
USOO8286132B2 

(12) United States Patent (10) Patent No.: US 8.286,132 B2 
Yuan et al. (45) Date of Patent: Oct. 9, 2012 

(54) COMPARING AND MERGING STRUCTURED 2009/0254971 A1* 10, 2009 Herz et al. ........................ T26.1 
2010, OO77380 A1 3/2010 Baker et al. 

DOCUMENTS SYNTACTICALLY AND 2010, OO88676 A1 4/2010 Yuan et al. 
SEMANTICALLY 2011/0167154 A1* 7, 2011 Bush et al. .................... TO9,224 

(75) Inventors: Yu Yuan, Toronto (CA); Scott M OTHER PUBLICATIONS 
Guminy, Newmarket (CA) Office Action—Non-Final for U.S. Appl. No. 12/238,135, filed Sep. 

25, 2008; FirstNamed Inventor: Bruce R. Baker; Art Unit: 2192; Mail 
(73) Assignee: International Business Machines Date: Jan. 20, 2012. 

Corporation, Armonk, NY (US) * cited by examiner 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 Primary Examiner — Li B Zhen 
U.S.C. 154(b) by 1049 days. Assistant Examiner — Arshia S Kia 

(74) Attorney, Agent, or Firm — Cantor Colburn LLP, Libby 
(21) Appl. No.: 12/238,080 Toub 

(22) Filed: Sep. 25, 2008 (57) ABSTRACT 
A method of performing a three-way merge includes receiv 

(65) Prior Publication Data ing first, second, and third versions of a structured document 
containing first, second, and third pluralities of elements 

US 201O/OO88676A1 Apr. 8, 2010 respectively; deserializing the first, second, and third versions 
(51) Int. Cl to generate first, second, and third tree-structured data models 

we respectively representing the first, second, and third versions; 
G06F 9/44 (2006.01) generating an identifier for each node of each data model that 

(52) U.S. Cl. ........................................ 717/120; 717/170 is unique within the data model by applying identifier deter 
(58) Field of Classification Search .................. 717/170, mination rules to a context describing the element corre 

717/120 sponding to the node; comparing each identifier in the first 
See application file for complete search history. data model with each identifier in the second data model to 

identify each node in the first data model not having matching 
(56) References Cited identifiers with any node in the second data model and to link 

each pair of nodes having matching identifiers; and applying 
U.S. PATENT DOCUMENTS comparison rules to the contexts of each linked pair of nodes 

6,434,547 B1 * 8/2002 Mishelevich et al. ................. 1/1 to identify differences therebetween. 
7,926,033 B2 * 4/2011 Gopal et al. ......... 717/122 

2006/0041579 A1* 2/2006 Miyashita et al. ............ 707/102 19 Claims, 7 Drawing Sheets 

130 
100 

York-rl-4- 
- 

Comparison Module 
110 

Deserializer 
112 

Walidator Comparator 
114 116 

H 
Memory Model 

140 

Merging Module 
120 

y 

Merger Serializer 
122 124 

  

  



U.S. Patent Oct. 9, 2012 Sheet 1 of 7 US 8,286,132 B2 

Comparison Module 
110 

Memory Model 
140 

Merging Module 
120 

Merger Serializer 
122 124 

FIGURE 1 Clas) 

  



U.S. Patent Oct. 9, 2012 Sheet 2 of 7 US 8,286,132 B2 

200 220 

Yes 
Are IDs the same 

210 - Is order important? 
Record that the first 

element has been deleted 

230 ------ Are IDs the same? Any sibling 

with same D? 

Compare attributes of 240 - counterpart elements 

250 Compare sequence of 
child elements 

Perform process 200 
for each pair of child 
elements recursively 

260 

FIGURE 2 

  

    

  

      

  

      

  

  

  



U.S. Patent Oct. 9, 2012 Sheet 3 of 7 US 8,286,132 B2 

300 

Store copy of updated 
310 representation in memory model 

Begin with root node in working representation 

Identify modifications made in customized base 
document to counterpart element in base document 

to element corresponding to the target node 
320 - 

Delete target node if counterpart 
element in base document is deleted 

in customized base document 
Repeat 
sequentially 
for each node 
in working 
representation 

Add child elements added to base 
document counterpart element in 

customized base document to target node 

Change attributes in target node in accordance 
with attribute changes made to base document 

counterpart element in customized base document 

If order is important for element 
corresponding to the target node, reorder 
child elements accordingly in target node 

Repeat merge operations performed at blocks 
320-360 for each child element of target node 

After each node in working 
representation has been merged 

370 - 

FIGURE 3 

    

  

  

      

    

  

  

    

  

  

  

  

  

    

  



U.S. Patent Oct. 9, 2012 Sheet 4 of 7 US 8,286,132 B2 

400 FIGURE 4a 

<library> 
<!-- this class represents a table that displays Product objects --> 
<class name="ProductCrid" extends="ObjectGrid"> 

<!-- this widget displays the "name" of the product as a column in the table --> 
<gridText propertyName="name" objectPath="Product"/> 

<-- this widget displays the price of the product. 
The price is stored within the Price object with is a child of the Product object --> 

<grid Price propertyName="price" objectPath="Product/Price"/> 

~!-- this widget display the name of the currency for the price. 
The currency name is stored within the Price object. 
Note that it happens to have the same property name as the Product's name --> 

<gridText propertyNam="name" objectPath="Product/Price"/> 
</class> 

</library> 

410 
FIGURE 4b. 

<library> 
<!-- this class represents a table that displays Product objects --> 
<class name="ProductCrid" extends="ObjectGrid"> 

<!-- this widget displays the "name" of the product as a column in the table --> 
<gridText propertyName="name" objectPath="Product"/> 

<!-- this widget displays the price of the product. 
The price is stored within the Price object with is a child of the Product object --> 

<grid Price propertyName="price" objectPath="Product/Price"f> 

<!-- this widget display the name of the currency for the price. 
The currency name is stored within the Price object. 
Note that it happens to have the same property name as the Product's name --> 

<grid Text propertyNam="name" objectPath="Product/Price"f> 

<class name="MyGrid" extends="ObjectGrid"> 
<gridText propertyName="name" objectPath="MyObject"f> 414 

  

  

  

  

  

    

    

    

  



U.S. Patent Oct. 9, 2012 Sheet 5 Of 7 US 8,286,132 B2 

FIGURE 4 420 

<library> 
<!-- this class represents a table that displays Product objects --> 
<class name="Product(Grid" extends="ObjectGrid"> 

<!-- this widget displays the "name" of the product as a column in the table --> 
<gridText propertyName="name" objectPath="Product"/> 

<!-- this widget displays the “category" of the product --> 
<grid Text propertyName="category" objectPath="Product"/> 

<!-- this widget displays the price of the product. 
The price is stored within the Price object with is a child of the Product object --> 

<grid Price propertyName="price" objectPath="Product/Price"f> 

<!-- this widget display the name of the currency for the price. 
The currency name is stored within the Price object. 
Note that it happens to have the same property name as the Product's name --> 

<grid Text propertyNam="name" objectPath="Product/Price"/> 
~3/class> 

</library> 

  



U.S. Patent Oct. 9, 2012 Sheet 6 of 7 US 8.286,132 B2 

FIGURE 4d 430 

<library> 
<!-- this class represents a table that displays Product objects --> 
<class name="Product(Grid" extends="ObjectGrid"> 

<!-- this widget displays the "name" of the product as a column in the table --> 
<grid Text propertyName="name" objectPath="Product"/> 

<!-- this widget displays the “category" of the product --> - 436 
<grid Text propertyName="category" objectPath="Product"/> 

<!-- this widget displays the price of the product. 
The price is stored within the Price object with is a child of the Product object --> 

<grid Price propertyName="price" objectPath="Product/Price"/> 

<!-- this widget display the name of the currency for the price. 
The currency name is stored within the Price object. 
Note that it happens to have the same property name as the Product's name --> 

<grid Text propertyNam="name" objectPath="Product/Price"/> 
</class> 

<class name="MyGrid" extends="ObjectGrid"> 
<grid Text propertyName="name" objectPath="MyObject"/> 434 

<class> 

  



U.S. Patent Oct. 9, 2012 Sheet 7 Of 7 US 8,286,132 B2 

K ) Processor 300 
504 m 

K ) Main Memory 
506 

( ) Display Interface Display Unit 
508 510 

Secondary Memory 
512 

Communication 
Infrastructure Hard Disk Drive 

502 54 

Removable Removable 
( ) Storage Drive Storage Unit 

516 518 

Interface Removable 
S2O Storage Unit 

522 

Communication f Communication Path 
Interface 526 
524 

FIGURES 

  

  

  

  



US 8,286,132 B2 
1. 

COMPARING AND MERGING STRUCTURED 
DOCUMENTS SYNTACTICALLY AND 

SEMANTICALLY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

The present application is co-pending with the concur 
rently filed application ser. No. 12/238,135, entitled 
FRAMEWORK FOR AUTOMATICALLY MERGING 
CUSTOMIZATIONS TO STRUCTURED CODE THAT 
HAS BEEN REFACTORED. assigned to the assignee of the 
present application, the contents of which are incorporated 
herein by reference in their entirety. 

BACKGROUND 

Exemplary embodiments of the present invention relate to 
structured software documents, and more particularly, to per 
forming three-way merge operations on Such documents. 

Version control refers to the management of different ver 
sions and variants of data files and Software. As Software is 
developed, designed, and deployed, it is extremely common 
for multiple states, or versions, of the same software to be 
deployed in different sites, as well as for the software's devel 
opers to be working simultaneously on updates. Code reuse, 
which refers to the use of existing software to update software 
or implement new software, is based on the idea that a partial 
or complete computer program written at one time can be, 
should be, or is being used in another program written at a 
later time. Programmers have reused sections of code, tem 
plates, functions, and procedures from the earliest days of 
programming to save time and energy by reducing redundant 
development work. The most common type of reuse of is the 
reuse of Software components, but other artifacts produced 
during the Software development process Such as system 
architecture, analysis models, design models, design pat 
terns, database schemas, web services can also be reused. The 
general development practice of using a prior version of an 
extant program as a starting point for the next version is a 
standard form of code reuse. 
A more typical example of code reuse is the topic of end 

user development (EUD), which refers to activities or tech 
niques that allow people who are not professional developers 
to create or modify a software artifact. EUD may be viewed as 
essentially out-sourcing the development effort to the end 
user. A common instance of EUD is programming to extend 
and adapt an existing application package (for example, an 
office suite). Two main reasons why EUD has become popu 
lar are because organizations can use EUD to effectively cut 
the time of completion on a project and because Software 
tools are more powerful and easier to use. A drawback with 
the implementation of EUD, however, is that it can increase 
the complexity of Software maintenance, which generally 
involves the modification of a software product after delivery 
to correct faults, to improve performance or other attributes, 
or to adapt the product to a modified environment. In particu 
lar, where an end-user has made individual customizations to 
programming code, it is difficult for the original developer of 
that code to account for these customizations in considering 
the processes of implementation and product acceptance for 
the maintenance modifications. 

Three-way merging refers to techniques employed for rein 
tegrating changes made in parallel to multiple independently 
modified copies of a base software artifact into a single, 
unified copy of the Software artifact containing the changes. 
As an integral part of performing a three-way merge, the edits 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
made between a base document of the software artifact and 
modified versions of the document are first detected so that 
the modifications made can be merged into the unified ver 
Sion. The existing Solutions and tools for performing a three 
way merge such as, for example, diff, patch, and Eclipse 
Compare, consider the structure of its input documents (that 
is, the base document and the modified documents) to be an 
ordered list of text lines. When used with structured docu 
ments, however, these existing merge solutions are difficult to 
use and not useful for preventing inconsistencies when per 
forming the merge without requiring a user to read the content 
of the documents to determine the differences. The existing 
Solutions, for example, are not able to address situations 
where order is important for some elements in a document but 
not important for other elements in the document, situations 
where elements are moved within a document or to another 
document within the software artifact, or situations where a 
complex semantic structure of the Software code must be 
taken into consideration to perform a Successful merge. 

SUMMARY 

An exemplary embodiment of a method of performing a 
Syntactic and semantic three-way merge of structured soft 
ware documents includes receiving a first version of a docu 
ment coded in a structured programming language containing 
a first plurality of elements, a second version of the document 
containing a second plurality of elements, and a third version 
of the document containing a third plurality of elements; 
deserializing the first, second, and third versions of the docu 
ment to generate a first data model, a second data model, and 
a third data model respectively representing the first, second, 
and third versions in a first data store, each data model com 
prising a tree data structure that includes a corresponding 
node for each element of the plurality of elements contained 
within the version of the document represented by the data 
model, each node of each data model containing a context 
describing the element corresponding to the node; generating 
an identifier for each node of each data model in the first data 
store that is unique to the node within the data model by 
applying a set of identifier determination rules to the context 
describing the element corresponding to the node; comparing 
the identifier for each node in the first data model with the 
identifier for each node in the second data model to identify 
each node in the first data model not having matching iden 
tifiers with any node in the second data model in the first data 
store and to link each pair of nodes in the first and second data 
models that have matching identifiers; and applying a set of 
comparison rules to the contexts of each linked pair of nodes 
in the first and second data models to identify differences 
between each linked pair of nodes in the first and second data 
models in the first data store. 
Exemplary embodiments of the present invention that are 

related to computer program products and data processing 
systems corresponding to the above-Summarized method are 
also described and claimed herein. 

Additional features and advantages are realized through 
the techniques of the present invention. Other embodiments 
and aspects of the invention are described in detail herein and 
are considered a part of the claimed invention. For a better 
understanding of the invention with advantages and features, 
refer to the description and to the drawings. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

The Subject matter that is regarded as the invention is 
particularly pointed out and distinctly claimed in the claims at 



US 8,286,132 B2 
3 

the conclusion of the specification. The foregoing and other 
objects, features, and advantages of the invention are apparent 
from the following detailed description of exemplary 
embodiments of the present invention taken in conjunction 
with the accompanying drawings in which: 

FIG. 1 is a block diagram illustrating an exemplary 
embodiment of a comparison and merging system in accor 
dance with the present invention. 

FIG. 2 is a flow chart illustrating an exemplary embodi 
ment of a process of comparing two XML elements in two 
different XML documents to determine their differences. 

FIG. 3 is a flow chart illustrating an exemplary embodi 
ment of a process of performing a three-way merge operation 
on structured documents. 

FIGS. 4a-4d are sample sets of structured code illustrating 
an example merge operated performed by the exemplary 
comparison and merging system illustrated in FIG. 1. 

FIG. 5 is a block diagram illustrating an exemplary com 
puter system that can be used for implementing exemplary 
embodiments of the present invention. 
The detailed description explains exemplary embodiments 

of the present invention, together with advantages and fea 
tures, by way of example with reference to the drawings. The 
flow diagrams depicted herein are just examples. There may 
be many variations to these diagrams or the steps (or opera 
tions) described therein without departing from the spirit of 
the invention. For instance, the steps may be performed in a 
differing order, or steps may be added, deleted, or modified. 
All of these variations are considered a part of the claimed 
invention. 

DETAILED DESCRIPTION 

While the specification concludes with claims defining the 
features of the invention that are regarded as novel, it is 
believed that the invention will be better understood from a 
consideration of the description of exemplary embodiments 
in conjunction with the drawings. It is of course to be under 
stood that the embodiments described herein are merely 
exemplary of the invention, which can be embodied in various 
forms. Therefore, specific structural and functional details 
disclosed in relation to the exemplary embodiments 
described herein are not to be interpreted as limiting, but 
merely as a representative basis for teaching one skilled in the 
art to variously employ the present invention in virtually any 
appropriate form. Further, the terms and phrases used herein 
are not intended to be limiting but rather to provide an under 
standable description of the invention. As used herein, the 
singular forms “a”, “an', and “the are intended to include the 
plural forms as well, unless the content clearly indicates 
otherwise. It will be further understood that the terms “com 
prises”, “includes, and “comprising”, when used in this 
specification, specify the presence of stated features, integers, 
steps, operations, elements, components, and/or groups 
thereof. 

Exemplary embodiments of the present invention can be 
implemented to provide a mechanism for performing a three 
way comparison and merge of versions of a Software artifact 
that includes a set of structured documents, such as docu 
ments formatted in accordance with the eXtensible Markup 
Language (XML), both syntactically and semantically. In 
particular, exemplary embodiments can provide a generic and 
complete solution for comparing and merging of versions of 
structured documents that are not defined by a schema and are 
formatted according to semantic constraints to include a num 
ber of elements that may be ordered or unordered. As used 
herein, the term “data element” refers to anatomic unit of data 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
that includes an identification Such as a data element name, a 
data element definition, and one or more representation 
terms. By considering the semantics of the documents and not 
requiring a schema to be defined for the documents, exem 
plary embodiments can therefore be applied to any type of 
structured documents. Furthermore, exemplary embodi 
ments can be implemented to provide a pluggable framework 
that allows users to easily customize the comparison and 
merge logic according to specific requirements. 

In general, exemplary embodiments of the present inven 
tion can be implemented to accept three structured documents 
as input and process these input documents to generate a 
fourth structured document as output. The first input docu 
ment is a common ancestor of the second and third input 
documents, and is referred to herein as the base document. 
The second input document is a version of the base document 
that includes customized modifications to the elements of the 
base document, and is referred to herein as the customized 
base document. The third input document is an updated ver 
sion of the base document that contains updates to the ele 
ments of the base document, and is referred to herein as the 
updated document. For purposes of describing exemplary 
embodiments, it is assumed that the modifications made to the 
base document to produce the customized base document and 
the updates made to the base document to produce the 
updated document were made independently and in parallel. 
The fourth document includes all the modifications made to 
the base document to produce the customized base document 
and all the updates made to the base document to produce the 
updated document, and is referred to hereinas the customized 
updated document. 

In general, exemplary embodiments can be implemented to 
generate the customized updated document for output by 
deserializing each of the three input documents according to 
a generic memory model to generate a hierarchical, tree 
structured representation of each input document, comparing 
the tree-structured representations of the base document and 
the customized base document to identify the modifications 
made to the base document in the customized base document, 
comparing the tree-structured representations of the base 
document and the updated document to identify the updates 
made to the base document in the updated document, com 
paring the tree-structured representations of the customized 
base document and the updated document to identify the 
differences therebetween, generating a tree-structured repre 
sentation of the updated document that includes the identified 
modifications made to the base document in the customized 
base document by referencing the identified updates made to 
the base document in the updated document and the identified 
differences between the customized base document and the 
updated document, and serializing the tree-structured repre 
sentation of the updated document that includes the identified 
modifications made to the base document in the customized 
base document to generate the customized updated docu 
ment. 
The comparison and merge process generally outlined 

above will be described in greater detail herein with reference 
to exemplary embodiments in which the structured docu 
ments are XML documents that are not defined by an XML 
schema and are formatted according to semantic constraints 
to include a number of elements that may be ordered or 
unordered. It should, of course, be understood that this sce 
nario is exemplary only, and that alternative exemplary 
embodiments of the present invention can be implemented to 
provide a mechanism for merging versions of structured 
documents of any type, not just XML-language documents. 
Exemplary embodiments can be applied to documents coded 



US 8,286,132 B2 
5 

in a wide range of structured languages including, for 
example, HTML, WML, XHTML, DHTML, or other SGML 
derivatives, as well as other structured languages such as user 
interface markup languages (for example, UIML, XAL, 
SVG, XAML, and LZX), the programming languages Pascal 
and C, and languages used to define two- or three-dimen 
sional layouts, structures, or integrated circuits. Exemplary 
embodiments can also be applied to documents coded in 
structured languages used for storing Scientific information, 
engineering information, business information, games, cryp 
tography, and other areas of information technology. A docu 
ment written in a structured language will generally have a 
hierarchical structure of elements in which the structure is 
generally defined by tags (that is, sequences of characters in 
the document). It should also be noted that exemplary 
embodiments can be implemented to provide a mechanism 
for merging structured documents that comprise any 
aspect(s) of any Suitable type of Software artifact Such as 
Software components, application packages, system architec 
tures, analysis models, design models, design patterns, data 
base schemas, web services, and the like. 

The XML standard is governed by the World Wide Web 
Consortium, and is maintained on the Internet at the web site 
of the World Wide Web Consortium (W3C). XML describes 
a class of data objects called XML documents and partially 
describes the behavior of computer programs which process 
them. An XML document is a structured, self-descriptive 
document having a collection of elements, and that facilitates 
Some form of automatic semantic integration. Thus, as used 
herein, the terms “XML element' or “XML data element 
refers to the code terms contained between a set of brackets as 
defined by the rules of XML. XML is classified as an exten 
sible language because it allows users to define their own 
elements, which contain either parsed or unparsed data. 
Parsed data is made up of characters, some of which form 
character data, and some of which form markup. Each ele 
ment may have a list of associated attributes and elements. An 
element may refer to other elements to cause their inclusion in 
the document. A document begins in a “root’ or document 
element. Markup encodes a description of the documents 
storage layout and logical structure. Logically, the document 
is composed of declarations, elements, comments, character 
references, and processing instructions, all of which are indi 
cated in the document by explicit markup. XML provides a 
mechanism to impose constraints on the storage layout and 
logical structure. By adding these semantic constraints, appli 
cation languages can be implemented in XML. 
The following example scenario involving the merging of 

versions of a software artifact that includes customizable 
XML documents for which no XML schema has been defined 
illustrates some of the issues that may arise during mainte 
nance of the software artifacts for which exemplary embodi 
ments of the present invention can be implemented to address. 
In the example scenario, a software vendor initially produces 
version 1 of the code for an application package that 
includes a set of customizable XML documents. The XML 
documents are provided according to specified semantic con 
straints, but no XML schema is defined for the documents. A 
customer purchases version 1 of the application package and, 
understanding the semantics of the XML documents, custom 
izes the application code by modifying elements of the XML 
documents. The customer may also define new elements for 
use in the customizable documents. The vendor then decides 
to enhance the application package by adding new function 
ality, some of which will be implemented through updates to 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
the customizable XML documents. The vender's code for the 
updated version of the application, version 2, is based on 
version 1. 
The customer then decides to upgrade to version 2 of the 

application. Because the user has customized the XML docu 
ments in version 1, to get the new features of version 2 without 
losing the customizations, the modifications that were made 
by the customer to the XML documents for version 1 will 
need to be merged into the XML documents of version 2. 
Certain elements of the XML documents for version 1 of the 
application package that were modified by the customer, 
however, may not exist or be structured differently in version 
2. Using prior art merging techniques, these customizations 
will need to be integrated manually. Exemplary embodiments 
of the present invention, however, can provide a generic and 
complete merging Solution for generating a customized ver 
sion 2 of the application package that includes all the modi 
fications made by the customer to version 1 and all the 
enhancements added by the vendor in version 2. 

Referring now to FIG. 1, an exemplary embodiment of a 
comparison and merging system 100 in accordance with the 
present invention. As will be described, comparison and 
merging system 100 is implemented to perform a three-way 
comparison and merge of XML documents both syntactically 
and semantically. Comparison and merging system 100 pro 
vides a generic and complete Solution for comparing and 
merging of structured documents that are not defined by a 
schema and are formatted according to semantic constraints 
to include a number of elements that may be ordered or 
unordered. Generally, system 100 includes a comparison 
module 110, a merging module 120, and a generic memory 
model data store 140. As used herein, the terms "module” and 
“program module” both include routines, programs, objects, 
components, data structures, and instructions, or instructions 
sets, and so forth that perform particular tasks or implement 
particular abstract data types. As can be appreciated, the 
modules can be implemented as Software, hardware, firm 
ware and/or other suitable components that provide the 
described functionality, which may be loaded into memory of 
a machine embodying exemplary embodiments of a version 
comparison mechanism in accordance with the present inven 
tion. Aspects of the modules may be written in a variety of 
programming languages, such as C, C++, Java, etc. As used 
herein, the term “data store” refers to any suitable memory 
device that may be used for storing data, including manual 
files, machine-readable files, and databases. A data store may 
be organized in various ways, including as a relational, hier 
archical, or object-oriented data store. The functionality pro 
vided by the modules and data stores described with reference 
to exemplary embodiments herein may be combined and/or 
further partitioned. In exemplary embodiments, comparison 
and merge system 100 may itselfbe a computer-implemented 
system, such as part of a computing device, like a computer, 
which has one or more processors, memory, storage, and/or 
other components as known within the art. 

In the present exemplary embodiment, comparison module 
110 includes a memory model deserializer 112, a unique ID 
validator 114, and a source code comparator 116. Compari 
son module 110 is configured to accept a base XML docu 
ment 130, a customized base XML document 132, and an 
updated XML document 134 as input. Base document 132 is 
a common ancestor of customized base document 132 and 
updated document 134. Customized base document 132 is a 
version of base document 130 that includes customized modi 
fications to the XML elements of the base document. Updated 
document 134 is an updated version of base document 130 
that contains updates to the XML elements of the base docu 



US 8,286,132 B2 
7 

ment. As will be described, comparison module 110 is imple 
mented to generate a memory model representation of each 
input document in generic memory model 140, to compare 
the three memory model representations of the three input 
document to identify the differences therebetween, and to 
update the generic memory model to include information 
regarding the identified differences between the input docu 
ments. The information provided in memory model 140 by 
comparison module 110 can thereby be accessed to enable 
merging module 120 to merge customized base document 
132 and updated document 134 into a unified, customized 
updated document 138 that includes all the modifications 
made to the base document to produce the customized base 
document and all the updates made to the base document to 
produce the updated document. For purposes of the present 
exemplary embodiment, it is assumed that the modifications 
made to the base document to produce the customized base 
document and the updates made to the base document to 
produce the updated document were made independently and 
in parallel. 

In the present exemplary embodiment, deserializer 112 is 
configured to deserialize each of the three input documents to 
generate and store a memory model representation of each 
input document into memory model 140. Each memory 
model representation takes the form of a hierarchical, node 
labeled tree data structure. A tree data structure, which is an 
acyclic and connected graph having a set of linked nodes, is 
commonly used for representing XML documents, which 
utilize a tree-based semantical structure that has exactly one 
root element. Trees may be manipulated in more complex 
ways than ordered lists of text lines. For instance, in the 
present exemplary embodiment, the tree-structured memory 
model representations of the documents can each include a 
number of ordered and/or unordered nodes. Each node in a 
tree has zero or more child nodes, which are below it in the 
tree (by convention, trees grow down, not up as they do in 
nature). A node that has a child is called the child’s parent 
node (or ancestor node, or Superior). The topmost node in a 
tree is called the root node. Being the topmost node, the root 
node will not have parents. As shown in FIG. 1, deserializer 
112 operates to deserialize base document 130, customized 
base document 132, and updated document 134 into base data 
model representation 130a, customized base data model rep 
resentation 132b, and updated data model representation 
134b respectively. 
The memory model representations generated by deserial 

izer 112 operate to automatically create a mapping relation 
ship between the elements of the input XML documents that 
is sufficiently flexible to satisfy the requirements of the syn 
tactical and semantical comparison performed by comparator 
116, as will be described in greater detail below. In the rep 
resentation form maintained in memory model 140, each 
XML element of a represented document corresponds to a 
tree node in the representation. Each Such tree node has a 
context that contains: (a) the attributes of the corresponding 
XML element; (b) all descendent XML elements (and their 
respective attributes) of the corresponding element; and (c) a 
unique identifier for the node. By this definition, it can be seen 
that node contexts are hierarchical. The children of a node are 
the elements contained in the element corresponding to the 
node. 

To account for the fact that some XML documents can be 
provided with a semantic for which order is not important for 
Some or all of the elements, the memory model representa 
tions employ the concept of the unique identifier to identify 
counterpart elements across documents. Unique identifiers 
provide a reliable marker for comparator 116 to access when 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
identifying differences between documents that ensures that 
element contents are compared under the correct correspond 
ing parent element. A unique identifier for a node includes the 
name of the corresponding element and Zero or more attribute 
values of the corresponding element. To generate the unique 
identifier of each node context, deserializer 112 employs a 
repository of identifier determination rules that are applied to 
each of the XML elements according to the values of one or 
more attributes of the element. In exemplary embodiments, 
deserializer 112 can be implemented to provide a pluggable 
framework for the repository of identifier determination rules 
for generating the unique identifiers that Supports easy addi 
tion and modification of identifier determination rules. For 
example, the unique identifiers for each node can be gener 
ated according to any Suitable implementation of alternative 
identifier determination rules that allow for each node to be 
distinctly identified without relying on the name and/or 
attributes of the corresponding element. The generation of 
unique identifiers performed by deserializer 112 is dependent 
upon the identifier determination rules in the pluggable 
repository. Thus, deserializer 112 is flexible in that a user can 
control the details of identifier determination and thereby 
tailor the unique identifiers to meet the requirements of spe 
cific applications. 
Under the memory model of the present exemplary 

embodiment, sibling nodes cannot have the same unique 
identifier. To satisfy this requirement, deserializer 112 can be 
configured to generate unique identifiers that have different 
composite sets of attribute values for different corresponding 
element types. Thus, the memory model representations, 
there can be two different forms of unique identifiers. In the 
first type, the name of the XML element represented by the 
node is used without any attribute values to form the unique 
identifier. In Such a case, it is expected that only one node 
context of this type occurs within a memory model represen 
tation of a document. In the second type of unique identifier, 
the name of the XML element represented by the node and 
each value of one or more attributes of the element are used to 
form the unique identifier. In Such a case, there may be more 
than one node with this element name contained within a 
memory model representation of a document, and the values 
of the one or more selected attributes in the unique identifiers 
are used to distinguish each node. 

It is not required that the values of all the attributes for an 
XML element be included in the unique identifier for the node 
corresponding to the element as long as the values or the 
combinations of values are unique to a parent node and each 
descendent node under the parent separately. To this end, 
validator 114, in addition to otherwise ensuring that each 
memory model representation is well formed, is configured to 
validate that each unique identifier in the memory model 
representation of each document is unique within the gener 
ated representation. 

In the present exemplary embodiment, comparator 116 is 
configured to perform a comparison between base represen 
tation 130a and customized base representation 132b to iden 
tify the modifications made to base document 130 in custom 
ized base document 132, between base representation 130a 
and updated representation 134b to identify the updates made 
to base document 130 in updated document 134, and between 
customized base representation 132b and updated represen 
tation 134b to identify the differences between customized 
base document 132 and updated document 134. Comparator 
is further configured to generate and update a set of compari 
son result information 136 maintained in memory model 140 
to include correspondence information regarding the identi 
fied differences between the three input documents. 



US 8,286,132 B2 

The unique identifiers having composite sets of attribute 
values provide for a flexible, reliable, and transparent mecha 
nism for use by comparator 116 in performing the compari 
sons to accurately determine the differences between two 
documents by taking into consideration the semantics of the 
document. Under the memory model, an element in one XML 
document is considered a counterpart of another element in a 
different XML document if the corresponding nodes for both 
elements have the same unique identifiers in the memory 
model representations of the documents. Counterpart ele 
ments are identical if their corresponding nodes have the 
same unique identifier and equivalent values for each of the 
corresponding attributes in the composite attribute set. 

In exemplary embodiments in which the documents being 
merged are customizable parts of versions of a software arti 
fact initially implemented by an application vendor, the 
unique identifiers must remain consistent between the ver 
sions provided by the vendor. Customers that make modifi 
cations to a version of the software artifact, however, are not 
required to have unique identifiers defined for elements they 
add or customize. When a customer changes any part of an 
element used to generate a unique identifier for the node 
corresponding to the changed element, this will have the same 
effect in comparison and merging system 100 as if that ele 
ment were deleted in the new version and then added as new 
element to the new version. This can be used as a way for the 
customer to provide an indication within a memory model 
node corresponding to an element of a represented document 
that they do not desire to have any updates that the vendor 
provides for that element merged. 

Comparator 116 employs a pluggable repository of com 
parison rules for performing the comparison between the 
memory model representations of the documents to deter 
mine the differences therebetween. To identify the “same' 
node in two different memory model representations, the 
comparison rules are configured to be applied to link coun 
terpart nodes (that is, nodes having the same unique identifier 
in the two representations being compared) in the two repre 
sentations of the documents being compared and to generate 
information about the differences between the elements cor 
responding to the counterpart nodes in the two documents 
during the comparison. In exemplary embodiments, com 
parator 116 can be implemented to provide a mechanism 
through which additional rules can be added to the pluggable 
repository of comparison rules so that more information 
about the differences between the elements of the two docu 
ments being compared can be determined. The comparison 
performed by comparator 116 is dependent upon the com 
parison rules in the pluggable repository. Thus, comparator 
116 is flexible in that a user can control the details of the 
comparison and thereby tailor the information generated in 
particular comparisons to meet the requirements of specific 
applications. 

In exemplary embodiments, to compare two documents 
and identify information regarding the differences therebe 
tween, comparator 116 can be implemented to compare each 
element in one document being compared with each element 
in the other document being compared. Comparator 116 can 
perform these comparisons to update memory model 140 to 
include information regarding the following differences iden 
tified by comparing each pair of the three input documents: 
(1) elements that exist in one document but not the other (that 
is, elements that have been deleted or added); (2) counterpart 
elements having children elements that are in differing orders 
in the two documents (when the semantic constraints for the 
documents specify that order matters for these elements); (3) 
counterpart elements having attributes that have the same 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
values in the two documents; (4) counterpart elements having 
different values for attributes that are not part of the unique 
identifiers for the nodes corresponding to the elements; and 
(5) counterpart elements having different numbers of 
attributes that are not part of the unique identifiers for the 
nodes corresponding to the elements (that is, attributes that 
have been added or deleted). Because additional rules can be 
added to the pluggable repository of comparison rules, a user 
can easily specify that more information should be included 
in memory model 140 regarding the differences between each 
pair of the three input documents. Furthermore, a user can 
specify different comparison rules to determine differences 
for each element in each document (for example, specifying 
whether order is important or whether whitespace should be 
considered). 

Referring now to FIG. 2, a flow chart illustrating an exem 
plary embodiment of a process 200 that may be performed by 
comparator 116 for comparing two XML elements in two 
different XML documents to determine their differences by 
accessing the contexts of nodes corresponding to those ele 
ments in the memory model representations of the documents 
being compared is provided. To compare two documents and 
identify information regarding the differences therebetween, 
comparator 116 can be implemented to access memory model 
140 and repeatedly perform exemplary process 200 to com 
pare each element in one document being compared with 
each element in the other document being compared. Com 
parator 116 can be configured to perform a comparison in this 
manner between base representation 130a and customized 
base representation 132b to identify the modifications made 
to base document 130 in customized base document 132, 
between base representation 130a and updated representation 
134b to identify the updates made to base document 130 in 
updated document 134, and between customized base repre 
sentation 132b and updated representation 134b to identify 
the differences between customized base document 132 and 
updated document 134. 

Exemplary process 200 begins at decision block 210 by 
determining if the XML documents containing the element 
being compared are provided with a semantic specifying that 
order is not important for the element. If the XML documents 
are provided with a semantic specifying that order is impor 
tant, process 200 proceeds to decision block 220 and deter 
mines if the respective unique identifiers for the nodes corre 
sponding to the elements in the memory model 
representations for the documents being compared are the 
same. If it is determined at decision block 220 that the respec 
tive unique identifiers are not the same, process 200 proceeds 
to block 280 and records that the first element being compared 
does not exist in the document containing the second element 
being compared. Process 200 then terminates. If it is deter 
mined at decision block 210 that the XML documents of the 
application package are provided with a semantic specifying 
that order is not important for the element, process 200 pro 
ceeds to decision block 230 and determines if the respective 
unique identifiers for the nodes corresponding to the elements 
in the memory model representations for the documents 
being compared are the same. 

If it is determined either at decision block 220 or at decision 
block 230 that the respective unique identifiers for the nodes 
corresponding to the two elements being compared are the 
same, the two elements being compared are counterpart ele 
ments, and process 200 proceeds to block 240. At block 240, 
the attributes of the two counterpart elements, as provided in 
the memory model representation contexts of the nodes cor 
responding to the elements, are compared to identify any 
added attributes, identify any deleted attributes, and identify 



US 8,286,132 B2 
11 

any attributes with changed values. Then, at block 250, the 
sequences of the child elements of the two counterpart ele 
ments, as provided in the memory model representation con 
texts of the nodes corresponding to the elements, are com 
pared based on the unique identifiers for the child elements to 
identify any differences in the child element sequences of the 
two counterpart elements. Process 200 then proceeds to block 
260, at which each child element of one of the elements being 
compared is compared with each child element of the other 
element being compared. To perform each of these child 
element comparisons at block 260, a new instance of exem 
plary process 200 is called recursively. The information 
regarding the differences between the elements identified 
during the comparisons made at blocks 240-260 is recorded 
in the generic memory model. When each recursive call made 
to process 200 at block 260 has returned, process 200 termi 
nates. 

If it is determined at decision block 230 that the respective 
unique identifiers for the nodes corresponding to the two 
elements being compared are not the same, process 200 pro 
ceeds to decision block 270, at which it is determined whether 
the unique identifier for the node corresponding to the first 
element being compared is the same as any of the unique 
identifiers for the nodes corresponding to the sibling elements 
of the second element being compared. If it is determined that 
the unique identifier for the node corresponding to the first 
element is the not same as any of the unique identifiers for the 
nodes corresponding to the sibling elements of the second 
element, process 200 proceeds to block 280 and records that 
the first element being compared does not exist in the docu 
ment containing the second element being compared. If it is 
determined at block 230that the unique identifier for the node 
corresponding to the first element is the same as the unique 
identifiers for a nodes corresponding to a sibling element of 
the second element, process 200 proceeds to block 240 and 
performs the comparisons described above at blocks 240-260 
between the first element and the matching sibling element of 
the second element. When each recursive call made to process 
200 at block 260 has returned, after information regarding the 
differences between the elements identified during the com 
parisons made at blocks 240-260 is recorded in the generic 
memory model, process 200 terminates. 

Referring again to the exemplary embodiment described 
with reference to FIG. 1, after comparator 116 performs the 
comparison between each pair of the three input documents, 
merging module 120 is implemented to access and process 
the information maintained in memory model 140 to generate 
customized updated document 138. Merging module 120 
includes a three-way source code merger 122 and a memory 
model serializer 124. Merger 122 is configured to access 
memory model 140 and a merging operation on the informa 
tion maintained for updated representation 134a and com 
parison result information 136 to generate a customized 
updated representation 138a of customized updated docu 
ment 138. Customized updated representation 138a, which is 
stored and maintained in memory model 140 by merger 122, 
is a tree-structured memory model representation of the 
updated document that includes all the modifications made to 
base document 130 to produce customized base document 
132 and all the updates made to base document 130 to pro 
duce updated document 134. Memory model serializer 124 is 
configured to serialize customized updated representation 
138a to generate customized updated document 138, which is 
an XML document that accords with the semantic constraints 
specified for the input documents. 

Merger 122 is configured to perform a three-way merge on 
a copy of updated representation 138a based upon the corre 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
spondence information regarding the identified differences 
between the three input documents provided by comparison 
result information 136. In many cases, the correct output of 
the merge operation will depend on the semantic constraints 
of the data (for example, whether elements are specified as 
ordered or unordered). These semantic constraints should be 
considered during the merge operation where, for example, 
sibling or parent elements have been deleted or moved. To 
account for these semantic constraints, the unique identifiers 
for the nodes corresponding to the elements of the documents 
provide a flexible, reliable, and transparent mechanism for 
merger 124 to access when merging the correspondence 
information regarding the identified differences between the 
three input documents that ensures that element contents are 
merged under the correct corresponding parent element. 
Thus, the memory model representations generated by dese 
rializer 112 operate to automatically create a mapping rela 
tionship between the elements of the input XML documents 
that is able to satisfy the requirements of the syntactical and 
semantical merge operation performed by merger 122. 
Merger 122 performs the merge operation in accordance 

with a repository of merge rules specified for the elements. In 
exemplary embodiments, merger 122 can be implemented to 
provide a pluggable framework for the repository of merge 
rules for performing the merge that Supports easy addition 
and modification of merge rules. For example, a user can 
specify whether order should be maintained, whether format 
ting be maintained, whether comments should be preserved, 
where a new element should inserted, instructions on how to 
handle situations where sibling elements have been reor 
dered, etc. The merge operation performed by merger 122 is 
dependent upon the merge rules in the pluggable repository. 
Thus, merger 122 is flexible in that a user can control the 
details of the merge rules and thereby tailor the merge opera 
tion to meet the requirements of specific applications. 

Referring now to FIG.3, a flow chart illustrating an exem 
plary embodiment of a process 300 that may be performed by 
merger 122 for performing a three-way merge of base repre 
sentation 130a, customized base representation 132a, and 
updated representation 134a to generate customized updated 
representation 138a is illustrated. Exemplary process 300 
begins at block 310, at which a copy of updated representation 
134a is stored in memory model 140 to provide a working 
memory model representation used for generating custom 
ized updated representation 138a. Customized updated rep 
resentation 138a will be the result of all changes being will be 
merged into this working representation. The operations per 
formed by the remaining blocks of process 300 are repeated 
sequentially for each node in the working representation. A 
single iteration of these operations will now be described with 
reference to a target node of the working representation. 
At block 320 of exemplary process 300, merger 122 

accesses comparison result information 136 to identify each 
modification made in customized base document 132 to the 
counterpart element in base document 130 to the element 
corresponding to the target node. As described above, under 
the memory model, an element in one XML document is 
considered a counterpart of another element in a different 
XML document if the corresponding nodes for both elements 
have the same unique identifiers in the memory model repre 
sentations of the documents. At block 330, if the modifica 
tions identified at block 320 indicate that the counterpart 
element in base document 130 to the element corresponding 
to the target node has been deleted in customized base docu 
ment 132, the target node is deleted from the working repre 
sentation. At block 340, if the modifications identified at 
block 320 indicate that any new child elements have been 



US 8,286,132 B2 
13 

added to the counterpart element in customized base docu 
ment 132 to the element corresponding to the target node, 
these child elements are added to the target node in the work 
ing representation. At block 350, if the modifications identi 
fied at block 320 indicate that any changes have been made to 
the attributes of the counterpart element in customized base 
document 132 to the element corresponding to the target 
node, these attributes are changed accordingly in the target 
node in the working representation. 

Exemplary process then proceeds to block 360, at which, if 
it determined whether the XML documents containing the 
element corresponding to the target node are provided with a 
semantic specifying that order is important for the element, 
the child elements are reordered accordingly in the target 
node in the working representation. Finally, at block 370, the 
merge operations performed at blocks 320-370 are repeated 
recursively for each child element of the target node. 
As mentioned above, the operations performed in blocks 

320-370 are repeated sequentially in exemplary of process 
300 for each node in the working representation. The result of 
the merge operation performed by merging module 122 is 
customized updated representation 138a in memory model 
140. Different types of conflicts can arise during performance 
of the merge operation where certain situations are present 
Such as, for example, sequencing conflicts, move conflicts, or 
conflicts that occur where a value for an attribute of an ele 
ment in base document 130 is changed in the counterpart 
element of both customized base document 132 and updated 
document 134. In exemplary embodiments, merging module 
122 can be configured to utilize the correspondence informa 
tion maintained in comparison result information 136 in 
memory model 140 for the modifications made to the base 
document to produce the customized base document and the 
updates made to the base document to produce the updated 
document to resolve these conflicts. 
Once the merge operation has been performed by merging 

module 122 to generate customized updated representation 
138a in memory model 140, memory model serializer 124 is 
configured to access the memory model and serialize the 
customized updated representation to generate customized 
updated document 138, which is an XML document that 
corresponds to a merged version of customized base docu 
ment 132 and updated document 134, includes all the modi 
fications made to base document 130 to produce the custom 
ized base document, includes all the updates made to the base 
document to produce the updated document, and, further 
more, accords with the semantic constraints specified for the 
input documents. Once generated by serializer 124, custom 
ized updated document 138 can be provided as output by 
comparison and merge system 100. 

To illustrate the use of comparison and merge system 100 
described with reference to the exemplary embodiment illus 
trated in FIG. 1, the merging example shown in FIGS. 4a-4d 
is considered. Particularly, in the present example, FIG. 4a 
provides a base XML document 400, FIG. 4b provides a 
customized version 410 of the base XML document, and FIG. 
4c provides an updated version 420 of the base XML docu 
ment. The unique identifiers generated by system 100 for the 
elements of the documents in this example are: (1) the ele 
ment name for the element library (as the semantics for the 
document specify that only one Such element is allowed in a 
document); (2) the value of the name attribute for the ele 
ment class; (3) the values of the propertyName and 
objectPath attributes for the element gridText; and (4) the 
values of the propertyName and objectPath attributes for 
the element gridPrice. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
In the illustrated example of FIGS. 4a-4d, customized ver 

sion 410 is a modified version of base document 400 that 
includes an inserted warranty term element 412 and an 
inserted display class definition element 414, and updated 
version 420 is a version of base document 400 that has been 
updated to include an inserted new feature element 426 that 
provides the ability to categorize products. Exemplary com 
parison and merge system 100 is configured to process the 
three documents depicted in FIGS. 4a-4c to generate a 
merged version 430 that includes the modifications made to 
base document 400 in customized version 410 (as indicated 
by reference numbers 432 and 434) and the updates made to 
base document 400 updated version 420, as shown in FIG. 4d 
(as indicated by reference number 436). 
As discussed above, exemplary embodiments of the 

present invention can be implemented to perform a three-way 
merge of documents comprising code in structured docu 
ments of any type, not just XML-language documents. In the 
exemplary embodiment described with to comparison and 
merge system 100 illustrated in FIG. 1, only memory model 
deserializer 112 and memory model serializer 124 are imple 
mented under the assumption that it is working with docu 
ments having an XML-language construct, while each of the 
other actor and handler modules described are working with 
memory model representations of the documents as provided 
according to the generic, hierarchical, tree-structured 
memory model. Thus, in alternative exemplary embodiments, 
merge solution tool framework 100 can be extended to handle 
non-XML languages, for example, in either of the following 
two ways: (1) replacing deserializer 112 and serializer 124 
with corresponding handlers that understands non-XML lan 
guages; or (2) implementing a preprocessor to convert a non 
XML language document to an XML format. Furthermore, in 
exemplary embodiments, the input and output documents and 
the memory model representations of the documents may 
each observe different syntax rules, and the nodes of the 
memory model representations can be generated utilizing a 
mechanism that is appropriate to the particular type of docu 
ments and elements being merged. For example, the input and 
output documents may have an HTML-language construct, 
while the memory model representations may have an XML 
language construct. In exemplary embodiments, comparison 
and merge system 100 can be implemented to perform a 
merge for documents of any structured language and to fur 
ther translate the output merged document into another lan 
guage. Thus, exemplary embodiments can be provided with 
Substantial versatility concerning document types. 

In the preceding description, for purposes of explanation, 
numerous specific details are set forth in order to provide a 
thorough understanding of the described exemplary embodi 
ments. Nevertheless, one skilled in the art will appreciate that 
many other embodiments may be practiced without these 
specific details and structural, logical, and electrical changes 
may be made. 
Some portions of the exemplary embodiments described 

above are presented in terms of algorithms and symbolic 
representations of operations on data bits within a processor 
based system. The operations are those requiring physical 
manipulations of physical quantities. These quantities may 
take the form of electrical, magnetic, optical, or other physi 
cal signals capable of being stored, transferred, combined, 
compared, and otherwise manipulated, and are referred to, 
principally for reasons of common usage, as bits, values, 
elements, symbols, characters, terms, numbers, or the like. 
Nevertheless, it should be noted that all of these and similar 
terms are to be associated with the appropriate physical quan 
tities and are merely convenient labels applied to these quan 



US 8,286,132 B2 
15 

tities. Unless specifically stated otherwise as apparent from 
the description, terms such as “executing or “processing” or 
“computing or “calculating or “determining” or the like, 
may refer to the action and processes of a processor-based 
system, or similar electronic computing device, that manipu 
lates and transforms data represented as physical quantities 
within the processor-based system's storage into other data 
similarly represented or other such information storage, 
transmission or display devices. 

Exemplary embodiments of the present invention can be 
realized in hardware, software, or a combination of hardware 
and Software. Exemplary embodiments can be implemented 
using one or more program modules and data storage units. 
Exemplary embodiments can be realized in a centralized 
fashion in one computer system or in a distributed fashion 
where different elements are spread across several intercon 
nected computer systems. Any kind of computer system—or 
other apparatus adapted for carrying out the methods 
described herein is suited. A typical combination of hard 
ware and Software could be a general-purpose computer sys 
tem with a computer program that, when being loaded and 
executed, controls the computer system such that it carries out 
the methods described herein. 

Exemplary embodiments of the present invention can also 
be embedded in a computer program product, which com 
prises all the features enabling the implementation of the 
methods described herein, and which when loaded in a 
computer system is able to carry out these methods. Com 
puter program means or computer program as used in the 
present invention indicates any expression, in any language, 
code or notation, of a set of instructions intended to cause a 
system having an information processing capability to per 
form aparticular function either directly or after either or both 
of the following: (a) conversion to another language, code or, 
notation; and (b) reproduction in a different material form. 
A computer system in which exemplary embodiments can 

be implemented may include, interalia, one or more comput 
ers and at least a computer program product on a computer 
readable medium, allowing a computer system, to read data, 
instructions, messages or message packets, and other com 
puter readable information from the computer readable 
medium. The computer readable medium may include non 
volatile memory, such as ROM, Flash memory, Disk drive 
memory, CD-ROM, and other permanent storage. Addition 
ally, a computer readable medium may include, for example, 
Volatile storage Such as RAM, buffers, cache memory, and 
network circuits. Furthermore, the computer readable 
medium may comprise computer readable information in a 
transitory state medium Such as a network link and/or a net 
work interface including a wired network or a wireless net 
work that allow a computer system to read such computer 
readable information. 

FIG.5 is a block diagram of an exemplary computer system 
500 that can be used for implementing exemplary embodi 
ments of the present invention. Computer system 500 
includes one or more processors, such as processor 504. Pro 
cessor 504 is connected to a communication infrastructure 
502 (for example, a communications bus, cross-over bar, or 
network). Various software embodiments are described in 
terms of this exemplary computer system. After reading this 
description, it will become apparent to a person of ordinary 
skill in the relevant art(s) how to implement the invention 
using other computer systems and/or computer architectures. 

Exemplary computer system 500 can include a display 
interface 508 that forwards graphics, text, and other data from 
the communication infrastructure 502 (or from a frame buffer 
not shown) for display on a display unit 510. Computer sys 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
tem 500 also includes a main memory 506, which can be 
random access memory (RAM), and may also include a sec 
ondary memory 512. Secondary memory 512 may include, 
for example, a hard disk drive 514 and/or a removable storage 
drive 516, representing a floppy disk drive, a magnetic tape 
drive, an optical disk drive, etc. Removable storage drive 516 
reads from and/or writes to a removable storage unit 518 in a 
manner well known to those having ordinary skill in the art. 
Removable storage unit 518, represents, for example, a floppy 
disk, magnetic tape, optical disk, etc. which is read by and 
written to by removable storage drive 516. As will be appre 
ciated, removable storage unit 518 includes a computer 
usable storage medium having Stored therein computer soft 
ware and/or data. 

In exemplary embodiments, secondary memory 512 may 
include other similar means for allowing computer programs 
or other instructions to be loaded into the computer system. 
Such means may include, for example, a removable storage 
unit 522 and an interface 520. Examples of such may include 
a program cartridge and cartridge interface (such as that 
found in video game devices), a removable memory chip 
(such as an EPROM, or PROM) and associated socket, and 
other removable storage units 522 and interfaces 520 which 
allow software and data to be transferred from the removable 
storage unit 522 to computer system 500. 
Computer system 500 may also include a communications 

interface524. Communications interface524 allows software 
and data to be transferred between the computer system and 
external devices. Examples of communications interface 524 
may include a modem, a network interface (such as an Eth 
ernet card), a communications port, a PCMCIA slot and card, 
etc. Software and data transferred via communications inter 
face 524 are in the form of signals which may be, for example, 
electronic, electromagnetic, optical, or other signals capable 
of being received by communications interface 524. These 
signals are provided to communications interface 524 via a 
communications path (that is, channel) 526. Channel 526 
carries signals and may be implemented using wire or cable, 
fiber optics, a phone line, a cellular phone link, an RF link, 
and/or other communications channels. 

In this document, the terms "computer program medium.” 
“computer usable medium, and “computer readable 
medium' are used to generally refer to media Such as main 
memory 506 and secondary memory 512, removable storage 
drive 516, a hard disk installed in hard disk drive 514, and 
signals. These computer program products are means for 
providing Software to the computer system. The computer 
readable medium allows the computer system to read data, 
instructions, messages or message packets, and other com 
puter readable information from the computer readable 
medium. The computer readable medium, for example, may 
include non-volatile memory, such as Floppy, ROM, Flash 
memory, Disk drive memory, CD-ROM, and other permanent 
storage. It can be used, for example, to transport information, 
Such as data and computer instructions, between computer 
systems. Furthermore, the computer readable medium may 
comprise computer readable information in a transitory state 
medium such as a network link and/or a network interface 
including a wired network or a wireless network that allow a 
computer to read Such computer readable information. 
Computer programs (also called computer control logic) 

are stored in main memory 506 and/or secondary memory 
512. Computer programs may also be received via commu 
nications interface 524. Such computer programs, when 
executed, can enable the computer system to perform the 
features of exemplary embodiments of the present invention 
as discussed herein. In particular, the computer programs, 



US 8,286,132 B2 
17 

when executed, enable processor 504 to perform the features 
of computer system 500. Accordingly, Such computer pro 
grams represent controllers of the computer system. 

Although exemplary embodiments of the present invention 
have been described in detail, the present description is not 
intended to be exhaustive or limiting of the invention to the 
described embodiments. It should be understood that various 
changes, Substitutions and alterations could be made thereto 
without departing from Spirit and scope of the inventions as 
defined by the appended claims. Variations described for 
exemplary embodiments of the present invention can be real 
ized in any combination desirable for each particular appli 
cation. Thus particular limitations, and/or embodiment 
enhancements described herein, which may have particular 
advantages to a particular application, need not be used for all 
applications. Also, not all limitations need be implemented in 
methods, systems, and/or apparatuses including one or more 
concepts described with relation to exemplary embodiments 
of the present invention. 
The exemplary embodiments presented herein were cho 

sen and described to best explain the principles of the present 
invention and the practical application, and to enable others of 
ordinary skill in the art to understand the invention. It will be 
understood that those skilled in the art, both now and in the 
future, may make various modifications to the exemplary 
embodiments described herein without departing from the 
spirit and the scope of the present invention as set forth in the 
following claims. These following claims should be con 
Strued to maintain the proper protection for the present inven 
tion. 

The invention claimed is: 
1. A method of performing a syntactic and semantic three 

way merge of structured Software documents, the method 
comprising: 

receiving a first version of a document coded in a structured 
programming language containing a first plurality of 
elements, a second version of the document containing a 
second plurality of elements, and a third version of the 
document containing a third plurality of elements, 
wherein the first version of a document is an original 
version of the document, the second version of the docu 
ment is an end-user modified version of the original 
version and the third version of the documents is a devel 
oper modified version of the original version of the 
document; 

deserializing the first, second, and third versions of the 
document to generate a first data model, a second data 
model, and a third data model respectively representing 
the first, second, and third versions in a first data store, 
each data model comprising a tree data structure that 
includes a corresponding node for each element of the 
plurality of elements contained within the version of the 
document represented by the data model, each node of 
each data model containing a context describing the 
element corresponding to the node, 

generating an identifier for each node of each data model in 
the first data store that is unique to the node within the 
data model by applying a set of identifier determination 
rules to the context describing the element correspond 
ing to the node; 

comparing the identifier for each node in the first data 
model with the identifier for each node in the second data 
model to identify each node in the first data model not 
having matching identifiers with any node in the second 
data model in the first data store and to link each pair of 
nodes in the first and second data models that have 
matching identifiers; 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
applying a set of comparison rules to the contexts of each 

linked pair of nodes in the first and second data models 
to identify differences between each linked pair of nodes 
in the first and second data models in the first data store 

generating a copy of the third data model in the first data 
store, deleting each node in the copy of the third data 
model having matching identifiers with an node in the 
first data model not identified as having matching iden 
tifiers with any node in the second data model, and 
modifying each node in the copy of the third data model 
having matching identifiers with any linked pair of 
nodes in the first and second data models by applying a 
set of merge rules based upon the identified differences 
between the linked pair of nodes; and 

serializing the copy of the third data model to generate a 
fourth version of the document. 

2. The method of claim 1, wherein the context of each node 
of each data model describes each attribute, each descendent 
element, and each attribute of each descendent element of the 
element corresponding to the node within the version of the 
document represented by the data model. 

3. The method of claim 2, wherein the set of comparison 
rules applied to the contexts of each linked pair of nodes in the 
first and second data models includes a first comparison rule 
for identifying each child element of the element correspond 
ing to the linked node in the second data model not having 
matching identifiers with any child element of the element 
corresponding to the linked node in the first data model, and 
wherein the set of merge rules includes a first merge rule for 
inserting a copy of each node corresponding to a child ele 
ment of the element corresponding to the linked node in the 
second data model not having matching identifiers with any 
node corresponding to a child element of the element corre 
sponding to the linked node in the first data model in the copy 
of the third data model. 

4. The method of claim 2, wherein the set of comparison 
rules applied to the contexts of each linked pair of nodes in the 
first and second data models includes a first comparison rule 
for identifying each attribute of the element corresponding to 
the linked node in the second data model that does not have 
matching values with any corresponding attribute of the ele 
ment corresponding to the linked node in the first data model, 
each attribute of the element corresponding to the linked node 
in the first data model that is not included in the element 
corresponding to the linked node in the second data model, 
and each attribute of the element corresponding to the linked 
node in the second data model that is not included in the 
element corresponding to the linked node in the first data 
model. 

5. The method of claim 4, wherein the set of merge rules 
includes a first merge rule for assigning the value of each 
attribute of the element corresponding to the linked node in 
the second data model that does not have matching values 
with any corresponding attribute of the element correspond 
ing to the linked node in the first data model to the corre 
sponding attribute in the context of the node in the copy of the 
third data model having matching identifiers with the linked 
pair of nodes in the first and second data models, a second 
merge rule for deleting each attribute in the context of the 
node in the copy of the third data model having matching 
identifiers with the linked pair of nodes in the first and second 
data models corresponding to any attribute of the element 
corresponding to the linked node in the first data model that is 
not included in the element corresponding to the linked node 
in the second data model, and a third merge rule for inserting 
a copy of each attribute of the element corresponding to the 
linked node in the second data model that is not included in 



US 8,286,132 B2 
19 

the element corresponding to the linked node in the first data 
model in the context of the node in the copy of the third data 
model having matching identifiers with the linked pair of 
nodes in the first and second data models. 

6. The method of claim 3, wherein each version of the 
document is provided according to a respective set of seman 
tic constraints specifying whether each element of the corre 
sponding plurality of elements is ordered or unordered, and 
whereincomparing the identifier for each node in the first data 
model with the identifier for each node in the second data 
model further comprises comparing each node in the first data 
model with the identifier of each sibling node of each node in 
the second data model not having matching identifiers with 
the node in the first data model to identify whether the node in 
the first data model has matching identifiers with any node in 
the second data where the set of semantic constraints for the 
first version of the document specifies that the element cor 
responding to the node in the first data model is unordered. 

7. The method of claim 6, wherein the set of comparison 
rules applied to the contexts of each linked pair of nodes in the 
first and second data models includes a second comparison 
rule for identifying any differences between a child element 
sequence of the element corresponding to the linked node in 
the first data model and a child element sequence of the 
element corresponding to the linked node in the first data 
model, and wherein the set of merge rules includes a second 
merge rule for reordering the nodes corresponding to child 
elements of the element corresponding to each node in the 
copy of the third data model having matching identifiers with 
any linked pair of nodes in the first and second data models 
where the set of semantic constraints for the first version of 
the document specifies that the element corresponding to the 
linked node in the first data model is ordered. 

8. The method of claim 3, wherein the set of comparison 
rules applied to the contexts of each linked pair of nodes in the 
first and second data models includes a second comparison 
rule for comparing the identifier for each node corresponding 
to a child element of the element corresponding to the linked 
node in the first data model with the identifier for each node 
corresponding to a child element of the element correspond 
ing to the linked node in the second data model to identify 
each node corresponding to a child element of the element 
corresponding to the linked node in the first data model not 
having matching identifiers with any node corresponding to a 
child element of the element corresponding to the linked node 
in the second data model in the first data store and to link each 
pair of nodes corresponding to child elements of the elements 
corresponding to the linked nodes in the first and second data 
models that have matching identifiers, and a third comparison 
rule for applying the set of comparison rules to the contexts of 
each linked pair of nodes corresponding to child elements of 
the elements corresponding to the linked nodes. 

9. The method of claim 8, wherein the set of merge rules 
includes a second merge rule for deleting each node corre 
sponding to a child element of the element corresponding to 
each node in the copy of the third data model having matching 
identifiers with any node in the first data model not identified 
as having matching identifiers with any node in the second 
data model, and modifying each node corresponding to a 
child element of the element corresponding to each node in 
the copy of the third data model having matching identifiers 
with any linked pair of nodes in the first and second data 
models by applying the set of merge rules based upon the 
identified differences between the linked pair of nodes. 

10. The method of claim 1, wherein the set of identifier 
determination rules are maintained in a first data repository, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
and wherein the first data repository provides a pluggable 
framework for the set of identifier determination rules. 

11. The method of claim 10, wherein the identifier gener 
ated for each node of each data model includes a name and 
Zero or more attributes values of the element corresponding to 
node, and wherein the Zero or more attribute values included 
in the identifier are sufficient to make the identifier unique to 
the node within the data model. 

12. The method of claim 1, wherein the set of comparison 
rules are maintained in a first data repository, and wherein the 
first data repository provides a pluggable framework for the 
set of comparison rules. 

13. The method of claim 1, wherein the set of merge rules 
are maintained in a first data repository, and wherein the first 
data repository provides a pluggable framework for the set of 
merge rules. 

14. The method of claim 1, wherein the structured pro 
gramming language is selected from SGML, XML, HTML, 
WML, XHTML, DHTML, other SGML derivatives, and user 
interface markup languages. 

15. The method of claim 14, wherein the structured pro 
gramming language is XML. 

16. The method of claim 1, further comprising converting 
a first, second, and third versions of the document from the 
structured programming language to a second structured pro 
gramming language. 

17. The method of claim 1, wherein the fourth version of 
the document is generated in a second structured program 
ming language. 

18. A non-transitory computer-usable medium having 
computer readable instructions stored thereon for execution 
by a processor to perform a method of performing a syntactic 
and semantic three-way merge of structured Software docu 
ments, the method comprising: 

receiving a first version of a document coded in a structured 
programming language containing a first plurality of 
elements, a second version of the document containing a 
second plurality of elements, and a third version of the 
document containing a third plurality of elements, 
wherein the first version of a document is an original 
version of the document, the second version of the docu 
ment is an end-user modified version of the original 
version and the third version of the documents is a devel 
oper modified version of the original version of the 
document; 

deserializing the first, second, and third versions of the 
document to generate a first data model, a second data 
model, and a third data model respectively representing 
the first, second, and third versions in a first data store, 
each data model comprising a tree data structure that 
includes a corresponding node for each element of the 
plurality of elements contained within the version of the 
document represented by the data model, each node of 
each data model containing a context describing the 
element corresponding to the node, 

generating an identifier for each node of each data model in 
the first data store that is unique to the node within the 
data model by applying a set of identifier determination 
rules to the context describing the element correspond 
ing to the node; 

comparing the identifier for each node in the first data 
model with the identifier for each node in the second data 
model to identify each node in the first data model not 
having matching identifiers with any node in the second 
data model in the first data store and to link each pair of 
nodes in the first and second data models that have 
matching identifiers; and 



US 8,286,132 B2 
21 

applying a set of comparison rules to the contexts of each 
linked pair of nodes in the first and second data models 
to identify differences between each linked pair of nodes 
in the first and second data models in the first data store; 

generating a copy of the third data model in the first data 
store, deleting each node in the copy of the third data 
model having matching identifiers with any node in the 
first data model not identified as having matching iden 
tifiers with any node in the second data model, and 
modifying each node in the copy of the third data model 
having matching identifiers with any linked pair of 
nodes in the first and second data models by applying a 
set of merge rules based upon the identified differences 
between the linked pair of nodes; and 

serializing the copy of the third data model to generate a 
fourth version of the document. 

19. A data processing system comprising: 
at least one processor; 
a random access memory for storing data and programs for 

execution by the at least one processor; and 
computer readable instructions stored in the random access 
memory for execution by the at least one processor to 
perform a method of performing a syntactic and seman 
tic three-way merge of structured software documents, 
the method comprising: 

receiving a first version of a document coded in a structured 
programming language containing a first plurality of 
elements, a second version of the document containing a 
second plurality of elements, and a third version of the 
document containing a third plurality of elements, 
wherein the first version of a document is an original 
version of the document, the second version of the docu 
ment is an end-user modified version of the original 
version and the third version of the documents is a devel 
oper modified version of the original version of the 
document; 

deserializing the first, second, and third versions of the 
document to generate a first data model, a second data 

10 

15 

25 

30 

35 

22 
model, and a third data model respectively representing 
the first, second, and third versions in a first data store, 
each data model comprising a tree data structure that 
includes a corresponding node for each element of the 
plurality of elements contained within the version of the 
document represented by the data model, each node of 
each data model containing a context describing the 
element corresponding to the node, 

generating an identifier for each node of each data model in 
the first data store that is unique to the node within the 
data model by applying a set of identifier determination 
rules to the context describing the element correspond 
ing to the node; 

comparing the identifier for each node in the first data 
model with the identifier for each node in the second data 
model to identify each node in the first data model not 
having matching identifiers with any node in the second 
data model in the first data store and to link each pair of 
nodes in the first and second data models that have 
matching identifiers; and 

applying a set of comparison rules to the contexts of each 
linked pair of nodes in the first and second data models 
to identify differences between each linked pair of nodes 
in the first and second data models in the first data store; 

generating a copy of the third data model in the first data 
store, deleting each node in the copy of the third data 
model having matching identifiers with any node in the 
first data model not identified as having matching iden 
tifiers with any node in the second data model, and 
modifying each node in the copy of the third data model 
having matching identifiers with any linked pair of 
nodes in the first and second data models by applying a 
set of merge rules based upon the identified differences 
between the linked pair of nodes; and 

serializing the copy of the third data model to generate a 
fourth version of the document. 


