Office de la Propriété Canadian
Intellectuelle Intellectual Property
du Canada Office

Un organisme
d'Industrie Canada

i+l

An agency of
Industry Canada

CA 2504322 C 2015/07/14

neEn 2 504 322

12 BREVET CANADIEN
CANADIAN PATENT
13 C

(86) Date de dépot PCT/PCT Filing Date: 2003/10/30

(87) Date publication PCT/PCT Publication Date: 2004/05/21
(45) Date de délivrance/lssue Date: 2015/07/14

(85) Entrée phase nationale/National Entry: 2005/05/02

(86) N° demande PCT/PCT Application No.: US 2003/034463
(87) N° publication PCT/PCT Publication No.: 2004/042583
(30) Priorité/Priority: 2002/11/01 (US10/286,015)

(51) ClLInt./Int.Cl. GO6F 17/30 (2006.01)

(72) Inventeurs/Inventors:
BARRALL, GEOFFREY S., US;
BENHAM, SIMON L., GB;
WILLIS, TREVOR E., GB,;
ASTON, CHRISTOPHER J., GB

(73) Propriétaire/Owner:
HITACHI DATA SYSTEMS ENGINEERING UK LIMITED,
zZ

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : SYSTEME DE FICHIERS MATERIEL

(54) Title: APPARATUS AND METHOD FOR HARDWARE-BASED FILE SYSTEM

i

32064

45 (32)

‘ METADATA

| I\:IEIADATAtJ i

PATH

COPY

S o

CLUSTER
PORT
32 ouT

(57) Abrégé/Abstract:

A method and apparatus are disclosed having a non-volatile storage device and a storage processor configured to maintain, in a
memory for a file system, an object structure with a first tree structure rooted by a first root node and a second tree structure rooted
by a second root node. Each tree structure optionally includes a number of intermediate nodes and data blocks. Each tree
structure represents a version of the file system object. The storage processor manages changes to the file system object using the
first tree structure rooted by the first root node while storing the second tree structure rooted by the second root node and vice
versa for a checkpoint that is used for keeping the consistency of data on the non-volatile storage device if the contents of the

memory are lost.

C ana dg http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - http:/cipo.ge.ca

OPIC - CIPO 191

OPIC

CA 02504322 2012-11-14

ABSTRACT

A method and apparatus are disclosed having a non-volatile storage device and a storage
processor configured to maintain, in a memory for a file system, an object structure with a first
tree structure rooted by a first root node and a second tree structure rooted by a second root node.
Each tree structure optionally includes a number of intermediate nodes and data blocks. Each
tree structure represents a version of the file system object. The storage processor manages
changes to the file system object using the first tree structure rooted by the first root node while
storing the second tree structure rooted by the second root node and vice versa for a checkpoint
that is used for keeping the consistency of data on the non-volatile storage device if the contents

of the memory are lost.

10

15

20

25

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Apparatus and Method for Hardware-Based File System

Technical Field and Background Art

The present invention relates to computer file systems, and in particular to file
systems that are accessed using computer hardware distinct from that associated with

processors used for running computer application programs.

Summary of the Invention

In one embodiment of the invention there is provided a file server system for
accessing and utilizing a data storage system that may include magnetic storage,
magneto-optical storage, or optical storage, to name but a few. The system includes a
data bus arrangement, in communication with the data storage system, for providing data
to be stored in the data storage system and for retrieving data from the data storage
system. The system also includes a plurality of linked sub-modules, wherein the linked
sub-modules as a group are in communication with a control input for receiving file
service requests and a control output for responding to file service requests and process
such service requests and generate responses thereto over the control output. The control
input and the control output are typically distinct from the data bus arrangement. Each
sub-module is configured to perform a distinct set of operations pertinent to processing of
such file service requests. The system also includes a plurality of metadata memory
caches. Each metadata memory cache is associated with a corresponding sub-module for
storing metadata pertinent to operations of such sub-module, typically without storage of
file content data.

An exemplary embodiment has the plurality of linked sub-modules arranged
hierarchically.

An exemplary embodiment includes the following sub-modules: an object store
sub-module for causing storage and retrieval of file system objects in the storage system,
a file sub-module for managing data structure associated with file attributes, a directory
sub-module for handling directory management for the file sub-module, a tree sub-
module for handling directory lookups for the directory sub-module, a non-volatile

storage processing sub-module with associated non-volatile storage for storing file system

-1-

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

request data for subsequent storage in the storage system, and a free space allocation sub-
module for retrieving and updating data pertinent to allocation of space in the data storage
system.

Among other thi‘ngs, the tree sub-module manages a logical tree structure for the
directory sub-module. In order to keep the tree structure substantially balanced, the
directory sub-module associates each file with a randomized (or, perhaps more
accurately, pseudo-randomized) value, and the tree sub-module manages a logical tree
structure based upon the randomized values from the directory sub-module. Each
randomized value is generated from a file name, for example, using a cyclic redundancy
checksum (CRC) or other randomizing technique. The tree sub-module associates each
randomized value with an index into the logical tree structure and uses the randomized
values to access the logical tree structure. The tree sub-module associates each
randomized value with an index into the directory table.

The non-volatile storage processing sub-module stores file system request data in
the non-volatile storage at the request of a processor for recovery from a failure. The
non-volatile storage processing sub-module sends an acknowledgment to the processor
confirming storage of the file system request data in the non-volatile storage. The non-
volatile storage processing sub-module may receive file system request data from another
file server via an interface, which it stores in the non-volatile storage. The non-volatile
storage processing sub-module may also send file system request data to another file
server via an interface for non-volatile storage of the file system request data by the other
file server.

The object store sub-module maintains a file structure for each file system object
to be stored in the storage system. The file structures are typically stored in a dedicated
metadata cache. File system objects typically include such things as files, directories, and
file attributes. The object store sub-module effectuates storage of the file structures into
the storage system at various checkpoints. Checkpoints can be initiated by an external
processor or when certain events occur, for example, when a predetermined amount of
time has elapsed since a last storage of the file structures into the storage system, when a
portion of the non-volatile storage used for storage of the file system request data is

becoming full, or when a sector cache associated with the storage system is becoming
full.

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

In order to take a checkpoint, a checkpoint inquiry command is sent to the non-
volatile storage processing sub-module to initiate storage of file structures into the storage
system for a checkpoint. The checkpoint inquiry command typically includes a
checkpoint number for the checkpoint. The non-volatile storage processing sub-module
stores any outstanding file system requests in the non-volatile storage, optionally sends
the number of file system requests to another file server via an interface for non-volatile
storage of the number of file system requests by the other file server, sends the number of
file system requests to the file sub-module, and subsequently sends a checkpoint
command to the file sub-module (it should be noted that the storing and “mirroring” of
file system requests, and the passing of file system requests to the file sub-module, occurs
continuously as needed as well as during the taking of a checkpoint). The file sub-
module processes any file system requests, and, upon receiving the checkpoint command
from the non-volatile storage processing sub-module, waits for certain operations to
complete through the remaining sub-modules and then sends a checkpoint command to
the directory sub-module. The directory sub-module receives the checkpoint command
from the file-sub-module and sends a checkpoint command to the tree sub-module. The
tree sub-module receives the checkpoint command from the directory sub-module and
sends a checkpoint command to the object store sub-module. The object store sub-
module receives the checkpoint command from the tree sub-module and sends a
checkpoint inquiry to the free space allocation sub-module. The free space allocation
sub-module receives the checkpoint inquiry from the object store sub-module, completes
any operations necessary for the checkpoint including operations initiated subsequent to
receiving the checkpoint inquiry, and then sends a response to the object store sub-
module. The object store sub-module then causes the file system objects to be written to
the storage system, including an updated objects lists indicating any and all objects that
have been modified since a last checkpoint.

In a typical embodiment of the invention, each file structure includes a plurality of
nodes and at least one data block. Each node typically includes such things as pointers to
other nodes, pointers to data block descriptors, and a checkpoint number indicating a
checkpoint during which the node was created.

In a particular embodiment of the invention, the file structure includes at least two
root nodes for storing information for a first and a second checkpoint. The storage

system is logically divided into sectors, and the two root nodes are preferably stored in

23

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

adjacent sectors in the storage system. Each root node typically includes such things as
an object type for indicating the type of file system object (e.g., file, directory, free space
object, volume descriptor object, etc.), an object length for indicating the number of data
blocks associated with the file system object, a reuse count indicating the number of time
the root node has been used; a pointer to a previous instantiation of the root node, a
pointer to a subsequent instantiation of the root node, at least one a data block descriptor
including a pointer to a data block, a checkpoint number indicating a relative time the
data block was created, and an indicator to indicate whether the data block is zero or non-
zero, and file attributes (enode). It should be noted that the actual object length may not
be an integral number of data blocks, in which case the object length is typically rounded
up to the next higher block multiple to give a count of the number of blocks used.

In addition to root nodes, the file structure may include a number of direct nodes
that contain data block descriptors. A root node may include a pointer to a direct node.
The file structure may also include a number of indirect nodes. Indirect nodes point to
other indirect nodes or to direct nodes. A root node may include a pointer to an indirect
node. It is possible for an object to have no data associated with it, in which case the
object will not have any block descriptors.

In order to facilitate the creation of large empty (i.e., zero filled) files, the file
structure typically includes an indicator for each data block associated with the file
system object to indicate whether the data block is zero or non-zero. The file structure
typically also includes an indicator for each node and data block to indicate whether each
node and data block has been created. The object store sub-module creates nodes and
data blocks as necessary to accommodate file system write requests and sets the indicator
for each node and data block to indicate that the node or data block has been created. The
object store sub-module typically creates a data block by allocating space for the data
block from the free space allocation sub-module.

In order to facilitate recovery from failures, the object store sub-module typically
maintains a transaction log, which it stores along with the file structure in the storage
system from time to time.

Each sub-module may be implemented using dedicated hardware or a dedicated
Processor.

In another embodiment of the invention there is provided a clustered file server

system having two or more interconnected file servers. Two file servers may be

_4-

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

connected back-to-back, although more than two file servers are preferably
interconnected through a switch. The switch provides the ability for any server to
communicate with any other server. The servers then make use of this functionality to
exchange file system request data amongst themselves for non-volatile storage of the file
system request data, for example, in a virtual loop configuration. Typically, no
modification of the switch configuration is required if one of the servers becomes
unavailable, but rather, the servers realize the situation and modify the virtual loop
accordingly.

In another embodiment of the invention there is provided a clustered file server
system having at least three file servers and a switch. Each file server generates file
system request data and includes a non-volatile storage area. The switch interconnects
the file servers so that any given file server’s non-volatile storage stores file system
request data from a selected one of the other file servers. The switch may be configured
such that the file system request data from each file server is stored in at least one other
file server, for example in a virtual loop configuration. The switch is typically capable of
modifying the configuration in order to bypass a file server that becomes unavailable for
storing file system request data.

In another embodiment of the invention there is provided a file server having a
service module for receiving and responding to file service requests over a network, a file
module for servicing file service requests, and a processor in communication with the
service module and the file module. The service module passes a file service request to
the processor. The processor processes the file service request and passes the file service
request to the file module for servicing. The file module sends a response for the file
service request directly to the service module, bypassing the processor.

In another embodiment of the invention there is provided a method for managing
a reusable data structure in a file system. The method involves maintaining a reuse value
for the reusable data structure and changing the reuse value each time the data structure is
reused. The reusable data structure is typically a root node of an object structure
associated with a file system object. The reuse value is typically provided to a client for
referencing the file system object. The client typically includes the reuse value when
requesting access to the file system object, in which case the reuse value in the request is

compared to the reuse value in the root node to determine whether the root node was

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

reused subsequent to providing the reuse value to the client, and the request is serviced if
and only if the reuse value in the request matches the reuse value in the root node.

In another embodiment of the invention there is provided a method for
maintaining a file system object in a non-volatile storage at successive checkpoints. The
method involves maintaining an object structure for the file system object, the object
structure comprising a first tree structure rooted by a first root node and a second tree
structure rooted by a second root node, each tree structure optionally including a number
of intermediate nodes and a number of data blocks, each tree structure representing a
version of the file system object. The method also involves alternately managing the
object structure using the first tree structure rooted by the first root node while storing the
second tree structure rooted by the second root node in the non-volatile storage and
managing the object structure using the second tree structure rooted by the second root
node while storing the first tree structure rooted by the first root node in the non-volatile
storage. The method typically also involves maintaining a version number for each root
node, the version number indicating the checkpoint associated with the corresponding
tree structure. The non-volatile storage typically includes a plurality of sectors, and the
first and second root nodes are typically stored in adjacent sectors in the non-volatile
storage. The method typically also involves deterﬁﬁning a latest valid version of the file
system object based upon the version numbers of the root nodes. The method typically
also involves maintaining a list of free space areas of the non-volatile storage,
maintaining a list of free root nodes, allocating the root nodes for the object structure
from one of the list of free space areas and the list of free root nodes, and allocating
intermediate nodes and data blocks for the object structure only from the list of free space
areas. The method may also involve deleting the file system object from the non-volatile
storage. Deleting the file system object from the non-volatile storage typically involves
adding the root nodes to the list of free root nodes and adding the intermediate nodes and
data blocks to the list of free space areas.

In another embodiment of the invention there is provided a method for retaining a
read-only version of an object in a file system. The method involves maintaining an
object structure for the object, the object structure including at least a root node
associated with a current version of the object, a number of intermediate nodes, and a
number of data blocks for storing object data, wherein each node includes at least one

reference to a data block or to another node in order to form a path from the root node to

-6-

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

each data block. The method also involves storing the object structure in a non-volatile
storage and making a copy of the root node for the retained version of the object. The
method may also involve storing a reference to the copy of the root node in the object
structure for the object. The method may also involve storing a reference to the root node
in the copy of the root node. The method may also involve obtaining a reference to an
earlier version of the root node from the root node and storing the reference to the earlier
version of the root node in the copy of the root node and also storing a reference to the
copy of the root node in the earlier version of the root node. The method may also
involve storing the copy of the root node in the non-volatile storage.

The method may also involve modifying object data without modifying any
intermediate nodes or data blocks associated with the retained version of the object.
Modifying object data without modifying any intermediate nodes or data blocks
associated with the retained version of the object typically involves making a copy of a
data block, modifying the copy of the data block to form a modified copy of the data
block, and forming a path from the root node to the modified copy of the data block
without modifying any intermediate nodes along the path to the data block that are
associated with the retained version of the object. The root node may have a reference to
the data block, which is modified to refer to the modified copy of the data block rather
than to the data block. Alternatively, path from the root node to the modified copy of the
data block may include an intermediate node referenced by the root node that in turn has
a reference to the data block, in which case a copy of the intermediate node is made, the
copy of the intermediate node is modified to refer to the modified copy of the data block
rather than to the data block, and the root node is modified to reference the copy of the
intermediate node. Alternatively, the path from the root node to the data block may
include a plurality of intermediate nodes including at least a first intermediate node
referenced by the root node and a last intermediate node having a reference to the data
block, in which case a copy of each intermediate node is made, the root node is modified
to reference the copy of the first intermediate node, the copy of the last intermediate node
is modified to reference the modified copy of the data block, and the copy of each other
intermediate node is modified to reference a copy of another intermediate node in order to
form a path from the root node to the modified copy of the data block.

The method may also involve deleting a data block from the object without

modifying any intermediate nodes or data blocks associated with the retained version of

27

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

the object. The root node may have a reference to the data block, in which case deleting
the data block from the object involves removing the reference to the data block from the
root node. Alternatively, the path from the root node to the data block may include an
intermediate node referenced by the root node and having a reference to the data block, in
which case deleting the data block from the object involves making a copy of the
intermediate node, removing the reference to the data block from the copy of the
intermediate node, and modifying the root node to reference the copy of the intermediate
node. Alternatively, the path from the root node to the data block may include a plurality
of intermediate nodes including at least a first intermediate node referenced by the root
node and a last intermediate node having a reference to the data block, in which case
deleting the data block from the object involves making a copy of each intermediate
node, modifying the root node to reference the copy of the first intermediate node,
removing the reference to the data block from the copy of the last intermediate node, and
modifying the copy of each other intermediate node to reference a copy of another
intermediate node in order to form a path from the root node to the copy of the last
intermediate node.

The method may involve adding a new data block to the object without modifying
any intermediate nodes or data blocks associated with the retained version of the object.
Adding the new data block to the object may involve allocating the new data block dnd
adding a reference to the new data block to the root node. Adding the new data block to
the object may involve allocating the new data block, making a copy of an intermediate
node, storing a reference to the new data block in the copy of the intermediate ﬁode, and
storing a reference to the copy of the intermediate node in the root node. Adding the new
data block to the object may involve allocating the new data block, allocating a new
intermediate node, storing a reference to the new data block in the new intermediate node,
and storing a reference to the new intermediate node in the root node. Adding the new
data block may involve allocating the new data block, allocating a new intermediate
node, storing a reference to the new data block in the new intermediate node, and forming
a path to the new intermediate node without modifying any intermediate nodes or data
blocks associated with the retained version of the object.

The method may involve maintaining a modified objects list for the retained

version of the object. The modified objects lists indicates any and all intermediate nodes

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

and data blocks added, modified, or deleted after making a copy of the root node for the
retained version of the object.

The method may involve deleting the retained read-only version of the object
from the file system. Deleting the retained read-only version of the object from the file
system involves identifying any and all intermediate nodes and data blocks modified
since retaining the read-only version of the object, identifying the copy of the root node
for the retained version of the object being deleted, identifying a root node associated
with an earlier retained version of the object if one exists, identifying a root node
associated with a later version of the object, said later version being one of a later
retained version of the object and a current version of the object, identifying any and all
intermediate nodes and data blocks associated with the retained version of the object
being deleted, identifying any and all intermediate nodes and data blocks that are used
only by the retained version of the object being deleted, deleting from the object structure
each intermediate node and data block that is used only by the retained version of the
object being deleted, identifying any and all intermediate nodes and data blocks that are
used by the later version of the object, adding any and all intermediate nodes and data
blocks that are used by the later version of the object to a modified objects list associated
with the later version of the object, determining whether the copy of the root node for the
retained version of the object being deleted is only used in the retained version of the
object being deleted, and deleting from the object structure the copy of the root node for
the retained version being deleted if and only if the copy of the root node for the retained
version of the object being deleted is only used in the retained version of the object being
deleted. Identifying all intermediate nodes and data blocks that were modified in the
retained read-only version of the object typically involves maintaining a list of
intermediate nodes and data blocks modified since retaining the read-only version of the
object. The root node for the retained read-only version of the object typically includes a
reference to the root node of the earlier retained version of the object if one exists, and
identifying the root node associated with the earlier retained version of the object
typically involves accessing the reference to the root node of the earlier retained version
of the object in the root node for the retained read-only version of the object. The root
node for the retained read-only version of the object typically includes a reference to the
root node of the later version of the object, and identifying the root node associated with

the later version of the object typically involves accessing the reference to the root node

_9.

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

of the later version of the object in the root node for the retained read-only version of the
object. Identifying any and all intermediate nodes and data blocks that are used only by
the retained version of the object being deleted typically involves, for each intermediate
node and data block in the retained version of the object being deleted, identifying an
equivalent intermediate node or data block in the earlier version of the object, if one
exists, and in the later version of the object, if one exists; comparing the intermediate
node or data block in the retained version of the object being deleted to the equivalent
intermediate node or data block in both the earlier version of the object and the later
version of the object; and determining that the intermediate node or data block is used
only by the retained version of the object being deleted if and only if the equivalent
intermediate node or data block is different in the earlier version of the object, if one
exists, and in the later version of the object, if one exists. Each deleted intermediate node
and data block is typically added to a list of free space areas. The root node associated
with the earlier retained version of the object typically includes a reference to the copy of
the root node for the retained version of the object being deleted, and deleting from the
object structure the copy of the root node for the retained version being deleted typically
involves replacing the reference to the copy of the root node for the retained version of
the object being deleted with a reference to the root node associated with the later version
of the object, if one exists, or with a null value, if one does not exist. The root node
associated with the later version of the object typically includes a reference to the copy of
the root node for the retained version of the object being deleted, and deleting from the
object structure the copy of the root node for the retained version being deleted typically
involves replacing the reference to the copy of the root node for the retained version of
the object being deleted with a reference to the root node associated with the earlier
version of the object, if one exists, or with a null value, if one does not exist. The deleted
copy of the root node is typically added to a list of free root nodes.

In another embodiment of the invention there is provided a method for indicating
the contents of a portion of an object in a file system. The method involves maintaining
an object structure including a number of data blocks for the object and maintaining an
indicator for each data block, each indicator having a first state for indicating that the
corresponding data block is logically filled with a predetermined value and a second state
for indicating that the corresponding data block contains object data. Each indicator is

typically maintained in a node referencing the corresponding data block. The

-10 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

predetermined value is typically a zero value. The method may also involve setting an
indicator to the first state to indicate that the corresponding data block is logically filled
with a predetermined value without writing the predetermined value to the corresponding
data block. The method may also involve writing object data into a data block and setting
the indicator corresponding to the data block to the second state to indicate that the
corresponding data block contains object data.

In another embodiment of the invention there is provided a method for allocating
sparse objects in a file system. The method involves allocating a root node for the object
and allocating additional nodes and data blocks as needed only for portions of the object
that are not to be zero-filled. Each node typically includes a number of references to data
blocks and/or other nodes. Each node typically includes an indicator for each reference
to another node. Each indicator has a first state for indicating that the other node has
been allocated and a second state for indicating that the other node has not been allocated.
The indicator for each reference associated with an unallocated node is initially set to the
second state. In order to write object data to a zero-filled portion of the object, additional
nodes and data blocks are allocated, and, in each node having a reference to an allocated
node, a reference to the allocated node is stored and the indicator for the reference to the
allocated node is set to the first state.

In another embodiment of the invention there is provided a method for storing
metadata associated with an object in a file system. The method involves maintaining a
first object structure for the object, the object structure including at least a root node and
optionally including intermediate nodes and data blocks, and storing a first portion of
metadata in the root node. The method may also involve allocating a number of data
blocks for storing a second portion of metadata. The method may also involve allocating
a second object structure for storing a third portion of metadata, in which case a reference
to the second object structure is typically stored within the first object structure, for
example, within the root node of the first object structure or within the second portion of
metadata.

In another embodiment of the invention there is provided an apparatus including a
non-volatile storage and means for maintaining a file system object in the non-volatile
storage at successive checkpoints using an object structure having two and only two root
nodes for managing a current version of the object, where the means alternates between

the two root nodes for managing the object at the successive checkpoints. The apparatus

-11 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

typically also includes means for retaining read-only versions of the object through the
object structure. The apparatus typically also includes means for deleting a retained read-
only version of the object from the object structure. The apparatus typically also includes
means for deleting the current version of the object while at least one retained read-only
version of the object exists in the object structure. The apparatus typically also includes
means for reverting the current version of the object to a retained read-only version of the
object.

In another embodiment of the invention there is provided a method for
maintaining file system objects in a file system having a non-volatile storage. The
method involves maintaining an object structure for each of a plurality of file system
objects, each object structure including at least one root node and optionally including a
number of intermediate nodes and a number of data blocks; maintaining a transaction log
identifying any and all modified nodes; storing any and all modified intermediate nodes
identified by the transaction log in the non-volatile storage; storing the transaction log in
the non-volatile storage; and storing any and all modified root nodes identified by the
transaction log in the non-volatile storage only after storing the transaction log in the non-
volatile storage. The method may also involve determining that a failure occurred
between storing the transaction log in the non-volatile storage and storing any and all
modified root nodes identified by the transaction log in the non-volatile storage and, for
each node identified by the transaction log, reverting to a previous version of the node
stored in the non-volatile storage.

In another embodiment of the invention there is provided a method for accessing a
shared resource in a distributed file system having at least a first file server that manages
the shared resource and a second file server that accesses the shared resource. The
method involves maintaining a cache for the shared resource by the second file server,
requesting read access to the shared resource by the second file server from the first file
server, providing read access to the shared resource by the first file server for the second
file server, obtaining shared resource data by the second file server from the first file
server, and storing the shared resource data by the second file server in the cache.

In another embodiment of the invention there is provided a method for accessing a
shared resource in a distributed file system having at least a first file server that manages
the shared resource and a second file server that accesses the shared resource. The

method involves maintaining a cache for the shared resource by the second file server,

-12 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

requesting read access to the shared resource by the second file server from the first file
server, denying read access to the shared resource by the first file server for the second
file server, providing shared resource data to the second file server by the first file server,
and omitting the shared resource data from the cache by the second file server.

In another embodiment of the invention there is provided a file server for
operation in a distributed file system having a resource shared among a plurality of file
servers. The file server includes a cache for storing data associated with the shared
resource and distributed lock means for controlling access to the shared resource, the
distributed lock means operably coupled to selectively store shared resource data in the

cache.

Brief Description of the Drawings

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying
drawings, in which: '

Fig. 1 is a block diagram of an embodiment of a file server to which various
aspects of the present invention are applicable;

Fig. 2 is a block diagram of an implementation of the embodiment of Fig. 1;

Fig. 3 is a block diagram of a file system module in accordance with an
embodiment of the present invention;

Fig. 4 is a block diagram showing how control flow may be used in embodiments
of the present invention to permit automatic response by the file service module to a
network request without intervention of software control;

Fig. 5 is a block diagram of a clustered file server arrangement embodying sector
cache locking in accordance with an embodiment of the present invention;

Fig. 6 is a block diagram of a clustered file server arrangement in accordance with
an embodiment of the present invention wherein non-volatile memory is mirrored in a
virtual loop configuration;

Fig. 7is a block diagram showing use of a root onode with no other onodes in
accordance with the embodiment of Fig. 3;

Fig. 8 is a block diagram showing showing employment of a root onode with a

direct onode;

_13 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Fig. 9 is a block diagram showing showing employment of a root onode with an
indirect onode as well as direct onodes;

Fig. 10 is a block diagram illustrating use of multiple layers of indirect onodes
placed between the root onode and the direct onodes;

Fig. 11 is a diagram illustrating creation of a root onode during checkpoint A in
accordance with the embodiment of Fig. 3;

Fig. 12 is a diagram illustrating the effect of making further modifications, to the
root onode of Fig. 11, that are written to the right hand side of the root onode;

Fig. 13 is a diagram illustrating the effect of the creation of checkpoint A, and
wherein root onode of Fig. 12 has been written to disk;

Fig. 14 is a diagram illustrating the effect of the creation of checkpoint B for the
same root onode;

Fig. 15 is a diagram illustrating the effect of modifying the same root onode as
part of checkpoint C while checkpoint B is being created;

Fig. 16 is a diagram for the starting point of an illustration of a root onode that is
part of an object structure having 2 levels of indirection;

Fig. 17 is a diagram that illustrates the structure of the object to which
corresponds the root onode of Fig. 16;

Fig. 18 is a diagram that illustrates the effect of taking a checkpoint with respect
to the object illustrated in Fig. 17,

Fig. 19 is a diagram that illustrates, with respect to the structure of Fig. 18, the
effect of allocating a new data block 2 and updating all of the onode structures to point at
this new block, before a new checkpoint has been taken; \

Fig 20 is a diagram that illustrates, with respect to the structure of Fig. 19, the
effect of taking checkpoint with respect to the data structure of Fig. 19;

Fig. 21 is a diagram that illustrates, with respect to the structure of Fig. 20, the
effect of writing to data block 1 with the object in data overwrite mode;

Fig. 22 is a timeline showing steps in creation of a checkpoint;

Fig. 23 is a diagram that shows the structure of an exemplary object that includes
four data blocks and various onodes at a checkpoint number 1;

Fig. 24 is a diagram that shows the structure of the exemplary object of Fig. 23
after a retained checkpoint is taken for a checkpoint number 2 and during modification of

a data block O during a checkpoint number 3, specifically after a copy of the object's root

214 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

onode is saved to free space and the root onode is updated to include a pointer to the
saved root onode in accordance with an embodiment of the present invention;

Fig. 25 is a diagram that shows the structure of the exemplary object of Fig. 24
after a modified copy of the data block is written to free space in accordance with an
embodiment of the present invention;

Fig. 26 is a diagram that shows the structure of the exemplary object of Fig. 25
after a new direct onode is created to point to the modified copy of the data block in
accordance with an embodiment of the present invention;

Fig. 27 is a diagram that shows the structure of the exemplary object of Fig. 26
after a new indirect onode is created to point to the new direct onode in accordance with
an embodiment of the present invention;

Fig. 28 is a diagram that shows the structure of the exemplary object of Fig. 27
after a pointer to the new indirect onode is written into the current root onode for the
object in accordance with an embodiment of the present invention;

Fig. 29 is a diagram that shows the structure of the exemplary object of Fig. 28
after a retained checkpoint is taken in a checkpoint number 4 and after a data block 3 is
deleted in a checkpoint number 5 in accordance with an embodiment of the present
invention;

Fig. 30 is a diagram that shows the structure of the exemplary object of Fig. 29
after the retained checkpoint taken in checkpoint number 4 is deleted in accordance with
an embodiment of the present invention; and

Fig. 31 is a diagram that shows the structure of the exemplary object of FIG. 30
after the current version of the object is deleted, leaving only the retained checkpoint
taken in checkpoint number 2, in accordance with an embodiment of the present

invention.

Detailed Description of Specific Embodiments

Definitions. As used in this description and the accompanying claims, the
following terms shall have the meanings indicated, unless the context otherwise requires:
“Data storage system” may be any suitable large data storage arrangement,

including but not limited to an array of one or more magnetic or magneto-optical or
optical disk drives, solid state storage devices, and magnetic tapes. For convenience, a

data storage system is sometimes referred to as a “disk” or a “hard disk”.

-15 -

10

15

20

25

30

CA 02504322 2012-11-14

A “hardware-implemented subsystem” means a subsystem whérein major
subsystem functions are performed in dedicated hardware that operates outside the
immediate control of a software program, Note that such a subsystem may interact with a
processor that is under software control, but the subsystem itself is not immediately
controlled by software. “Major” functions are the ones most frequently used.

A “hardware-accelerated subsystem”™ means one wherein major subsystem
functions are carried out using a dedicated processor and dedicated memory, and,
additionally (or alternatively), special purpose hardware; that is, the dedicated processor
and memory are distinct from any central processor unit (CPU) and memory associated
with the CPU. '

A “file” is a logical association of data.

“Metadata” refers to file overhead information as opposed to actual file content
data.

“File content data” refers to file data devoid of file overhead information.

Pertinent to subject matter described herein commonly-owned U.S. Patent
No. 8,041,735 entitled Distributed File System and Method, which was
filed on even date herewith in the names of Francesco Lacapra, Fiorenzo Cattaneo, Simon
L. Benham, Trevor E. Willis, and Christopher J. Aston.

Fig. 1 is a block diagram of an embodiment of a file server to which various
aspects of the present invention are applicable. A file server of this type is desctibed in
PCT application publication number WO 01/28179 A2, published April 19, 2001, entitled
“Apparatus and Method for Hardware Implementation or Acceleration of Operating
System Functions”—such document, describing an invention of which co-inventors
herein are also co-inventors. The present Fig.
1 corresponds generally to Fig. 3 of the foregoing PCT application. A file server 12 of Fig
1 herein has components that include a service module 13, in communication with a
network 11. The service module 13 receives and responds to service requests over the
network, and is in communication with a file system module 14, which translates service
requests pertinent to storage access into a format appropriate for the pertinent file system
protocol (and it translates from such format to generate responses to such requests). The
file system module 14, in turn, is in communication with a storage module 15, which

converts the output of the file system module 14 into a format permitting access to a

-16 -

10

15

20

25

30

CA 02504322 2012-05-22

storage system with which the storage module 15 is in communication. The storage
module has a sector cache for file content data that is being read from and written to
storage. As described in the foregoing PCT application, each of the various modules may
be hardware implemented or hardware accelerated.

Fig. 2 is a block diagram of an implementation of the embodiment of Fig. 1. In
this implementation, the service module 13, file system module 14, and storage module
15 of Fig. 1 are implemented by network interface board 21, file system board 22, and |
storage interface board 23 respectively. The storage interface board 23 is in
communication with storage device 24, constituting the storage system for use with the
embodiment. Further details concerning this implementation are set forth in U.S.
Patent No. 6,826,615 entitled “Apparatus and

Method for Hardware Implementation or Acceleration of Operating System Functions” |

Fig. 3 is a block diagram of an embodiment of a file system module in accordance
with the present invention. The file system module embodiment may be used in systems
of the type described in Figs. 1 and 2. Exemplary bus widths for various interfaces are
shown, although it should be noted that the present invention is in no way limited to these
bus widths or to any particular bus widths.

The data flow in this embodiment is shown by upper bus 311, which is labeled
TDP, for To Disk Protocol, and by lower bus 312, which is labeled FDP, for From Disk
Protocol, such Protocols referring generally to communication with the storage module
15 of Fig. 1 as may be implemented, for example, by storage interface board 23 of Fig. 2.
The file system module always uses a control path that is distinct from the data buses 311
and 312, and in this control path uses pointers to data that is transported over the buses
311 and 312. The buses 311 and 312 are provided with a write buffer WRBUFF and read
buffer RDBUEFF respectively. For back up purposes, such as onto magnetic tape, there is
provided a direct data path, identified in the left portion of the drawing as COPY PATH,
from bus 312 to bus 311, between the two buffers.

A series of separate sub-modules of the file system module handle the tasks
associated with file system management. Each of these sub-modules typically has its own
cache memory for storing metadata pertinent to the tasks of the sub-module. (Metadata
refers to file overhead information as opposed to actual file content data; the file content

data is handled along the buses 311 and 312 discussed previously.) These sub-modules

-17 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

are Free Space Allocation 321, Object Store 322, File System Tree 323, File System
Directory 324, File System File 325, and Non-Volatile Storage Processing 326.

The sub-modules operate under general supervision of a processor, but are
organized to handle their specialized tasks in a manner dictated by the nature of file
system requests being processed. In particular, the sub-modules are hierarchically
arranged, so that successively more senior sub-modules are located successively farther to
the left. Each sub-module receives requests from the left, and has the job of fulfilling
each request and issuing a response to the left, and, if it does not fulfill the request
directly, it can in turn issue a request and send it to the right and receive a response on the
right from a subordinate sub-module. A given sub-module may store a response,
provided by a subordinate sub-module, locally in its associated cache to avoid resending a
request for the same data. In one embodiment, these sub-modules are implemented in
hardware, using suitably configured field-programmable gate arrays. Each sub-module
may be implemented using a separate field-programmable gate array, or multiple sub-
modules may be combined into a single field-programmable gate array (for example, the
File System Tree 323 and File System Directory 324 sub-modules may be combined into
a single field-programmable gate array). Alternatively, each sub-module (or combination
of sub-modules) may be implemented, for example, using integrated circuitry or a
dedicated processor that has been programmed for the purpose.

It can be seen that the file system embodiment provided herein is distributed in
nature. This distributed nature permits keeping all of the metadata associated with the file
system in cache memory that is distinct from file content cache. There are numerous
benefits to this arrangement, including the ability to cache large amounts of metadata
regardless of the size of the files to which they relate, increased throughput in handling
file operations, and reduced processor overhead.

The processing of file system requests is delineated by a series of checkpoints that
are scheduled to occur no less frequently than some user-specified interval, such as every
10 seconds. With respect to each successive checkpoint, there is stored, on disk, current
file structure information that supercedes previously stored file structure information
from the immediately preceding checkpoint. Checkpoints are numbered sequentially and
are used to temporally group processing of file requests.

For a variety of purposes it may be useful to have knowledge of the file system

structure at a selected point in time. This capability is provided by permitting user-

- 18 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

triggered storage of file system structure data associated with the currently saved
checkpoint, which is referred to hereinafter for convenience as a retained checkpoint, and
is described in detail below. The retained checkpoint is essentially a read-only version of
the file system structure at a particular checkpoint. Multiple retained checkpoints can be
taken, and mechanisms are included for deleting a selected retained checkpoint or
reverting the file system to a selected retained checkpoint (for example, to return the file
system to a known state following a catastrophe).

At the heart of the file system module is the Object Store sub-module 322. In this
implementation all items that are subject to storage on the hard disk, regardless of form
(including, for example, files, directories, free-space allocation information, a list of
objects created or modified since a last checkpoint was taken, a list of objects created or
modified since a last retained checkpoint was taken, and certain file attribute
information), are regarded as objects, and storage for such items is handled by the Object
Store sub-module 322. The Object Store sub-module can perform the following
operations with respect to an object: create, delete, write, and read. In addition, under
instruction from processor, the Object Store sub-module can create a checkpoint, and can
also create.a retained checkpoint, delete a retained checkpoint, or revert the file system to
a retained checkpoint. The Object Store sub-module tracks the physical location of data,
stored on the disk, which is associated with each object, using various data structures
described below. The Object Store sub-module causes disk storage requests to be sent by
a communication link over the bus 311 and obtains disk storage response data by a
communication link over the bus 312. If the Object Store sub-module receives a request
for a read operation, the Object Store sub-module can satisfy the request directly by
acting over the bus 311.

Although the storage system, with respect to which the file system embodiment
herein is being used, is referred to as the “disk,” it will be understood that the storage
system may be any suitable large data storage arrangement, including but not limited to
an array of one or more magnetic or magneto-optical or optical disk drives, solid state
storage devices, and magnetic tapes.

The Free Space Allocation sub-module 321 manages data necessary for operation
of the Object Store sub-module 322, and tracks the overall allocation of space on the disk
as affected by the Object Store sub-module 322. On receipt of a request from the Object

Store sub-module 322, the Free Space Allocation sub-module 321 provides available

-19 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

block numbers to the Object Store sub-module. To track free space allocation, the Free
Space Allocation sub-module establishes a bit map of the disk, with a single bit indicating
the free/not-free status of each block of data on the disk. This bit map is itself stored on
the disk as a special object handled by the Object Store sub-module. There are two two-
way paths between the Object Store and Free Space Allocation sub-modules since, on the
one hand, the Object Store sub-module has two-way communication with the Free Space
Allocation sub-module for purposes of management and assignment of free space on the
disk, and since, on the other hand, the Free Space Allocation sub-module has two-way
communication with the Object Store sub-module for purposes of retrieving and updating
data for the disk free-space bit map.

The File System File sub-module 325 manages the data structure associated with
file attributes, such as the file’s time stamp, who owns the file, how many links there are
to the file (i.e., how many names the file has), read-only status, etc. Among other things,
this sub-module handles requests to create a file, create a directory, insert a file name in a
parent directory, and update a parent directory. This sub-module in turn interacts with
other sub-modules described below.

The File System Directory sub-module 324 handles directory management. The
directory is managed as a listing files that are associated with the directory, together with
associated object numbers of such files. File System Directory sub-module 324 manages
the following operations of directories: create, delete, insert a file into the directory,
remove an entry, look up an entry, and list contents of directory.

The File System Directory sub-module 324 works in concert with the File System
Tree sub-module 323 to handle efficient directory lookups. Although a conventional tree
structure is created for the directory, the branching on the tree is handled in a non-
alphabetical fashion by using a pseudo-random value, such as a CRC (cyclic redundancy
check sum), that is generated from a file name, rather than using the file name itself.
Because the CRC tends to be random and usually unique for each file name, this
approach typically forces the tree to be balanced, even if all file names happen to be
similar. For this reason, when updating a directory listing with a new file name, the File
System Directory sub-module 324 generates the CRC of a file name, and asks the File
System Tree sub-module 323 to utilize that CRC in its index. The File System Tree sub-
module associates the CRC of a file name with an index into the directory table. Thus, the

sub-module performs the lookup of a CRC and returns an index.

220 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

The File System Tree sub-module 323 functions in a manner similar to the File
System Directory sub-module 324, and supports the following functions: create, delete,
insert a CRC into the directory, remove an entry, look up an entry. But in each case the
function is with respect a CRC rather than a file.

In rare cases the CRC for two different files may be the same, and the file system
module must handle such a case. To accommodate this situation, the File System Tree
sub-module 324 maintains a list of all files with same CRC, and does so by having a
pointer from any given file with a CRC to another file with the same CRC. (Owing to the
relative uniqueness of the CRC, this is likely a short list.) The File System Tree sub-
module 324 maintains the starting point of the list for any given CRC.

The Non-Volatile Storage Processing sub-module 326 interfaces with associated
non-volatile storage (called NVRAM in Fig. 3) to provide a method for recovery in the
event of power interruption or other event that prevents cached data—which is slated for
being saved to disk— from actually being saved to disk. In particular, since, at the last
checkpoint (checkpoints are discussed above near the beginning of discussion of Fig. 3),
a complete set of file system structure has been stored, it is the task of the Non-Volatile
Storage Processing sub-module 326 to handle storage of file system request data since the
last checkpoint. In this fashion, recovery, following interruption of processing of file
system request data, can be achieved by using the file system structure data from the last
stored checkpoint and then reprocessing the subsequent file system requests stored in
NVRAM.

In operation, the Non-Volatile Storage Processing sub-module 326, for every file
system request that is received (other than a non-modifying request), is told by the
processor whether to store the request in NVRAM, and, if so told, then stores in the
request in NVRAM. (If this sub-module is a part of a multi-node file server system, then
the request is also stored in the NVRAM of another node.) No acknowledgment of
fulfillment of the request is sent back to the client until the sub-module determines that
there has been storage locally in NVRAM by it (and any paired sub-module on another
file server node). This approach to caching of file system requests is considerably
different from prior art systems wherein a processor first writes the file system request to
NVRAM and then to disk. This is approach is different because there is no processor time
consumed in copying the file system request to NVRAM—the copying is performed

automatically.

=21 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

In order to prevent overflow of NVRAM, a checkpoint is forced to occur
whenever the amount of data in NVRAM has reached a pre-determined threshold. A
checkpoint is only valid until the next checkpoint has been created, at which point the
earler checkpoint no longer exists.

When file server systems are clustered, non-volatile storage may be mirrored
using a switch to achieve a virtual loop. Fig. 6 is a block diagram of a clustered file server
arrangement in accordance with an embodiment of the present invention wherein non-
volatile memory is mirrored in a virtual loop configuration. In this figure, it is assumed
that five file server nodes are clustered (although this technique works with any number
of server nodes, and each server node has associated a file system module, and each file
system module has a Non-Volatile Storage Processing sub-module 326, designated
NV_A (item 61), NV_B (item 62), NV_C (item 63), NV_D (item 64), and NV_E (item
65). Each of these sub-modules is coupled via the switch 66 to a different one of the sub-
modules, to permit the coupled sub-module’s associated NVRAM to retain a backup copy
of the original file system request data stored in NVRAM associated with the
corresponding sub-module. Couplings achieved by the switch 66 are shown in dashed
lines, so that backup path 611 permits file system request data in NVRAM associated
with sub-module NV_A to be backed up by NVRAM associated with sub-module NV_B.
Similarly, backup path 621 permits file system request data in NVRAM associated with
sub-module NV_B to be backed up by NVRAM associated with sub-module NV_C, and
so on, until the last part of the loop is reached, wherein backup path 651 permits file
system request data in NVRAM associated with sub-module NV_E to be backed up by
NVRAM associated with sub-module NV_A. If a server node becomes non-operational,
then the switch can reconfigure the loop among remaining nodes that are operational.

As described herein, a consistent file system image (termed a checkpoint) is
stored on disk at regular intervals, and all file system changes that have been requested by
the processor but have not yet been stored on disk in a checkpoint are stored in NVRAM
by the Non-Volatile Storage Processing sub-module.

In the event of a system failure, the processor detects that the on disk file system
is not "clean" and it begins the recovery procedure. Initially, the on disk file system is
reverted to the state represented by the last checkpoint stored on disk. Since this is a
checkpoint, it will be internally consistent. However, any changes that were requested

following the taking of this checkpoint will have been lost. To complete the recovery

220

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

procedure, these changes must be restored. This is possible since these changes would all
have been caused by requests issued by the processor, and (as explained above) all file
system changes that have been requested by the processor but have not yet been stored on
disk in a checkpoint are stored in NVRAM. The lost changes can therefore be restored
by repeating the sequence of file system changing operations that were requested by the
processor from the time of the last checkpoint until the system failure.

In order to achieve this, the processor examines the contents of the NVRAM and
extracts all the operations that were requested by the processor from the time of the last
checkpoint until the system failure. It then resubmits these requests to the File System
File sub-module, which satisfies the requests by making the necessary on disk changes.
The File System File sub-module does not distinguish between "live" file system requests
and resubmitted requests that are being issued during the recovery procedure - both are
handled in an indentical fashion (with the exception that resubmitted requests are not
logged in NVRAM since they already exist there).

One complication in this procedure relates to the file handles by which a file (or
directory) is referenced. In normal operation, when a file is created, it is assigned a file
handle. Any operations that subsequently need to refer to that file do so by means of this

file handle. So, for example, the following sequence of operations might take place:

(1) Processor requests that a file be created.
(2) File System File sub-module creates file and returns handle A.
(3) Processor requests write of data to file A.

(4) File System File sub-module performs the write.

In this example, the two requests at steps (1) and (3) would be stored in NVRAM.

The complication arises because the file handle assigned by the File System File
sub-module during the recovery procedure described above may differ from the file
handle that was originally assigned. So, for example, the operations stored in the
NVRAM might be as in the example above. However, during recovery, the file handle
returned by the File System File sub-module at step (2) might be B. In this case, the write
of data at step (3) using file handle A fails, since file handle A is not recognized by the

File System File sub-module.

223 .

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

In order to overcome this problem, whenever a file is created, the processor
explicitly logs the assigned handle in NVRAM (this is performed via a special request to
the Non-Volatile Storage Processing sub-module). The contents of the NVRAM at

recovery time therefore look like this:

(1) Processor requests that a file be created.

.... there may be more entries for other unrelated requests here ...
(2) Created file was assigned handle A.

.... there may be more entries for other unrelated requests here ...

(3) Processor requests write of data to file A.

Therefore, when a create operation is encounted during the recovery procedure,
the processor searches the NVRAM to find the assigned handle. It then issues the create
request and obtains a (potentially differént) handle. From this point on, any references in
the replayed operations to the old handle for the created file are replaced by the new
handle for the created file.

For example, the recovery procedure for the example above might proceed as
follows:

(1) Processor resubmits file create request.

(2) File System File sub-module creates file and returns handle B.

(3) Processor searches NVRAM for previously assigned handle and determines
the previously assigned handle is handle A.

(4) Processor notes that any subsequent references in NVRAM to handle A should
be replaced by handle B.

(5) Processor substitutes handle B for handle A and requests write of data to file

(6) File System File sub-module performs the write.

A typical embodiment utilizes an automatic response mechanism for servicing
certain file system requests. Fig. 4 is a block diagram showing how control flow may be
used in embodiments of the present invention to permit automatic response by the file
service module to a network request without prior intervention of software control. In

Fig. 4, there is shown service module 13, file system module 14, and storage module 15,

224 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

as in Fig. 1, with service module 13 and file system module 14 under the control of
software 41 and with storage module 15 in communication with storage arrangement 42.
The connections between blocks represent control flows rather than data flows. On
identification of a file service request by service module 13, the request is typically
passed from the service module 13 to software control 41, for example, to handle security
and other complex tasks. Then under software control 41, the request is processed by the
file system module 14. On the other hand, the response to a file system request, which is
not necessarily as complex, is routed from the file system module 14 directly back to the
service module 13 over control flow 43 rather than being routed back through software
control 41. The software control 41 is eventually informed that the request has been
satisfied.

In an arrangement employing a cluster of file server nodes accessing common
storage, it is necessary to deal with instances wherein multiple nodes may seek to perform
conflicting tasks with respect to a common storage location. Fig. 5 is a block diagram of a
clustered file server arrangement embodying sector cache locking in accordance with an
embodiment of the present invention to deal with this problem. In this embodiment, file
server node A (item 52) and file server node B (item 53), are both in communication with
clients 51 and are configured so that each server node may access (that is, read from and
write to) both disk A (item 54) and disk B (item 55). (Here, in a manner analogous to that
previously discussed, the term “disk” is an arbitrary storage designator, and includes the
use of several disks, e.g., or a particular region on a single disk drive, and the mode of
storage is any suitable for, including but not limited to magnetic and magneto-optical.)

In this embodiment, each server node maintains a sector cache, at a sector level,
of each of disk A and disk B. Under these circumstances, it is necessary to solve the
problem of how to achieve cache coherency where each server node might process disk
writes. This problem is addressed as follows. For a given disk, only one server node can
write to the disk (although a client can write to either disk via either server node). For
example, in Fig. 5, only server node A can write to disk A, and only server node B can
write to disk B. Each server node runs a lock manager for the disk it writes to. The disks
are split up into 32 Kbyte pages. Each page can be in one of three states: uncached, read-
locked, or write-locked.

As an example, it is assumed that server node A wants to cache a disk B read.

Server node A thus must first communicate with server node B, requesting a read lock for

-25 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

the page it wants to read. It gets the read lock, reads the data, and puts it in its sector
cache. Now assume that server node B wants to write to the same page. Server node B
has been informed that server node A has a read lock on this page. Server node B
therefore communicates with server node A, and instructs server node A to break its read
lock. Server node B then waits for a communication from server node A that the read
lock has been released (whereupon server node A flushes the page from its cache). Then
server node B has the write lock, and can write to the page. If server node A wants to read
the page again, it requests a read lock. Server node B responds by denying the read lock
but updating server node B’s cache and fowarding the cached data to server node A.
Server node A cannot cache this data, and will therefore be denied a read lock. A read
lock can next be granted to server node A when disk B is updated from B’s cache—
namely at the next checkpoint. This implementation thus provides a distributed lock

manager and does so in hardware.
1. OBJECT STORE STRUCTURES

1.1 Summary of Object Store Data Structures

The Object Store sub-module is used to maintain and store various types of file
system objects. File system objects include file objects, directory objects, free-space
allocation objects, modified checkpoint objects list objects, modified retained objects list
objects, and mnode objects. File objects are created by the File System File sub-module
for storage of user data and associated attributes, such as a word processor or spreadsheet
files. Directory objects are created by the File System Directory sub-module for storage
of directory information. Free-space allocation objects are created by the Free Space
Allocation sub-module for storage of free-space allocation information. Modified
checkpoint objects list objects and modified retained objects list objects (both of which
are described in more detail below) are created by the Object Store sub-module for
storage of information relating to checkpoints and retained checkpoints, respectively. An
mnode object (which is described in more detail below) is a special object for holding
excess file attributes associated with a file or directory object (i.e., file attributes that
cannot fit within pre-designated areas within the file or directory object as described
below, such as CIFS security attributes), and is created by the creator of the file or
directory object, which includes a reference to the mnode object within the file or

directory object.

-26 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

The following is a summary of the data structures, which have been termed
“onodes,” employed by the Object Store sub-module to track locations of data stored on
the disk. Additional details of the data structures are described later. (It should be noted
that these data structures are exemplary of only one embodiment of the present
invention.)

An object is made of a root onode and optionally a number of indirect and direct
onodes. There are also a number of other on disk objects and structures that are used to
control checkpoints and retained checkpoints. These are all described below.

There are three kinds of onodes—root, direct, and indirect. When an object (such
as a file or directory, for example) is created, there is created a corresponding root onode
(actually a pair of root onodes, as described below). Each root onode is stored on the disk
in a given sector number of the disk and the sector number uniquely identifies the root
onode and therefore also the root onode’s corresponding object. In a typical embodiment,
each sector is 512 bytes, so the size of a root onode is similarly limited to 512 bytes. As
will become apparent, aspects of the present file structure implementation are similar to a
basic Unix file structure, but traditional Unix systems have only a fixed number of
indirect pointers, and when the fixed number of pointers is used, then a file size limit is
reached. Additionally (among other things, traditional Unix systems use such storage
techniques only for files and do not employ an object storage model in the manner of
various embodiments of the present invention.

Root onodes are actually created in pairs. Since a root onode is identified by a
sector number, the other member of its pair is the next higher sector number. The pair
structure is employed so that one root anode of the pair is valid and complete with respect
to a checkpoint. The other member of the pair is then updated, when its corresponding
object is modified, to reflect the new state of the object‘. In normal processing, both
members of the pair onode ate read, and the one with the higher checkpoint number is the
one that is current.

Many file system requests involve disk usage, and such usage is conveniently
described with respect to blocks; a block is a specified data storage unit, and in common
embodiments may range in size from 2Kbytes to 64Kbytes.

The root onode data structure includes a checkpoint number to identify under
which checkpoint this version of the object has been created. Also in the root onode data

structure is a parameter to identify the type of object for which the root onode is

_27 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

providing metadata. The object type may, for example, be any of freespace, file, or
directory. In addition to object type, the root onode also has a parameter for the length of
the object in blocks.

Another root onode parameter is the reuse count. A reuse count parameter is
employed because if an object is deleted, it goes onto a queue of free root onodes rather
than back into free space. When a given root onode is assigned to a new object, the
associated root onode reuse count is incremented. The reuse count is part of the file
handle associated with the object. By incrementing the reuse count each time the root
onode is reused, file requests using a file handle created from an older version of the root
onode can be identified and rejected.

As suggested above, the root onode also carries a series of pointers. One of these
is a pointer to any immediately preceding version of the root onode. If it turns out that a
retained checkpoint has been taken for the pertinent checkpoint, then there may have been
stored an immediately preceding version of the root onode in question, and the pointer
identifies the sector number of such an immediately preceding version of the root onode.

For the actual data to which the root onode corresponds, there is a separate pointer
to each block of data associated with the root onodes’s object. The location of up to 18
data blocks is stored in the root onode. For data going beyond 18 blocks, a direct onode is
additionally required, in which case the root onode also has a pointer to the direct onode,
which is identified in the root onode by sector number on the disk.

Like the root onode, the direct onode includes a parameter identifying the
checkpoint number with respect to which the direct onode has been created. The direct
onode is arranged to store the locations of up to about 60 or 61 blocks data pertinent to
the object corresponding to the direct onode’s root onode..

When a first direct onode is fully utilized to identify data blocks, then one or
more indirect ondes are used to identify the first direct onode as well as additional direct
onodes that have blocks of data corresponding to the object. In such a case the root onode
has a pointer to the indirect onode, and the indirect onode has pointers to corresponding
direct onodes. When an indirect onode is fully utilized, then additional intervening
indirect onodes are employed as necessary. This structure permits fast identification of a
part of a file, irrespective of the file’s fragmentation.

The structure of direct and root onodes has another feature that, among other

things, permits fast creation of large files, which typically are set to a 0 value when first

-28 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

created. This feature is a flag for each block pointer, in each robt and direct onode, to
identify whether the corresponding block has a 0 value.

There is a related feature that also facilitates the fast creation of large files. In any
onode, every pointer to a block or to another onode has a bit to identify whether or not the
block or onode has been actually created. In a case where the relevant blocks and onodes
have not yet been created, then blocks and onodes are created as necessary to
accommodate write requests, and the allocation bit is toggled accordingly. Note that
creating a block requires allocation of space from the Free Space Allocation sub-module,
writing the data to the block, and setting the bit flags for the pertinent onodes.

For recovery purposes, there is also stored a transaction log of all onodes that
have been modified in a current checkpoint. Morever, the root onodes are not written to
disk, until there is established a complete transaction log on disk of all modified root
onodes. (Root onodes have this delayed write feature. Other onodes do not, and do not
need to, since they are accessed only through root onodes.) In recovery mode with respect
to a current invalid checkpoint, if the onode was modified in the current checkpoint, then
the previous checkpoint value is used. (Note that onode contents are stored on disk along
with the transaction log, as well has being maintained on the fly in metadata cache.)

Onode structure is also established, in this embodiment, in a manner to further
reduce disk writes in connection with onode structure. In the end the onode structure must
accommodate the storage not only of file contents but also of file attributes. File attributes
include a variety of parameters, including file size, file creation time and date, file
modification time and date, read-only status, and access permissions, among others. This
connection takes advantage of the fact that changing the contents of a root onode can be
performed frequently during a given checkpoint, since the root onode is not yet written to
disk. (It will be recalled that disk writes of root onodes are delayed.) So a portion of the
root onode is reserved for storage of file attributes.

More generally, the following structures for storage of file attributes are defined:

enode (little overhead to update, limited capacity). This structure is defined in the
root onode and is 128 bytes.

Inode (intermediate overhead to update, and with greater capacity than the enode.
The Inode is the first n bytes (typically 0-64K) of an object representing a file or directory

(and which is therefore stored on disk in places pointed to by the root onode for the

.29 -

10

15

20

25

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

object). The Inode is used for such attribute information as, for CIFS putposes, a security

descriptor.

mnode (expensive in overhead to update, near infinite capacity). This is a

dedicated object for storage of data and therefore has its own storage locations on disk;

the object is identified in the enode (or alternatively in the Inode).

The following provides a more detailed discussion of object storage in connection

with-the embodiment of Fig. 3.

1.2 Root Onode

Each root onode is 512 bytes in length. The following information is stored in the

root onode :

The checkpoint number with which this version of the object was created.
The data length for this version of the object.
The number of levels of indirection used in the runlist for this object.

The type of the object. This is primarily used as a sanity check when a

request comes in to access the object.
A reuse count to say how many times this root onode has been used.

A pointer to an older root onode version made for a retained checkpoint (if

there is one).

A pointer to a newer root onode version (will only be valid if this is a copy

of a root onode made for a retained checkpoint).

Up to 19 data block descriptors. Each data block descriptor includes a
pointer to a data block, the checkpoint number with which the data was

created, and a bit to say whether the block is zero filled.
A single pointer to either a direct onode or an indirect onode.
The 128 bytes of enode data for this object.

A CRC and various sanity dwords to allow the root onode to be checked for

validity.

For a given object, there are two places where the current valid version of the root

onode could be stored. These are at a byte offset into the volume of either (obj_num *

-30-

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

512) or ((obj_num * 512) + 512). To find which one is the most up to date, they must
both be read in, and the one which both passes all the validation checks and has the later
creation checkpoint number is the latest valid version.

As discussed in Section 4 below, an object may include copies of root onodes that
are created each time a retained checkpoint is taken. The pointer to the older root onode
version and the pointer to the newer root onode version allow a doubly-liked list of root
onodes to be created including the current root onode and any copies of root onodes that
are created for retained checkpoints. The doubly-linked list facilitates creation and

deletion of retained checkpoints.

1.3 Indirect Onode
The indirect onode provides a level of indirection between the root onode and the
direct onode. Each indirect onode is 1 Kbyte in length. Although it is possible to pack a
pair of indirect onodes into a disk block having aminimum disk block size of 2 Kbytes,
each indirect onode is typically stored in a separate disk block for the sake of simplicity.
The following information is stored in the indirect onode :

¢ The checkpoint number with which the indirect onode was created.
o Upto 122 pointers to either indirect or direct onodes.

e A CRC and various sanity dwords to allow the indirect onode to be checked

for validity.

As with the root onode currently valid indirect onodes are kept in pairs with one
of the indirect onodes in the pair containing the most up to date version of the indirect
onode. However, unlike the root onode there is no need to read in both of the indirect
onode to work out which one is the most up to date, as the currently valid indirect onode

will be pointed to directly from the current root onode.

1.4 Direct Onode

The direct onode provides direct pointers to data blocks on the disk. Each indirect
onode is 1 Kbyte in length which means that a direct onode pair can fit into a current
minimum disk block size of 2 Kbytes.

The following information is stored in the direct onode:

e The checkpoint number with which the direct onode was created.

231 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Up to 62 data block descriptors. Each data block descriptor includes a
pointer to a data block, the checkpoint number with which the data was

created, and a bit to say whether the block is zero filled.

A CRC and various sanity dwords to allow the indirect onode to be checked

for validity.

1.5 Dynamic Superblock

On the disk there are two dynamic superblocks — only one of which is considered

to be the most up to date at any given point in time. These are used to record the state of

the checkpoints on the disk.

The following information is stored in each dynamic superblock :

The checkpoint number associated with this dynamic superblock.

The handle of the modified checkpoint objects list object for this
checkpoint.

The object number of the modified retained objects list object from the last

retained checkpoint.

The state of this checkpoint. Possible states are WRITTEN_OBJ_LIST and
CHECKPOINT_CREATED.

A CRC and varjous sanity dwords to allow the indirect onode to be checked

for validity.

Successive checkpoints alternate between which of the dynamic superblocks to

use. When the software opens the volume it must read in both dynamic superblocks — the

one with the later checkpoint number which has the volume state marked as
CHECKPOINT_CREATED and passes all the sanity checks identifies the latest valid
checkpoint on this volume. The OBJ_STORE OPEN_VOLUME call specifies which

dynamic superblock the Object Store sub-module should use first — this will be the one

which didn’t specify the most up to date checkpoint.

1.6 Modified Checkpoint Objects List Object
At the start of each checkpoint, a modified checkpoint objects list object is

created. Each time a different object is created or modified as part of this checkpoint, its

object number is written to the modified checkpoint objects list object so that, when the

232

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

checkpoint is created, there is an object that lists all the objects created or modified in that

checkpoint.

1.7 Modified Retained Objects List Object

At the start of each retained checkpoint, a modified retained objects list object is
created. BEach time a different object is created or modified following creation of the
retained checkpoint, and until the next retained checkpoint is taken, its object number is

written to the modified retained objects list object.

2. BASIC OBJECT OPERATIONS

2.1 Object Creation and Deletion

When an object is first created (using a WES API OBJ_CREATE call) it just has a
root onode (actually a pair of root onodes) with no pointers to any indirect onodes, direct
onodes, or data blocks.

One thing to note is that, once a disk block has been allocated as a root onode, it
must never be used for anything else. This is because the handle returned for the root
onode contains an object number which is the sector offset on the disk of the root onode.
If the object were deleted and a client which had the handle cached then came in with
another request for the file, the object store would go and read the data on the disk at the
location specified by the object number. If this disk block had been reused, there is a
possibility that it would look like a root onode (or actually be a new root onode) which
could cause all sorts of problems.

To get around this problem, the following three things are done:

1. When a root onode is deleted its object type is set on the disk to be
OBJ_TYPE_DELETED so that if a client tries to read the object in again
the object store will know that the object has been deleted.

2. When objects are deleted the disk space used by their root onode is not
returned to the free space allocation controller. Instead deleted root onodes
are kept in a linked list of free root onodes (note that unlike data blocks it is
safe to reuse these freed data blocks before a checkpoint is taken, due to the
paired arrangement of the root onode). When an object is created, a free root
onode is used if one is available. New disk space for the root onode is

allocated only if no free root onodes are available.

233 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

3. When a root onode is first created lising newly allocated free space it is
given a reuse count of zero. Each time the root onode is reused for a new
object the reuse count is incremented. Because the reuse count forms part of
the handle returned to the client, this means that old handles referencing root
onodes which have been reused will be detected as being invalid, because

the reuse count will be wrong.

2.2 Object Data Creation

As data is created, it is first of all put into data blocks pointed to directly from the
root onode. This is illustrated in the diagram of Fig. 7, showing use of a root onode with
no other onodes. Note that, for the sake of simplicity in this and all the following
diagrams, the root onode and direct onode are shown as having only two data pointers,
and the indirect onode is shown as only having two indirect or direct onode pointers.

Once all the direct block pointers in the root onode are filled, then a direct onode
A is created with a pointer from the root onode to the direct onode. Fig. 8 shows
employment of a root onode with this direct onode A. Note that the root onode has
multiple data block pointers but only a single pointer to either a direct or an indirect
onode.

If the data in the object grows to fill all the data pointers in the direct onode, then
an indirect onode B is created, as illustrated in Fig. 9. Fi g. 9 shows employment of a root
onode with an indirect onode as well as direct onodes. The pointer in the root onode
which was pointing to the direct onode A, is changed to point at the indirect onode B, and
the first pointer in the indirect onode B is set to point at the direct onode A. At the same
time a new direct onode C is created, which is also pointed to from the indirect onode B.
As more data is created more direct onodes are created, all of which are pointed to from
the indirect onode.

Once all the direct onode pointers in the indirect onode B have been used another
indirect onode D is created which is inserted between the root onode and the first indirect
onode B. Another indirect onode E and direct onode F are also created to allow more data
blocks to be referenced. These circumstances are shown in Fig. 10, which illustrates use
of multiple layers of indirect onodes placed between the root onode and the direct onodes.

This process of adding indirect and onodes to create more levels of indirection is

repeated to accommodate however much data the object contains.

-34 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

It should be noted that the Inode portion of an object is handled by the Object
Store sub-module as any other data portion of the object. The Object Store sub-module
does not distinguish the Inode portion from the data portion, and does not automatically
allocate the Inode portion. Rather, the entity that creates or modifies the object (typically
sub-modules upstream from the Object Store sub-module, such as the File System File
sub-module or the File System Directory sub-module) must determine how much space to

leave for the Inode as data is added to the object.

2.3 Object Data Deletion

As data is deleted from the object and data blocks and direct and indirect onodes
are no longer required they are returned to the free space allocation controller.

In accordance with one embodiment, the number of levels of indirection as the
object gets smaller, until all the data in the object can be referenced via the direct block
pointers in the root onode, at which point all the remaining direct and indirect onodes are

freed and the indirection level will be set to zero.

2.4 Zero Filling

If a write to a file is done which has a start offset beyond the current end of the
file, then the undefined portion of the file between the current end and the start of the new
write data must be filled with zeroes. The same thing occurs if the length of the object is
set to be greater than the current length.

This is particularly problematic if a file is created and then the length is set to be,
say, 1GB. In a straightforward implementation this would require that the disk blocks
allocated to the file actually be written to with zeroes. For a 1GB file, this would take of
the order of 10 seconds. For a 1TB file, it will take of the order of 3 hours.

In embodiments of the present invention, this problem is avoided by having a bit
with each data block pointer to say whether that block is zero filled. If the Object Store
sub-module sees this bit set, then it knows that this block should be filled with zeroes,
even though on disk it may contain something completely different. If the block is read,
then Object Store sub-module will return zeroes for this block rather than its on-disk
contents. If the block is written to with a write which doesn’t fill the entire block, then the
Object Store sub-module will first write zeroes to all of the block which isn’t being
written to and will reset the zero filled bit for this block.

Note that, in this case, disk blocks will be allocated for all zero filled portions of

the file, although the disk blocks will not be filled with zeros.

.35.

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

2.5 Sparse Onode Structures
Once the zero filling problem has been solved, the next order problem with setting
the length of an object to some very large value is the time it takes to allocate the data
blocks and create the required direct and indirect onode structure. With a disk block size
of 4K, a 1TB object requires approximately 4 million direct onodes as well as a lesser
number of indirect onodes. This would take in the order of 40 seconds to write to disk.
Also the free space allocation of all the data blocks required, and the subsequent updates
to the free space bitmap, would significantly add to this time. If a checkpoint were to be
taken immediately after the file creation begins, the entire system would stop servicing
requests (to any volumes) for the whole of this time.
In an embodiment of the invention, this problem is solved by a twofold approach.

The first aspect of the solution is not to actually allocate disk blocks for the zero filled
portions of the file. This means that when the object store sees a write to a zero filled
block it would first have to allocate disk space for that block and put a pointer to it in the
relevant onode structure.

~ The second aspect builds on the first and says, in addition to not allocating the
data blbcks, don’t create the onode structure either. To implement this aspect, each onode
pointer has a bit to say whether the onode it points to is allocated or not. If not, when an
‘operation comes along which requires that onode to be valid, only then is disk space
allocated for it and the correct pointer inserted. In this way a huge zero filled object will

have only a root onode, which can obviously be created very quickly.
‘3. CHECKPOINTS

3.1 Introduction to File System Consistency

One of the essential features of a file system is the ability to maintain file system
consistency in the event of a system crash.

For embodiments of the file system herein, a checkpoint mechanism is used to
r)naintain file system consistency, with, however, implementations differing from those of
the prior art. Instead of always writing metadata to new areas of disk, as in typical prior
art systems, two copies of any given piece of onode metadata are maintained, one of
which is valid and the other of which may be in the process of being updated. If the
system crashes while one copy is being updated, the system can revert to the other copy,

which is guaranteed to be valid. For user data, the system can, on a per object basis, have

236 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

the option of either always writing it to new areas on disk or overwriting the existing data
to give either consistency in user-triggered file system data structure saves or higher
performance and no file fragmentation. All of this is described in more detail in the

following sections.

3.2 User Data Handling

User-data handling is considered first, as what is done with the user data affects
how the metadata is handled.

It is important first to define that by “user data” it is meant anything not contained
in an object’s root onode, indirect onodes or direct onodes. What is user data to the object
store may be metadata (such as a directory listing or a free space bitmap) to another part
of the file system embodiment herein. For data such as this, it is important to make sure
that the data on disk in the checkpoint is consistent in order to ensure that the on-disk file
system is always consistent — even if the contents of the NVRAM are lost.

Root onodes are always written to the storage module using delayed write
commands. Delayed writes are marked with a tag number, and the data associated with
them is not written to disk until a tag flush is done with the correct tag number — see the
section on onode handling for a description of why this is done. One problem with this is

that there must be an assurance that the sector cache on the storage module never fills up

‘with dirty root onodes as this would lock the entire system up. For the other onode

structures and onode data, normal tagged writes can be used, with a different tag number
to that used for root onodes. This gives the storage module the option of not having to
wait for the tag flush before writing them to disk and reduces the danger of the sector

cache filling up.

The onode user data can be handled in a number of different ways. Two data
handling modes, namely data copy mode and data overwrite mode, and an optional third
data handling mode, namely data pair mode, are discussed below. The data handling

modes are selectable on a per object basis.

Data Copy Mode
Objects using this mode guarantee that both the checkpointed metadata and user
data for the object will be consistent. This mode should be used for user data which to

other blocks in the system is actually metadata.

-37 -

10

15

20

25

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

In data copy mode, when it is time to write to a data block that was previously
written with an earlier checkpoint number, the following is done:

Allocate a new data block.

Copy the contents of the old block to the new block (not required if the new data
fills the entire block).

Write the new data to the new block.

Updafe the onode data pointers to point at the new block.

Return the old block to the free space allocation controller.

The last step may seem somewhat unusual as, at this point, the old block is still
part of the previous checkpoint, and there would be trouble if the Free Space Allocation
sub-module then gave the block out again in response to a free space request, as the
checkpointed data would then be overwritten. However, one of the requirements for the
Free Space Allocation sub-module is that blocks returned to it as free space are never

given out again until after a checkpoint has been taken. This makes the last step safe.

Data Overwrite Mode

Objects using this mode guarantee that checkpointed metadata will be consistent
but not necessarily checkpointed user data. This mode could be used for all data which is
true user data (i.e. file contents).

In data overwrite mode, when it is time to write to a data block that was
previously written with an earlier checkpoint number, the following is done:

Write the new data to the old data block.

Note that in overwrite mode, there is only a problem with data consistency if the
system crashes and the contents of the NVRAM are lost. As long as the NVRAM is
functioning, the user data can be placed into a consistent state by replaying the contents

of the NVRAM. This is summarised in the table below.

Mode NVRAM On disc file system after Data written since last
enabled crash checkpoint after crash
Data Copy Yes Metadata and user data Completely recoverable from
completely consistent NVRAM
Data Copy No Metadata and user data Lost
completely consistent
Data Yes Metadata internally Completely recoverable from
Overwrite completely consistent, but NVRAM. When recovered the on
inconsistent with respect to disc user data and metadata are
the user data then consistent.
Data No Metadata internally Lost
Overwrite completely consistent, but

-38 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

inconsistent with respect to
the user data

Data Pair Mode

Considering an object such as the free space object, it will need to use data copy
mode as it contains file system metadata. However, in this mode it is likely to become
highly fragmented as it is constantly being updated.

For objects of this type, a mode is included whereby every data block has a pair in
the same way as with the onode structures. This would allow swapping between the
blocks in the pair as the data is checkpointed. Doing this would help to alleviate the
problem of file fragmentation as well as eliminate the need for the Free Space Allocation
sub-module to handle all the allocation and freeing of blocks as the object is modified.

Note that the free space object is particularly conducive to this sort of treatment as

in normal operation it never changes size.

3.3 Onode Handling

As has already been explained every onode structure (root, indirect or direct
onode) is actually made up of a pair of the structures. For want of better names, the
individual structures will be referred to as the left hand side (LHS) and right hand side
(RHS) of the pair.

Consider first of all the creation of a root onode during checkpoint A, which is
illustrated in Fig. 11. When it is first created the root onode is written to the LHS of the
pair. Note that, because the root onode is written to using delayed writes so although it is
valid in the storage module, it will not get written to disk until a checkpoint is created.

All changes to the root onode (such as writes to the object or the deletion of the
object and the creation of a new object using the same root onode) which take place
before checkpoint A is created will be done on the LHS root onode.

When it is time to create checkpoint A, a tagged flush is issued which causes the
LHS to be written to disk. If while the checkpoint is being taken some more
modifications are made to the root onode (which will be reflected in checkpoint B) these
are written to the RHS of the root onode, as shown in Fig. 12.

Once checkpoint A has been created and the root onode has been written to disk
the root onode pair has the appearance illustrated in Fig. 13. |

Suppose that the system begins to create checkpoint B. When the tagged flush for

B is issued, the root onode will have the appearance of Fig. 14.

-39

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Suppose again that while the RHS of the root onode for checkpoint B is still being
written to disk the object is modified again as part of checkpoint C. The LHS version of
the root onode on disk still contains the latest valid checkpoint A, since checkpoint B has
not yet been created. Delayed writes can therefore be used to update the LHS, but must
ensure that none of the changes to the LHS are written to disk until checkpoint C is
created. The situation while checkpoint B is being created is shown in Fig. 15.

It might appear that, once checkpoint B has been created, the system can start to
write the LHS root onode for checkpoint C to disk. This is true for direct and indirect
onodes but not for root onodes. The reason for this is that if the system were to crash
before checkpoint C had been created, but by then the LHS of the root onode had been
written to disk, then, when the object store came to read the pair of root onodes to find
out which was the latest valid one, it would think that the LHS root onode associated with
checkpoint C was the most up to date, which would be incorrect. For this reason, before
any root onodes are written to disk, a modified checkpoint objects list is written in order
to say which root onodes are going to be modified. This allows the system to recover
from a crash whilst updating root onodes. This is covered further in the section on
restoring a checkpoint.

Note that, for the sake of simplicity in all the following diagrams, this
intermediate state where the checkpoint is in the middle of being created is ignored.

Imagine that the system starts with a root onode that looks as shown in Fig. 16.

Suppose the root onode is now extended such that there are two levels of
indirection. Before taking the checkpoint, the structure will have the appearance of Fig.
17. Note that the indirect and direct onodes are all written with delayed writes before the
previous checkpoint has been fully created and tagged writes once the previous
checkpoint is valid on disk. The data is all written with tagged writes.

If a checkpoint is then taken, the structure will have the appearance of Fig. 18.

Now suppose a write to data block 2 is done with the object in data copy mode. In
this case, a new data block 2 is allocated and all of the onode structures are updated to
point at this new block. Before the checkpoint the structure will have the appearance
illustrated in Fig. 19. Note that the checkpointed data has been preserved as the original,
and the original data block 2 has not been modified.

And after the checkpoint the structure will have the appearance shown in Fig. 20.

40 -

10

15

20

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Suppose now that with this new structure, data block 1 is written with the object
in data overwrite mode. In this case, only the root onode (which will have a new enode) is
updated as nothing else in the enode structure is changing. Note that in this mode the
checkpointed data has been corrupted as the checkpointed version of block 0 has been

modified. The result of this activity is illustrated in Fig. 21.

3.4 Storage Module Tag Numbers

During the checkpoint process a number of different storage module tag numbers

are used. These are detailed in the table below.

Tag Number Used for Storage
Checkpoint | Checkpoint Checkpoint MOdL-jll-e nguwy
N N+ 1 N+ 2 p
TO T2 TO Modified checkpoint Tagged Writes
objects list
DO D2 DO Root Onodes Delayed
Writes
D1 D3 D1 Direct & Indirect Onodes Delayed
before previous checkpoint Writes
has been created
T1 T3 T1 Direct & Indirect Onodes | Tagged Writes
and Onode Data
T4 T4 T4 Dynhamic Superblock Tagged Writes

A given 32K storage module sector cache block can only be in one delayed write
tag queue and one non delayed write tag queue. There is therefore the question of what
happens if the same block is written to with different tag numbers.

The dynamic superblock is arranged such that it is the only thing in its 32K sector
cache block which means that the sector cache block in which it lives can never be
written to with a different tag number.

For a given buffer if there are both root onode delayed writes and direct and
indirect onode delayed writes for the same checkpoint number the buffer must end up on
the root onode delayed write tag queue.

For the two delayed write inquiries the checkpoint is currently organised such that
there should never be any buffers with delayed write tags from checkpoint N when
starting to do delayed writes for checkpoint N + 1. If a cache block could be in two
delayed write tag queues with separate dirty block bitmaps for each then the system could
start to do delayed writes for the next checkpoint before the delayed write tagged flushes

41 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

for the previous checkpoint have been issued. This is discussed in more detail in the
section of taking a checkpoint below.

For the other two tagged write structures the way the checkpoint is currently
organised there should never be any tagged buffers in the storage module from
checkpoint N when the system starts doing tagged writes for checkpoint N +1. Within a
checkpoint if a cache block is written to which already has a tag number assigned to it, an
assurance is needed to make sure that the block ends up in the modified checkpoint
objects list tag queue. This would become more complicated if the performance
improvement proposed below were made to decrease the time the system is unable to

process new requests while taking the checkpoint.

3.5 Taking a Checkpoint — The Simple Version
There are various reasons why the file system software may need to take a

checkpoint.
* The half of the NVRAM being used for this checkpoint is becoming full.

e The sector cache on the storage module is becoming full.

¢ Itis more than a previously determined period of time (typically 10

seconds) since the last time a checkpoint was taken.
o The user has requested that a retained checkpoint be taken.

There may be other times when it is necessary, desirable, or convenient to take a
checkpoint.
At a system level taking a checkpoint involves the following operations on each
volume which is mounted:
1. Halt all operations in the system so that the file system is in a consistent

state.
2. Tag flush the modified checkpoint objects list object in the storage module.

3. Update this checkpoints dynamic superblock to say that the modified

checkpoint objects list object has been written.
4. Tag flush the onode structures and onode data in the storage module.

5. Update the dynamic superblock to say that this checkpoint has now been

created.

_47 -

5

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

As soon as step 4 has commenced the system can begin to process new inquiries.

3.6 Taking a Checkpoint — Details

The description below details the actual operations required to take a checkpoint.

These matters are summarized in Fig. 22. The operations are described assuming only a

single volume is mounted — if there are multiple volumes then the operations in each step

are repeated for each volume mounted.

1.

The file system software waits until it has pushed a set of operations into the
Non-Volatile Storage Processing sub-module which when completed will

give a consistent file system.

The software then pushes a WES_CREATE_CHECKPOINT inquiry into
the Non-Volatile Storage Processing sub-module. This command includes

the checkpoint number to use for the next checkpoint.

The Non-Volatile Storage Processing sub-module waits until all the
commands prior to the checkpoint inquiry have been pushed to both the File
System File sub-module and its cluster pair machine (if there is one), and it

has stored all of those commands in its own NVRAM.

The Non-Volatile Storage Processing sub-module generates a new
checkpoint command which has Non-Volatile Storage Processing sub-
module as the source and the File System File sub-module as the
destination. The Non-Volatile Storage Processing sub-module can then
begin to process more requests from the processor, which now get stored in
the other half of the NVRAM, and can begin to pass these requests on to the

File System File sub-module.

The File System File sub-module waits until all the commands prior to the
checkpoint inquiry have completed. Until this happens it can’t begin to
process any new commands from the Non-Volatile Storage Processing sub-
module . Note that this is the point in the whole checkpoint operation where
the longest delay is likely to be incurred — our current estimate being that on
a busy file system this operation might take 10s of milliseconds. One option
to alleviate this would be to allow the File System File sub-module to
continue to process operations that won’t make any modifications to the

disk while waiting for outstanding operations to complete.

43 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

6.

10.

11.

The File System File sub-module then generates a new checkpoint inquiry
with the File System File sub-module as the source and the File System
Directory sub-module as the destination. At this point it can begin to process

new command from the Non-Volatile Storage Processing sub-module .

Steps 5 and 6 are then repeated for the File System Directory sub-module
and File System Tree sub-module. Note that for each of these shouldn’t be
any need to wait for outstanding operations to complete as the wait in step 5

should have ensured that there are no outstanding operations.

When the Object Store sub-module receives the checkpoint command from
the File System Tree sub-module it sends a create checkpoint inquiry to the
Free Space Allocation sub-module. At this point it also stops processing any

new inquiries from the File System Tree sub-module interface.

The Free Space Allocation sub-module sends back the checkpoint response
when it has completed any outstanding free space inquiries and updated the
appropriate bitmaps. Note that it must continue to process new free space
inquiries (and wait for these to complete) while waiting to send the
checkpoint response as the object inquiries it is sending to the Object Store
sub-module may result in more free space inquiries being generated by the
Object Store sub-module. Measures should be taken to prevent or escape
from an "endless loop" situation caused by processing free space inquiries
and waiting for free space inquiries to complete before sending the

checkpoint response.

When the Object Store sub-module receives the checkpoint response from
the Free Space Allocation sub-module it sends a tagged flush to the storage
module to tell it to flush the modified checkpoint objects list object for this
volume. The modified checkpoint objects list is an object which records the
object number of all the objects which have been modified during the

current checkpoint on a given volume.

When the TAG_FLUSH of the modified checkpoint objects list object
completes the Object Store sub-module writes to the dynamic superblock
for this checkpoint number with the state set to WRITTEN_OBJ_LIST and
the handle of the objects list object. This needs to be written through to disk

_44 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

12.

13.

14.

15.

using a tagged write followed by a tagged flush. Note that the flush of the
direct and indirect onodes and onode data could be issued at the same time
as this is done in order to get the checkpoint written more quickly (although

this may increase the time taken to write the dynamic superblock).

When the dynamic superblock has been written to disk a tagged flush can be
issued for all the root onodes (and for the direct and indirect onodes if this

hasn’t been done earlier).

At the same time as the tag flush is issued the Object Store sub-module can
begin work on the next checkpoint. This means updating the current
checkpoint number to be the one indicated in the checkpoint inquiry,
switching over to using the correct tag number for all the structures in the
new checkpoint and starting to process inquiries from File System Tree sub-
module again. Alternatively, if the storage module cache controller is
changed so that a 32K cache block could be in two delayed write tag queues
(with a separate dirty block mask for each) it would be possible to begin
work on the next checkpoint at the same time as the tag flush is issued in
step 10. This could improve performance as there may be a significant delay

between steps 10 and 12.

When the two tagged flushes of the onode data and onode structures
completes the Object Store sub-module writes to the dynamic superblock
for this checkpoint number with the state set to WRITTEN_CHECKPOINT.
This needs to be written through to disk using a tagged write followed by a
tagged flush.

When the dynamic superblock has been written to disk the checkpoint has
been successfully created. The Object Store sub-module sends a checkpoint
response to the File System Tree sub-module which via the File System
Directory sub-module and the File System File sub-module results in a
checkpoint response getting back to the Non-Volatile Storage Processing
sub-module. When this sees the checkpoint response it can discard all the

saved data in the NVRAM associated with this checkpoint.

_45 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

16. The Non-Volatile Storage Processing sub-module then passes the response
back to the processor. Only when the processor has seen the checkpoint

response can it request the generation of another checkpoint.

3.7 Restoring a Checkpoint

When a volume is mounted, the system will normally want to go back to the last
valid checkpoint.

To work out which this is the software needs to read in both of the dynamic
superblocks. Both of them should be valid. The way that Object Store sub-module writes
the dynamic superblock should ensure that writing a superblock cannot leave the system
with a corrupted dynamic superblock on disk. Additional measures could be taken to
better assure that both dynamic superblocks are valid, for example, performing two
checkpoint operations before allowing any operations to be performed oh the volume.

Assuming that both of the dynamic superblocks are valid the software then looks
for the one with the later checkpoint number. There are two possibilities for the state of

this superblock.

WRITTEN_OBJ_LIST

This state means that the object store had written the modified checkpoint objects
list to disk but hadn’t yet written out all onode structures and onode data when the system
crashed. This implies that it was an unclean system shutdown and that the last valid
checkpoint on disk is the one recorded in the other dynamic superblock — the state of
which should be WRITTEN_CHECKPOINT.

In this state some of the root onodes on disk may have been updated as part of the
creation of this checkpoint. This would be a problem when reading in this root onode as
of the pair of the one written in this checkpoint would look like the latest valid one, which
would be incorrect as this checkpoint wasn’t complete. Note that the same problem
doesn’t apply to all the other onode structures as the correct one out of the pair to use is
pointed to directly by the object that references it.

This problem is handled by making use of the modified checkpoint objects list.
This is written to disk before any changes are made to the root onodes and provides a
transaction log of which root onodes are going to be modified in the checkpoint. In the
case of the checkpoint failing the software reads the modified checkpoint objects list

object and goes through each of the objects it points to. For each of these it must read in

46 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

the pair of root onodes and if either of them was written to in the invalid chcbkpoint itis

invalidated.

WRITTEN_CHECKPOINT

This state means that the object store wasn’t in the process of writing onode
structures and data to disk when the system went down and the checkpoint number
defined in this dynamic superblock is the last valid checkpoint on disk. This doesn’t mean
that the volume was shutdown cleanly, so there may still be operations in the NVRAM

which need to be replayed.

4. RETAINED CHECKPOINTS

A checkpoint is only valid until the next checkpoint has been created, at which
point the checkpoint no longer exists. Therefore, a user-triggered mechanism is provided
for retaining a checkpoint such that it will remain valid and accessible (read-only) until
the user chooses to delete it. As discussed above, such a checkpoint that is retained
through this user-triggered mechanism is referred to herein as a retained checkpoint. The
Object Store sub-module is capable of maintaining multiple retained checkpoints. As
long as a retained checkpoint remains active, the onodes and data blocks that comprise
the retained checkpoint cannot be modified or returned to free space. It should be noted
that an onode or data block can be a component of multiple retained checkpoints, and a
particular onode or data block cannot be returned to free space as long as the onode or

data block is a component of at least one retained checkpoint.

4.1 Creating a Retained Checkpoint

A retained checkpoint is initially created on a given volume by performing the
following sequence of operations :

1. Take a checkpoint.

2. Issue a command to the Object Store sub-module for the required volume to
create the retained checkpoint.

3. Take another checkpoint.

When the Object Store sub-module receives the command to create the retained
checkpoint, it updates a record indicating which checkpoint number the last retained

checkpoint on the volume was created with. This is recorded in the dynamic superblock

47 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

and gets saved to disk when the checkpoint in operation 3 is taken. It should be noted

that a retained checkpoint can be taken on multiple volumes in operation 2.

4.2 Modifying an Object after a Retained Checkpoint

Whenever the Object Store sub-module receives a request to modify an object, it
first checks the root onode object to determine the checkpoint number at which the root
onode object was created. If the root onode object was created prior to creation of the last
retained checkpoint, then the root onode object is part of that last retained checkpoint. In
this case, the root onode object cannot be modified as described above, as this would
corrupt the version of the object in the retained checkpoint. Rather, the object is modified
in a special way as described by example below.

FIG. 23 shows an object structure for an exemplary object that was created at a
checkpoint number 1. The object includes four data blocks, namely data block 0 (2310),
data block 1 (2312), data block 2 (2314), and data block 3 (2316). A direct onode 2306
includes a pointer to data block 0 (2310) and a pointer to data block 1 (2312). A direct
onode 2308 includes a pointer to data block 2 (2314) and a pointer to data block 3 (2316).
An indirect onode 2304 includes a pointer to direct onode 2306 and a pointer to direct
onode 2308. A root onode 2302 includes a pointer to indirect onode 2304. All onodes
and all data blocks are marked with checkpoint number 1.

Suppose now that a retained checkpoint is taken at checkpoint number 2, and data
block 0 (2310) is to be modified in checkpoint number 3.

In this case, the Object Store sub-module first loads the root onode 2302 for the
object and realizes that the root onode 2302 (which was created at checkpoint number 1)
was created prior to the last retained checkpoint being taken at checkpoint number 2. It is
preferable for the most up-to-date root onode be at the sector number indicated by the
object number, in order to optimize access to the most up-to-date version of the object.
Therefore, before doing anything else, the Object Store sub-module saves a copy of the
old root onode 2302 to free space on the disk, writes a pointer to the saved root onode
into the updated root onode, and writes a pointer to the updated root onode into the saved
root onode.

FIG. 24 shows the object structure after a copy of the old root onode is saved to
free space on the disk. Specifically, block 2403 represents the copy of the old root onode
2302 saved to free space on the disk. A pointer to the current root onode 2402 is written

into the saved root onode 2403. Block 2402 represents the updated root node with

48 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

checkpoint number 3. A pointer to the saved root onode 2403 is written into the current
root onode 2402.

The Object Store sub-module then traverses the object structure starting at the root
onode until it reaches the descriptor for data block 0 (2310). Since data block 0 (2310)
was created prior to the last retained checkpoint being taken, it cannot be modified.
Instead, the Object Store sub-module writes a copy of data block 0 (2310), with the
required data modifications, to free space on the disk.

FIG. 25 shows the object structure after a modified copy of data block 0 is written
to free space on the disk. Specifically, block 2510 represents the modified copy of data
block O written to free space on the disk. Block 2510 includes checkpoint number 3 (i.e.,
the checkpoint at which it was created).

The Object Store sub-module now needs to put a pointer to the new data block
2510 in a direct onode, but the Object Store sub-module cannot put a pointer to the new
data block 2510 in the direct onode 2306 because the direct onode 2306 is a component
of the retained checkpoint. The Object Store sub-module therefore creates a new direct
onode with pointers to the new data block 0 (2510) and the old data block 1 (2312).

FIG. 26 shows the object structure after a new direct onode is created for the new
data block. Specifically, block 2606 represents the new direct onode. Block 2606
includes checkpoint number 3 as well as pointers to the new data block 0 (2510) and the
old data block 1 (2312).

The Object Store sub-module now needs to put a pointer to the new direct onode
2606 in an indirect onode, but the Object Store sub-module cannot put a pointer to the
new direct onode 2606 in the indirect onode 2304 because the indirect onode 2304 is a
component of the retained checkpoint. The Object Store sub-module therefore creates a
new indirect onode with pointers to the new direct onode 2606 and the old direct onode
2308.

FIG. 27 shows the object structure after a new indirect onode is created for the
new direct onode. Specifically, block 2704 represents the new indirect onode. Block
2704 includes checkpoint number 3 as well as pointers to the new direct onode 2606 and
the old direct onode 2308.

Finally, the Object Store sub-module writes a pointer to the new indirect onode

2704 in the current version of the objects root onode 2402.

_49 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

FIG. 28 shows the object structure after the pointer to the new indirect onode
2704 is written into the current version of the objects root onode 2402.

It should be noted that, after modification of data block 0 is complete, blocks
2403, 2304, 2306, and 2310 are components of the retained checkpoint but are not
components of the current version of the object; blocks 2308, 2312, 2314, and 2316 are
components of both the retained checkpoint and the current version of the object; and
blocks 2402, 2704, 2606, and 2510 are components of the current version of the object
but are not components of the retained checkpoint.

Suppose now that a retained checkpoint is taken at checkpoint number 4, and data
block 3 (2316) is to be deleted in checkpoint number 5. The procedure here is similar to
the procedure described above for modifying data block 0, and is described with
reference to FIG. 29 which shows the object structure after deleting data block 3.

In this case, the Object Store sub-module saves a copy of the old root onode from
checkpoint number 3, represented by block 2903, to free space on the disk, updates the
root onode object 2902 to include checkpoint number 5, and updates various pointers in
the current and saved root onodes. Specifically, saved root onode 2903 is essentially
inserted into a doubly-linked list between the current root onode 2902 and the earlier
saved root onode 2403. In the current root onode 2902, the pointer to an older root onode
version is updated to point to the saved root onode 2903 rather than to the earlier saved
root onode 2403. In the earlier saved root onode 2403, the pointer to a newer root onode
version is updated to point to the newer saved root onode 2903 rather than to the current
root onode 2902. In the saved root onode 2903, the pointer to a newer root onode version
is updated to point to the current root onode 2902, while the pointer to an older root
onode version is updated to point to the earlier saved root onode 2403.

The Object Store sub-module then traverses the object structure starting at the root
onode until it reaches direct onode 2308, which includes the descriptor for data block 3
(2316). Because direct onode 2308 and data block 3 (2316) are components of an
existing retained checkpoint, the Object Store sub-module cannot simply delete data
block 3 (2316) and modify direct onode 2308 to remove the descriptor for data block 3
(2316). Therefore, the Object Store sub-module creates a new direct onode 2908 having
checkpoint number 5 and a pointer to data block 2 (2314) but no pointer to data block 3
(2316). The Object Store sub-module also creates a new indirect onode 2904 having

checkpoint number 5 and pointers to old direct onode 2606 and new direct onode 2908.

-50-

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Finally, the Object Store sub-module writes a pointer to the new indirect onode 2904 into
the current version of the root onode 2902.

It should be noted that, after deletion of data block 3 is complete, blocks 2903,
2403, 2304, 2704, 2306, 2308, 2310, and 2316 are components of at least one retained
checkpoint but are not components of the current version of the object; blocks 2606,
2510, 2312, and 2314 are components of the current version of the object and at least one
retained checkpoint; and blocks 2902, 2904, and 2908 are components of the current

version of the object but are not components of any retained checkpoint.

4.3 Accessing a Retained Checkpoint

When the Object Store sub-module is asked to perform an operation on an object,
it is passed a handle to allow it to identify the object. Among other things, this handle
specifies the checkpoint number of the required object. Normally, this would be set to a
value that indicates the current version of the object. However, if a different checkpoint
number is specified, then the Object Store sub-module performs the operation on the
requested version of the object.

The Object Store sub-module attempts to find the requested version of the object
by stepping through the current and saved root onodes, using the pointer from a newer

version of a root onode to an older version of a root onode, until a root onode is found

having the requested checkpoint number or an earlier checkpoint number. The Object

Store sub-module then traverses the object structure from that root onode. This is
demonstrated by example with reference again to FIG. 29.

If the Object Store sub-module receives a request for checkpoint number 3, then
the Object Store sub-module first goes to the current version of the root onode object
2902. The current root onode 2902 has checkpoint number 5, which is the requested
checkpoint number. The Object Store sub-module therefore traverses the object structure
from root onode 2902 to provide the requested version of the object. Specifically, root
onode 2902 points to indirect onode 2904. Indirect onode 2904 points to direct onodes
2606 and 2908. Direct onode 2606 points to modified data block 0 (2510) and to data
block 1 (2312). Direct onode 2908 points to data block 2 (2314). Thus, the current
version of the object includes the modified data block 0 and excludes deleted data block
3.

If the Object Store sub-module receives a request for checkpoint number 4, then

the Object Store sub-module first goes to the current version of the root onode object

-51 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

2902. The current root onode 2902 has checkpoint number 5, which is too recent, so the
Object Store sub-module follows the pointer to saved root onode 2903. The root onode
2903 has checkpoint number 3, which is earlier than the requested version of the object.
The Object Store sub-module therefore traverses the object structure from root onode
2903 to provide the requested version of the object. Specifically, root onode 2903 points
to indirect onode 2704. Indirect onode 2704 points to direct onodes 2606 and 2308.
Direct onode 2606 points to modified data block 0 (2510) and to data block 1 (2312).
Direct onode 2308 points to data block 2 (2314) and to data block 3 (2316). Thus, the
retained checkpoint for checkpoint number 4 includes the modified data block 0 and also
includes data block 3.

If the Object Store sub-module receives a request for checkpoint number 2, then
the Object Store sub-module first goes to the current version of the root onode object
2902. The current root onode 2902 has a checkpoint number of 5, which is too recent, so
the Object Store sub-module uses the pointer in root onode 2902 to access saved root
onode 2903. The saved root onode 2903 has a checkpoint number of 3, which is also too
recent, so the Object Store sub-module uses the pointer in root onode 2903 to access
saved root onode 2403. The saved root onode 2403 has a checkpoint number of 1, which
is earlier than the requested version of the object. The Object Store sub-module then
traverses the object structure from saved root onode 2403 to provide the requested
version of the object. Specifically, the root onode 2403 points to indirect onode 2304.
Indirect onode 2304 points to direct onodes 2306 and 2308. Direct onode 2306 points to
data block 0 (2310) and to data block 1 (2312). Direct onode 2308 points to data block 2
(2314) and to data block 3 (2316). Thus, the retained checkpoint for checkpoint number
2 includes the original four data blocks.

It should be noted that, if the Object Store sub-module is unable to find the
requested version of an object, then the Object Store sub-module typically generates an
error message. For example, with reference again to FIG. 29, if the Object Store sub-
module receives a request for checkpoint number 0, then the Object Store sub-module
steps through the root onodes until it reaches root onode 2403. The root onode 2403 is
too recent but also does not have a pointer to an earlier root onode, so the Object Store
sub-module generates an error message indicating that the requested version of the object

could not be found.

-52 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

It should also be noted that the retained checkpoints are not permitted to be
modified, and the Object Store sub-module will only allow read operations to be

performed on them.

4.4 Deleting a Retained Checkpoint

There are two stages to the process of deleting a retained checkpoint.

The first stage involves getting a list of all of objects that were either created or
modified in the retained checkpoint that is being deleted. This is achieved by means of a
special object (modified retained objects list objects) that is produced for every retained
checkpoint. This object is created when either a volume is opened for the very first time,
or after a retained checkpoint has been taken. Every time an object is created, or the first
time an object is modified if it was created in a previous retained checkpoint, the object
number is written to this object. The object number for this special object is stored in the
dynamic superblock. Before creating a retained checkpoint, the software records the
object number of this special object for when it later wants to delete that retained
checkpoint.

The second stage of deleting the retained checkpoint involves the following
sequence of operations for each object either created or modified in the retained
checkpoint:

1. Lock the object so that it can’t be used by another operation. This is only
required if the retained checkpoint is being deleted on a live filesystem.

2. Find the root onode for the retained checkpoint, the root onode for the previous
retained checkpoint (if one exists), and the root onode for either the next retained
checkpoint (if one exists) or the current version of the object if the most recent retained
checkpoint is being deleted and the object has not been deleted.

3. Go through the structure of the retained checkpoint being deleted and identify
all the indirect and direct onodes and data blocks used by it. For each such onode and
data block, determine whether the item is only used by the retained checkpoint being
deleted. This can be done by finding the equivalent item in both the previous and next
versions of the object. If the equivalent item is different in the previous and next versions
of the object, then the item is unique to this retained checkpoint.

4. If the item is only used by the retained checkpoint being deleted, then it is no
longer required, so it is returned to the free space. If the item is used by the next retained

checkpoint, then the item is added to the updated retained objects list for the next

253 -

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

checkpoint, if it is not already in the updated retained objects list for the next retained
checkpoint. By adding the item to the updated retained objects list, the Object Store sub-
module will know to check if the item is still required when that retained checkpoint
comes to be deleted.

5. Finally, if the root onode for this retained checkpoint is only used in this
retained checkpoint, it too is no longer required and is deleted. In this case, if there is an
older retained checkpoint, the pointer backwards from the next version of the root onode
(if any), which previously pointed to the root onode of the retained checkpoint being
deleted, is updated to point at the root onode of the previous retained checkpoint.

Note that in order to maintain file system integrity, careful attention needs to be
paid to how retained checkpoint deletion ties in with the process of taking checkpoints, to
make sure that checkpoints always represent a consistent view of the file system and that
a crash in the middle of deleting a retained checkpoint can be recovered.

Deleting a retained checkpoint can be demonstrated by example. With reference
again to FIG. 29, suppose that the retained checkpoint created with checkpoint number 4
is to be deleted. This retained checkpoint is represented by root onode 2903. The only
items in the structure that are used only by this retained checkpoint are the root onode
2903 and the indirect onode 2704. These onodes are returned to free space. The root
onode 2902 is updated to point at the root onode 2403 rather than to the deleted root
onode 2903. FIG. 30 shows the object structure after the retained checkpoint for
checkpoint number 4 is deleted.

With reference again to FIG. 30, suppose now that the current version of the
object is to be deleted while the retained checkpoint for checkpoint number 2 still exists.
This is similar to the case of a retained checkpoint being deleted in that there is a need to
identify all of the items in the structure that are unique to the current version and return
these to the free space. In this case, onodes 2904, 2606, and 2908 are used for the current
version of the object but not for any remaining retained checkpoint, so these onodes are
returned to free space. The current root onode 2902 is modified to indicate that it now
references an object which has been deleted, but still has a pointer to at least one valid
retained checkpoint. FIG. 31 shows the object structure after the current version of the

object has been deleted.

_54-

10

15

20

25

30

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

When all remaining retained checkpoints for this object are deleted, the current
version of the root onode 2902 is returned to the free root onode queue rather than to free

space.

4.5 Reverting to a Retained Checkpoint

Under some conditions, it may be necessary or desirable to revert the live file
system to a version represented by a retained checkpoint. Reverting the live file system
to a version represented by a retained checkpoint can be accomplished in a number of
different ways. Reverting the live file system to a retained checkpoint may involve such
things as:

1. Copying the relevant contents of the root onode associated with the retained
checkpoint into the current root onode (e.g., pointers to direct and indirect onodes and
data blocks, pointer to earlier retained checkpoint, etc.).

2. Identifying the root onode associated with the preceding retained checkpoint (if
one exists) and modifying the pointer in that root onode to point to the current root onode
rather than to the root onode associated with the retained checkpoint to which the live file
system is being reverted.

3. Deleting the root onode associated with the retained checkpoint.

4. Clearing the updated checkpoint objects list (i.e., after reverting the live file
system to the version represented by the retained checkpoint, there are effectively no
modified objects).

5. Deleting all objects created after the retained checkpoint, including root onodes
and other objects associated with any retained checkpoints taken after the retained
checkpoint to which the live file system is reverted.

Other than modifying the pointer in the root onode associated with the previous
retained checkpoint, if one exists, any older retained checkpoints should remain

unchanged. However, all newer retained checkpoints are effectively deleted.

4.6 Other Operations relating to Retained Checkpoints

All other functions normally associated with retained checkpoints can be achieved
using the mechanisms described here. For instance, incremental backup can be
performed by using the updated retained objects lists to work out what has changed

between successive retained checkpoints.

-55-

CA 02504322 2014-04-24

What is claimed is:

1. A method for maintaining a file system object in a non-volatile storage device at
successive checkpoints, the method comprising:

maintaining an object structure in a memory for the file system object, the object
structure comprising a first tree structure rooted by a first root node and a second tree
structure rooted by a second root node, each tree structure representing a version of the file
system object; and

alternately managing changes to the object structure using the first tree structure
rooted by the first root node while storing the second tree structure rooted by the second root
node in the non-volatile storage device for a checkpoint that is used for keeping the
consistency of data on the non-volatile storage device if the contents of the memory are lost
and managing changes to the object structure using the second tree structure rooted by the
second root node while storing the first tree structure rooted by the first root node in the non-

volatile storage device for a subsequent checkpoint.

2. The method of claim 1, further comprising: maintaining a version number for each
root node, the version number indicating the checkpoint associated with the corresponding

tree structure.

3. The method of claim 1, wherein the non-volatile storage device comprises a plurality
of sectors, and wherein the first and second root nodes are stored in adjacent sectors in the

non-volatile storage.

4. The method of claim 2, further comprising: determining a latest valid version of the

file system object based upon the version numbers of the root nodes.

3. The method of claims 1-4, wherein each tree structure includes a number of

intermediate nodes and a number of data blocks.

6. The method of claim 5, further comprising:

maintaining a list of free space areas of the non-volatile storage device;

maintaining a list of free root nodes;

allocating the root nodes for the object structure from one of the list of free space
areas and the list of free root nodes; and

allocating intermediate nodes and data blocks for the object structure only from the

-56-

CA 02504322 2014-04-24

list of free space areas.

7. The method of claim 6, further comprising: deleting the file system object from the

non-volatile storage device.

8. The method of claim 7, wherein deleting the file system object from the non-volatile
storage device comprises:
adding the root nodes to the list of free root nodes; and

adding the intermediate nodes and data blocks to the list of free space areas.

9. An apparatus comprising:

a non-volatile storage device;

means for maintaining an object structure in a memory for a file system object, the
object structure comprising a first tree structure rooted by a first root node and a second tree
structure rooted by a second root node, each tree structure representing a version of a file
system object; and

means for alternately managing changes to the file system object using the first tree
structure rooted by the first root node while storing the second tree structure rooted by the
second root node in the non-volatile storage device for a checkpoint that is used for keeping
the consistency of data on the non-volatile storage device if the contents of the memory are
lost and managing changes to the object structure using the second tree structure rooted by
the second root node while storing the first tree structure rooted by the first root node in the

non-volatile storage device for a subsequent checkpoint.

10. The apparatus of claim 9, further comprising: means for retaining read-only versions

of the object using the object structure.

11. The apparatus of claim 10, further comprising: means for deleting a retained read-

only version of the object from the object structure.

12. The apparatus of claim 10, further comprising: means for deleting the current version
of the object while at least one retained read-only version of the object exists in the object

structure.

13. The apparatus of claim 10, further comprising: means for reverting the current version

of the object to a retained read-only version of the object.

-57-

CA 02504322 2014-04-24

14. The apparatus of claims 9-13, wherein each tree structure includes a number of

intermediate nodes and a number of data blocks.

15. Apparatus comprising:

a non-volatile storage device; and

a storage processor configured to maintain an object structure in a memory for a file
system object, the object structure comprising a first tree structure rooted by a first root node
and a second tree structure rooted by a second root node, each tree structure representing a
version of the file system object, the storage processor further configured to alternately
manage changes to the file system object using the first tree structure rooted by the first root
node while storing the second tree structure rooted by the second root node in the non-
volatile storage device for a checkpoint that is used for keeping the consistency of data on the
non-volatile storage device if the contents of the memory are lost and manage changes to the
object structure using the second tree structure rooted by the second root node while storing
the first tree structure rooted by the first root node in the non-volatile storage device for a

subsequent checkpoint.
16. The apparatus of claim 15, wherein the storage processor is hardware-implemented.
17. The apparatus of claim 15, wherein the storage processor is hardware-accelerated.

18. The apparatus of claim 15, wherein the storage processor includes a plurality of linked
sub-modules including an object store sub-module configured to perform at least one
maintaining the object structure and alternately managing the object using the first and

second tree structures.

19. The apparatus of claim 18, wherein the object store sub-module is hardware-

implemented.

20. The apparatus of claim 18, wherein the object store sub-module is hardware-

accelerated.

21. The apparatus of claims 15-20, wherein each tree structure includes a number of

intermediate nodes and a number of data blocks.

22. An apparatus comprising:

a first storage; and

-58 -

CA 02504322 2014-04-24

a file server, coupled to the first storage, and comprising a second storage, and being
operable to manage plurality of root nodes for an object of a file system, and being operable
to manage an update for data of a first portion of the plurality of root nodes in a status in
which (i) data of a second portion of the plurality of root nodes is written from the second
storage of the file server to the first storage and (ii) a new checkpoint, which is used when a

version of the object of file system is recovered, is taken,

23. The apparatus according to the claim 22, wherein: the new checkpoint is used when

the second portion of the plurality of root nodes of the file system is recovered.

24. The apparatus according to the claim 22, wherein:

the file server is operable to manage an update for the object of the file system in
another status in which (iii) data of the first portion of the plurality of root nodes is written
from the second storage of the file server to the first storage and (iv) a next new checkpoint is

taken.

25. The apparatus according to the claim 22, wherein:

the file server is operable to manage to change a status of the file system from the

status to the another status.

26. The apparatus according to the claim 22, wherein:
the file server is operable to manage to take the new checkpoint when the amount of

data in the second storage of the file server reach a threshold.

27. The apparatus according to the claim 22, wherein:
a checkpoint number of the new checkpoint identifies the version of the object of the

file system.

28. The apparatus according to the claim 22, wherein:
the file server is operable to manage to recover a version of the object of the file

system based on a last checkpoint managed by the file server.

29. The apparatus according to the claim 22, wherein:
the first storage is a disk, or

the second storage is a non-volatile storage.

30. The apparatus according to the claim 22, wherein:

-59-

CA 02504322 2014-04-24

the first storage is a disk, and

the second storage is a NVRAM.

-60 -

CA 02504322 2005-05-02

'CT/US2003/034463

WO 2004/042583

]

! i
! |
i i
l |
! i
1 1
l !
| I
1 {
! }
| | Fovaols |+~ _\,_mu._w__mwm > F0ANIS [+
} |
| i
| !
! |
! i
1]
! |
! I
! {
! Gl) € I

14"

MHOMLAN ()

D,

1/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

iz4
aolnap abeloys

€c

pieoq
aoeaul abeliois

Y

pieoq Ewu\w\»w o|l}

¥4

pleoq
aoelB)UI Ylomjau

2/31

PCT/US2003/034463

CA 02504322 2005-05-02

WO 2004/042583

vo) ze

iNno e

1d0d
d41sn1o

AN

(yo)ze

HIVd
AdOD

ve) ze

* §<,n_§ms_ _ B

(ro) ee

(¥9) 28
<

3/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

STORAGE
15

[y
'

Y
FILE SYSTEM
14

Fig. 4

41
43f

SOFTWARE

i
SERVICE
13

—P>

4/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

G ‘b1

(3
d
SPON Jonlag 9|l

25
Y
SPON JonIeg 9ji

15

SN

5/31

CA 02504322 2005-05-02

WO 2004/042583

621

PCT/US2003/034463

ml ol (23
> I ~'@
pa
A A
\ 5 w
‘ ©
8 | - " 38 o)
7 N L
©
Y
< >
S'el - '8 ‘/

N
651

6/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Data O
Data 1

—>
—»

Fig. 7

Root Onode

7/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

) - | | o
S 8 8- o
S © © ©
o ()] ()] O
A | I I
<C
"Gq) w
o]
5 2 o)
O W
LL
d):
S
o
C
O
B
o
o

8/31

PCT/US2003/034463

CA 02504322 2005-05-02

g epouQ
108.1pIY|

AII

G eledg
O 8pouo
18ig
¥ eled
€ eled
V 8pouQ
10911Q
¢ eled
I ered
0 eleg

WO 2004/042583

apouQ 1004

9/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

JE

ele (g >a——
H epoup
198117
elR Qg —
eled D S
4 epougp 3 epouQ
10911Qg 1o8lipluyl
el (g] S am—
eieQ ——
O epouQ
108lid
eieq |e— Al—’
ele (g —
¥ 8poupQ g epouo a
1o08lig 1084iptuy] opouQ 198llpu
eled — —
ele(st
ele Qg

epouQ ooy

10/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

RHS

Root Onode
LHS
Fig. 11

11/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

o
3 £ N
: ~
O L i
"6 —
o == I
2E5| 5 W
=2

12/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

RHS

Root Onode
LHS
Fig. 13

13/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

Bei‘ng

Root Onode
| written to

' disk

RHS

Fig. 14

LHS

14/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

g
todyosyn

Gl "B

SHY SHT
WS
AsIp
0} Ua)m
~ Buieg

0]

1lodyosyn

v

apouQ 1004

A [ulodyoey)

15/31

CA 02504322 2005-05-02

WO 2004/042583 PCT/US2003/034463

(9))]
51212 ©
c -
O |
| ©
&j%w-g
> |4 e
o

16/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

BlE

1R O

.myﬂc |-

AR E

pesnun

N81p/ WIS
ur pieA

epouQi1%eliQ

pesnunqn

ASIP/AES
uf pire A

epouQ 1298l

pesnun

ASIP/NIS
ul piie A

epouQ 1008lipuy

s
C_ U__m>

epoupQ 100y

17/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

gl ‘b

pasnun

spouQ 1994l

pesnunqn

epouQ i1o8iiQ

pesnun

apouQ 199lipuy

pesnun

spouQiooy

18/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

6l ‘Bi14

SN SIP/ IS
“ul pie A

uQ 199841 Q

pasnun

epouQi1oell g

NSIP/ IS
ur pie A

oppPU O 19081IDpuUl

apoupQijooy

19/31

PCT/US2003/034463

CA 02504322 2005-05-02

WO 2004/042583

oz ‘b1

pesnun

U199l (Q

@pou 10984l Q@

pesnun

e pO U QO 1084lpu

20/31

pasnun

apouQ 100y

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

YA E

pesnunqn

pesnupf

uop 10901 q

epouQ 198l

pesnunp

2 911 p U

Cwis

ut pi-e >,

epouQ 100y

21/31

CA 02504322 2005-05-02
PCT/US2003/034463

WO 2004/042583

ze b4

perealo N jujodyoeuyn pauBlS |+N uodyoays N lutodyoeyg eiesln palealo |-N julodyoayy Ppeuels N uodioeyn

e
el ¥sIa 98d
————————
asa ysn|d
e
sl pabbe |
yoojqiedng -
aweuia Al ¥stq eledl 8pouQ

-

SOWIM ¥SIQ epouQ 8o

ysnjd4 B}eQ 9POUQ B BPOUC I1BYID

oot
8111\ YSIg epouQ 100y

)

ysn|4 epouQ ooy
oot~}
UM 381 9Sd
|tf————— e
gsd uysnid

B S ——
allip pefibe]

300]q10dNS i

ojweuAq 1L M dsi 18] s1oelqo pelepdn
1811108090
P e porepdn usnid |«
senjm pebbe] 1s1] 5108[q0 parepdn seyIp pebbe] 111 s108fgo perepdn
S U -
selim pebbe] eleg spoup D selp pebbe] eleQ 2pouUO

salup pobbe] Ame>> paiejaqg
apouQ J19410 apouQ 19410
soulp pofelaqg spouQ jooy

-
Anul-u--nlnnuuwmwmbuwmwﬁb
sollip pakejeg epouQ looy 7

N uod)o8y) 10 uoljeald oy} 10} suljeuwlL

22/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

glee

yiee

clee

olLee

<

€¢ Old

l =ND

l =NO
e
= l =NO
Il =NO <
4 ,
80¢c
l =NO
)
} =NO } =NO
0 [
90¢c
$)00|g eled apouQ joallg

.

¥0€C

apouQ 10alIpy|

=NO

[40] 574

apouQ 100y

23/31

CA 02504322 2005-05-02

PCT/US2003/034463

24/31

WO 2004/042583

- 2 Ol

L =ND
e 2 /
A umzo «—] =NO

g0¢ce

L =ND

AR) L =N2
cove A
oLEz vuozo L=NO L=NO |t €=NO
0cc 0tc z0ve
s)oo|g Bleq apoup 10aliq apouQ 1oalipu| apouQ 100y

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

glee

145274

clee

(1]3:74

olee

Gg¢ old

1 =NO
€ /
L HNZO < L =NO
80¢€¢
}l =NOD
l
€=NO
0
N L=ND
90¢€¢
s}00|g Bleq apouQ 18I

Il =NO

L =NO

07 &

y0ee

apouQ joalipuj

€=NO

[40] ¢4

apouQ 00y

25/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

glee

42X

[434

oLse

olee

l =NO
e Al//I//IIIIII/
L =NO l =ND
4 <
80€T
Fumau <
€=ND
€=N9 909¢
0
l =
ozo < L=NO |
90¢g¢
syo0|g eleq apouQ 108

9¢ 9OId

¥0€eC

apouQ Joallpu)

l=NO |-

L =NO

cove A

€=NO

cove

apouQ 100y

26/31

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

olee

viee

clee

oLse

oLee

LC

old

L=ND
€ /
L=N)=
i 9 | ¢ ND
80¢¢
L =ND
A E=ND |
€=N9 909¢
0
rﬂﬁo.A L=NO |«
90€2
syo0|g B1ed apouQ 1081

y0.¢

L =NO

b =NO

0¥ A

y0o€C

apouQ 10al1pu|

€=ND

(A1) 24

apouQ 100y

27/31

CA 02504322 2005-05-02

PCT/US2 003/034463

wOo 2004/042583

8C 'Ol

28/31

80¢z oz

cove

$00/g elegy dpouQ 10811y ®pouQ joaupuy; ®POUQ j00y

CA 02504322 2005-05-02

PCT/US2003/034463

WO 2004/042583

6¢ 'Ol4

L =ND
giee e S=ND
8062
L=ND L=ND
viee z —
Y 80¢e
zlez uz
€=NO €=NO
olge 0 < <
909¢
b =NO L =NO
90¢z
glez
$}o0lg ejeqg 3pouQ e

£=ND
€067 A
L=ND =N
v0gz | 2062z
3pouQ 108uipU; 8poup jooy

29/31

PCT/US2 003/034463

CA 02504322 2005-05-02

wOo 2004/042583

0¢ 'Oi4

pLez anzo b=NO E
—_ 805z .
clez | b=NO cove
!
[e=no
Ig
el E
9067 .
90¢z v08% 2062
SPojgeleg — ®PouQ Josuig 8poug yaupy; 8pouQ jooy

30/31

CA 02504322 2005-05-02

PCT/US2003/034463

31/31

WO 2004/042583

L€ Old
L =ND
o1£Z e
L =NO 1 =N =
v1€T 5 | b =NO
80€Z eove A
aez |t uvzo
_ pajejep
olee ‘ ozo - 1 =NO L =NO se
| paxEen
90€£Z v0€T 2062
s$)o0|g Bleq apouQ 198l apouQ 10aipu| apouQ 100y

32164 84

COPY
PATH

32

= 32 (64)
CLUSTER - e o : =

METADATA

CLUSTER
PORT
OouT

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS
	Page 61 - CLAIMS
	Page 62 - CLAIMS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - DRAWINGS
	Page 67 - DRAWINGS
	Page 68 - DRAWINGS
	Page 69 - DRAWINGS
	Page 70 - DRAWINGS
	Page 71 - DRAWINGS
	Page 72 - DRAWINGS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - DRAWINGS
	Page 84 - DRAWINGS
	Page 85 - DRAWINGS
	Page 86 - DRAWINGS
	Page 87 - DRAWINGS
	Page 88 - DRAWINGS
	Page 89 - DRAWINGS
	Page 90 - DRAWINGS
	Page 91 - DRAWINGS
	Page 92 - DRAWINGS
	Page 93 - DRAWINGS
	Page 94 - REPRESENTATIVE_DRAWING

