A 00 N OO O

WO 03/098864 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 November 2003 (27.11.2003)

PCT

(10) International Publication Number

WO 03/098864 Al

(51) International Patent Classification”: HO04L 9/00

(21) International Application Number: PCT/US03/15569

(22) International Filing Date: 15 May 2003 (15.05.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/146,782 15 May 2002 (15.05.2002) US

(71) Applicant: ERUCES, INC. [US/US]; 8835 Monrovia,
Lenexa, KS 66215 (US).

(72) Inventors: VASIC, Ognjen; 13314 West 88th Circle, #J,
Lenexa, KS 66215 (US). ANSARI, Suhail; 8941 Renner
blvd. #1004, Lenexa, KS 66215 (US). GAN, Ping; 2040
Heatherwood Drive #306, Lawrence, KS 66047 (US). HU,
Jinhui; 12824 West 88th Street, #91, Lenexa, KS 66215

74

31

(34

(US). KHULUSI, Bassam; 11324 Woodward, Overland
Park, KS 66210 (US). MADOUKH, Adam; 1036 San Jac-
into Drive, Apt. 826, Irving, TX 75063 (US). TYSHLEK,
Alexander; 8937 Renner Blvd. #808, Lenexa, KS 66219
(Us).

Agent: ELLIOTT, Kyle; Blackwell Sanders Peper Mar-
tin, 2300 Main Street, Suite 1000, Kansas City, MO 64108
(US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: HIDDEN LINK DYNAMIC KEY MANAGER FOR USE IN COMPUTER SYSTEMS

Remote Computer System Repository Server
Repository
Smart Card Remote Core Engine
Key Smart Card | | <
Reader
1632 Exchange Reader Key
Module 1632 DB
1630
" e Repository 1640
ABUT}L?:ﬁS:n Remote Core Key 1622
PP Engine Exchange T
=2 Module ACL
1642 1634 DB
1610 62
AIA
Module
1636

(57) Abstract: A computer system (1600) is
disclosed that contains cryptographic keys and
cryptographic key identifiers (1640). The system
(1600) has a repository cryptographic engine
(1622) that communicates securely with a remote
cryptographic engine (1642), and the repository
cryptographic engine (1622) is associated with
a user data store (1722). The user data store
(1722) includes a hidden link including a session
key identifier encrypted with a protection key.
The hidden link is associated with a remote data
entity. A key data store (1640) associated with the
repository server (1620) includes a session key
encrypted with a session-key-protection key. The
session key is used to encrypt and decrypt the

Remote Computer System

NETWORK
Smart Card R('a(mote 1630
Reader ey
1632 Exchange
Module
1630
Business Remote
Application || core Engine
1612
1642

1600

remote data entity. The system (1600) also includes
a repository key exchange module (1634) operable
to exchange the session key with a remote key
exchange module 1630).

WO 03/098864 A1 |10 AOHRAO 00 OO0 AR

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ance Notes on Codes and Abbreviations" appearing at the begin-
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, ning of each regular issue of the PCT Gazette.

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

[0001]

[0002]

[0003]

WO 03/098864 PCT/US03/15569

Hidden Link Dynamic Key Manager for use in Computer System

Related Applications

This is a continuation-in-part application of U.S. Patent Application No. 09/693,605, filed
October 20, 2000.
Background of Invention

For various reasons, organizations frequently need to exchange confidential information
over a network. Sometimes organizations establish private networks over dedicated leased lines
for this purpose and to avoid use of a public network. A leased line is a dedicated point-to-point
connection over the telephone network that is used for, among other things, routing regular
telephone calls. For example, leased lines are used to provide private network connections
between regional offices and corporate headquarters, carrying only information that is intended
to be sent between the regional office and the headquarters.

A leased line may also be used to connect an organization to an Internet Service Provider
(ISP). The ISP connects its customer to a public network, such as the Internet. With a
connection to a public network, a customer may send and receive messages to any other party
also connected to the public network. This has advantages of convenience and low cost relative
to dedicated, private leased lines, because only a single connection to the ISP must be
maintained. However, a network user has much less control over information sent and received
over a public network than a user has over data sent on a private leased line. Specifically, ina
public network, operators of networking equipment that routes information between an arbitrary
sender and receiver may intercept the information and examine it or even modify it en route.
Further, over a public network, senders and receivers have no conveniént way to police the

behavior of intermediate network providers.

[0004]

[0005]

[0006]

[0007]

[0008]

WO 03/098864 PCT/US03/15569

Accordingly, it is conventional wisdom that dedicated leased lines provide better control
over the privacy and integrity of information, because while it is possible for a provider of
private leased lines to examine or alter information on the private network, users of the private
leased lines know who the provider is and can establish reasonable procedures to audit the
behavior of the provider to ensure a reasonable level of data privacy and integrity. In a public
network like the Internet, it is impracticable to ensure that intermediate network operators will
not examine or alter an arbitrary message placed on the public network.

Therefore, in terms of data privacy and data integrity, private networks on leased lines are
preferable to conventional public network connections. Nevertheless, it is frequently the case
that use of dedicated leased lines for all networking becomes impractical due to the sheer number
of necessary dedicated connections and the substantial expense of leased lines. Accordingly,
other means of establishing data privacy and integrity have been established.

One of these means is the Virtual Private Network (VPN), which uses cryptography to
create a virtual point-to-point connection between nodes, including computers, using a public
network, such as an Internet Protocol (IP) network like the Internet. Similar to a private
network, a VPN involves a point-to-point connection, however, because it uses encrypted
information over a public network to establish the "virtual" connection, a VPN does not require
dedicated leased lines.

Hardware and software are widely available to implement VPN's. However, the
hardware and software and particularly staff to properly operate the VPN's can be quite
expensive.

Because information is encrypted and unencrypted at the network level at both ends of

the point-to-point link, if an attacker is successful in compromising an operating system of an

[0009]

[0010]

[0011]

[0012]

WO 03/098864 PCT/US03/15569

end node or computer, the attacker has complete access to all information exchanged in the VPN.
Accordingly, the key to ensuring safe, uncompromised operation of a VPN is to make sure that
attackers and intruders are not able to compromise or gain unauthorized access to the VPN end
nodes.

To prevent unauthorized access, organizations use firewalls and sound system
administration techniques. Firewalls filter or restrict the types of packets allowed to pass
between external public networks and internal networks. However, firewalls must allow the
exchange of at least some packets to and from a public network in order for the connection to the
public network to be of any value.

Accordingly, as long as some packets are being exchanged with the public network, there
are opportunities for attackers to gain unauthorized access. The next level of defense is to keep
operating system level security layers secure. System level security layers include the pieces of
software that require user names and passwords to allow connections and the like.

A common technique of attackers to gain unauthorized access is to exploit known defects
in operating system security layers. These defects are ordinarily caused by human errors in the
design and implementation of the system software. Accordingly, as fixes for the defects become
available it is imperative to apply the fixes or patches. Monitoring and timely applying fixes and
patches is an important aspect of sound system administration. If patches are not applied,
intruders can easily gain access to end nodes.

In addition to a VPN, which requires configuration between endpoints of a point-to-point
link, other methods exist for establishing an encrypted channel through which to exchange
private information over a public network. These channel protections include protocols like

Secure Sockets Layer (SSL) and Secure Shell (SSH).

[0013]

[0014]

[0015]

WO 03/098864 PCT/US03/15569

Cryptography involves using codes and transformations on messages to render the
messages unintelligible to anyone other than an intended recipient of the message. In the context
of protecting data privacy, the process of rendering a message unintelligible is called encryption,
and the process of unscrambling a message by an intended recipient to render the message
intelligible is called decryption. Frequently, additional information other than the message itself
is used to decrypt an encrypted message. Since encrypting is like locking a message and
decrypting like unlocking it for the intended recipient, the information used for encrypting or
decrypting is frequently called a key.

In addition to protecting the privacy of information, it is useful to ensure the integrity of
information, data integrity meaning that data is authentic and not altered with authorization. One
way to ensure the authenticity of information is to calculate a message digest on the information
and to digitally sign the message digest. A message digest is frequently the output of a one-way
hash function such as MD5 or SHA-1, which irreversibly produce fixed length output digests
from messages of an arbitrary length. Upon receipt, a receiver can re-calculate the message
digest on the received message and verify the signature. By verifying the signature and
comparing the calculated message digest to the signed message digest, the receiver verifies that
he or she has received, unaltered, the same message originally signed by the sender.

Other methods of providing verification of data integrity include Keyed-Hashing for
Message Authentication (HMAC). HMAC is a mechanism that can authenticate both the source
of a message and its integrity. HMAC:s utilize an arbitrary one-way hash function, such as MDS5
or SHA-1 in connection with a shared secret, or keyL to provide a message authentication code.
HMAC:s can also be used in connection with challenge response protocols in which a response is

computed that is a function of the secret key and the challenge message. Authenticity of

[0016]

[0017]

[0018]

WO 03/098864 PCT/US03/15569

information is verified when the receiver performs the HMAC calculation on the received
message and compares it to the message authentication code sent in connection with the
message. The receiver further can verify that the message originated from a source that was in
possession of the secret key. HMAC is further described in RFC 2104.

A key can be a number used in a formula to operate on a message to either encrypt or
decrypt the message. Other types of keys include one time pads, which are lists of keys that are
applied to messages to encrypt and decrypt them, in which each element of the list of keys is
used only once. Of course to keep an encrypted message from being decrypted by someone
other than the intended recipient of the message, it is crucial to keep keys out of the hands of
non-intended recipients. Therefore keys must be exchanged between parties to encrypted
communication in a secure manner. One inconvenient way to do this is by way of a trusted
courier that physically delivers keys to parties in a locked briefcase thereby ensuring actual
security by way of verifiable physical security. However, physical courier methods of key
exchange are generally too cumbersome, slow, and expensive.

Accordingly, one of the major challenges in cryptography is the process of key exchange.
A popular method for exchanging keys is to use public key cryptography to exchange a
symmetric key. Public key cryptography uses two kinds of keys to encrypt and decrypt
information, namely public keys, which are intended to be widely distributed and associated with
particular entities, and private keys, which are intended to be kept in a highly confidential and
secure manner. Conversely, symmetric cryptography uses the same key to encrypt and to
decrypt information.

Public key cryptography works by encrypting a message in a public key. Once encrypted

in a public key, a message can only be decrypted using the corresponding private key. Similarly,

[0019]

[0020]

WO 03/098864 PCT/US03/15569

a signer may create a digital signature by applying his or her private key to a message or
typically to a digest of a message, which is a fixed-length piece of information that uniquely
identifies the message. A digital signature is verified by applying the purported signer's public
key to the signature to determine whether the signature is valid.

A simplified use of public key cryptography to exchange a symmetric key is
accomplished in the following way. One party generates a new symmetric key, for example
using a random number generator. Next, the party encrypts the symmetric key using the public
key of the intended recipient and sends the encrypted message to the intended recipient. The
recipient uses his or her private key to decrypt the message, thereby securely receiving the
symmetric key which can be used to secure a channel for further communication.

An important concern in any application of public key cryptography is that a user of a
public key cryptosystem (e.g. a sender of an encrypted message) uses authentic public keys of
other parties. If a sender mistakenly uses the public key of an attacker, the attacker will be able
to decrypt the message and will have the symmetric key allowing the attacker access to the
secure channel. Further, if the attacker is able to inject himself or herself into the channel in this
way, the attacker can forge messages to the recipient and mount a so called "man-in-the-middle"
attack, in which both sender and receiver believe they are communicating directly over a secure
channel but in reality are communicating through an attacker who has the ability to examine and
alter messages as they pass between sender and recipient. Accordingly, the effective use of
public key cryptography requires users to be able to verify that a particular public key is the true
public key of the person to whom they wish to communicate. Ensuring that a public key is the

correct public key is the problem of public key validation.

WO 03/098864 PCT/US03/15569

[0021] One way to solve the public key validation problem is to publish the public key in a
major newspaper and for users of the public key to manually compare the public key they are
using to the published numbers. This system is quite effective and occasionally used in practice.
It is, however, somewhat inconvenient and not conveniently subject to automation. Other public
key validation procedures have been employed. In a "ring of trust" environment, such as that
used in the Pretty Good Privacy (PGP)™ system a user may manually input or automatically
import public keys coming from a trusted source. Another solution to verification of public keys
is the digital certificate, in which a public key is digitally signed, and according to which users of
a public key cryptosystem can verify the authenticity of a certificate, and its corresponding
public key, by validating a the digital signature on the certificate. The signature is validated
using a preestablished, trusted public key of a Certification Authority (CA).

[0022] The SSL protocol uses digital certificates. In SSL, a web server has an X.509-formatted
digital certificate, which is digitally signed by a trusted CA, using the CA's private key. In an
SSL environment, the CA's signature can be verified at the client using a trusted version of the
CA's public key. In popular browsers, public keys of popular CA's come pre-loaded into the
browser. SSH requires an initial trusted exchange of a server's public key so that in subsequent
transactions, the identity of the server can be verified by the user using conventional public key
technology.

[0023] Accordingly, VPNs and channel protectors such as SSH and SSL protect data as it is
exchanged from a secure node to another secure node over a potentially insecure network.
However, these channel protectors protect data in transit only. Channel protection technology
cannot protect data once it has been decrypted on a destination node. And firewall and sound

system administration technology have proven not to be entirely effective in keeping intruders

[0024]

[0025]

[0026]

WO 03/098864 PCT/US03/15569

from gaining unauthorized access to network-connected computer systems. Thus, highly
publicized assaults have been successful in quickly stealing thousands of credit card numbers
and other confidential information from various web sites, for example.

In some situations, an organization attempts to protect fixed encryption keys and other
sensitive data by locating its servers in a physically secure room equipped with locked doors and
surveillance cameras. However, remote intruders do not need physical access to server rooms in
order to access data stored on a company's server. Intruders merely need some form of remote
access to the company's network. Even with the use of firewalls, this access can be gained
through known exploits, incorporating techniques including for example, IP spoofing, in which
an intruder forges packets to have false IP source addresses. Other techniques include network
scanning which helps to identify systems having exploitable defects.

Once an intruder gains access to one system on an internal network, it becomes possible
to exploit other weaknesses in the internal network, such as intercepting unencrypted network
traffic and using the information gained from the traffic to access to other systems on the internal
network. For example, many common E-mail programs transmit username and password
messages unencrypted or using easily breakable obfuscation of the actual values.

Once access is gained to key system resources, i.e. root access to a conventional database
server, an intruder has essentially full access the organization's information, including, for
example, credit card numbers, identifiable medical records, and other sensitive confidential
information about the organization's patients, customers, and/or employees. Other examples of
confidential information that can be obtained by unauthorized access include credit card
numbers, bank account numbers, social security numbers, birth dates, and highly personal and

private medical records.

WO 03/098864 PCT/US03/15569

[0027] In connection with access to information, including access to keys to encrypt and decrypt
information, it is useful to verify identity and authorization of users of the information and of the
software the user is employing to access the information. Accordingly, user authentication and
software, or code, authentication schemes have been devised to perform the authentication of
users and code. User authentication can be performed by, for example, receiving a password and
comparing the password to a stored password or by irreversibly converting the received
password into another form and comparing the converted password to a stored password in the
same form. Similarly, software components can be authenticated by using, for example, a digital
signature. Known methods of providing software component authentication using signed
components, however, rely on policy files and a PKI chain of trust. Unfortunately, there are also
known methods of undermining security that depends on the integrity of an ordinary policy file.
Further, in connection with components that are signed with an enterprise-level signing private
key, an intruder that obtains access to the enterprise-level signing private key can place
signatures on rogue software components. Accordingly, there is a need in the art for methods
and systems of software component authentication that do not suffer from the deficiencies of
known methods and systems.

[0028] From a patient's perspective, the consequences of unauthorized access to personal
medical records can be devastating. For a typical consumer, canceling and replacing credit cards
is a relative minor inconvenience compared to the compromise and potential publication of
sensitive medical information. Further, tampering with medical information is a potentially life
threatening violation of privacy and data integrity. Therefore, the protection of confidential

information, especially medical records, requires a greater assurance that the customer's or

WO 03/098864 PCT/US03/15569

patient's confidential information is secure. Known methods of securing data only while it is

being transmission do not meet this need.

10

[0029]

[0030]

[0031]

[0032]

WO 03/098864 PCT/US03/15569

Summary of Invention

A computer system is provided that contains cryptographic keys and cryptographic key
identifiers. The system has a repository cryptographic engine that communicates securely with a
remote cryptographic engine, and the repository cryptographic engine is associated with a user
data store. The data store includes a hidden link including a session key ide)ntiﬁer encrypted
with a protection key. The hidden link is associated with a remote data entity. An associated
key data store includes a session key encrypted with a session-key-protection key. The session
key is used to encrypt and decrypt the remote data entity. The system also includes a repository
key exchange module operable to exchange the session key with a remote key exchange module.

The session key identifier is optionally operable to identify the session key corresponding
to the remote data entity. The computer system optionally also includes an authorization module
that controls access to operations. The authorization module is optionally further coupled with a
user data store and access to the session key is further provided based on the user data store. The
protection key is a preferably a symmetric cryptographic key.

In an embodiment, the session-key-protection key is a symmetric cryptographic key. In
an alternative embodiment, the session-key-protection key and the protection key are equivalent.
The symmetric cryptographic key is optionally the triple Data Encryption Standard or the
Advanced Encryption Standard.

A distributed network is provided including a repository server containing cryptographic
keys. The network includes a repository cryptographic engine operable to communicate securely
with a remote cryptographic engine. The network also includes a remote cryptographic agent
operable to communicate securely with the remote cryptographic engine. Further, the network

includes a business application coupled with the remote cryptographic agent, wherein

11

[0033]

[0034]

[0035]

[0036]

WO 03/098864 PCT/US03/15569

authenticity of the business application is verified by the remote cryptographic engine by
comparing a stored fingerprint of the business application with a calculated fingerprint of the
remote cryptographic agent.

A cryptographic method is provided for facilitating the secure storage of information.
First, a key request is received for a session key from a requesting key exchange module at a
remote computer system. The key request includes a hidden link. Next, the session key is
accessed and encrypted based on the hidden link using a protection key. Then an exchange
public key is received corresponding to the requesting key exchange module. The session key is
encrypted in the exchange public key, resulting in an encrypted session key. Further, the
encrypted session key is transmitted to the requesting key exchange module. Then, at a
computer system associated with a requester, the encrypted session key is received with an
exchange private key corresponding to the exchange public key. A data entity is encrypted with
the session key, and the hidden link is attached to the data entity. Further, the data entity is

stored.

Brief Description of Drawings

These and other inventive features and advantages appear from the following Detailed
Description when considered in connection with the accompanying drawings in which similar
reference characters denote similar elements throughout the several views and wherein:

Fig. 1 is a schematic diagram of a computer system implementing a hidden link dynamic
key manager according to the present invention;

Fig. 2 is a schematic block diagram of the computer system of Fig. 1 illustrating software

components of the computer system,

12

WO 03/098864 PCT/US03/15569

[0037] Fig. 3 is a schematic diagram of the database structure according to the present invention
and utilized by the computer system of Fig. 1;

[0038] Fig. 4 is a schematic diagram of a security key identification attribute of the database
structure of Fig. 4;

[0039] Fig. 5 is a schematic diagram of a monitor illustrating adaptable display parameters
accordihg to the present invention and having only public information and fields displayed;

[0040] Fig. 6 is a schematic diagram of a monitor illustrating the adaptable display parameters
according to the present invention and having both public and private information and fields
displayed;

[0041] Fig. 7 is a schematic block diagram illustrating the steps for determining how to adapt the

display parameters illustrated in Figs. 5 and 6;

[0042] Fig. 8 is a schematic diagram of a session encryption key data entity;
[0043] Fig. 9 is a schematic diagram of a system key common name data entity;
[0044] Fig. 10 is a schematic block diagram illustrating the encryption and storage of data

entities during an add transaction;

[0045] Fig. 11 is a schematic block diagram illustrating the retrieval and decryption of data
entities during update and view transactions;

[0046] Fig. 12 is a schematic block diagram illustrating an alternate embodiment for the retrieval
and decryption of data entities during update and view transactions;

[0047] Fig. 13 is a schematic block diagram illustrating the deactivation of session encryption
keys;

[0048] Fig. 14 is a schematic block diagram illustrating an alternate embodiment for the

deactivation of session encryption keys;

13

WO 03/098864 PCT/US03/15569

[0049] Fig. 15 is a schematic block diagram illustrating a system in which database protection is
provided consistent with the present invention;

[0050] Fig. 16 is a schematic block diagram illustrating a system in which remote computer
systems access a key repository over a network;

[0051] Fig. 17 is a schematic block diagram illustrating a system involving a file server, a
repository server, and remote computer systems;

[0052] Fig. 18A is a schematic block diagram illustrating intradepartmental data protection
consistent with the present invention;

[0053] Fig. 18B is a schematic block diagram illustrating interdepartmental data protection
consistent with the present invention;

[0054] Fig. 18C is a schematic block diagram illustrating data protection in connection with an

Intranet or extranet based key repository;

[0055] Fig. 18D is a schematic block diagram illustrating mobile data protection;

[0056] Fig. 18E is a schematic block diagram illustrating data protection in a multiple enterprise
environment;

[0057] Fig. 19 is a schematic block diagram illustrating an embodiment of tables corresponding

to key, access control, and user databases;

[0058] Fig. 20 is a schematic block diagram illustrating a process of encrypting a file consistent
with the present invention;

[0059] Fig. 21 is a schematic block diagram illustrating a process of maintaining an access
control list;

[0060] Fig. 22 is a schematic block diagram illustrating a process of accessing an encrypted file;

14

WO 03/098864 PCT/US03/15569

[0061] Fig. 23 is a schematic block diagram illustrating a process of blocking access associated
with a key in response to the key becoming compromised;
[0062] Fig. 24 is a schematic block diagram illustrating a system in which trusted components

are authenticated;

[0063] Fig. 25 is a schematic block diagram illustrating a process of creating smart cards;
[0064] Fig. 26 is a schematic block diagram illustrating a process of registering components; and
[0065] Fig. 27 is a schematic block diagram illustrating a process of performing run-time

authentication of components.

Detailed Description

[0066] Referring to the drawings in greater detail, Figs. 1 and 2 show a computer system 20
constructed in accordance with a preferred embodiment of the present invention for storing
information. The present invention provides an improved method of encrypting and decrypting
data preferably at rest, which is to say in its native form, for example in a file system or in a data
base server. The computer system 20 broadly includes a security domain 22 having an
encryption key manager (EKM) 24, system key manager (SKM) 84, key lifetime manager
(KLM) 88, key auditing manager (KAM) 90 and database adapter (DBAD) 86. In an alternative
embodiment, other enterprise security components are included in security domain 22.

[0067] The computer system 20 also includes a plurality of client business domains 26 having an
information database 28. The computer system 20 implements a method according to the present
invention. The method broadly includes encryption, decryption and storage of data entities 30
(Fig. 3) as illustrated in the flow diagram of Fig. 10, and the method also includes the retrieval

and decryption of data for data manipulation. One embodiment of the retrieval and decryption

15

[0068]

[0069]

[0070]

WO 03/098864 PCT/US03/15569

method is illustrated in the flow diagram of Fig. 11. The computer system 20 utilizes a data
structure illustrated in Fig. 3. The data structure broadly includes a plurality of data entities 30
having a security key identification attribute 32, which contains security key information as
illustrated in Fig. 4.

Referring to Fig. 1, in addition to the security domain 22 and the client business domains
26, the computer system also includes a plurality of client terminals 34. The client terminals 34
are provided with telecommunications capabilities to communicate with the business domain 26,
However, the invention also contemplates the use of alternative communication mechanisms,
such as Intranet, local area networks (LAN), and wide area networks (WAN), for example. The
Intranet, LAN, and WAN applications may be utilized for any type of facility or organization
where data security is important such as a bank, hospital, or law firm, for example. The client
terminals 34 gain access to the client business domains 26 only after passing through security
devices such as firewalls, and communication between the client business domain 26 and the
security domain 22 preferably occurs through an Internet protocol secure, virtual private network
tunnel (IPSEC, VPN tunnel) 38.

The security domain 22 includes a primary key server 40, a secondary key server 42, a
security key database (KEYDB) 44, and a certification authority server 46. Each of the key
servers is a general purpose computer having various components including, for example, one or
more processors, fast main memory, and persistent storage. The certificate server 46 also is a
general purpose computer.

The primary key server 40 and secondary key server 42 are mirror components. Thus, the
primary and secondary key servers are substantially identical. If the primary key server 40 fails,

the secondary key server 42 begins operation immediately without disruption in overall system

16

[0071]

WO 03/098864 PCT/US03/15569

operation, thereby providing fault tolerance. The transfer in operation is accomplished, for
example, through a heart beat failover channel between the primary and secondary servers 40,
42. The primary and secondary servers 40, 42 each optionally include a tape backup 48, 50,
respectively, for key retrieval in the event that the KEYDB 44 is irretrievable or a key integrity
check fails. The primary server 40 is provided with a primary system key reader 52, designated
reader #1 in the drawing, and a primary encryption key reader 54, designated reader #2 in the
drawing. Preferably, each of the primary readers 52, 54 for the primary server 40 store the same
information. Thus, the primary readers 52, 54 are mirrored hardware components for superior
fault tolerance. The secondary database 42 also includes a secondary system key reader 56,
designated reader #1 in the drawing, and a secondary encryption key reader 58, designated reader
#2 in the drawing. Preferably, each of the secondary readers 56, 58 for the secondary server 42
store the same information. Thus, the secondary readers 56, 58 are also mirrored, and there are a
total of four readers from which key information can be retrieved. The readers 52-58 comprise
security token readers for receiving security tokens. Preferably, the readers comprise Smart Card
readers for receiving smart cards. A hardware random number generator (HRNG) 59 is also
optionally provided in the security domain to generate random numbers, which are used as
identifiers for keys.

In one embodiment, the key servers 40 and 42 contain multiple protection keys that are
used to encrypt and decrypt session keys and session key identifiers. The protection keys are
themselves stored in a protection store, for example an ASCII flat file, and encrypted in a master
key. In one embodiment, the master key can be provided based on a K of M paradigm, under
which there are M, for example seven, separate sub-keys that are held by, for example, seven

different people. In this embodiment, to unlock the protection key store, a number K, for

17

[0001]

[0073]

WO 03/098864 PCT/US03/15569

example three of the seven people must provide their sub-keys. In an alternative embodiment, a
weighted K of M scheme is employed, under which some of the M sub-keys are weighted higher
than others. In a weighted K of M scheme, for example, a company’s CEO can be provided with
a sub-key having sufficient weight to unlock the protection store by itself, while subordinates
have sub-keys with lower weights based on the subordinate’s level of responsibility.

In one embodiment, KEYDB 44 comprises an external disk array with a fault tolerance
system for mirrored operation. In an alternative embodiment, the KEYDB 44 is a relational
database platform, such as Microsoft™ SQL Server, Oracle™, DB2™, mySQL™,
PostgreSQL™, or Jet Engine™. The external disk array or database server optionally includes a
redundant array of independent disks (RAID). Each of the key servers 40, 42 is operable to
communicate with the KEYDB 44. In one embodiment, the key servers communicates with the
database server KEYDB 44 using ADO, ODBC, or a native database interface, such as the
interface provided in connection with the Oracle™ database server.

The client business domains 26 preferably include a plurality of application servers 60,
61 and a primary information database 62, which is isolated from the KEYDB 44, and which is a
database platform such as the platforms enumerated in connection with KEYDB 44 or
alternatively InterSystems Caché™. Preferably, a backup information database 64 is also
provided. The backup information database 64 mirrors information in the primary information
data 62 providing redundancy and protection against data loss. Thus, the client business domains
26 are provided with superior fault tolerance. For added security, in one embodiment, the client
business domain servers 60, 61 are only accessible through a firewall 66. Each application server

60, 61 may contain multiple business logic components such as business logic component

18

[0074]

[0075]

WO 03/098864 PCT/US03/15569

number one (BLC1) 68. The BLC's contain instructions and rules for operation of the computer
system 20 that are set by users and/or the developers of the users’ software applications.

Generally, each client terminal 34 includes a central processing unit (CPU) 70, a data
entry mechanism, such as a keyboard 72, and a display or monitor 74. The CPU 70 is operable to
control the monitor 74, receive input from the keyboard 72, and establish and maintain
communications through the Internet 36 utilizing a modem, two-way satellite, digital subscriber
line (DSL), or other communication apparatus (not shown), such as an Ethernet adapter. The
CPU 70 is also operable to control other computer system devices such as a printer or disc
drives. Preferably, each client terminal is also equipped with a user security token reader for
receiving a security token. In a preferred embodiment, the security token reader comprises a
Smart Card reader 78 for receiving a Smart Card 80. The Smart Card is optionally provided with
a private and secured file system. Each user is optionally provided with his or her own Smart
Card 80, which includes a cryptographic for identifying and authenticating the user. Other
known solutions, such as user identification and password, can be used to control access and user
authentication. In one embodiment, users have one or more roles for authorization. The role
identifications can include assistant level, receptionist level, administrative level, and others.
The role identifications represent the duties performed by individuals in those levels and the
extent of information needed for them to properly perform those duties. The user and role
identifications are used as described below in connection with Fig. 7 to limit access to
information.

Referring to Fig. 2, the security domain 22 of the computer system 20 includes several
software components that are resident on the hardware components illustrated in Fig. 1. The

primary and secondary key servers 40, 42 include substantially the same software components

19

[0076]

[0077]

WO 03/098864 PCT/US03/15569

and both will be described with reference to the primary key server 40. The primary key server
40 includes several software components: a general security manager (GSM) 82, the encryption
key manager (EKM) 24, a system key manager (SKM) 84, a database adapter (DBAD) 86, a key
lifetime manager (KLM) 88, and a key auditing manager (KAM) 90. A certificate manager (CM)
92 is provided on the private certificate authority (CA) server 46.

The general security manager (GSM) 82 operates as a gateway to the portions of the
computer system 20 located in the security domain 22. To that end, each of the security domain
22 components EKM 24, SKM 84, DBAD 86, KLM 88, KAM 90, CM 92 are preferably not
operable to communicate directly with any component outside the security domain 22 of the
computer system 20. In one embodiment, they are only operable to communicate with outside
components through the GSM 82. Preferably, component mutual authentication occurs between
the GSM 82, which is located in the security domain, and the outside business domain
components 68. COM+, CORBA, or Java security can be used to control the mutual
authentication. Thus, in this embodiment, neither the client user nor any component in the client
business domain 26 can contact anything other than the GSM 82 through trusted authentication
process.

The GSM 82 is also operable to encrypt the data entities 30 (Fig. 3) using, for example, a
three-key, triple data encryption standard (3DES), RC4, or any strong cryptographic algorithm
on selected attributes of the data entities 30C, 30D as directed and requested by the BLC's and
other components of the computer system 20. Thus, while DES uses symmetric 56-bit key
encryption, the GSM preferably uses three-key 3DES, which is a symmetric 168-bit
cryptosystem, having an effective key strength of about 110 bits. Other strong cryptographic

algorithms can be employed, such as 128-bit IDEA or AES. Using keys with extended lengths

20

[0078]

[0079]

WO 03/098864 PCT/US03/15569

makes the keys more difficult to break than the 56-bit DES keys, which have been
experimentally broken using parallel processing systems.

The GSM 82 also performs the decryption of the data entities 30 when other components
of the computer system 20 request decryption. Further, the GSM 82 is operable to perform
hashing operations using message digest 5 (MD5), SHA-1, or other strong hashing algorithms as
instructed by other components. The hash values or integrity values generated in the one way
hashing process are typically stored as attributes in data entities for integrity check purposes.
Preferably, the GSM 82 hashes all of the data attributes of the data entities and stores that data
hash value as an attribute. After the data has been decrypted, it is again hashed and the before
and after hash values are compared. If the two hash values are identical, the integrity of the data
in the data entity has been confirmed. If two hash values are different, an alarm is issued and the
data is retrieved from the backup information database 64.

The encryption key manager (EKM) 24, as its name indicates, generally manages
encryption keys, which as described below are used to encrypt and decrypt the data c?ntities 30C,
30D. Thus, the EKM 24 is operable to generate multiple session encryption keys (SEK) for
example either 3DES or AES and generate session encryption key identifications (SEKID's) for
the SEK's. The SEKIDs are random numbers optionally generated with the HRNG 59
(Hardware Random Number Generator). Alternatively, SEKIDs are generated using a software
random number generator. The EKM is operable to perform integrity checks on the SEKs using
hash values for the SEKs. The EKM is further operable to transmit the SEKID to the SKM 84
for encryption, and the EKM 24 is also operable to transmit the SEK and corresponding SEKID,
in encrypted form, to the GSM 82, which then encrypts the data entities 30C, 30D using the

SEK.

21

[0080]

[0081]

[0082]

WO 03/098864 PCT/US03/15569

The system key manager (SKM) 84 generally manages system keys, which as described
below are used to encrypt the SEKIDs. Thus, the SKM 84 is operable to encrypt the SEKIDs. In
one embodiment, a number of protection keys are used to encrypt SEKs and SEKIDs. It is
understood that the number of protection keys used is an operator selectable parameter. In one
embodiment, about 20 protection keys are used. In another embodiment, more than about 1,000
protection keys are used. The protection keys are optionally 3DES or AES keys and pointers to
protection keys are stored in connection with SEKs. In this embodiment, hidden links, which are
transmitted in connection with encrypted data contain several data structures, including a pointer
to a protection key, and a cryptographic engine identifier that uniquely corresponds to the
cryptographic engine that generated the SEKID.

In one embodiment, separate encryption keys are used to encrypt the SEK and the
SEKID. In this embodiment, an encryption key public key is used to encrypt the encryption keys
that are used to encrypt the SEKs. Further, a system key public key is used to encrypt symmetric
keys that are used to encrypt the SEKIDs. In this embodiment, the SKM also generates a system
key common name (SKCN) for the asymmertical encryption key pairs and system key pairs. In
this embodiment, the SKCN's are generated when generating the system public key’s digital
certificates, so that there is a unique SKCN for each system key pair. In an alternative
embodiment, the SEKID is encrypted in a symmetric key that is encrypted in the system key
public key. In yet another alternative embodiment, SEKIDs are encrypted in the same symetric
key, called a protection key, as the SEKs.

Upon request from the EKM 24, the SKM 84 is also operable to decrypt the SEKID using
the appropriate key. If desired, the SKM 84 and EKM 24 can be combined into a single

component and can reside on the same server or computer system.

22

[0001]

[0084]

[0085]

[0086]

WO 03/098864 PCT/US03/15569

In one embodiment the Microsoft Crypt;) API (application program interface) is used to
provide cryptographic functionality. In an alternative embodiment OpenSSL™ is used to
perform cryptographic functions.

In one embodiment, the key lifetime manager (KLM) 88 monitors the lifetime of the
SEK's based on corresponding expiration dates and timestamps. In this embodiment, the KLM
88 flags the expired SEK's with an expiration flag, so that in the next request, the EKM will
optionally check the expiration status of the SEK and replace the expired key with a new one
during run-time operation.

A particular SEK is used in connection with a particular data object. Accordingly, in one
embodiment, an application can save a data entity with the same SEK by resubmitting a hidden
link in connection with a request to store the data entity. A hidden link is a data structure
including the encrypted SEKID, a pointer to the protection key used to encrypt the SEKID, and a
cryptographic engine identifier. Additionally, the application can cause the generation of a new
SEK by transmitting a save data request without including a hidden link. In one embodiment,
the KLLM 88 sets a key expiration flag in connection with the SEK so that an application can be
alerted that it is an appropriate time to cause a new SEK to be generated.

In one embodiment, the key auditing manager (KAM) 90 is operable to maintain an
active audit log including all transactions involving the SEKs and the keys used to encrypt the
SEKs. Generally, the KAM 90 monitors the log for alarm events utilizing smart patterns, rules,
and policies. The KAM 90 is also operable to provide notification upon the occurrence of an
alarm event, such as if a system key or SEK has been compromised. In an alternative
embodiment, operagor selectable thresholds for numbers of new key generations are

configurable. In this embodiment, an operator can observe the cryptograpic system under

23

[0087]

[0088]

[0089]

WO 03/098864 PCT/US03/15569

normal operation, noting a typical number of new keys that are generated over a particular period
and set the thresholds accordingly. Once configured, if a threshold is exceeded a notification is
sent regarding the exceeded threshold.

The certificate manager (CM) 92 is operable to perform all of the system key PKI related
operations. For each system key the CM 92 generates a X.509 digital certificate. Preferably, the
digital certificate includes a critical V3 extension, so that only the private certificate authority
(CA) can verify the key. Each time a request for decryption by a system key is received by the
SKM 84, the CM communicates with the private certificate authority (CA), which is local to the
security domain, to verify the system key.

In one embodiment, the database adapter (DBAD) 86 is operable to hide database
specific application programming interfaces (API) from the security domain 22 components and
thereby controls and enhances communications between the key managers 24, 84 and the secured
key database 44. Thus, by using different DBAD's, the security domain components can
interface with different types of databases. The DBAD 86 also allows the security domain
components to interface with multiple databases within the security domain 22, such as
Microsoft SQLServer, Sybase, Informix, Oracle, and IBM DB2. It is understood that known
databases employ database fault tolerance. While the preferred operations and locations of the
respective components has been described in detail, it is understood that specific tasks can be
exchanged between components and the locations of components can be combined, separated, or
exchanged without departing from the spirit of the invention.

Referring to Fig. 3, the database structure preferably comprises an object oriented
database structure having a plurality of data entities 30, which are preferably data objects.

However, other types of databases are contemplated by the invention. For example a relational

24

[0090]

[0091]

[0092]

WO 03/098864 PCT/US03/15569

database could be used, such as Microsoft SQLServer, Oracle, Sybase, Informix and IBM DB2.
Thus, when the term object is used, its counterparts, record for example, are also contemplated,
and when the term class is used, its counterparts, table for example, are also contemplated.

One of the data entities 30A, specifically a persistent data entity, is shown in detail. The
data entity 30A includes an Added attribute 100 and an Added By attribute 102. The Added
attribute 100 records a timestamp containing the date and time the object was added, and the
Added By attribute 102 records the digital signature of the user adding the record or data entity.
The digital signature is obtained from the digital certificate of the client user's Smart Card 80 or
client's current session and user identification. The Modified and Modified By attributes,
collectively 104, record the same information for modifications to the data entity 30A. In
combination, these non-repudiation attributes 100, 102, 104 inhibit a client user from claiming
that the user did not take a certain action. The security status (SecStatus) attribute 108 indicates
whether the data object contains plain text or cipher text and whether it is public or private.

Referring additionally to Fig. 4, a security key identification attribute 32 is also an
attribute of the data entity 30A and contains security key information. The security key
information includes the encrypted SEKID 112 and the SKCN hash value 114, which are used,
as described below, to find the SEK used to encrypt associated data entities 30C, 30D and to find
the system key used to encrypt the SEKID 112. While it is preferred that the SKCN hash value is
stored in the security key attribute 32, the SKCN could be stored in this location without hashing.

Referring again to Fig. 3, the data entity 30A also includes a security integrity attribute
(SecIntegrity) 116, which contains the data entity hash value. The data entity hash value is
obtained by hashing all or selective attributes within the data entity. This is controlled by

business needs and policies, which are preferably determined by the client and recorded in the

25

[0093]

WO 03/098864 PCT/US03/15569

BLC's. When a data entity is retrieved, it is hashed using, for example, SHA-1 and that data
entity hash value is compared with the stored hash value in the security integrity attribute 116. If
the hash values are the same, then the integrity of the retrieved data entity is confirmed to be
correct and not altered. If the hash values are not identical, then an alarm is issued, so that the
data can be optionally manually confirmed, and as described above, retrieved from the backup
information database 62.

Referring additionally to Figs. 5, 6, and 7, a security privacy attribute 118 controls access
to the information in the associated data entities 30C, 30D. When a client user, a doctor for
example, marks his information private, a special access list (SAL), data entity/class 30B is
automatically created and the doctor is automatically added to the special access list. The doctor
can thereafter add and delete user identifications attributes 120 and/or role identifications 122
from the special access list. The user attributes 120 are based on specific user identifications
from the smart cards or any other authentication method. The role attributes 122 are based on
different security levels of users. For example, the doctor may grant permission to view private
data to other doctors but not permit nurses to view private data. The roles can include any
security level: secretary, shareholder, custodian, and administrative, for example. In this fashion,
the doctor controls who can view what information and who can edit what information. The
same holds true for patient records; where nurses and doctors may have full access, clerical staff
may have limited access to name, address, payment, and appointment information. This privacy
can be applied to any vertical market such as banking, intellectual property systems, e-
Commerce, law firms, and all applications that deal with highly sensitive or classified

information.

26

[0094]

[0095]

WO 03/098864 PCT/US03/15569

When an authenticated client user requests information at step 124 in Fig. 7, the computer
system retrieves the information at step 126, which will be described in greater detail below.
After the information is retrieved, the system checks the security privacy attribute 118 at step
128. If the information is not marked private, it is fully displayed on the monitor 130 as
illustrated in Fig. 6. If the information is marked private, the system checks the security level of
the client user at step 132. In checking the user's security level, the system looks at both the user
identification and the role identification to see if either are in the special access list, and
determine what rights, such as view only or edit, the user has to the information. If the client user
has full view rights, then the display of Fig. 6 is again shown. If the client user is not entitled to
view the private information, the display parameters are adapted in step 134. In step 134, the
display fields of the private information, which will not be displayed, are eliminated from the
display parameters with their related labels, so that when the permitted information is displayed
in step 135 on monitor 136 of Fig. 5, the fields for the private information are not displayed.

Further, it is envisioned that the fields for the public information may be modified, so that
the existence of the private information is completely masked. In the example shown, personal
information 138, such as data of birth and number of children are displayed for the user having
access to private information. However, for a user without authorization to view the private
information, the date of birth and number of children fields are removed from the display of Fig.
5. Further, the home address information 140 and work address information 142 are displayed
for the user with authorization to view private information, and the fields specifically indicate
which address is for work and which address is for home. In contrast, the user without access to
private information not only does not see the home address, the work address fields 144 in Fig. 5

are modified to eliminate the designation that it is a work address.

27

[0096]

[0097]

[0098]

WO 03/098864 PCT/US03/15569

Referring again exclusively to Fig. 3, the persistent data entity 30A also includes several
association attributes, which are used by the database schema to associate or link related data
entities 30B, 30C, 30D to the persistent data entities 30A. To that end, the persistent object 30A
includes a class identification attribute 146 and at least two search attributes 148. For faster and
secured searching, the searchable attributes 148 are preferably hash values of user information
such as the patient name. The database uses these attributes 146, 148 and others to associate
related persistent objects 30A and related class objects 30B, 30C, 30D with the persistent objects
containing the appropriate security key identification 32 that was used to encrypt data attributes
in the class objects. Two exemplary class objects are shown in Fig. 3: a person class object 30C
and a name class object 30D. Other unillustrated class objects/entities include an address entity,
employer entity, payment entity, insurance entity, and others.

The database is also provided with look up maps or notes 150. The illustrated lookup map
150 is for gender of the person class. This saves database resources because every person in the
database simply has a 0, 1, or 2 corresponding to undisclosed, male, or female, respectively.
Thus, the look up map 150 saves database résources because each person class has a single digit
integer instead of a lengthy word entry. Look up maps are also preferably used for the security
status attribute 108, the security privacy attribute 118, and others.

Referring to Figs. 8 and 9, the data structure also includes an SEK object 151 saved in the
KEKDB 44 and a SKCN object 152, which is saved in either the KEKDB 44 or in an alternate
embodiment, a separate system key database (not shown). Thus, for increased security, several of
the data entities are stored in separate databases. In one embodiment, public key pairs are stored

in a hardware security module (HSM) device.

28

WO 03/098864 PCT/US03/15569

[0099]

[00100]

The SEK object/entity includes as attributes the SEKID 153 in a normal/decrypted form,
the encrypted SEK 154, the SEK integrity check 155, which is a hash value of the SEK, and the
optional SKCN hash value 156. The SEK data entity 151 preferably does not include the
encrypted SEKID. This creates a hidden link between the encrypted data and the SEK used to
encrypt it because the SEKID is encrypted, and the SEK is stored in a separate database. In one
embodiment an HMAC is provided for data record integrity also stored in connection with each
record in the key database. The secret associated with the HMAC is contained in master security
container, which is optionally protected with a K of M encrypt‘ion scheme. The SEK object also
preferably includes a Created On attribute 159, which records a time stamp for the creation of the
SEK and optionally a Last Usage Date attribute 161, which records a time stamp for the last time
the SEK was used. Additionally, the SEK object optionally has a Usage Counter attribute 163,
which records how many times the SEK has been used. The Created On 159, Last Usage Date
161, and Usage Counter 163 attributes provide the client with optional feature selections.
Specifically, the client can select to have keys expired a certain number of months, two months
for example, after their creation. The client can also preferably decide to have SEK's expire when
they have not been used for a selected period of time or when they have been used more than a
selected number of times. The client can also choose to have SEK's expired randomly or not at
all. The SKCN object/entity includes the SKCN hash value 157 and the SKCN 158 as attributes,
and is preferably stored in a database separate from the data entities 30.

Fig. 15 is a schematic block diagram illustrating a system in which database protection is
provided consistent with the present invention. Distributed application 1500 generally provides
an interface to information in database server 1520 by way of application server 1510.

Information at rest is protected in database server 1520 by way of SEKs provided by

29

WO 03/098864 PCT/US03/15569

[00101]

[00102]

[00103]

cryptography server 1530. When a requesting user of the distributed application 1500 interacts
with business application 1542, the business application 1542 receives any necessary information
from the database server 1520. Sensitive information in database store 1522 is encrypted.
Accordingly, in order to use the encrypted information, the business application 1542 must
decrypt the encrypted information.

The business application 1542 utilizes the cryptography server 1530 by providing the
cryptographic agent 1544 with data to encrypt and to decrypt and with an optional hidden link
that is stored with the encrypted information in the data store 1522. Further, the requesting user
provides authentication information to business application 1542. In one embodiment, the
authentication information is the requesting user’s user identifier and password, with which a
challenge response protocol is performed. In alternative embodiments, authentication
information is based on biometrics or smart cards. It is understood that other user authentication
mechanisms can be used without departing from the scope of the present invention.

In fulfilling requests from the requesting user, business application 1542 provides the
user’s authentication information to the cryptographic agent. The cryptographic agent 1544
connects to a core engine associated with cryptography server 1530 over an optionally secure
channel, for example an SSL link. The cryptography server 1530 validates the user

authentication information in connection with user database 1526. In one embodiment,

.validation of user authentication information involves a challenge response protocol between the

agent and the core engine in which the user’s password is used to compute the response to the
challenge.
If the user authentication information is valid, a core engine 1554 receives information

and instructions to perform operations, such as to encrypt data or decrypt data, from the business

30

WO 03/098864 PCT/US03/15569

[00104]

[00105]

application 1542. The cryptography server 1530 optionally determines whether the user is
authorized to perform the operations by querying access control list database 1524. If the
requesting user is authorized to perform an instruction associated with a particular session key,
the core engine 1554 determines which protection key is associated with the requested session
key and decrypts the session key with its protection key.

If the business application 1510 needs to decrypt a block of information stored encrypted
in the database server 1520, the business application receives the block and its associated hidden
link from the database server 1520 and provides the block and its associated hidden link to the
cryptographic agent 1544. The cryptographic agent 1544 relays the encrypted block and the
hidden link to the core engine 1554. By examining the hidden link, the a core engine 1554 can
determine whether the hidden link is was generated locally or whether it is from a foreign
cryptography server (not shown) by examining the cryptographic server identifier associated
with the hidden link. Further, the core engine can identify the protection key with which to
decrypt the encrypted SEKID in the hidden link by examining the protection key pointer
contained in the hidden link. The core engine decrypts an encrypted SEKID and uses the
decrypted SEKID to access the encrypted session key from a key database 1540.

In one embodiment, looking up the encrypted SEK is accomplished by querying an SEK
table having SEKID as a primary relational database-key. The core engine decrypts the
encrypted SEK with a corresponding protection key. In one embodiment, the same protection
key is used to encrypt the SEKID and the SEK. Accordingly, once the SEKID protection key is
identified, it is available to be used to decrypt the SEK. Next, the core engine 1554 decrypts the
information the business application 1542 provided from the database server 1520 and transmits

the decrypted information back to the business application 1542 through the cryptographic agent

31

WO 03/098864 PCT/US03/15569

[00106]

[00107]

1544, In one embodiment, communication is performed between the cryptographic agent 1544
and the core engine 1554 using an unencrypted TCP session. In an alternative embodiment,
communication is carried out using SSL without SSL client authentication. In yet another
embodiment, communication between agent and core engine is performed using SSL with client
authentication. It is understood that other methods of securing the channel between agent and
core engine can be employed without departing from the scope of the invention, such as an
unencrypted TCP session over an IPSec VPN.

When a user causes the business application to store information at the database server,
the cryptographic agent facilitates encryption of the information before the business application
provides the information to the database server. If the business application is storing new
information or if the business application has determined that a new SEK should be generated,
then the business application provides the unencrypted information without an associated hidden
link. When the core engine receives data to encrypt without an associated hidden link, the core
engine generates a new SEK and SEKID, encrypts the provided information and the SEKID,
combining a protection-key pointer and core engine identifier to form a hidden link, and returns
the encrypted information and the hidden link to the business application through the
cryptographic agent. Further, the business application stores the encrypted information and the
associated hidden link at the database server. When it becomes necessary to access the
encrypted information, the encrypted information and the associated hidden link are provided to
the core engine and the core engine decrypts the information for the business application if the
user has sufficient rights.

When storing information that has an associated hidden link, for example when a field in

the database is modified, the business application can elect not to generate a new key. To

32

WO 03/098864 PCT/US03/15569

[00108]

[00109]

achieve this result, the business application provides information to be encrypted in connection
with the existing hidden link. When the core engine receives information to be encrypted and an
existing hidden link, the engine encrypts the provided information with the SEK corresponding
to the existing hiddenlink. In this regard, the business application drives the process of
generating new session keys for existing data.

Fig. 16 is a schematic block diagram illustrating a system 1600 in which remote
computer systems access a key repository over a network. One embodiment includes a
repository server 1620 that includes a repository core engine 1622. The repository core engine
1622 includes a key database 1640 having cryptographic keys contained within the key database
1640. The repository core engine 1622 provides the functions of key generation, storage, and
retrieval.

Further, the repository server 1620 includes an access control list (ACL) database 1624
and a user database 1626. The ACL database 1624 contains information regarding types of
allowed access, or rights, particular users have to particular data entities associated with
cryptographic keys stored in the key database 1640. The repository server 1620 also optionally
has a smart card reader 1632, which is operable to read information from a smart card such as
the GEM-159 available from Gem Plus. Further, the repository server 1620 contains a repository
key exchange module 1634 and an authentication/authorization (A/A) module 1636. The
repository key exchange module 1634 enables two separate cryptographic engines to share keys.
The A/A module 1636 identifies and/or authenticates users by, for example, a challenge response
protocol in connection with smart cards or user name/password combinations, associated with

the users. Further, the A/A module provides user registration functions in connection with the

33

WO 03/098864 PCT/US03/15569

[0001]

[00111]

[00112]

ACL database 1624, which contains information regarding particular users’ rights with respect to
specific keys.

A remote computer system 1610 connects to a key repository 1620 through a network
1630. The network 1630 is preferably a data network, such as the Internet, but it is understood
that the network 1630 can be other types of networks, such as the telephone network, wireless
networks, such as 802.11b, Bluetooth™ or other wireless networks, local area networks, wide
area networks, or optical fiber networks. In one embodiment, the computer system 1610
contains a smart card reader 1632, which is operable to enable a user to authenticate himself or
herself to the repository core engine 1620. Further, the remote computer system 1610 contains a
remote key exchange module 1630, which is operable to exchange keys with the key exchange
module 1634 of the key repository 1620. In one embodiment, the remote computer system 1610
also contains a storeless remote core engine 1642 that is operable to perform remote encryption
and decryption functions on the remote computer system 1610. A storeless remote engine has no
internal key database and must communicate with a repository server to obtain keys to encrypt or
decrypt data.

A business application 1612 is also preferably associated with the remote computer
system 1610. The business application 1612 is generally software that consumes and produces
information that is protected by cryptographic methods and systems consistent with the present
invention.

Fig. 17 is a schematic block diagram illustrating a system 1700 involving a file server
1720, a repository server 1620, and a remote computer system 1610 in a group of remote
computer systems. The file server 1720 includes a data store 1722, which contains information

that is protected with cryptographic methods and systems consistent with the present invention.

34

WO 03/098864 PCT/US03/15569

[00113]

[00114]

The information contained in the data store 1722 is encrypted and decrypted in connection with
the remote computer system 1610, using the remote core engine 1642, which performs the
functions of encrypting and decrypting information using keys from the repository server 1620,
which optionally contains a smart card reader 1632, a repository key exchange module 1634, and
an authentication/authorization (A/A) module 1636. The repository server 1620 also contains a
user database 1626 and an ACL database 1624. The remote computer system 1610 optionally
uses a smart card reader 1632 and a remote key exchange module 1630 to authenticate with the
A/A module 1636 of the repository server 1620 to obtain appropriate keys to encrypt and decrypt
information in the media store 1620. The remote core engine 1622 performs encryption and
decryption functions.

In connection with the cryptographic systems of Figs. 16 and 17 several operations are
performed, including: (i) adding a user to the cryptographic system; (ii) providing an interface
for a user to log in and to thereby authenticate himself or herself to the cryptographic system;
(iii) encrypting a new file; (iv) maintaining, which is accessing or changing, ACLs associated
with keys; (v) blocking access to a key that has become compromised, reassigning ownership of
a cryptographic key; and (vi) accessing and decrypting existing information for use in connection
with a software application.

The process of adding a new user optionally involves generating exchange and signature
key pairs for users. In one embodiment, the key pairs are written to a smart card. The exchange
key is used for transporting session keys between the repository server 1620 and the remote.
computer system 1610. The signature key is used to authenticate the user via the A/A module

1636.

35

WO 03/098864 PCT/US03/15569

[00115]

[00116]

[00117]

In one embodiment, the public keys associated with the newly generated user key pairs
are stored in the user database 1626. Optionally, other information, such as name and contact
information for a user can be stored in the user database 1626. Further, the user takes possession
of the smart card containing the key pairs so the user can perform authentication and key
exchange operations in connection with the use of encrypted information.

In connection with the smart card, the user logs into the cryptographic system by
authenticating to the A/A module 1636 of the repository server 1620. First, the user places his or
her smart card into the smart card reader 1632 and the remote core engine 1642 reads the keys
from the smart card. The smart card is preferably password protected.

Once the remote core engine 1642 has access to the private key of the signature key pair,
it authenticates itself to the repository server 1620 by way of the A/A module 1636. In one
embodiment, the A/A module 1636 and the remote computer system 1610 execute a challenge
response protocol in connection with the user’s signature key pair. In this embodiment, the A/A
module verifies a signature made by the remote computer system 1610 by using the public key
stored in the user database 1626 that was generated at the same time as the user’s private key,
when the user account was created. Next, the remote computer system optionally receives a
session-level access token, for example a large random number, in connection with the challenge
response protocol. In an alternative embodiment, a user authenticates using its user identifier
and, for example, password. In one embodiment, user and agent rights are granted based on
rights associated with a role that is assigned to the user or agent. Further, if the user or agent has
sufficient rights, an ACL corresponding to a particular key is examined to determine whether the

user or agent has sufficient rights to cause the key to be used to encrypt or decrypt data.

36

WO 03/098864 PCT/US03/15569

[00118]

[00119]

[00120]

Fig. 18A is a schematic block diagram illustrating intradepartmental data protection
consistent with the present invention. In this embodiment, the cryptographic engines are
represented in connection with the TRICRYPTION trademark of ERUCES, Inc. of Lenexa,
Kansas. The environment broadly includes a data store 1802, computer systems 1804 and 1808,
and repository server 1806. The data store 1802 contains, for example, encrypted files that are
manipulated by computer systems 1804, 1808. The remote computer systems 1804, 1808 read
and write the encrypted data in data store 1802 in a manner similar to that explained in
connection with Fig. 15. However, in this embodiment, encryption and decryption is performed
on the same computer system that manipulates the information, namely systems 1804, 1808. To
accomplish this, remote computer system 1804 uses its remote key exchange module to obtain
keys from repository server 18(36 as explained in connection with Figs. 16 and 17. Specifically,
the remote computer systems 1804, 1808 manipulate the encrypted information in data store
1802 using session keys obtained from the repository server 1806.

Fig. 18B is a schematic block diagram illustrating interdepartmental data protection
consistent with the present invention. In this embodiment, information contained in the data
store 1802 is accessed by remote computer systems 1804, 1808 that are in separate departments
or enterprises. Accordingly, user authentication and authorization information associated with a
particular user of remote computer systems 1804 and 1808 resides in a corresponding repository
server 1806 or 1807 in the user’s department.

It may be useful for the user of the remote computer system 1804 to access information
for which the user of the remote computer system 1808 is the key owner. If a user needs to
access information protected by a key contained in a repository server located in another

department, then interdepartmental key exchange is employed. To accomplish interdepartmental

37

WO 03/098864 PCT/US03/15569

[00121]

[00122]

[00123]

key exchange, repository server 1806 and repository server 1807 exchange keys using
mechanisms described in connection with Figs. 16 and 17. Once a user’s departmental
repository server has received the appropriate session key from a peer departmental repository
server, the local repository server can either provide the key to a storeless cryptographic engine,
such as computer system 1804 or perform the encryption or decryption for an agent directly in
the core engine of the storeful repository server.

Fig. 18C is a schematic block diagram illustrating data protection in connection with an
Intranet or extranet based key repository. In this embodiment, the repository server 1806 is
separated from the remote computers 1804 and 1808 by a public network 1810 and optional
firewalls 1812. Because of the secure nature of the key exchange between repository server
1806 and remote computer systems 1804 and 1808, exchanging keys over the public network is
secure, and the keys can be used to manipulate the encrypted data in data store 1802.

Fig. 18D is a schematic block diagram illustrating mobile data protection. In this
embodiment, mobile computer 1816 is connected through wireless access point 1814. The
mobile computer 1816, such as a personal digital assistant, contains a version of a storeless
cryptographic engine that is capable of performing key exchange with repository server 1806.
The mobile computer system 1816 can securely retrieve the encrypted data from data store 1802
over the public network 1810 through optional firewall 1812 because of the strong cryptography
used to store the information in data store 1802, and the mobile computer can securely receive
session keys from repository server 1806 using key exchange methods described above.

Fig. 18E is a schematic block diagram illustrating data protection in a multiple enterprise
environment. In this embodiment, information can be securely shared between enterprises over

the public network 1810. Data store 1802 contains encrypted information that can be provided to

38

WO 03/098864 PCT/US03/15569

[00124]

[00125]

internal users via application server 1820 and to users of peer enterprises through their
application servers, for example application server 1830. Secure and granular sharing of
information between enterprises over the public network 1810, through optional firewalls 1812,
is possible because of the secure key exchange between repository servers 1806 and 1816 that
reside in different enterprises. Trust is optionally established between the repository servers
1806 and 1816 by way of signed certificates from certification authority 1832, such as VeriSign
Inc. of Mountain View, California.

Fig. 19 is a schematic block diagram illustrating an embodiment of tables corresponding
to key management, access control, and user databases. A protection key information table 1902
has the primary key of protection key identifier (protectionkeyid). The protection key
information table 1902 contains the columns of “created,” which is a time stamp, “keyblob,”
which is an encrypted binary representation of the protection key, and a signature which is, for
example an HMAC data authenticator. In one embodiment, the “keyblob” field is encrypted in a
master key that is protected at rest by a K of M encryption scheme. An session key information
table 1904 is also provided. The session key information table has a primary key called
“SEKID,” which corresponds to an unencrypted SEKID. Accordingly, once a core engine
decrypts an SEKID from a hidden link, it can identify and decrypt “keyblob” from the session
key information table 1904. The session key “keyblob” is preferably encrypted with the same
protection key as the SEKID. In the session key information table 1904 and the other tables
illustrated in Fig. 19, the “created” and “signature” fields are analogous to the “creatéd” and
“signature” fields described in connection with the protection key information table 1902.

A principal information table 1906 has primary database keys of “principal” which

corresponds to the name of a user, agent, or server that accesses a cryptographic system

39

WO 03/098864 PCT/US03/15569

[00126]

[00127)

consistent with the present invention. The “roles” field corresponds to the roles assigned to a
particular principal. The “flags” field corresponds to status indicators associated with the
principal, e.g. disabled principal or non-disabled principal. The “subclassname” field is used to
indicate, for example whether the principal uses user name/password authentication or X.509
authentication.

User and password information table 1908 and X.509 principal information table 1910
are related to the principal information table 1906. The user and password information table
1908 contains user identifiers and password information for corresponding users. In one
embodiment the “password” field contains an encrypted SHA-1 hash of the password initially set
by the user. In this embodiment, the “password” hash is encrypted with a master key that is
protected by a K of M encryption scheme. The X.509 principal information table 1910 contains
certificates corresponding to principals, for example the certificates of remote cryptography
servers that exchange keys with the presently described core engine. ACL information table
1912 has a primary database key of an ACL identifier used to relate the table to an ACL entry
table 1914. The ACL information table contains one record for each key, including the key’s
hidden link, the ACL’s creation time and the key’s expiration flag. The ACL entry table 1914
has a primary key including an ACL identifier a principal identifier and a system identifier,
which corresponds to a core engine identifier that uniquely identifies the particular core engine
that generated the key.

A role table 1916 has a role identifier (roleid), a role name, a list operation identifier, and
a role type, which identify and define the rights associated with a particular role. The operation

table 1918 contains an operation identifier and operation names, which are used to associate

40

WO 03/098864 PCT/US03/15569

[00128]

[00129]

names of operations with actual operations that a user is authorized to perform in connection
with a particular core engine.

Audit log table 1920 and transaction log table 1922 are used to collect records that define
events as they take place in a core engine. The audit log table 1920, for example contains
information about the principal that performed a particular operation. The transaction log table
1922 contains information about, for example encryptions and decryptions that were performed
by the core engine.

Fig. 20 is a schematic block diagram illustrating a process of encrypting a file. First a
request for a key is made by a user at the cryptographic server (stage 140). Next, the repository
core engine optionally creates and transmits a session key to the key exchange module (stage
142). Next, the repository engine receives the user’s exchange public key (stage 144). The
exchange public key is the public key associated with the exchange key pair that is used to
exchange session keys between key exchange modules. Next, the key repository encrypts the
session in the exchange public key (stage 146). Next, the key exchange module informs the A/A
module that the user created a new session key (stage 148). A new session key can be created,
for example, when the application elects to cause generation of a new key by saving a new data
object or saving an existing data object without providing a corresponding hidden link. Next, the
A/A module adds information about key ownership into the ACL database (stage 150). In one
embodiment, the owner of a key has full access to information protected by the key. Further, in
this embodiment, the owner can grant rights to information protected by the key to other users.
Next, the server key exchange module 1530 sends a session key and a hidden link to the remote
computer system, encrypted in the user’s exchange public key (stage 152). Next, the user

decrypts the session key using the private key associated with the exchange key pair (stage 154).

41

WO 03/098864 PCT/US03/15569

[00130]

[00131]

Next, the remote core engine 1540 encrypts the user data and the user application embeds the
hidden link into a data structure, such as a file structure, associated with the user data (stage
156).

Fig. 21 is a schematic block diagram illustrating a process of maintaining an access
control list (ACL) of a key. First, a user requests the ACL of an existing key from the key
repository, and the A/A module receives the ACL request (stage 160). Next the A/A module
queries the user and ACL databases to determine whether the user has adequate rights to view an
ACL associated with a particular key (stage 162). In one embodiment, information regarding
other users having rights associated with the key is obtained from the user database. Next, user
information is obtained from the user database and the ACL database and the ACL is transmitted
to the user (stage 164). Next, the ACL is optionally modified by the client, for example to add
or remove rights in a particular key to a particular user (stage 166). Next, the A/A module
verifies that the user has adequate rights, for example by reference to the original ACL, to
modify the ACL (stage 168). Finally, the key repository makes appropriate changes to the ACL
within the ACL database (stage 170).

Fig. 22 is a schematic block diagram illustrating a process of accessing an encrypted file.
First, a file server provides encrypted information to the user, by way of the remote computer
system (step 180). Next, the repository server verifies that the user has the rights to access the
key necessary to decrypt the information provided by the file server (stage 182). Next, the key 1s
transmitted to the key exchange manager (stage 184). The repository server then retrieves the
User’s exchange public key from the user database (stage 186). Next, the repository key
exchange manager re-exports the session key (stage 188). Next, the repository key exchange

module sends the encrypted session key to the user, encrypted in the user’s exchange public key

42

WO 03/098864 PCT/US03/15569

[00132]

[00133]

[00134]

(stage 190). Next, the user decrypts the session key using the user’s exchange private key (stage
192). Further, the remote computer system decrypts the user data (stage 194).

Fig. 23 is a schematic block diagram illustrating a process of blocking access associated
with a key in response to the key becoming compromised. First, the repository server receives
information regarding a compromise of a remote computer system or of a smart card (stage 196).
Next, the repository operator receives a connection from an authorized representative of the user
(stage 198). Further, if the authorized representative is successfully authenticated, the keys are
disabled, for example by removing all users from the ACL associated with the compromised key
(stage 200).

In one embodiment, trusted software components are executed in connection with
cryptographic systems consistent with the present invention. The purposes of using trusted
components in connection with a cryptographic system include the ability to verify the identity
and authenticity of software. Verification of software is important, because the introduction of
rogue software into a functioning cryptographic system can defeat the cryptographic system.

One way to determine the authenticity of software is to verify its identity. In general,
identity can be established based on something’s inherent characteristics, based on knowledge of
a secret, or based on possession of something, for example a credential or a secret. However,
knowledge of a secret or possession of a secret such as an embedded key has proved to be
problematic. For example, persistent computer users have been able to locate and extract keys
hidden within software. Accordingly, establishing identity based on software’s inherent
characteristics is preferred. But merely having the name of a file containing source code is

insufficient to establish identity. A “fingerprint” that uniquely identifies the file is preferred. A

43

WO 03/098864 PCT/US03/15569

[00135]

[00136]

[00137]

[00138]

fingerprint can be verified at run-time before executing software to verify the identity of the
software.

Fig. 24 is a schematic block diagram illustrating a system in which trusted components
are authenticated. An application server 2410> and a registration server 2430 are provided. It is
understood that the application server 2410 and the registration server 2430 can be implemented
as separate threads or processes on a single computer system. Alternatively, the application
server 2410 and the registration server 2430 are implemented on separate computer systems. A
cryptography server 2420 is used in connection with the application server 2410 and the
registration server 2430 to provide cryptographic functions in connection with the verification of
trusted components.

The application server 2410 optionally includes a smart card reader 2412 that reads key
information from a smart card. Token dispenser 2414 provides a cryptographic token in
connection with verification of trusted components. Cryptographic Agent 2418 provides the
cryptographic functions necessary for the application server 2410 to communicate securely with
the cryptography server 2420 and to authenticate a business application 2416. The registration
server 2430 includes the smart card reader 2412 and a trusted component manager 2434 that is
used to gather and process information about trusted components.

The cryptography server 2420 includes a registration database 2426 and the optional
smart card reader 2412, Further, the cryptography server 2420 includes a core engine 2422,
which also contains a key database 2424, containing cryptographic keys. Trusted component
authentication systems are further described in connection with Figs. 24-27.

Fig. 25 is a schematic block diagram illustrating a process of creating smart cards. In one

embodiment, two secret cryptographic keys are generated during the installation or configuration

44

WO 03/098864 PCT/US03/15569

[00139]

of the cryptography server 2420. First, an operational key is generated (stage 202). In one
embodiment, the operational key is used to secure communication between the cryptographic
agent and the cryptography server. In one embodiment, the operational key is read into separate
machines containing the cryptographic agent and the cryptographic server from a smart card. In
this embodiment, a “fingerprint” corresponding to the cryptographic agent is also contained in
the smart card. Using the stored “fingerprint” of the cryptographic agent, the cryptographic
server can verify the authenticity of the cryptographic agent. Next, a registration key is
generated (stage 203). The registration key is used by a system administrator during the
registration process to register a trusted component. Next, the operational key is placed into an
operational smart card (stage 204), and the operational key is optionally signed, for example by a
trusted entity (stage 206). In one embodiment, the operational key is signed with a signing key
associated with the cryptography server 2420. Next, the registration key is placed in a
registration smart card (stage 208). Further, the registration key is signed by a trusted signer
(stage 210).

Fig. 26 is a schematic block diagram illustrating a process of registering components.
First, the trusted component manager 2434 receives software in the form of electronic computer
code associated with a software component, such as business application 1542 (stage 212).
Next, the trusted component manager 2434 determines the name of the component, for example
by performing an operating system call to determine the name of a file associated with the
component (stage 214). Next, the trusted component manager 2434 calculates a “fingerprint” of
the trusted component, for example by applying a hash function like MD5 or SHA-1 to the
component (stage 216). Next, the trusted component manager 2434 reads the registration key

from the registration smart card (stage 218). Accordingly, users that do not have access to the

45

WO 03/098864 PCT/US03/15569

[00140]

[00141]

registration smart card do not have the ability to register a component. Next, using the
registration key, the trusted component manager 2434 uses the registration key pair to perform a
challenge response protocol with the cryptography server (stage 220) and to securely send the
component’s information to the cryptography server (stage 222). Further, the cryptography
server signs the newly registered component’s registration information, including, for example,
the “fingerprint” (stage 224), and the registration information is stored in a database.

Upon restart of the application server 2410, token dispenser 2414 receives information
from the operational smart card by way of the smart card reader 2412. In one embodiment, after
the smart card is inserted, a user must provide a password.

Fig. 27 is a schematic block diagram illustrating a process of performing run-time
authentication of components. First, the business application 2416 submits a request to
cryptographic agent 2418 to operate as a trusted component. The cryptographic agent 2418
receives the request (stage 226). Next, the cryptographic agent determines the name of the
application and calculates its digital “fingerprint” (stage 228). Next, the cryptographic agent
2418 transmits a request for challenge to cryptography server 2420 regarding the application
(stage 230). Next, cryptography server 2120 generates a random challenge and calculates the
correct response based on the operational key and the application “fingerprint” (stage 232).
Next, cryptography server 2420 presents the challenge to the cryptographic agent 2418 (stage
234) and the agent performs a first part of the response calculation using the application’s
fingerprint by, for example combining the fingerprint with the challenge (stage 236). Next, the
agent instructs the token dispenser 2414 to complete the calculation of the challenge (stage 238).
Next, the token dispenser verifies the integrity of the agent, for example by comparing the stored

fingerprint with the actual fingerprint of the operational agent as it is executing in memory and

46

WO 03/098864 PCT/US03/15569

[00142]

[00143]

the token dispenser completes the response célculation, for example by computing a HMAC of
the challenge and fingerprint combination using the operational key as the key in the HMAC
calculation. (stage 240). Further, the cryptography server 2420 verifies the response to the
challenge by verifying the HMAC with the operational key and comparing the calculated
fingerprint with the stored fingerprint (stage 242) and validates the application as a trusted
component.

The present invention has important benefits and advantages. Because cryptographic
keys are not stored in software components, known techniques cannot be used to extract the keys
and defeat the cryptographic system. Protected data items contain an associated hidden link that
provides the identity of the associated cryptographic key within the key store. Further, instead of
having a few keys for all of the protected information, a different key is used to protect discrete
pieces of information, for example a different key is used for each protected file on a file server
or for each protected record in a database. In one embodiment, the key store is located in a
centralized key repository resulting in the advantage of simplified backup and disaster recovery
procedures. Further, the keys themselves are encrypted in the key repository and the keys are not
identifiable with their respective protected data item. Accordingly, without knowledge of the
hidden link within a protected data object, even possession of the key repository does not allow
an intruder to achieve access to actual data.

Additional benefits and advantages of the present invention involve the distributed nature
of the cryptographic systems and methods, in that while keys are centrailzed in one or more key
repositories, cryptographic computations are performed on remote computer systems that are
closer to the actual producers and consumers of the protected data. Accordingly, the

computational power of the remote computer systems is leveraged and computational

47

WO 03/098864 PCT/US03/15569

[00144]

[00145]

[00146]

[00147]

[00148]

[00149]

[00150]

efficiencies are achieved over systems in which cryptographic computations are performed
centrally.

The above described computer system and database structure are utilized in the method
of encrypting, storing, retrieving, and decrypting data. When a client user requests a data
manipulation including add, update, and view requests, the computer system will implement the
appropriate steps. For each transaction, it is assumed that the client user has already gained
access to the business domain using a trusted authentication method, such as smart cards, two-
factor authentication devices, or user name and password.

GLOSSARY

Asymmetric Key Cryptography: Cryptography that uses a different key to encrypt and to
decrypt information. For example, in public key cryptography, a public key is used to encrypt
information, but the public key cannot be used to decrypt the information. Only a private key
associated with the public key can decrypt the encrypted information.

Attribute/Field: A category of data saved in an object.

Business Logic Component (BLC): A component in the computer system accessible by the
client to establish and change business rules controlling operation of the system and what data
will or will not be encrypted.

Certificate Manager (CM): Controls the system key PKI related operations and communicates
with the private certification authority responsible for issuing and verifying digital certificates
for the system keys.

Cipher Text: Encrypted data.

Class: According to object-oriented programming, a category of objects.

48

WO 03/098864 PCT/US03/15569

[00151] Database Adapter (DBAD): Software component, which allows the security domain
components to save and retrieve data on various types of databases and multiple databases.

[00152] Data Encryption Standard (DES): A symmetric-key algorithm established by the U.S.
government that uses a 56-bit key.

[00153] Decryption: Changing data from cipher text to plain text.

[00154] Digital Certificate: An data structure used to ensure the authenticity of a public key. A typical
digital certificate includes a signed collection of certificate holder information, a public key, an
identification of the certificate issuer, and the serial number of the certificate.

[00155] Encryption: The translation of data into a secret code.

[00156] Encryption Key Manager (EKM): A software component of the computer system, which
manages the session encryption keys including generation, replacing, and other tasks.

[00157] Fault Tolerance: The ability of a system to continue operation in the event of unexpected
hardware or software failures.

[00158] General Security Manager (GSM): A software component, which operates as a gatekeeper to the
security domain and performs hashing, encryption and decryption functions.

[00159] Hardware Random Number Generator (HRNG): A device used to generate numbers randomly
for the SEKID.

[00160] Hashing: Generating a number from a string of text that is substantially smaller than the text
itself. In connection with a “one-way” hash function, the hash value effectively cannot be used
to determine the text used to generate the hash value. The hash value or integrity value is used
for search queries to identify an appropriate data object and for security integrity checks.

[00161] Internet Protocol (IP): Specifies the format of information and the addressing scheme for

transmission of information over the Internet.

49

WO 03/098864 PCT/US03/15569

[00162] Internet Protocol Security (IPSEC): A set of protocols to support secure exchanges of
information at the Internet protocol layer.

[00163] IP Spoofing: Attempting to make a message appear as if it came from an authorized Internet
protocol address.

[00164] Key: A password or table needed to decipher encrypted data.

[00165] Key Auditing Manager (KAM): Maintains an active audit log about all EKM and SKM
operations with the ability to send alarms and notifications to recipients based on policies and
rules.

[00166] Key Lifetime Manager (KLM): Monitors the SEK's for expiration and deactivates expired
SEK's or alternatively flags SEK's to be deactivated in the next request or call.

[00167] Memory (RAM): Random access memory.

[00168] Message Digest 5 (MDS5): A one-way hash function, which takes a message and converts it to a
hash value, or message digest, of a particular size. It is called a one-way hash function because
it is nearly impossible to reverse the process, converting the hash value to the original message.

[00169] Object: A self-contained entity consisting of both data and procedures, or methods, to
manipulate the data.

[00170] Object Oriented: Refers to a special type of programming that combines data structures with
functions or methods to create reusable and extensible program elements called objects.

[00171] Plain Text: Unencrypted data.

[00172] Public Key Infrastructure (PKI): A collection of hardware and software systems to facilitate
reliable use of public key cryptography, including certification authorities to certify digital

certificates, and other registration authorities that verify and authenticate the validity and

50

WO 03/098864 PCT/US03/15569

identity of parties involved with signing or receiving encrypted messages using public key
cryptography.

[00173] Secure Hash Algorithm (SHA-1): Another one-way hash function.

[00174] Secure Key Database (KEYDB): A database inside the security domain on which the SEK's and
SEKID's are saved.

[00175] Secure Sockets Layer (SSL): A protocol developed for transmitting information securely over
the public Internet.

[00176] Session Encryption Key (SEK): A key used to encrypt and decrypt data over the course of a
session, which is a period during which data is being accessed.

[00177] Session Encryption Key Identifier (SEKID): A randomly generated identification number for
the SEK.

[00178] Smart Card: A small electronic device about the size of a credit card that contains electronic
memory. It may include an integrated circuit.

[00179] Symmetric Key Encryption: An encryption system in which data is both encrypted and
decrypted using the same key.

[00180] System Key Pair: An asymmetric key pair that is used to encrypt and decrypt the SEKID's.

[00181] System Key Common Name (SKCN): System key digital certificate serial number and subject
common name.

[00182] System Key Manager (SKM): Manages system keys including generation, verification, and
other tasks.

[00183] Virtual Private Network (VPN): A virtual connection over a public network for conducting
private exchange of information using cryptographic techniques.

[00184] X.509: A widely used standard for defining digital certificates.

51

WO 03/098864 PCT/US03/15569

Claims

1. A computer system containing cryptographic keys and cryptographic key
identifiers, the computer system comprising:

a repository cryptographic engine operable to communicate securely with a remote
cryptographic engine, the repository cryptographic engine associated with a user data store
having at least one hidden link including a session key identifier encrypted with at least one
protection key, the hidden link associated with at least one remote data entity;

at least one session key encrypted with at least one session-key-protection key, the
session key operable to be used in connection with cryptographic operations on the remote data
entity; and

a repository key exchange module operable to exchange the session key with a remote

key exchange module.

2. The computer system according to claim 1, wherein the session key identifier is
L}

operable to identify the session key corresponding to the remote data entity.

3. The computer system according to claim 1 further comprising:
an authorization module coupled with at least one access control list, wherein access to

operations based on the session key is provided based on the access control list.
4. The computer system according to claim 3, wherein the authorization module is

further coupled with a user data store and wherein access to the session key is further provided

based on the user data store.

52

WO 03/098864 PCT/US03/15569

5. The computer system according to claim 1, wherein the protection key is a
symmetric cryptographic key.
6. The computer system according to claim 1, wherein the session-key-protection

key is a symmetric cryptographic key.

7. The computer system according to claim 1, wherein the session-key-protection

key and the protection key are equivalent.

8. The computer system according to claim 6, wherein the symmetric cryptographic

key is used in connection with the triple Data Encryption Standard.

9. The computer system according to claim 6, wherein the symmetric cryptographic

key is used in connection with the Advanced Encryption Standard.

10. The computer system according to claim 1, wherein the hidden link is associated

with the remote data entity.

11. The computer system according to claim 10, wherein the remote data entity is a

file and the hidden link is embedded into a header of the file.

53

WO 03/098864 PCT/US03/15569

12. A distributed network including a repository server containing cryptographic
keys, the distributed network comprising:

a repository cryptographic engine operable to communicate securely with a remote
cryptographic engine;

a remote cryptographic agent operable to communicate securely with the remote
cryptographic engine; and

a business application coupled with the remote cryptographic agent, wherein authenticity
of the business application is verified by the remote cryptographic engine by comparing a stored
fingerprint of the business application with a calculated fingerprint of the remote cryptographic

agent.

13. The distributed network according to claim 12, wherein the remote cryptographic

agent and the remote cryptographic engine are resident in separate computer systems.

14. The distributed network according to claim 12, wherein secure communication
between the remote cryptographic agent and the remote cryptographic engine is secured using a

shared operational key.

15. The distributed network according to claim 14, wherein the shared operational

key is received by the remote cryptographic agent and the remote cryptographic engine from a

smart card.

54

WO 03/098864 PCT/US03/15569

16. A computer readable data transmission medium containing a data structure for
facilitating the secure exchange and use of encrypted data, the data structure comprising:

at least one data entity encrypted by at least one encryption key;

at least one key association that associates the data entity with the encryption key; and

mstructions operable to receive commands from an application software component to
generate a new encryption key, to store the data entity in encrypted form, and to transmit an
unencrypted form of the data entity to the application software component, the commands

proxied through a trusted cryptographic agent.

17. A cryptographic method for facilitating the secure storage of information, the
method comprising:

receiving a key request for a session key from a requesting key exchange module at a
remote computer system, the key request including a hidden link;

accessing and decrypting the session key based on the hidden link using a protection key;

receiving an exchange public key corresponding to the requesting key exchange module;

encrypting the session key in the exchange public key, resulting in an encrypted session
key;

transmitting the encrypted session key to the requesting key exchange module;

decrypting, at a computer system associated with a requester, the encrypted session key
with an exchange private key corresponding to the exchange public key;

encrypting a data entity with the session key, and attaching the hidden link to the data
entity; and

storing the data entity.

55

WO 03/098864 PCT/US03/15569

18. A cryptographic method for facilitating the secure retrieval of information, the
method comprising;:

providing at least one encrypted data entity to a requester;

receiving access control information corresponding to the requester;

determining whether the requester has sufficient access rights to decrypt the encrypted
data entity;

transmitting a session key to a key exchange module, the session key corresponding to
the encrypted data entity;

receiving an exchange public key from a user database;

encrypting the session key in the exchange public key, resulting in an encrypted session
key;

transmitting the encrypted session key to the requester;

decrypting the encrypted session key at a computer system associated with the requester
using an exchange private key corresponding to the exchange public key; and

decrypting the encrypted data entity with the session key.

19. A cryptographic method for facilitating the secure processing of information
using trustéd components, the method comprising:

receiving electronic code associated with a software component;

receiving a component identifier associated with the software component;

calculating a fingerprint associated with the electronic code;

reading a registration key from a registration key source;

56

WO 03/098864 PCT/US03/15569

executing a registration challenge response protocol using the registration key, whereby
authority to register the software component is demonstrated;

storing registration information and the fingerprint in connection with the component
identifier of the software component;

receiving request from the software component at a cryptographic agent to perform an
authorized cryptographic operation; and

transmitting a request for challenge to a cryptography server regarding the software
component;

providing a challenge to agent;

receiving a response to the challenge;

verifying the response to the challenge including calculating the fingerprint and verifying

an operational key.

20. The method as set forth in claim 19, wherein the registration key source is a

registration smart card.

21. A cryptographic system for facilitating the secure processing of information, the
system comprising:

means for providing at least one encrypted data entity to a requester;

means for receiving access control information corresponding to the requester;

means for determining whether the requester has sufficient access rights to access the
encrypted data entity;

means for transmitting a session key to a key exchange module, the session key

57

WO 03/098864 PCT/US03/15569

corresponding to the encrypted data entity;

means for receiving an exchange public key from a user database;

means for encrypting the session key in the exchange public key, resulting in an
encrypted session key;

means for transmitting the encrypted session key to the requester;

means for decrypting the encrypted session key at a computer system associated with the
requester using an exchange private key corresponding to the exchange public key; and

means for decrypting the encrypted data entity with the session key.

58

PCT/US03/15569

WO 03/098864

1/20

N

aseqejeq

Aiepuodeg

<>

+9
o

¥079 €079

aseqejeq
Krewud

< [

v L9 \ cw/
€9 suleWwoQ ssauIsng JuslD
8¢
|suuey) aInoag) —/
8y 098d|
uewoq Alunoes _
2]
FETNE-T-
Auoyny
sjeoynIag Jonies
elld
or l|\ [4°]
L# 1apeay y _l
aseqeieq \ N
pi =T [oNuH |
gc PEYSET
1# 18peay Aoy
vy Kiepucoag
ade}

:

og

44

t44

NV
jouenuy}
Youssu|
NVM

WO 03/098864

PCT/US03/15569

2/20
y 22

[

[:45 (EKM)

Encryption
Key Manager

A
1

24 /84
e R T

L__
e~ | (SKM) | Manager

Security Domain

System Key Manager - ——

(CM)

<<library>>
DBAdapter

86

90

Key Auditing
Manager

|
Key Lifetime Manager | _ _ _ _ _ _ _ _ _ _ _ _____ |
____________ (KLM)

|
Y
General Security
Manager
(GSM)

IPSec
Secure Channel

Component 1

Component 2 Component 3 Component 4

/ Client Business Domains
26

Figure 2

PCT/US03/15569

WO 03/098864

3/20

|

slews{ =g

SN =1

pasojosipun = 0}~

x0Sg

\

0s1

aoe

80¢

Buing :apodapi)

*

Bulis :lepju) a|ppIN
Bunig aswep jsen
Buuyg :awep jsai4

aweN

Jeys paubisun :uaipjiy9 jo "'oN
Jeys paubisun :snjejs |ejuen
J1eys paubisun :xag
9jeq :80d
Buus :NSS

uosJad

Buwys :AQjubaju oseg

¥

»

ju] paubisun :sabajiAlg
ju| paubisun :pj] 3joy
juj paubisun :pjiasn

3SIT7 SS90V [e1oadg

o€

¢ ‘B4

12143

Bulysg :Z yoieag
Buls :| yoseoag
8L »

Jeyo paubisun :Aoeaud 093
bug :Ajubaju] 008§ «—
Buiyg :qg| A8y oag
~——® isnjejg 20§ H
804 :ql1 sse19
Bupys tuesn juauing
Buwys :Aq payipoy
dwejsawy :poyipopy f
buyg :Aq pappy
dwejsawn “u%_of\d

zZ0L 001

ovi

jualsisiad

/» * 9Ll

_/

| C€

14012

Anuz ejeg

"\

PCT/US03/15569

WO 03/098864

4/20

g ‘B4
)
/
80119 :0Hom) diz
OW :(MoM) 31V1S
A9 sesueyy :HOM) ALID| <
}99.)S YUON iy :Hom) ssaNaav
zeee-zee :(110M) INOHJ
21299 {(owoHn) diz
SM X(awoH) 31V1S
exauan :(owoH) ALID
aueT yjnog gee (swoH) ss3uaav
LELL-LLL :(dwoH) INOHJ
14 IN3HATHD 40 "'ON
paiuep ISNLVLS TVLINVIN
0S61L/L/1L :904d| <«
ypws uyor "ms_G
J

/
omr/\

vl

ovl

g€l

G B4
44"
801¥9 diz
ONn = TR AR
£19 sesuey *ALID

j8ans yUoN vry :SS3¥AAQV
zgeee-eee ‘INOHd
ylwg uyor -dAWVN

/

s

g9e Fl\

PCT/US03/15569

— €91

5/20

Buoj] :483unod ommm:.\\
\QESw awl} :9)eq)se] abesn
* ggr 9V wejs awl} :uo pajeals)

* »\\ 651" | Bug :ql AoxsAs |
— 951

: Buwuyg :yseH Apubaju
b3S cal Aoxshs s " Bupg Tonbedo -
ulS anjeA yseH >9_m>m+\U m:_.._ .
3§ :dl uoissog
LG) mm—\\\\\\ ¥51

199100 NOMS 109lq0 M3S

WO 03/098864

\ -6 1S v\
ZS1 v "bI4
ZL
/
NOMS onjea ysey | @iyas paydAious | :pj Aoy des -

ﬂi._‘ 4

WO 03/098864
Start
160
Enter Data
" ',
Transmit Data
toBLC
164
N Request Encryption
166
Generate SEK & SEKID J
168
A Obtain System Key & SKCN
170 |
] Encrypt SEKID with System Key
(Public)
l 172
Obtain Hash Values for SKCNand | _/
SEK
174 l
Store SKCN, SKCN Hash Value
176 S . .
N tore SEK with SEKID in Key
Database
178
Encrypt data with SEK
“& Destroy Key
182 Store Encrypted data with encrypted
SEKID & hashed SKCN
Fig. 10

240
~—]

246

252

PCT/US03/15569

Check for SEK Expiration

\ 232

234

Expired SEK
Found? |

Generate New SEK

|

Set New SEK Expiration Date

Retrieve SEK objects for Old SEK

Obtain SKCN's

Obtain System Keys

Encrypt SEKID

Decrypt retrived data entites using old
SEK

248

Encrypt retrieved data entites using
new SEK

250

|/

Store Retrieved data entities

Fig. 13

WO 03/098864 PCT/US03/15569

7120

260

\—- Check for SEK Expiration

N

U

Request Information

| 126 262 |
Retrieve Information —/ \ L— Flag Expired SE
| 264
| 128 .
Check Security Privacy Attribute Retrieve data per request

l 266
Check Security level of theuser |——132

l

Decrypt Information

SEK
Expired

| 133
Adopting Display Parameters
——\ Replace Expired SEK
| 134 ﬂ
Display Permitted Information and 268
Fields
End

Fig. 14

Fig. 7

WO 03/098864

8/20

Transmit Request Based on
Searchable Information

/ZOB

210
\—{ Hash the Searchable Information
2 Query for Matcing Has Values in Data
Entities
214
Transmit Data Entities to Client —"
216 Obtain SKCN Hash Values and
Encrypted SEKID
218 Transmit SKCN Hash Value and
Encrypted SEKID to Request Keys
Query for matching SKCN Hash | 220
Values
222
Obtain System Key (Private)
224 | Decrypt SEKID's with System Private
Key
226
Obtain SEK's —
228
L— Transmit SEK's to Client
230

Decrypt Data Enlities

Fig. 12

PCT/US03/15569

Transmit Request Based on 1,84
Searchable Information
! Ly
Hash the Searchable Information
18 Query for Matching Hash Values In
Data Entities
Obtain SKCN Hash Values and 190
Encrypted SEKID
N 192
Query for matching SKCN Hash |
Values
194
N— Obtain System Key (Private)
Perform Digital Certificate Check on }6
System Key
De 1wt 198
crypt SEKID's with System »;
Private Key
200
S~ Obtain SEK's
202
Perform Integrity Check on SEK's
204
Decrypt Data Entities —
208 | Transmit decrypted data entities to
Client
Fig. 11

WO 03/098864

1500 \

Database
Server

Data
Store |- 4502

1520

PCT/US03/15569
9/20
Cryptography Server
Core Engine
Key
DB
1540
1554
D
User ACL
DB DB
1526 1524
1530
Application Server
Cryptographic Business
Agent icati
1844 Application
1542
1510

Fig. 15

WO 03/098864

Remote Computer System

Smart Card

Reader
1632

Business

Application
1612

Remote
Key
Exchange
Module

1630

Remote Core
Engine

1642

PCT/US03/15569

10/20

Remote Computer System

Smart Card

Reader
1632

Business
Application

Remote
Key
Exchange

Module
1630

1612

Remote
Core Engine

1642

1610

Repository Server
Repository
Core Engine
SmartCard | | <
Reader Key
1632 DB
Repository 1640
Key 1622
Exchange
Module ACL
1634 b8
624
AA User
Module D8
1636 1626
1620
NETWORK
1630
1600

Fig. 16

WO 03/098864

1700 \'

PCT/US03/15569

File Server

3
Data
Store %1722

1720

11/20
Repository Server
. Repository
Smart Card ReF’KO:)"tOW Core Engine
Read?égz Exchange Key
Module DB
1634 1640
A/A 1622
Module >
1636 User ACL
= DB DB
1626 1624
1620

Remote Computer System

Remote Computer System

Remote Computer System

Smart Card

Reader
1632

Remote
Key
Exchange
Module

1630

Remote Core
Engine

1642

Fig. 17

WO 03/098864 PCT/US03/15569

12/20

Fig. 18A

Fig. 18B

WO 03/098864 PCT/US03/15569

13/20

Internet

Fig. 18E

WO 03/098864 PCT/US03/15569

14/20

Internet

Fig. 18C

Internet

Fig. 18D

WO 03/098864

rotectionkeyid

created
keyblob
signature

ACLID

HiddenLink
CreationTime
ExpirationFlag
signature

15/20

1904~
SESSIONKEYIDI

PK | SEKID

keyblob
created
signature

19086

PCT/US03/15569

principal
system

roles

flags
subclassname
signature

PK,FK1 | principal
PK,FK1 | system
user
password
1914
PK |ACLID
PK | PrincipallD
PK | SystemID rolename
listoperationid
CreationTime roletype
EndTime signature
StartTime
MaxUsage
ACLRight
UserRight
signature

SEeRsnpalhi

PK,FK1
PK,FK1

principal
system

certid
certificate

operationid

1918

operationname
signature

Created
PrincipallD
EnginelD
OperationlD
signature

Fig. 19

Created
PrincipaliD
EnginelD
OperationiD
KeyID
DataSize
Rows

Cols
signature

WO 03/098864

Encrypting a File

16/20

Receive Key Request at Remote
Computer System

|

Generate and Transmit Session Key to
KEM

Receive User's Exchange Public Key

Encrypt Session Key in Exchange
Public Key

KEM Informs A/A Module that User
Created New Key

l

A/A Module Adds Information About
Key Ownership into ACL DB

|

Server KEM Sends Sesion Key and
Hidden Link to User

User Decrypts Session Key

|

Encrypt and Store User Data,
Embedding Hidden Link into File

Fig. 20

PCT/US03/15569

Maintaining an Access
Control List

160

Receive Key ACL Request at A/A
Module

162

A/A Module Queries User DB to Verify
Access Rights

|/

Receive User Information from User
and ACL DBs and Transmit AGL

_/164

|

ACL is Optionally Modified

—— 166

|

Verify User's Authorization to Modify
ACL

l

168

Make Appropriate Changes to ACL DB

Fig. 21

170

WO 03/098864

PCT/US03/15569

17120
. Blocking Access in
Accessing an Encrypted g
File Response to a Key
Compromise
Start Start
180 Receive_ Information Regarding —/196
Provide Encrypted File fo User Compromise °fch;$ge and/or Smart
| 182 [198
Repository Operator Receives -/
Verify User has Right to Access Key by Connection From Client's Authorized
Querying ACL DB Representative
200
Transmit Key To KEM 184 Disable Clients Keys |~
Get User's Exchange Public Key From 1 @
User DB 86
KEM Encrypts Key ——\ F'Q- 23

Repository KEM Sends Encrypted 188
Session Key to User Encrypted in

User's Exchange Key \
User Decrypts Session Key Using 190

Private Exchange Key \

Remote Computer System Decrypts 192

User Data \

Fig. 22

WO 03/098864

PCT/US03/15569
18/20
Application Server Cryptography Server
Token -
Smart Card . Core Engine
Reader Dispenser Smart Card

Reader >

2412
2412 Key
w

Business 2424

Application 2422
2416

Cryptographic
Agent

Registration

2418

2420

2410

Registration Server

Smart Card

Reader
2412

2400
Trusted Component
Manager

2434

2430

Fig. 24

WO 03/098864

Creating Smart Cards

Cotart >

19/20

202

Generate Operational Key

l

203

Generate Registration Key

I

Place Operational Key in Operational
Smart Card

| 204

I

Sign Operational Key in Operational
Smart Card

206

Place Registration Key in Registration
Card

[

208

Sign Registration Key in Registration
Card

Fig. 25

210

PCT/US03/15569

Registering
Components

Trusted Component Manager Receives
Electronic Code Associated with a
Component

|

Determine Name of Component

Calculate "Fingerprint” of Component

I

Trusted Component Manager Reads

Registration Key From Registraton —— 218
Smart Card
Execute Challenge Response Protocol
With Cryptography Server
| 220
Transmit Component's Registration
Information \
Cryptography Server Signs 222
Registration Information \
224

Fig. 26

WO 03/098864

20/20

Run-time Authentication

Receive Request from Business
Application at Cryptographic Agent

Determine Application Identity and
Calculate Digital "Fingerprint”

l

Transmit Request for Challenge to
Cryptography Server Regarding
Application

_/230

Server Generates Random Challenge
and Calculates Response Based on
Operational Key and Application
"Fingerprint”

232

Server Presents Challenge to Agent

|

Agent Performs First Part of Response
Calculation using the Application's
Fingerprint

Agent Instructs Token Dispenser to
Complete the Computation

|

Verify Integrity of the Agent and
Complete Response Calculation

Cryptography Server Verifies the
Response

Fig. 27

PCT/US03/15569

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US03/15569

A, CLASSIFICATION OF SUBJECT MATTER
IPC(7) : HO4L 9/00
USCL :718/171,172
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

uUs. : 718/171,172;380/277

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 6,289,451 B1(DICE et al) 11 September 2001, col.6,lines 25-| 1-21
52;col.8,lines 18-37.

Y US 6,044,154 A(KELLY) 28 March 2000, col.4,lines 57-| 1-21
61;col.5,lines 31-67;col.6,lines 56-62.

A US 6,084,969 A(WRIGHT et al) 04 July 2000, col.3,lines 39-| 1-21
60;col.5,lines 44-62.

A US 5,757,925 A(FAYBISHENKO) 26 May 1998, col.11,lines 15-| 1-21

63;co0l.7-51.

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: " later document published after the international filing date or priority
. X . date and not in conflict with the application but cited to understand
A" document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
wyn
" carer documens pblihd n or s che mrmionl g dre X" document ofprelr rlnce the cimed venion oot
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other on
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P document published prior to the international filing date but later wgn document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search

24 JUNE 2003

Date of mailing of the international search report

12 AUG-2003

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20281

Facsimile No.

(703) 305-3230

Authorized ofticer

Telephone No.

HOSUK SONG

SR oo

(708) 305-0042

Form PCT/ISA/210 (second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US03/15569

B. FIELDS SEARCHED

EAST
search terms: session key,transmit,sent

Electronic data bases consulted (Name of data base and where practicable terms used):

,send,module,software program,authenticate,identifier,key,password,entity,encrypt,cipher,encipher

Form PCT/ISA/210 (extra sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

