is provided on the bottom of the grip body 50. The elastic operating member 51 comprises a first engaging part 510 extended into the grip body 50, and a second engaging part 531 is provided on a side of the column 53 and corresponds to the first engaging part 510. The column 53 can be received in or projected from the grip body 50 according to an engagement between the first engaging part 510 and the second engaging part 531. The engagement between the first engaging part 510 and the second engaging part 531 can be released by operating the elastic operating element 51, thereby allowing the column 53 to be retracted back into the grip body 50 by the elasticity of the elastic member 54. The second engaging part 531 comprises a plurality of vertically arranged sections to allow the length of the column 53 projected out of the grip body 50 to be adjusted as required.

[0062] The grip body 50 is further provided with a pivotal connecting part 501 for pivotally connecting the grip body 50 to the elastic operating member 51. The elastic operating member 51 has an L shape with the first engaging part 510 being disposed on one end thereof and a pressing part 511 being formed on the other end thereof for operation. The pressing part 511 is pressed against the outside of the grip body 50 via another elastic member 55. The first engaging part 510 is engaged with the second engaging part 531 via the principle of leverage.

[0063] FIG. 5B is a schematic diagram showing different projecting lengths of the column 53 as a result of the first engaging part 510 engaged with a different section of the second engaging part 531 of the column 53.

Fourth Embodiment

[0064] Referring to FIG. 6A, a firearm grip with a rest according to a fourth embodiment of the present invention is shown.

[0065] The fourth embodiment is a modification of the first embodiment, with differences in that in the fourth embodiment, the grip body 60 is formed with an opening 601 vertically extended to the bottom 600 of the grip body 60. The shell 61 is exposed from the bottom 600 of the grip body 60 and the opening 601. The rest is pivotally connected to the grip body 60, for being projected out of the bottom 600 of the grip body 60 to position and support the firearm grip 6 against a setting surface. The rest is rotatably received into the grip body 60 through the opening 601.

[0066] Moreover, the rest comprises a bearing mount 62 and legs 641, 643 that can be separated apart and pivotally coupled to the bearing mount 62. The two legs can be joined together to form a column 64. A torsion spring 65 is provided at coupling points of the two legs so as to resiliently keep the two legs apart at the time the rest has been projected from the grip body 60.

[0067] Referring in conjunction with FIGS. 6B and 6C, when the bearing mount 62 is rotated by 180 degrees inside the grip body 60, the two legs are separated apart as a result of the elasticity of the torsion spring 65 so as to support the firearm grip 6.

[0068] Referring in conjunction with FIG. 6D, similar to the first embodiment, the grip body 60 may be swung laterally in relation to the rest so as to adjust the tilting of the
firearm on an uneven ground, and the vertical shooting direction can also be adjusted by adjusting the tilting angle of the firearm. The legs 641, 643 with the same line type represent a swing angle of the grip body 30 in relation to the rest.

[0069] Compared to the conventional single-body grip configuration that conducts heat quickly to the user, the firearm grip with a rest as in the present invention comprises a shell with poor heat conductivity for encasing the grip body made of aluminum to reduce heat conduction as well as prevent frostbite when used in a cold environment. Besides, the shell can be designed to have a shape that is easy to be gripped by the user.

[0070] Furthermore, although the grip of the prior art may have an automatically projected bipod controlled by a button, however this type of configuration may easily be triggered by an accident or unintentionally pressing the button, and its internal structural is prone to wear out over time, gradually losing its functionality for engaging the bipod such that the projection of the bipod becomes even more easily triggered unintentionally. In comparison, for the firearm grip with a rest as in the present invention, when the rest is not in use, the rest is received in the grip body and is prevented from falling out of the grip body by means of the elastic member. Even if elastic fatigue of the elastic member occurs, the user can easily find out the problem and replace the elastic member.

[0071] In addition, the bipod of the conventional grip cannot be easily and quickly retracted into the grip pod, whereas the firearm grip with a rest as in the present invention allows the rest to be quickly and easily retracted into the grip body via the elasticity of the elastic member. In another embodiment, the rest of the firearm grip of the present invention is rotatably retracted into the grip body, which does not require the user to apply force against the elasticity of the spring as in the prior art, such that the rest can be retracted without strenuous effort that may cause structural damage.

[0072] The above embodiments are only used to illustrate the principles of the present invention, and they should not be construed as to limit the present invention in any way. Those with ordinary skills in the arts can readily understand the other advantages and functions of the present invention after reading the disclosure of this specification. The present invention can also be implemented with different embodiments. Various details described in this specification can be modified based on different viewpoints and applications without departing from the scope of the present invention as defined in the following appended claims.

1. A firearm grip with a rest, comprising:
 a grip body having a hollow portion;
 a shell encasing and combined with an outside of the grip body and exposing a bottom of the grip body;
 a rest received in the grip body and capable of being projected from the bottom of the grip body to position and support the firearm grip against a setting surface; and
 an elastic member for coupling the grip body to the rest and for resiliently retracting the rest back into the grip body.

2. The firearm grip with a rest of claim 1, wherein the rest received in the grip body comprises a bearing mount and at least two legs pivotally coupled to the bearing mount via a pivotal pin, and wherein the bearing mount is coupled to an end of the elastic member and the two legs are able to cojoin to form a column.

3. The firearm grip with a rest of claim 2, wherein the hollow portion of the grip body is adapted for receiving the column cojoined from the two legs.

4. The firearm grip with a rest of claim 2, wherein an end of each of the two legs is formed with an operating flange.

5. The firearm grip with a rest of claim 2, wherein a torsion spring is provided at coupling points of the two legs so as to resiliently keep the two legs apart at the time the rest has been projected from the bottom of the grip body.

6. The firearm grip with a rest of claim 2, wherein the bottom of the grip body is further provided with a positioning portion for positioning the column.

7. The firearm grip with a rest of claim 6, wherein the positioning portion comprises a slot.

8. The firearm grip with a rest of claim 1, wherein the rest received in the grip body is a column with a combining portion on a top thereof, such that the combining portion is coupled to an end of the elastic member via a pivotal pin.

9. The firearm grip with a rest of claim 8, wherein the hollow portion of the grip body is adapted for receiving the column.

10. The firearm grip with a rest of claim 8, wherein the bottom of the grip body is further provided with a protruding step such that the protruding step is blocked by the bottom of the grip body when the column is received in the grip body.

11. The firearm grip with a rest of claim 8, wherein the bottom of the grip body is further provided with a protruding step, such that the protruding step is blocked by the bottom of the grip body when the column is received in the grip body.

12. The firearm grip with a rest of claim 12, wherein the positioning portion comprises a slot.

13. The firearm grip with a rest of claim 12, wherein the rest received in the grip body is a column with a top thereof being coupled to an end of the elastic member.

14. The firearm grip with a rest of claim 14, wherein a dent is formed on the top of the column and is coupled to the end of the elastic member via a rod.

15. The firearm grip with a rest of claim 14, wherein an elastic operating member is provided on the bottom of the grip body, the elastic operating member comprising a first engaging part extended into the grip body, and a second engaging part is provided on a side of the column and corresponding to the first engaging part, so as to allow the column to be received in or projected from the grip body according to an engagement status between the first engaging part and the second engaging part, wherein the engagement between the first engaging part and the second engaging part is capable of being released by operating the elastic operating element, so as to allow the column to be resiliently retracted back into the grip body by the elastic member.

16. The firearm grip with a rest of claim 14, wherein the bottom of the grip body is further provided with a protrusion.

17. The firearm grip with a rest of claim 14, wherein the bottom of the grip body is further provided with a protruding step, such that the protruding step is blocked by the bottom of the grip body when the column is received in the grip body.
19. A firearm grip with a rest, comprising:
a grip body having a hollow portion, wherein an opening is formed on a side of the grip body and vertically extended to a bottom of the grip body;
a shell encasing and combined with an outside of the grip body and exposing the opening and the bottom of the grip body; and
a rest pivotally coupled to the grip body and for being projected from the bottom of the grip body to position and support the firearm grip against a setting surface, wherein the rest is capable of being rotatably retracted into the grip body via the opening.

20. The firearm grip with a rest of claim 19, wherein the rest retracted into the grip body comprises a bearing mount and at least two legs pivotally coupled to the bearing mount via a pivotal pin, and wherein the two legs are able to cojoin to form a column.

21. The firearm grip with a rest of claim 19, wherein a torsion spring is provided at coupling points of the two legs so as to resiliently keep the two legs apart at the time the rest has been projected from the bottom of the grip body.