United States Patent

US008286132B2

(12) 10) Patent No.: US 8,286,132 B2
Yuan et al. (45) Date of Patent: Oct. 9, 2012
(54) COMPARING AND MERGING STRUCTURED 58(1)8; 83;‘7‘2;1) i} * lggg(l)g gZIr(Z et a;l ~~~~~~~~~~~~~~~~~~~~~~~~ 726/1
er et al.
DOCUMENTS SYNTACTICALLY AND 2010/0088676 Al 4/2010 Yuan et al.
SEMANTICALLY 2011/0167154 Al* 7/2011 Bushetal. ...oocco..... 709/224
(75) Inventors: Yu Yuan, Toronto (CA); Scott M OTHER PUBLICATIONS
Guminy, Newmarket (CA) Office Action—Non-Final for U.S. Appl. No. 12/238,135, filed Sep.
25, 2008; First Named Inventor: Bruce R. Baker; Art Unit: 2192; Mail
(73) Assignee: International Business Machines Date: Jan. 20, 2012.
C tion, Armonk, NY (US . .
orporation, Afmo US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this . . .
patent is extended or adjusted under 35 P rimary Examn?er —LiB Zhen .
U.S.C. 154(b) by 1049 days. Assistant Examiner — Arshia S Kia .
(74) Attorney, Agent, or Firm — Cantor Colburn LLP; Libby
(21) Appl. No.: 12/238,080 Toub
(22) Filed: Sep.25,2008 &7 ABSTRACT
A method of performing a three-way merge includes receiv-
(65) Prior Publication Data ing first, second, and third versions of a structured document
containing first, second, and third pluralities of elements
US 2010/0088676 Al Apr. 8, 2010 respectively; deserializing the first, second, and third versions
(51) Int.Cl to generate first, second, and third tree-structured data models
G 0;5 F 9 Va4 (2006.01) respectively representing the first, second, and third versions;
’ generating an identifier for each node of each data model that
(52) US.Cl .o 717/120; 717/170 is unique within the data model by applving identifier deter-
: . . q Y applying
(58) Field of Classification Search 717/170, mination rules to a context describing the element corre-
717/120 sponding to the node; comparing each identifier in the first
See application file for complete search history. data model with each identifier in the second data model to
identify each node in the first data model not having matching
(56) References Cited identifiers with any node in the second data model and to link
each pair of nodes having matching identifiers; and applying
U.S. PATENT DOCUMENTS comparison rules to the contexts of each linked pair of nodes
6.434,547 B1* 8/2002 Mishelevich etal. y1 toidentify differences therebetween.
7,926,033 B2* 4/2011 Gopaletal. 717/122
2006/0041579 Al1* 2/2006 Miyashitaetal. ... 707/102 19 Claims, 7 Drawing Sheets

i ———— S — |
Comparison Module
uo
Deserializer
112
Validator Comparator
114 116
K
Memory Model

140

ERE

)))

Mod

Merging Il
120

Merger

122

Serializer
124

US 8,286,132 B2

Sheet 1 of 7

132

Oct. 9, 2012

130

U.S. Patent

1
“
“ —
:
[
! S
_ &
1 m y—
1
] ~Na—
_]
“ =E) P—
i — e > M)
“ & = i
! g N
!) =Y o = .
! @] 3_ > 8 N »
1 v—(rl
“ A
]
m = ___J
T s T)
! = =
) Vaz [An-.a
" | B o > W4_ =y
]
: 2 s |-
1]
, =] £
! m —
m o 5
1
! =] W.bn
_ = [- O
1 = [e =
_ 3 s — =
“ = 2
] = g 3 X S
_ e == > — =
: S = = — o0 O
' g - V =
' = ‘B0
i] - o
! = S)
! g s =
' =) -
| o
,)
:
]
1

138

FIGURE 1

U.S. Patent Oct. 9, 2012 Sheet 2 of 7 US 8,286,132 B2

200

220

Yes
Are IDs the same?

Yes
210 — Is order important?
| Record that the first
280 element has been deleted
T No
230 — Are IDs the Same? Ally Sibling
with same ID?
270
Compare attributes of
240 —
counterpart elements
X
Compare sequence of
250 — .
child elements N
Perform process 200
260 — for each pair of child
elements recursively

End

FIGURE 2

U.S. Patent

Oct. 9, 2012

Sheet 3 of 7

A

A

310 —

Store copy of updated
representation in memory model

320 —| document to counterpart

Identify modifications made in customized base

to element corresponding to the target node

Iy

element in base document

Y

330 —

Delete target node if counterpart
element in base document is deleted
in customized base document

A 4

340 —

Add child elements added to base
document counterpart element in
customized base document to target node

Y

350 —

Change attributes in target node in accordance
with attribute changes made to base document
counterpart element in customized base document

A 4

360 —

If order is important for element
corresponding to the target node, reorder
child elements accordingly in target node

A 4

Repeat merge operati
370 —

320-360 for each child element of target node

ons performed at blocks

FIGURE 3

After each node in working
representation has been merged

US 8,286,132 B2

! Begin with root node in working representation

Repeat
sequentially
for each node
in working
representation

U.S. Patent Oct. 9, 2012 Sheet 4 of 7 US 8,286,132 B2

FIGURE 4a ;"“

<library>
<!-- this class represents a table that displays Product objects -->
<class name=""ProductGrid" extends="ObjectGrid">
<!-- this widget displays the "name" of the product as a column in the table -->
<gridText propertyName="name" objectPath="Product"/>

<!-- this widget displays the price of the product.
The price is stored within the Price object with is a child of the Product object —>
<gridPrice propertyName="price" objectPath="Product/Price'/>

<!-- this widget display the name of the currency for the price.

The currency name is stored within the Price object.

Note that it happens to have the same property name as the Product's name -->
<gridText propertyNam="name" objectPath=""Product/Price"/>

</class>
</library>
410
FIGURE 4b /
<library>

<!-- this class represents a table that displays Product objects -->

<class name=""ProductGrid" extends="ObjectGrid"">
<!-- this widget displays the "name" of the product as a column in the table -->
<gridText propertyName="name" objectPath=""Product'/>

<!-- this widget displays the "warrantyTerm" of the product --> E_
<gridText propertyName="warrantyTerm" objectPath=""Product"/> 5

<!-- this widget displays the price of the product.
The price is stored within the Price object with is a child of the Product object -->
<gridPrice propertyName="price" objectPath=""Product/Price" />

<!-- this widget display the name of the currency for the price.
The currency name is stored within the Price object.
Note that it happens to have the same property name as the Product's name -->
<gridText propertyNam="'"name" objectPath="Product/Price"/>
</class>

i <class name="MyGrid" extends="ObjectGrid"> i
i <gridText propertyName="name" objectPath=""MyObject"'/> — 414
1 </elass> :

<flibrary>

U.S. Patent Oct. 9, 2012 Sheet 5 of 7 US 8,286,132 B2

FIGURE 4c¢ 420

<library>
<!-- this class represents a table that displays Product objects -—>
<class name=""ProductGrid" extends="0ObjectGrid">
<!-- this widget displays the "name" of the product as a column in the table -->
<gridText propertyName=""name" objectPath="Product"/>

i <!-- this widget displays the “category" of the product --> i 426
1 <gridText propertyName=“category" objectPath=""Product/> |

<!-- this widget displays the price of the product.
The price is stored within the Price object with is a child of the Product object -->
<gridPrice propertyName="price" objectPath=""Product/Price"/>

<!1-- this widget display the name of the currency for the price,
The currency name is stored within the Price object.
Note that it happens to have the same property name as the Product’s name -->
<gridText propertyNam="name" objectPath="Product/Price"/>
</class>
</library>

U.S. Patent Oct. 9, 2012 Sheet 6 of 7 US 8,286,132 B2

FIGURE 4d 430

<library>
<!-- this class represents a table that displays Product objects -->
<class name=""ProductGrid" extends="ObjectGrid"">
<!-- this widget displays the "name" of the product as a column in the table -->
<gridText propertyName="name" objectPath="Product"/>

<!-- this widget displays the “category" of the product --> E_ 436
<gridText propertyName=“category" objectPath="Product"/> !

<I-- this widget displays the price of the product.
The price is stored within the Price object with is a child of the Product object -->
<gridPrice propertyName="price" objectPath=""Product/Price'/>

<!-- this widget display the name of the currency for the price.
The eurrency name is stored within the Price object.
Note that it happens to have the same property name as the Product's name -->
<gridText propertyNam=""name" objectPath="Product/Price'/>
</class>

i <class name="MyGrid" extends="'ObjectGrid"> ;
i <gridText propertyName="name" objectPath="MyObject"/> {— 434
i </class> |

</library>

U.S. Patent

Communication
Infrastructure
502

Oct. 9, 2012 Sheet 7 of 7 US 8,286,132 B2
\I/I::> Processor 300
304 T
/I——N| Main Memory
\ V 306
<::> Display Interface |_ Display Unit
08 510
Secondary Memory
312
Hard Disk Drive
Ji4
Removable Removable
<:> Storage Drive [* »| Storage Unit
S16 318
Interface Removable
520 A Storage Unit
— 522
Communication Communication Path
Interface
326
524

FIGURE 5

US 8,286,132 B2

1
COMPARING AND MERGING STRUCTURED
DOCUMENTS SYNTACTICALLY AND
SEMANTICALLY

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is co-pending with the concur-
rently filed application ser. No. 12/238,135, entitled
“FRAMEWORK FOR AUTOMATICALLY MERGING
CUSTOMIZATIONS TO STRUCTURED CODE THAT
HAS BEEN REFACTORED,” assigned to the assignee of the
present application, the contents of which are incorporated
herein by reference in their entirety.

BACKGROUND

Exemplary embodiments of the present invention relate to
structured software documents, and more particularly, to per-
forming three-way merge operations on such documents.

Version control refers to the management of different ver-
sions and variants of data files and software. As software is
developed, designed, and deployed, it is extremely common
for multiple states, or versions, of the same software to be
deployed in different sites, as well as for the software’s devel-
opers to be working simultaneously on updates. Code reuse,
which refers to the use of existing software to update software
or implement new software, is based on the idea that a partial
or complete computer program written at one time can be,
should be, or is being used in another program written at a
later time. Programmers have reused sections of code, tem-
plates, functions, and procedures from the earliest days of
programming to save time and energy by reducing redundant
development work. The most common type of reuse of'is the
reuse of software components, but other artifacts produced
during the software development process such as system
architecture, analysis models, design models, design pat-
terns, database schemas, web services can also be reused. The
general development practice of using a prior version of an
extant program as a starting point for the next version is a
standard form of code reuse.

A more typical example of code reuse is the topic of end-
user development (EUD), which refers to activities or tech-
niques that allow people who are not professional developers
to create or modify a software artifact. EUD may be viewed as
essentially out-sourcing the development effort to the end
user. A common instance of EUD is programming to extend
and adapt an existing application package (for example, an
office suite). Two main reasons why EUD has become popu-
lar are because organizations can use EUD to effectively cut
the time of completion on a project and because software
tools are more powerful and easier to use. A drawback with
the implementation of EUD, however, is that it can increase
the complexity of software maintenance, which generally
involves the modification of a software product after delivery
to correct faults, to improve performance or other attributes,
or to adapt the product to a modified environment. In particu-
lar, where an end-user has made individual customizations to
programming code, it is difficult for the original developer of
that code to account for these customizations in considering
the processes of implementation and product acceptance for
the maintenance modifications.

Three-way merging refers to techniques employed for rein-
tegrating changes made in parallel to multiple independently
modified copies of a base software artifact into a single,
unified copy of the software artifact containing the changes.
As an integral part of performing a three-way merge, the edits

20

25

30

35

40

45

50

55

60

65

2

made between a base document of the software artifact and
modified versions of the document are first detected so that
the modifications made can be merged into the unified ver-
sion. The existing solutions and tools for performing a three-
way merge such as, for example, diff, patch, and Eclipse
Compare, consider the structure of its input documents (that
is, the base document and the modified documents) to be an
ordered list of text lines. When used with structured docu-
ments, however, these existing merge solutions are difficult to
use and not useful for preventing inconsistencies when per-
forming the merge without requiring a user to read the content
of the documents to determine the differences. The existing
solutions, for example, are not able to address situations
where order is important for some elements in a document but
not important for other elements in the document, situations
where elements are moved within a document or to another
document within the software artifact, or situations where a
complex semantic structure of the software code must be
taken into consideration to perform a successful merge.

SUMMARY

An exemplary embodiment of a method of performing a
syntactic and semantic three-way merge of structured soft-
ware documents includes receiving a first version of a docu-
ment coded in a structured programming language containing
afirst plurality of elements, a second version of the document
containing a second plurality of elements, and a third version
of the document containing a third plurality of elements;
deserializing the first, second, and third versions of the docu-
ment to generate a first data model, a second data model, and
a third data model respectively representing the first, second,
and third versions in a first data store, each data model com-
prising a tree data structure that includes a corresponding
node for each element of the plurality of elements contained
within the version of the document represented by the data
model, each node of each data model containing a context
describing the element corresponding to the node; generating
an identifier for each node of each data model in the first data
store that is unique to the node within the data model by
applying a set of identifier determination rules to the context
describing the element corresponding to the node; comparing
the identifier for each node in the first data model with the
identifier for each node in the second data model to identify
each node in the first data model not having matching iden-
tifiers with any node in the second data model in the first data
store and to link each pair of nodes in the first and second data
models that have matching identifiers; and applying a set of
comparison rules to the contexts of each linked pair of nodes
in the first and second data models to identify differences
between each linked pair of nodes in the first and second data
models in the first data store.

Exemplary embodiments of the present invention that are
related to computer program products and data processing
systems corresponding to the above-summarized method are
also described and claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter that is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at

US 8,286,132 B2

3

the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention are apparent
from the following detailed description of exemplary
embodiments of the present invention taken in conjunction
with the accompanying drawings in which:

FIG. 1 is a block diagram illustrating an exemplary
embodiment of a comparison and merging system in accor-
dance with the present invention.

FIG. 2 is a flow chart illustrating an exemplary embodi-
ment of a process of comparing two XML elements in two
different XML documents to determine their differences.

FIG. 3 is a flow chart illustrating an exemplary embodi-
ment of a process of performing a three-way merge operation
on structured documents.

FIGS. 4a-4d are sample sets of structured code illustrating
an example merge operated performed by the exemplary
comparison and merging system illustrated in FIG. 1.

FIG. 5 is a block diagram illustrating an exemplary com-
puter system that can be used for implementing exemplary
embodiments of the present invention.

The detailed description explains exemplary embodiments
of the present invention, together with advantages and fea-
tures, by way of example with reference to the drawings. The
flow diagrams depicted herein are just examples. There may
be many variations to these diagrams or the steps (or opera-
tions) described therein without departing from the spirit of
the invention. For instance, the steps may be performed in a
differing order, or steps may be added, deleted, or modified.
All of these variations are considered a part of the claimed
invention.

DETAILED DESCRIPTION

While the specification concludes with claims defining the
features of the invention that are regarded as novel, it is
believed that the invention will be better understood from a
consideration of the description of exemplary embodiments
in conjunction with the drawings. It is of course to be under-
stood that the embodiments described herein are merely
exemplary of the invention, which can be embodied in various
forms. Therefore, specific structural and functional details
disclosed in relation to the exemplary embodiments
described herein are not to be interpreted as limiting, but
merely as a representative basis for teaching one skilled in the
art to variously employ the present invention in virtually any
appropriate form. Further, the terms and phrases used herein
are not intended to be limiting but rather to provide an under-
standable description of the invention. As used herein, the
singular forms “a”, “an”, and “the” are intended to include the
plural forms as well, unless the content clearly indicates
otherwise. It will be further understood that the terms “com-
prises”, “includes”, and “comprising”, when used in this
specification, specify the presence of stated features, integers,
steps, operations, elements, components, and/or groups
thereof.

Exemplary embodiments of the present invention can be
implemented to provide a mechanism for performing a three-
way comparison and merge of versions of a software artifact
that includes a set of structured documents, such as docu-
ments formatted in accordance with the eXtensible Markup
Language (XML), both syntactically and semantically. In
particular, exemplary embodiments can provide a generic and
complete solution for comparing and merging of versions of
structured documents that are not defined by a schema and are
formatted according to semantic constraints to include a num-
ber of elements that may be ordered or unordered. As used
herein, the term “data element” refers to an atomic unit of data

—

5

20

25

30

35

40

45

50

55

60

65

4

that includes an identification such as a data element name, a
data element definition, and one or more representation
terms. By considering the semantics of the documents and not
requiring a schema to be defined for the documents, exem-
plary embodiments can therefore be applied to any type of
structured documents. Furthermore, exemplary embodi-
ments can be implemented to provide a pluggable framework
that allows users to easily customize the comparison and
merge logic according to specific requirements.

In general, exemplary embodiments of the present inven-
tion can be implemented to accept three structured documents
as input and process these input documents to generate a
fourth structured document as output. The first input docu-
ment is a common ancestor of the second and third input
documents, and is referred to herein as the base document.
The second input document is a version of the base document
that includes customized modifications to the elements of the
base document, and is referred to herein as the customized
base document. The third input document is an updated ver-
sion of the base document that contains updates to the ele-
ments of the base document, and is referred to herein as the
updated document. For purposes of describing exemplary
embodiments, it is assumed that the modifications made to the
base document to produce the customized base document and
the updates made to the base document to produce the
updated document were made independently and in parallel.
The fourth document includes all the modifications made to
the base document to produce the customized base document
and all the updates made to the base document to produce the
updated document, and is referred to herein as the customized
updated document.

In general, exemplary embodiments can be implemented to
generate the customized updated document for output by
deserializing each of the three input documents according to
a generic memory model to generate a hierarchical, tree-
structured representation of each input document, comparing
the tree-structured representations of the base document and
the customized base document to identify the modifications
made to the base document in the customized base document,
comparing the tree-structured representations of the base
document and the updated document to identify the updates
made to the base document in the updated document, com-
paring the tree-structured representations of the customized
base document and the updated document to identity the
differences therebetween, generating a tree-structured repre-
sentation of the updated document that includes the identified
modifications made to the base document in the customized
base document by referencing the identified updates made to
the base document in the updated document and the identified
differences between the customized base document and the
updated document, and serializing the tree-structured repre-
sentation of the updated document that includes the identified
modifications made to the base document in the customized
base document to generate the customized updated docu-
ment.

The comparison and merge process generally outlined
above will be described in greater detail herein with reference
to exemplary embodiments in which the structured docu-
ments are XML documents that are not defined by an XML
schema and are formatted according to semantic constraints
to include a number of clements that may be ordered or
unordered. It should, of course, be understood that this sce-
nario is exemplary only, and that alternative exemplary
embodiments of the present invention can be implemented to
provide a mechanism for merging versions of structured
documents of any type, not just XML-language documents.
Exemplary embodiments can be applied to documents coded

US 8,286,132 B2

5

in a wide range of structured languages including, for
example, HTML, WML, XHTML, DHTML, or other SGML
derivatives, as well as other structured languages such as user
interface markup languages (for example, UIML, XAL,
SVG, XAML, and [.ZX), the programming languages Pascal
and C, and languages used to define two- or three-dimen-
sional layouts, structures, or integrated circuits. Exemplary
embodiments can also be applied to documents coded in
structured languages used for storing scientific information,
engineering information, business information, games, cryp-
tography, and other areas of information technology. A docu-
ment written in a structured language will generally have a
hierarchical structure of elements in which the structure is
generally defined by tags (that is, sequences of characters in
the document). It should also be noted that exemplary
embodiments can be implemented to provide a mechanism
for merging structured documents that comprise any
aspect(s) of any suitable type of software artifact such as
software components, application packages, system architec-
tures, analysis models, design models, design patterns, data-
base schemas, web services, and the like.

The XML standard is governed by the World Wide Web
Consortium, and is maintained on the Internet at the web site
of the World Wide Web Consortium (W3C). XML describes
a class of data objects called XML documents and partially
describes the behavior of computer programs which process
them. An XML document is a structured, self-descriptive
document having a collection of elements, and that facilitates
some form of automatic semantic integration. Thus, as used
herein, the terms “XML element” or “XML data element”
refers to the code terms contained between a set of brackets as
defined by the rules of XML. XML is classified as an exten-
sible language because it allows users to define their own
elements, which contain either parsed or unparsed data.
Parsed data is made up of characters, some of which form
character data, and some of which form markup. Each ele-
ment may have a list of associated attributes and elements. An
element may referto other elements to cause their inclusion in
the document. A document begins in a “root” or document
element. Markup encodes a description of the document’s
storage layout and logical structure. Logically, the document
is composed of declarations, elements, comments, character
references, and processing instructions, all of which are indi-
cated in the document by explicit markup. XML provides a
mechanism to impose constraints on the storage layout and
logical structure. By adding these semantic constraints, appli-
cation languages can be implemented in XML.

The following example scenario involving the merging of
versions of a software artifact that includes customizable
XML documents for which no XML schema has been defined
illustrates some of the issues that may arise during mainte-
nance of the software artifacts for which exemplary embodi-
ments of the present invention can be implemented to address.
In the example scenario, a software vendor initially produces
‘version 1’ of the code for an application package that
includes a set of customizable XML documents. The XML
documents are provided according to specified semantic con-
straints, but no XML schema is defined for the documents. A
customer purchases version 1 of'the application package and,
understanding the semantics of the XML documents, custom-
izes the application code by modifying elements of the XML
documents. The customer may also define new elements for
use in the customizable documents. The vendor then decides
to enhance the application package by adding new function-
ality, some of which will be implemented through updates to

20

25

30

35

40

45

50

55

60

65

6

the customizable XML documents. The vender’s code for the
updated version of the application, ‘version 2°, is based on
version 1.

The customer then decides to upgrade to version 2 of the
application. Because the user has customized the XML docu-
ments in version 1, to get the new features of version 2 without
losing the customizations, the modifications that were made
by the customer to the XML documents for version 1 will
need to be merged into the XML documents of version 2.
Certain elements of the XML documents for version 1 of the
application package that were modified by the customer,
however, may not exist or be structured differently in version
2. Using prior art merging techniques, these customizations
will need to be integrated manually. Exemplary embodiments
of the present invention, however, can provide a generic and
complete merging solution for generating a customized ver-
sion 2 of the application package that includes all the modi-
fications made by the customer to version 1 and all the
enhancements added by the vendor in version 2.

Referring now to FIG. 1, an exemplary embodiment of a
comparison and merging system 100 in accordance with the
present invention. As will be described, comparison and
merging system 100 is implemented to perform a three-way
comparison and merge of XML documents both syntactically
and semantically. Comparison and merging system 100 pro-
vides a generic and complete solution for comparing and
merging of structured documents that are not defined by a
schema and are formatted according to semantic constraints
to include a number of clements that may be ordered or
unordered. Generally, system 100 includes a comparison
module 110, a merging module 120, and a generic memory
model data store 140. As used herein, the terms “module” and
“program module” both include routines, programs, objects,
components, data structures, and instructions, or instructions
sets, and so forth that perform particular tasks or implement
particular abstract data types. As can be appreciated, the
modules can be implemented as software, hardware, firm-
ware and/or other suitable components that provide the
described functionality, which may be loaded into memory of
a machine embodying exemplary embodiments of a version
comparison mechanism in accordance with the present inven-
tion. Aspects of the modules may be written in a variety of
programming languages, such as C, C++, Java, etc. As used
herein, the term “data store” refers to any suitable memory
device that may be used for storing data, including manual
files, machine-readable files, and databases. A data store may
be organized in various ways, including as a relational, hier-
archical, or object-oriented data store. The functionality pro-
vided by the modules and data stores described with reference
to exemplary embodiments herein may be combined and/or
further partitioned. In exemplary embodiments, comparison
and merge system 100 may itself be a computer-implemented
system, such as part of a computing device, like a computer,
which has one or more processors, memory, storage, and/or
other components as known within the art.

Inthe present exemplary embodiment, comparison module
110 includes a memory model deserializer 112, a unique 1D
validator 114, and a source code comparator 116. Compari-
son module 110 is configured to accept a base XML docu-
ment 130, a customized base XML document 132, and an
updated XML document 134 as input. Base document 132 is
a common ancestor of customized base document 132 and
updated document 134. Customized base document 132 is a
version of base document 130 that includes customized modi-
fications to the XML elements of the base document. Updated
document 134 is an updated version of base document 130
that contains updates to the XML elements of the base docu-

US 8,286,132 B2

7

ment. As will be described, comparison module 110 is imple-
mented to generate a memory model representation of each
input document in generic memory model 140, to compare
the three memory model representations of the three input
document to identify the differences therebetween, and to
update the generic memory model to include information
regarding the identified differences between the input docu-
ments. The information provided in memory model 140 by
comparison module 110 can thereby be accessed to enable
merging module 120 to merge customized base document
132 and updated document 134 into a unified, customized
updated document 138 that includes all the modifications
made to the base document to produce the customized base
document and all the updates made to the base document to
produce the updated document. For purposes of the present
exemplary embodiment, it is assumed that the modifications
made to the base document to produce the customized base
document and the updates made to the base document to
produce the updated document were made independently and
in parallel.

In the present exemplary embodiment, deserializer 112 is
configured to deserialize each of the three input documents to
generate and store a memory model representation of each
input document into memory model 140. Each memory
model representation takes the form of a hierarchical, node-
labeled tree data structure. A tree data structure, which is an
acyclic and connected graph having a set of linked nodes, is
commonly used for representing XML documents, which
utilize a tree-based semantical structure that has exactly one
root element. Trees may be manipulated in more complex
ways than ordered lists of text lines. For instance, in the
present exemplary embodiment, the tree-structured memory
model representations of the documents can each include a
number of ordered and/or unordered nodes. Each node in a
tree has zero or more child nodes, which are below it in the
tree (by convention, trees grow down, not up as they do in
nature). A node that has a child is called the child’s parent
node (or ancestor node, or superior). The topmost node in a
tree is called the root node. Being the topmost node, the root
node will not have parents. As shown in FIG. 1, deserializer
112 operates to deserialize base document 130, customized
base document 132, and updated document 134 into base data
model representation 130q, customized base data model rep-
resentation 132b, and updated data model representation
13456 respectively.

The memory model representations generated by deserial-
izer 112 operate to automatically create a mapping relation-
ship between the elements of the input XML documents that
is sufficiently flexible to satisfy the requirements of the syn-
tactical and semantical comparison performed by comparator
116, as will be described in greater detail below. In the rep-
resentation form maintained in memory model 140, each
XML element of a represented document corresponds to a
tree node in the representation. Each such tree node has a
context that contains: (a) the attributes of the corresponding
XML element; (b) all descendent XML elements (and their
respective attributes) of the corresponding element; and (¢) a
unique identifier for the node. By this definition, it can be seen
that node contexts are hierarchical. The children of'a node are
the elements contained in the element corresponding to the
node.

To account for the fact that some XML documents can be
provided with a semantic for which order is not important for
some or all of the elements, the memory model representa-
tions employ the concept of the unique identifier to identify
counterpart elements across documents. Unique identifiers
provide a reliable marker for comparator 116 to access when

20

25

30

35

40

45

50

55

60

65

8

identifying differences between documents that ensures that
element contents are compared under the correct correspond-
ing parent element. A unique identifier for a node includes the
name of the corresponding element and zero or more attribute
values of the corresponding element. To generate the unique
identifier of each node context, deserializer 112 employs a
repository of identifier determination rules that are applied to
each of the XML elements according to the values of one or
more attributes of the element. In exemplary embodiments,
deserializer 112 can be implemented to provide a pluggable
framework for the repository of identifier determination rules
for generating the unique identifiers that supports easy addi-
tion and modification of identifier determination rules. For
example, the unique identifiers for each node can be gener-
ated according to any suitable implementation of alternative
identifier determination rules that allow for each node to be
distinctly identified without relying on the name and/or
attributes of the corresponding element. The generation of
unique identifiers performed by deserializer 112 is dependent
upon the identifier determination rules in the pluggable
repository. Thus, deserializer 112 is flexible in that a user can
control the details of identifier determination and thereby
tailor the unique identifiers to meet the requirements of spe-
cific applications.

Under the memory model of the present exemplary
embodiment, sibling nodes cannot have the same unique
identifier. To satisfy this requirement, deserializer 112 can be
configured to generate unique identifiers that have different
composite sets of attribute values for different corresponding
element types. Thus, the memory model representations,
there can be two different forms of unique identifiers. In the
first type, the name of the XML element represented by the
node is used without any attribute values to form the unique
identifier. In such a case, it is expected that only one node
context of this type occurs within a memory model represen-
tation of a document. In the second type of unique identifier,
the name of the XML element represented by the node and
each value of one or more attributes of the element are used to
form the unique identifier. In such a case, there may be more
than one node with this element name contained within a
memory model representation of a document, and the values
of'the one or more selected attributes in the unique identifiers
are used to distinguish each node.

It is not required that the values of all the attributes for an
XML element be included in the unique identifier for the node
corresponding to the element as long as the values or the
combinations of values are unique to a parent node and each
descendent node under the parent separately. To this end,
validator 114, in addition to otherwise ensuring that each
memory model representation is well formed, is configured to
validate that each unique identifier in the memory model
representation of each document is unique within the gener-
ated representation.

In the present exemplary embodiment, comparator 116 is
configured to perform a comparison between base represen-
tation 130a and customized base representation 1325 to iden-
tify the modifications made to base document 130 in custom-
ized base document 132, between base representation 130a
and updated representation 1345 to identify the updates made
to base document 130 in updated document 134, and between
customized base representation 1325 and updated represen-
tation 1345 to identify the differences between customized
base document 132 and updated document 134. Comparator
is further configured to generate and update a set of compari-
son result information 136 maintained in memory model 140
to include correspondence information regarding the identi-
fied differences between the three input documents.

US 8,286,132 B2

9

The unique identifiers having composite sets of attribute
values provide for a flexible, reliable, and transparent mecha-
nism for use by comparator 116 in performing the compari-
sons to accurately determine the differences between two
documents by taking into consideration the semantics of the
document. Under the memory model, an element in one XML
document is considered a counterpart of another element in a
different XML document if the corresponding nodes for both
elements have the same unique identifiers in the memory
model representations of the documents. Counterpart ele-
ments are identical if their corresponding nodes have the
same unique identifier and equivalent values for each of the
corresponding attributes in the composite attribute set.

In exemplary embodiments in which the documents being
merged are customizable parts of versions of a software arti-
fact initially implemented by an application vendor, the
unique identifiers must remain consistent between the ver-
sions provided by the vendor. Customers that make modifi-
cations to a version of the software artifact, however, are not
required to have unique identifiers defined for elements they
add or customize. When a customer changes any part of an
element used to generate a unique identifier for the node
corresponding to the changed element, this will have the same
effect in comparison and merging system 100 as if that ele-
ment were deleted in the new version and then added as new
element to the new version. This can be used as a way for the
customer to provide an indication within a memory model
node corresponding to an element of a represented document
that they do not desire to have any updates that the vendor
provides for that element merged.

Comparator 116 employs a pluggable repository of com-
parison rules for performing the comparison between the
memory model representations of the documents to deter-
mine the differences therebetween. To identify the “same”
node in two different memory model representations, the
comparison rules are configured to be applied to link coun-
terpart nodes (that is, nodes having the same unique identifier
in the two representations being compared) in the two repre-
sentations of the documents being compared and to generate
information about the differences between the elements cor-
responding to the counterpart nodes in the two documents
during the comparison. In exemplary embodiments, com-
parator 116 can be implemented to provide a mechanism
through which additional rules can be added to the pluggable
repository of comparison rules so that more information
about the differences between the elements of the two docu-
ments being compared can be determined. The comparison
performed by comparator 116 is dependent upon the com-
parison rules in the pluggable repository. Thus, comparator
116 is flexible in that a user can control the details of the
comparison and thereby tailor the information generated in
particular comparisons to meet the requirements of specific
applications.

In exemplary embodiments, to compare two documents
and identify information regarding the differences therebe-
tween, comparator 116 can be implemented to compare each
element in one document being compared with each element
in the other document being compared. Comparator 1 16 can
perform these comparisons to update memory model 140 to
include information regarding the following differences iden-
tified by comparing each pair of the three input documents:
(1) elements that exist in one document but not the other (that
is, elements that have been deleted or added); (2) counterpart
elements having children elements that are in differing orders
in the two documents (when the semantic constraints for the
documents specify that order matters for these elements); (3)
counterpart elements having attributes that have the same

20

25

30

35

40

45

50

55

60

65

10

values in the two documents; (4) counterpart elements having
different values for attributes that are not part of the unique
identifiers for the nodes corresponding to the elements; and
(5) counterpart elements having different numbers of
attributes that are not part of the unique identifiers for the
nodes corresponding to the elements (that is, attributes that
have been added or deleted). Because additional rules can be
added to the pluggable repository of comparison rules, a user
can easily specify that more information should be included
in memory model 140 regarding the differences between each
pair of the three input documents. Furthermore, a user can
specify different comparison rules to determine differences
for each element in each document (for example, specifying
whether order is important or whether whitespace should be
considered).

Referring now to FI1G. 2, a flow chart illustrating an exem-
plary embodiment of a process 200 that may be performed by
comparator 116 for comparing two XML elements in two
different XML documents to determine their differences by
accessing the contexts of nodes corresponding to those ele-
ments in the memory model representations of the documents
being compared is provided. To compare two documents and
identify information regarding the differences therebetween,
comparator 116 can be implemented to access memory model
140 and repeatedly perform exemplary process 200 to com-
pare each element in one document being compared with
each element in the other document being compared. Com-
parator 116 can be configured to perform a comparison in this
manner between base representation 130a¢ and customized
base representation 1325 to identify the modifications made
to base document 130 in customized base document 132,
between base representation 130a and updated representation
13454 to identify the updates made to base document 130 in
updated document 134, and between customized base repre-
sentation 1325 and updated representation 1345 to identify
the differences between customized base document 132 and
updated document 134.

Exemplary process 200 begins at decision block 210 by
determining if the XML documents containing the element
being compared are provided with a semantic specifying that
order is not important for the element. If the XML documents
are provided with a semantic specifying that order is impor-
tant, process 200 proceeds to decision block 220 and deter-
mines if the respective unique identifiers for the nodes corre-
sponding to the elements in the memory model
representations for the documents being compared are the
same. Ifit is determined at decision block 220 that the respec-
tive unique identifiers are not the same, process 200 proceeds
to block 280 and records that the first element being compared
does not exist in the document containing the second element
being compared. Process 200 then terminates. If it is deter-
mined at decision block 210 that the XML documents of the
application package are provided with a semantic specifying
that order is not important for the element, process 200 pro-
ceeds to decision block 230 and determines if the respective
unique identifiers for the nodes corresponding to the elements
in the memory model representations for the documents
being compared are the same.

Ifitis determined either at decision block 220 or at decision
block 230 that the respective unique identifiers for the nodes
corresponding to the two elements being compared are the
same, the two elements being compared are counterpart ele-
ments, and process 200 proceeds to block 240. At block 240,
the attributes of the two counterpart elements, as provided in
the memory model representation contexts of the nodes cor-
responding to the elements, are compared to identify any
added attributes, identify any deleted attributes, and identify

US 8,286,132 B2

11

any attributes with changed values. Then, at block 250, the
sequences of the child elements of the two counterpart ele-
ments, as provided in the memory model representation con-
texts of the nodes corresponding to the elements, are com-
pared based on the unique identifiers for the child elements to
identify any differences in the child element sequences of the
two counterpart elements. Process 200 then proceeds to block
260, at which each child element of one of the elements being
compared is compared with each child element of the other
element being compared. To perform each of these child
element comparisons at block 260, a new instance of exem-
plary process 200 is called recursively. The information
regarding the differences between the elements identified
during the comparisons made at blocks 240-260 is recorded
in the generic memory model. When each recursive call made
to process 200 at block 260 has returned, process 200 termi-
nates.

Ifit is determined at decision block 230 that the respective
unique identifiers for the nodes corresponding to the two
elements being compared are not the same, process 200 pro-
ceeds to decision block 270, at which it is determined whether
the unique identifier for the node corresponding to the first
element being compared is the same as any of the unique
identifiers for the nodes corresponding to the sibling elements
of'the second element being compared. Ifit is determined that
the unique identifier for the node corresponding to the first
element is the not same as any of the unique identifiers for the
nodes corresponding to the sibling elements of the second
element, process 200 proceeds to block 280 and records that
the first element being compared does not exist in the docu-
ment containing the second element being compared. If it is
determined at block 230 that the unique identifier for the node
corresponding to the first element is the same as the unique
identifiers for a nodes corresponding to a sibling element of
the second element, process 200 proceeds to block 240 and
performs the comparisons described above at blocks 240-260
between the first element and the matching sibling element of
the second element. When each recursive call made to process
200 at block 260 has returned, after information regarding the
differences between the elements identified during the com-
parisons made at blocks 240-260 is recorded in the generic
memory model, process 200 terminates.

Referring again to the exemplary embodiment described
with reference to FIG. 1, after comparator 116 performs the
comparison between each pair of the three input documents,
merging module 120 is implemented to access and process
the information maintained in memory model 140 to generate
customized updated document 138. Merging module 120
includes a three-way source code merger 122 and a memory
model serializer 124. Merger 122 is configured to access
memory model 140 and a merging operation on the informa-
tion maintained for updated representation 134a and com-
parison result information 136 to generate a customized
updated representation 1384 of customized updated docu-
ment 138. Customized updated representation 138a, which is
stored and maintained in memory model 140 by merger 122,
is a tree-structured memory model representation of the
updated document that includes all the modifications made to
base document 130 to produce customized base document
132 and all the updates made to base document 130 to pro-
duce updated document 134. Memory model serializer 124 is
configured to serialize customized updated representation
138a to generate customized updated document 138, which is
an XML document that accords with the semantic constraints
specified for the input documents.

Merger 122 is configured to perform a three-way merge on
a copy of updated representation 1384 based upon the corre-

20

25

30

35

40

45

50

55

60

65

12

spondence information regarding the identified differences
between the three input documents provided by comparison
result information 136. In many cases, the correct output of
the merge operation will depend on the semantic constraints
of the data (for example, whether elements are specified as
ordered or unordered). These semantic constraints should be
considered during the merge operation where, for example,
sibling or parent elements have been deleted or moved. To
account for these semantic constraints, the unique identifiers
for the nodes corresponding to the elements of the documents
provide a flexible, reliable, and transparent mechanism for
merger 124 to access when merging the correspondence
information regarding the identified differences between the
three input documents that ensures that element contents are
merged under the correct corresponding parent element.
Thus, the memory model representations generated by dese-
rializer 112 operate to automatically create a mapping rela-
tionship between the elements of the input XML documents
that is able to satisfy the requirements of the syntactical and
semantical merge operation performed by merger 122.

Merger 122 performs the merge operation in accordance
with a repository of merge rules specified for the elements. In
exemplary embodiments, merger 122 can be implemented to
provide a pluggable framework for the repository of merge
rules for performing the merge that supports easy addition
and modification of merge rules. For example, a user can
specify whether order should be maintained, whether format-
ting be maintained, whether comments should be preserved,
where a new element should inserted, instructions on how to
handle situations where sibling elements have been reor-
dered, etc. The merge operation performed by merger 122 is
dependent upon the merge rules in the pluggable repository.
Thus, merger 122 is flexible in that a user can control the
details of the merge rules and thereby tailor the merge opera-
tion to meet the requirements of specific applications.

Referring now to FIG. 3, a flow chart illustrating an exem-
plary embodiment of a process 300 that may be performed by
merger 122 for performing a three-way merge of base repre-
sentation 130a, customized base representation 132a, and
updated representation 134a to generate customized updated
representation 138q is illustrated. Exemplary process 300
begins at block 310, at which a copy of updated representation
134a is stored in memory model 140 to provide a working
memory model representation used for generating custom-
ized updated representation 138a. Customized updated rep-
resentation 1384 will be the result of all changes being will be
merged into this working representation. The operations per-
formed by the remaining blocks of process 300 are repeated
sequentially for each node in the working representation. A
single iteration of these operations will now be described with
reference to a target node of the working representation.

At block 320 of exemplary process 300, merger 122
accesses comparison result information 136 to identify each
modification made in customized base document 132 to the
counterpart element in base document 130 to the element
corresponding to the target node. As described above, under
the memory model, an element in one XML document is
considered a counterpart of another element in a different
XML document if the corresponding nodes for both elements
have the same unique identifiers in the memory model repre-
sentations of the documents. At block 330, if the modifica-
tions identified at block 320 indicate that the counterpart
element in base document 130 to the element corresponding
to the target node has been deleted in customized base docu-
ment 132, the target node is deleted from the working repre-
sentation. At block 340, if the modifications identified at
block 320 indicate that any new child elements have been

US 8,286,132 B2

13

added to the counterpart element in customized base docu-
ment 132 to the element corresponding to the target node,
these child elements are added to the target node in the work-
ing representation. At block 350, if the modifications identi-
fied at block 320 indicate that any changes have been made to
the attributes of the counterpart element in customized base
document 132 to the element corresponding to the target
node, these attributes are changed accordingly in the target
node in the working representation.

Exemplary process then proceeds to block 360, at which, if
it determined whether the XML documents containing the
element corresponding to the target node are provided with a
semantic specifying that order is important for the element,
the child elements are reordered accordingly in the target
node in the working representation. Finally, at block 370, the
merge operations performed at blocks 320-370 are repeated
recursively for each child element of the target node.

As mentioned above, the operations performed in blocks
320-370 are repeated sequentially in exemplary of process
300 for each node in the working representation. The result of
the merge operation performed by merging module 122 is
customized updated representation 138a in memory model
140. Different types of conflicts can arise during performance
of the merge operation where certain situations are present
such as, for example, sequencing conflicts, move conflicts, or
conflicts that occur where a value for an attribute of an ele-
ment in base document 130 is changed in the counterpart
element of both customized base document 132 and updated
document 134. In exemplary embodiments, merging module
122 can be configured to utilize the correspondence informa-
tion maintained in comparison result information 136 in
memory model 140 for the modifications made to the base
document to produce the customized base document and the
updates made to the base document to produce the updated
document to resolve these conflicts.

Once the merge operation has been performed by merging
module 122 to generate customized updated representation
138a in memory model 140, memory model serializer 124 is
configured to access the memory model and serialize the
customized updated representation to generate customized
updated document 138, which is an XML document that
corresponds to a merged version of customized base docu-
ment 132 and updated document 134, includes all the modi-
fications made to base document 130 to produce the custom-
ized base document, includes all the updates made to the base
document to produce the updated document, and, further-
more, accords with the semantic constraints specified for the
input documents. Once generated by serializer 124, custom-
ized updated document 138 can be provided as output by
comparison and merge system 100.

To illustrate the use of comparison and merge system 100
described with reference to the exemplary embodiment illus-
trated in FIG. 1, the merging example shown in FIGS. 4a-4d
is considered. Particularly, in the present example, FIG. 4a
provides a base XML document 400, FIG. 45 provides a
customized version 410 of the base XML document, and FIG.
4c¢ provides an updated version 420 of the base XML docu-
ment. The unique identifiers generated by system 100 for the
elements of the documents in this example are: (1) the ele-
ment name for the element ‘library’ (as the semantics for the
document specify that only one such element is allowed in a
document); (2) the value of the ‘name’ attribute for the ele-
ment ‘class’; (3) the values of the ‘propertyName’ and
‘objectPath’ attributes for the element ‘gridText’; and (4) the
values of the ‘propertyName’ and ‘objectPath’ attributes for
the element ‘gridPrice’.

20

25

30

35

40

45

50

55

60

65

14

In the illustrated example of FIGS. 4a-4d, customized ver-
sion 410 is a modified version of base document 400 that
includes an inserted warranty term eclement 412 and an
inserted display class definition element 414, and updated
version 420 is a version of base document 400 that has been
updated to include an inserted new feature element 426 that
provides the ability to categorize products. Exemplary com-
parison and merge system 100 is configured to process the
three documents depicted in FIGS. 4a-d4c¢ to generate a
merged version 430 that includes the modifications made to
base document 400 in customized version 410 (as indicated
by reference numbers 432 and 434) and the updates made to
base document 400 updated version 420, as shown in FIG. 44
(as indicated by reference number 436).

As discussed above, exemplary embodiments of the
present invention can be implemented to perform a three-way
merge of documents comprising code in structured docu-
ments of any type, not just XML -language documents. In the
exemplary embodiment described with to comparison and
merge system 100 illustrated in FIG. 1, only memory model
deserializer 112 and memory model serializer 124 are imple-
mented under the assumption that it is working with docu-
ments having an XML -language construct, while each of the
other actor and handler modules described are working with
memory model representations of the documents as provided
according to the generic, hierarchical, tree-structured
memory model. Thus, in alternative exemplary embodiments,
merge solution tool framework 100 can be extended to handle
non-XML languages, for example, in either of the following
two ways: (1) replacing deserializer 112 and serializer 124
with corresponding handlers that understands non-XML lan-
guages; or (2) implementing a preprocessor to convert a non-
XML language document to an XML format. Furthermore, in
exemplary embodiments, the input and output documents and
the memory model representations of the documents may
each observe different syntax rules, and the nodes of the
memory model representations can be generated utilizing a
mechanism that is appropriate to the particular type of docu-
ments and elements being merged. For example, the inputand
output documents may have an HTML-language construct,
while the memory model representations may have an XML
language construct. In exemplary embodiments, comparison
and merge system 100 can be implemented to perform a
merge for documents of any structured language and to fur-
ther translate the output merged document into another lan-
guage. Thus, exemplary embodiments can be provided with
substantial versatility concerning document types.

In the preceding description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the described exemplary embodi-
ments. Nevertheless, one skilled in the art will appreciate that
many other embodiments may be practiced without these
specific details and structural, logical, and electrical changes
may be made.

Some portions of the exemplary embodiments described
above are presented in terms of algorithms and symbolic
representations of operations on data bits within a processor-
based system. The operations are those requiring physical
manipulations of physical quantities. These quantities may
take the form of electrical, magnetic, optical, or other physi-
cal signals capable of being stored, transferred, combined,
compared, and otherwise manipulated, and are referred to,
principally for reasons of common usage, as bits, values,
elements, symbols, characters, terms, numbers, or the like.
Nevertheless, it should be noted that all of these and similar
terms are to be associated with the appropriate physical quan-
tities and are merely convenient labels applied to these quan-

US 8,286,132 B2

15

tities. Unless specifically stated otherwise as apparent from
the description, terms such as “executing” or “processing” or
“computing” or “calculating” or “determining” or the like,
may refer to the action and processes of a processor-based
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical quantities
within the processor-based system’s storage into other data
similarly represented or other such information storage,
transmission or display devices.

Exemplary embodiments of the present invention can be
realized in hardware, software, or a combination of hardware
and software. Exemplary embodiments can be implemented
using one or more program modules and data storage units.
Exemplary embodiments can be realized in a centralized
fashion in one computer system or in a distributed fashion
where different elements are spread across several intercon-
nected computer systems. Any kind of computer system—or
other apparatus adapted for carrying out the methods
described herein—is suited. A typical combination of hard-
ware and software could be a general-purpose computer sys-
tem with a computer program that, when being loaded and
executed, controls the computer system such that it carries out
the methods described herein.

Exemplary embodiments of the present invention can also
be embedded in a computer program product, which com-
prises all the features enabling the implementation of the
methods described herein, and which—when loaded in a
computer system—is able to carry out these methods. Com-
puter program means or computer program as used in the
present invention indicates any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-
form a particular function either directly or after either or both
of'the following: (a) conversion to another language, code or,
notation; and (b) reproduction in a different material form.

A computer system in which exemplary embodiments can
be implemented may include, inter alia, one or more comput-
ers and at least a computer program product on a computer
readable medium, allowing a computer system, to read data,
instructions, messages or message packets, and other com-
puter readable information from the computer readable
medium. The computer readable medium may include non-
volatile memory, such as ROM, Flash memory, Disk drive
memory, CD-ROM, and other permanent storage. Addition-
ally, a computer readable medium may include, for example,
volatile storage such as RAM, buffers, cache memory, and
network circuits. Furthermore, the computer readable
medium may comprise computer readable information in a
transitory state medium such as a network link and/or a net-
work interface including a wired network or a wireless net-
work that allow a computer system to read such computer
readable information.

FIG.5is ablock diagram of an exemplary computer system
500 that can be used for implementing exemplary embodi-
ments of the present invention. Computer system 500
includes one or more processors, such as processor 504. Pro-
cessor 504 is connected to a communication infrastructure
502 (for example, a communications bus, cross-over bar, or
network). Various software embodiments are described in
terms of this exemplary computer system. After reading this
description, it will become apparent to a person of ordinary
skill in the relevant art(s) how to implement the invention
using other computer systems and/or computer architectures.

Exemplary computer system 500 can include a display
interface 508 that forwards graphics, text, and other data from
the communication infrastructure 502 (or from a frame buffer
not shown) for display on a display unit 510. Computer sys-

20

25

30

35

40

45

50

55

60

65

16

tem 500 also includes a main memory 506, which can be
random access memory (RAM), and may also include a sec-
ondary memory 512. Secondary memory 512 may include,
for example, a hard disk drive 514 and/or a removable storage
drive 516, representing a floppy disk drive, a magnetic tape
drive, an optical disk drive, etc. Removable storage drive 516
reads from and/or writes to a removable storage unit 518 in a
manner well known to those having ordinary skill in the art.
Removable storage unit 518, represents, for example, a floppy
disk, magnetic tape, optical disk, etc. which is read by and
written to by removable storage drive 516. As will be appre-
ciated, removable storage unit 518 includes a computer
usable storage medium having stored therein computer soft-
ware and/or data.

In exemplary embodiments, secondary memory 512 may
include other similar means for allowing computer programs
or other instructions to be loaded into the computer system.
Such means may include, for example, a removable storage
unit 522 and an interface 520. Examples of such may include
a program cartridge and cartridge interface (such as that
found in video game devices), a removable memory chip
(such as an EPROM, or PROM) and associated socket, and
other removable storage units 522 and interfaces 520 which
allow software and data to be transferred from the removable
storage unit 522 to computer system 500.

Computer system 500 may also include a communications
interface 524. Communications interface 524 allows software
and data to be transterred between the computer system and
external devices. Examples of communications interface 524
may include a modem, a network interface (such as an Eth-
ernet card), acommunications port, a PCMCIA slot and card,
etc. Software and data transferred via communications inter-
face 524 are in the form of signals which may be, for example,
electronic, electromagnetic, optical, or other signals capable
of being received by communications interface 524. These
signals are provided to communications interface 524 via a
communications path (that is, channel) 526. Channel 526
carries signals and may be implemented using wire or cable,
fiber optics, a phone line, a cellular phone link, an RF link,
and/or other communications channels.

In this document, the terms “computer program medium,”
“computer usable medium,” and “computer readable
medium” are used to generally refer to media such as main
memory 506 and secondary memory 512, removable storage
drive 516, a hard disk installed in hard disk drive 514, and
signals. These computer program products are means for
providing software to the computer system. The computer
readable medium allows the computer system to read data,
instructions, messages or message packets, and other com-
puter readable information from the computer readable
medium. The computer readable medium, for example, may
include non-volatile memory, such as Floppy, ROM, Flash
memory, Disk drive memory, CD-ROM, and other permanent
storage. It can be used, for example, to transport information,
such as data and computer instructions, between computer
systems. Furthermore, the computer readable medium may
comprise computer readable information in a transitory state
medium such as a network link and/or a network interface
including a wired network or a wireless network that allow a
computer to read such computer readable information.

Computer programs (also called computer control logic)
are stored in main memory 506 and/or secondary memory
512. Computer programs may also be received via commu-
nications interface 524. Such computer programs, when
executed, can enable the computer system to perform the
features of exemplary embodiments of the present invention
as discussed herein. In particular, the computer programs,

US 8,286,132 B2

17

when executed, enable processor 504 to perform the features
of computer system 500. Accordingly, such computer pro-
grams represent controllers of the computer system.

Although exemplary embodiments of the present invention
have been described in detail, the present description is not
intended to be exhaustive or limiting of the invention to the
described embodiments. It should be understood that various
changes, substitutions and alterations could be made thereto
without departing from spirit and scope of the inventions as
defined by the appended claims. Variations described for
exemplary embodiments of the present invention can be real-
ized in any combination desirable for each particular appli-
cation. Thus particular limitations, and/or embodiment
enhancements described herein, which may have particular
advantages to a particular application, need not be used for all
applications. Also, not all limitations need be implemented in
methods, systems, and/or apparatuses including one or more
concepts described with relation to exemplary embodiments
of the present invention.

The exemplary embodiments presented herein were cho-
sen and described to best explain the principles of the present
invention and the practical application, and to enable others of
ordinary skill in the art to understand the invention. It will be
understood that those skilled in the art, both now and in the
future, may make various modifications to the exemplary
embodiments described herein without departing from the
spirit and the scope of the present invention as set forth in the
following claims. These following claims should be con-
strued to maintain the proper protection for the present inven-
tion.

The invention claimed is:

1. A method of performing a syntactic and semantic three-
way merge of structured software documents, the method
comprising:

receiving a first version of a document coded in a structured

programming language containing a first plurality of
elements, a second version of the document containing a
second plurality of elements, and a third version of the
document containing a third plurality of elements,
wherein the first version of a document is an original
version of the document, the second version of the docu-
ment is an end-user modified version of the original
version and the third version of the documents is a devel-
oper modified version of the original version of the
document;

deserializing the first, second, and third versions of the

document to generate a first data model, a second data
model, and a third data model respectively representing
the first, second, and third versions in a first data store,
each data model comprising a tree data structure that
includes a corresponding node for each element of the
plurality of elements contained within the version of the
document represented by the data model, each node of
each data model containing a context describing the
element corresponding to the node;

generating an identifier for each node of each datamodel in

the first data store that is unique to the node within the
data model by applying a set of identifier determination
rules to the context describing the element correspond-
ing to the node;

comparing the identifier for each node in the first data

model with the identifier for each node in the second data
model to identify each node in the first data model not
having matching identifiers with any node in the second
data model in the first data store and to link each pair of
nodes in the first and second data models that have
matching identifiers;

20

25

30

35

40

45

50

55

60

65

18

applying a set of comparison rules to the contexts of each
linked pair of nodes in the first and second data models
to identify differences between each linked pair of nodes
in the first and second data models in the first data store

generating a copy of the third data model in the first data
store, deleting each node in the copy of the third data
model having matching identifiers with an node in the
first data model not identified as having matching iden-
tifiers with any node in the second data model, and
modifying each node in the copy of the third data model
having matching identifiers with any linked pair of
nodes in the first and second data models by applying a
set of merge rules based upon the identified differences
between the linked pair of nodes; and

serializing the copy of the third data model to generate a

fourth version of the document.

2. The method of claim 1, wherein the context of each node
of each data model describes each attribute, each descendent
element, and each attribute of each descendent element of the
element corresponding to the node within the version of the
document represented by the data model.

3. The method of claim 2, wherein the set of comparison
rules applied to the contexts of each linked pair of nodes in the
first and second data models includes a first comparison rule
for identifying each child element of the element correspond-
ing to the linked node in the second data model not having
matching identifiers with any child element of the element
corresponding to the linked node in the first data model, and
wherein the set of merge rules includes a first merge rule for
inserting a copy of each node corresponding to a child ele-
ment of the element corresponding to the linked node in the
second data model not having matching identifiers with any
node corresponding to a child element of the element corre-
sponding to the linked node in the first data model in the copy
of the third data model.

4. The method of claim 2, wherein the set of comparison
rules applied to the contexts of each linked pair of nodes in the
first and second data models includes a first comparison rule
for identifying each attribute of the element corresponding to
the linked node in the second data model that does not have
matching values with any corresponding attribute of the ele-
ment corresponding to the linked node in the first data model,
each attribute of the element corresponding to the linked node
in the first data model that is not included in the element
corresponding to the linked node in the second data model,
and each attribute of the element corresponding to the linked
node in the second data model that is not included in the
element corresponding to the linked node in the first data
model.

5. The method of claim 4, wherein the set of merge rules
includes a first merge rule for assigning the value of each
attribute of the element corresponding to the linked node in
the second data model that does not have matching values
with any corresponding attribute of the element correspond-
ing to the linked node in the first data model to the corre-
sponding attribute in the context of the node in the copy of the
third data model having matching identifiers with the linked
pair of nodes in the first and second data models, a second
merge rule for deleting each attribute in the context of the
node in the copy of the third data model having matching
identifiers with the linked pair of nodes in the first and second
data models corresponding to any attribute of the element
corresponding to the linked node in the first data model that is
not included in the element corresponding to the linked node
in the second data model, and a third merge rule for inserting
a copy of each attribute of the element corresponding to the
linked node in the second data model that is not included in

US 8,286,132 B2

19

the element corresponding to the linked node in the first data
model in the context of the node in the copy of the third data
model having matching identifiers with the linked pair of
nodes in the first and second data models.

6. The method of claim 3, wherein each version of the
document is provided according to a respective set of seman-
tic constraints specifying whether each element of the corre-
sponding plurality of elements is ordered or unordered, and
wherein comparing the identifier for each node in the first data
model with the identifier for each node in the second data
model further comprises comparing each node in the first data
model with the identifier of each sibling node of each node in
the second data model not having matching identifiers with
the node in the first data model to identify whether the node in
the first data model has matching identifiers with any node in
the second data where the set of semantic constraints for the
first version of the document specifies that the element cor-
responding to the node in the first data model is unordered.

7. The method of claim 6, wherein the set of comparison
rules applied to the contexts of each linked pair ofnodes in the
first and second data models includes a second comparison
rule for identifying any differences between a child element
sequence of the element corresponding to the linked node in
the first data model and a child element sequence of the
element corresponding to the linked node in the first data
model, and wherein the set of merge rules includes a second
merge rule for reordering the nodes corresponding to child
elements of the element corresponding to each node in the
copy of the third data model having matching identifiers with
any linked pair of nodes in the first and second data models
where the set of semantic constraints for the first version of
the document specifies that the element corresponding to the
linked node in the first data model is ordered.

8. The method of claim 3, wherein the set of comparison
rules applied to the contexts of each linked pair ofnodes in the
first and second data models includes a second comparison
rule for comparing the identifier for each node corresponding
to a child element of the element corresponding to the linked
node in the first data model with the identifier for each node
corresponding to a child element of the element correspond-
ing to the linked node in the second data model to identify
each node corresponding to a child element of the element
corresponding to the linked node in the first data model not
having matching identifiers with any node corresponding to a
child element of the element corresponding to the linked node
in the second data model in the first data store and to link each
pair of nodes corresponding to child elements of the elements
corresponding to the linked nodes in the first and second data
models that have matching identifiers, and a third comparison
rule for applying the set of comparison rules to the contexts of
each linked pair of nodes corresponding to child elements of
the elements corresponding to the linked nodes.

9. The method of claim 8, wherein the set of merge rules
includes a second merge rule for deleting each node corre-
sponding to a child element of the element corresponding to
each node inthe copy of the third data model having matching
identifiers with any node in the first data model not identified
as having matching identifiers with any node in the second
data model, and modifying each node corresponding to a
child element of the element corresponding to each node in
the copy of the third data model having matching identifiers
with any linked pair of nodes in the first and second data
models by applying the set of merge rules based upon the
identified differences between the linked pair of nodes.

10. The method of claim 1, wherein the set of identifier
determination rules are maintained in a first data repository,

20

25

30

35

40

45

50

55

60

65

20

and wherein the first data repository provides a pluggable
framework for the set of identifier determination rules.

11. The method of claim 10, wherein the identifier gener-
ated for each node of each data model includes a name and
zero or more attributes values of the element corresponding to
node, and wherein the zero or more attribute values included
in the identifier are sufficient to make the identifier unique to
the node within the data model.

12. The method of claim 1, wherein the set of comparison
rules are maintained in a first data repository, and wherein the
first data repository provides a pluggable framework for the
set of comparison rules.

13. The method of claim 1, wherein the set of merge rules
are maintained in a first data repository, and wherein the first
data repository provides a pluggable framework for the set of
merge rules.

14. The method of claim 1, wherein the structured pro-
gramming language is selected from SGML, XML, HTML,
WML, XHTML, DHTML, other SGML derivatives, and user
interface markup languages.

15. The method of claim 14, wherein the structured pro-
gramming language is XML..

16. The method of claim 1, further comprising converting
a first, second, and third versions of the document from the
structured programming language to a second structured pro-
gramming language.

17. The method of claim 1, wherein the fourth version of
the document is generated in a second structured program-
ming language.

18. A non-transitory computer-usable medium having
computer readable instructions stored thereon for execution
by a processor to perform a method of performing a syntactic
and semantic three-way merge of structured software docu-
ments, the method comprising:

receiving a first version of a document coded in a structured

programming language containing a first plurality of
elements, a second version of the document containing a
second plurality of elements, and a third version of the
document containing a third plurality of elements,
wherein the first version of a document is an original
version of the document, the second version of the docu-
ment is an end-user modified version of the original
version and the third version of the documents is a devel-
oper modified version of the original version of the
document;

deserializing the first, second, and third versions of the

document to generate a first data model, a second data
model, and a third data model respectively representing
the first, second, and third versions in a first data store,
each data model comprising a tree data structure that
includes a corresponding node for each element of the
plurality of elements contained within the version of the
document represented by the data model, each node of
each data model containing a context describing the
element corresponding to the node;

generating an identifier for each node of each data model in

the first data store that is unique to the node within the
data model by applying a set of identifier determination
rules to the context describing the element correspond-
ing to the node;

comparing the identifier for each node in the first data

model with the identifier for each node in the second data
model to identify each node in the first data model not
having matching identifiers with any node in the second
data model in the first data store and to link each pair of
nodes in the first and second data models that have
matching identifiers; and

US 8,286,132 B2

21

applying a set of comparison rules to the contexts of each
linked pair of nodes in the first and second data models
to identify differences between each linked pair of nodes
in the first and second data models in the first data store;

generating a copy of the third data model in the first data
store, deleting each node in the copy of the third data
model having matching identifiers with any node in the
first data model not identified as having matching iden-
tifiers with any node in the second data model, and
modifying each node in the copy of the third data model
having matching identifiers with any linked pair of
nodes in the first and second data models by applying a
set of merge rules based upon the identified differences
between the linked pair of nodes; and

serializing the copy of the third data model to generate a
fourth version of the document.

19. A data processing system comprising:

at least one processor;

arandom access memory for storing data and programs for
execution by the at least one processor; and

computer readable instructions stored in the random access
memory for execution by the at least one processor to
perform a method of performing a syntactic and seman-
tic three-way merge of structured software documents,
the method comprising:

receiving a first version of a document coded in a structured
programming language containing a first plurality of
elements, a second version of the document containing a
second plurality of elements, and a third version of the
document containing a third plurality of elements,
wherein the first version of a document is an original
version of the document, the second version of the docu-
ment is an end-user modified version of the original
version and the third version of the documents is a devel-
oper modified version of the original version of the
document;

deserializing the first, second, and third versions of the
document to generate a first data model, a second data

20

25

30

35

22

model, and a third data model respectively representing
the first, second, and third versions in a first data store,
each data model comprising a tree data structure that
includes a corresponding node for each element of the
plurality of elements contained within the version of the
document represented by the data model, each node of
each data model containing a context describing the
element corresponding to the node;

generating an identifier for each node of each data model in
the first data store that is unique to the node within the
data model by applying a set of identifier determination
rules to the context describing the element correspond-
ing to the node;

comparing the identifier for each node in the first data
model with the identifier for each node in the second data
model to identify each node in the first data model not
having matching identifiers with any node in the second
data model in the first data store and to link each pair of
nodes in the first and second data models that have
matching identifiers; and

applying a set of comparison rules to the contexts of each
linked pair of nodes in the first and second data models
to identify differences between each linked pair of nodes
in the first and second data models in the first data store;

generating a copy of the third data model in the first data
store, deleting each node in the copy of the third data
model having matching identifiers with any node in the
first data model not identified as having matching iden-
tifiers with any node in the second data model, and
modifying each node in the copy of the third data model
having matching identifiers with any linked pair of
nodes in the first and second data models by applying a
set of merge rules based upon the identified differences
between the linked pair of nodes; and

serializing the copy of the third data model to generate a
fourth version of the document.

