Title: CYCLOALKANE-SUBSTITUTED PYRAZOLINE COMPOUNDS, THEIR PREPARATION AND USE AS MEDICAMENTS

Abstract: The present invention relates to Cycloalkane-substituted substituted pyrazoline compounds, methods for their preparation, medicaments comprising these compounds as well as their use for the preparation of a medicament for the treatment of humans and animals.
Cycloalkane-substituted pyrazoline compounds, their preparation and use as medicaments

The present invention relates to Cycloalkane-substituted substituted pyrazoline compounds, methods for their preparation, medicaments comprising these compounds as well as their use for the preparation of a medicament for the treatment of humans and animals.

Cannabinoids are compounds, which are derived from the cannabis sativa plant which is commonly known as marijuana. The most active chemical compound of the naturally occurring cannabinoids is tetrahydrocannabinol (THC), particularly Δ⁹-THC.

These naturally occurring cannabinoids as well as their synthetic analogues promote their physiological effects via binding to specific G-coupled receptors, the so-called cannabinoid-receptors.

At present, two distinct types of receptors that bind both the naturally occurring and synthetic cannabinoids have been identified and cloned. These receptors, which are designated CB₁ and CB₂ are involved in a variety of physiological or pathophysiological processes in humans and animals, e.g. processes related to the central nervous system, immune system, cardiovascular system, endocrinous system, respiratory system, the gastrointestinal tract or to reproduction, as described for example, in Hollister, Pharm. Rev. 38, 1986, 1-20; Reny and Singha, Prog. Drug. Res., 36, 71-1 14, 1991; Consroe and Sandyk, in Marijuana/Cannabinoids, Neurobiology and Neurophysiology, 459, Murphy L. and Barthe A. Eds., CRC Press, 1992.

Therefore, compounds, which have a high binding affinity for these cannabinoid receptors and which are suitable for modulating these receptors are useful in the prevention and/or treatment of cannabinoid-receptor related disorders.

In particular, the CB₁-Receptor is involved in many different food-intake related disorders such as bulimia or obesity, including obesity associated with type II diabetes (non-insulin-dependent diabetes) and thus, compounds suitable for
regulating this receptor may be used in the prophylaxis and/or treatment of these disorders.

Thus, it was an object of the present invention to provide novel compounds for use as active substances in medicaments. In particular, these active substances should be suitable for the modulation of Cannabinoid receptors, more particularly for the modulation of Gannabinoid 1 (CB₁) receptors.

Said object was achieved by providing the cycloalkane-substituted pyrazoline compounds of general formula I given below, their stereoisomers, corresponding salts and corresponding solvates thereof.

It has been found that these compounds have a high affinity for cannabinoid receptors, particularly for the CB₁ receptor, and that they act as modulators e.g. antagonists, inverse agonists or agonists on these receptors. They are therefore suitable for the prophylaxis and/or treatment of various disorders related to the central nervous system, the immune system, the cardiovascular system, the endocrinous system, the respiratory system, the gastrointestinal tract or reproduction in humans and/or animals, preferably humans including infants, children and grown-ups.

Thus, in one of its aspects the present invention relates to Cycloalkane-substituted pyrazoline compounds of general formula I,
wherein

X and Y independently represent phenyl, thienyl, naphtyl or pyridyl which
groups may be substituted with 1, 2 or 3 substituents W, which can be the
same or different, selected from the group

- branched or linear C\textsubscript{i-3}-alkyl or branched or linear C\textsubscript{i-3}-alkoxy,
 phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl,
 CH\textsubscript{F}\textsubscript{2}, CH\textsubscript{2}F, OCH\textsubscript{F}\textsubscript{2}, trifluoromethylthio, trifluoromethoxy,
 methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl,
 sulfamoyl and acetyl; O-P, with P denoting a prodrug group
 consisting of aryl, C\textsubscript{7/2/0}-alkyl, heterocyclyl, C(O)-aryl, C(O)-
 heterocyclyl, C(O)-C\textsubscript{1/2/0}-alkyl;
- R\textsubscript{8} representing a Cycloalkyl unsubstituted or at least monosubstituted with 1,
 2 or 3 substituents Z, which can be the same or different, selected from the
group:
 H, F, Cl, Br, I, OH, SH, C\textsuperscript{\textsubscript{1/4}}-alkyl, C\textsuperscript{\textsubscript{1/4}}-alkoxy, C\textsubscript{F}\textsubscript{3}, CH\textsubscript{F}\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, a
 keto-group, NO\textsubscript{2} or NH\textsubscript{2};
- n being 0 or 1

optionally in the form of its racemate, pure stereoisomers, especially enantiomers
or diastereomers or in the form of mixtures of stereoisomers, especially
enantiomers or diastereomers, in any suitable ratio;

in the form shown or in form of the acid or base or in form of a salt, especially a
physiologically acceptable salt, or in form of a solvate, especially a hydrate or in
form of a corresponding N-oxide thereof.

In a preferred embodiment of this aspect of the invention R\textsubscript{8} is C\textsubscript{7/8}-Cycloalkyl,
unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which
can be the same or different, selected from the group:

- H, F, Cl, Br, I, OH, SH, C\textsubscript{1/4}-alkyl, C\textsuperscript{\textsubscript{\textsubscript{1/4}}}-alkoxy, C\textsubscript{F}\textsubscript{3}, CH\textsubscript{F}\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, a
 keto-group, NO\textsubscript{2} or NH\textsubscript{2}.
In another very preferred of its aspects the present invention relates to Cycloalkane-substituted pyrazoline compounds of general formula I,

![Chemical structure](image)

wherein

X and Y independently represent phenyl, thiényl, naphtyl or pyridyl which groups may be substituted with 1, 2 or 3 substituents W, which can be the same or different, selected from the group

- branched or linear d-alkyl or branched or linear Ci-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, CHF₂, CH₂F, OCHF₂, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of aryl, C₆-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Ci. alkyl;

- R⁸ representing a C₇-Cycloalkyl unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different, selected from the group:
 - H, F, Cl, Br, I, OH, SH, C^alkyl, C^alkoxy, CF₃, CHF₂, CH₂F, OCF₃, a keto-group, NO₂ or NH₂;

- n being 0 or 1
optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio; in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

In the context of this invention, alkyl radical or group is understood as meaning saturated and unsaturated, linear or branched hydrocarbons, which can be unsubstituted or mono- or polysubstituted. Thus unsaturated alkyl is understood to encompass alkenyl and alkynyl groups, like e.g. -CH=CH-CH₃ or -C≡C-CH₃, while saturated alkyl encompasses e.g. -CH₃ and -CH₂-CH₃. In these radicals, d-2-alkyl represents C1- or C2-alkyl, Ci-3-alkyl represents C1-, C2- or C3-alkyl, d-4-alkyl represents C1-, C2-, C3- or C4-alkyl, d-5-alkyl represents C1-, C2-, C3-, C4-, or C5-alkyl, d-e-alkyl represents C1-, C2-, C3-, C4-, C5- or C6-alkyl, Ci.7-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7- or C8-alkyl, d β-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7- or C8-alkyl, C₄₋₁₀-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8-, C9- or C10-alkyl and Ci.i₈-alkyl represents C1-, C2-, C3-, C4-, C5-, C6-, C7-, C8-, C9-, C10-, C11-, C12-, C13-, C14-, C15-, C16-, C17- or C18-alkyl. The alkyl radicals are preferably methyl, ethyl, vinyl (ethenyl), propyl, allyl (2-propenyl), 1-propinyl, methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethyl ethyl, pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, 1-methyl pentyl, if substituted also CHF₂, CF₃ or CH₂OH etc.

In the context of this invention cycloalkyl radical or group is understood as meaning saturated and unsaturated (but not aromatic) cyclic hydrocarbons (without a heteroatom in the ring), which can be unsubstituted or mono- or polysubstituted. Furthermore, C₃₋₄-cycloalkyl represents C3- or C4-cycloalkyl, C₃₋₅-cycloalkyl represents C3-, C4- or C5-cycloalkyl, Cⁿ-cycloalkyl represents C3-, C4-, C5- or C6-cycloalkyl, C₃₋₄ cycloalkyl represents C3-, C4-, C5-, C6- or C7-cycloalkyl, C₃₋₅-cycloalkyl represents C3-, C4-, C5-, C6-, C7- or C8-cycloalkyl, C₄₋₅-cycloalkyl represents C4- or C5-cycloalkyl, C₄₋₆-cycloalkyl represents C4-, C5- or C6-cycloalkyl, C₄₋₇-cycloalkyl represents C4-, C5-, C6- or C7-cycloalkyl, C₄₋₈-cycloalkyl represents C4-, C5- or C6-cycloalkyl, C₅₋₆-cycloalkyl represents C4-, C5-, C6- or C7-cycloalkyl. However, mono- or
polyunsaturated, preferably monounsaturated, cycloalkyls also in particular fall under the term cycloalkyl as long as the cycloalkyl is not an aromatic system. The alkyl and cycloalkyl radicals are preferably methyl, ethyl, vinyl (ethenyl), propyl, allyl (2-propenyl), 1-propinyl, methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, penty1, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, 1-methylpentyl, cyclopropyl, 2-methylcyclopropyl, cyclopropyl methyl, cyclobutyl, cyclopentyl, cyclopentyl methyl, cyclohexyl, cycloheptyl, cyclooctyl, and also adamantyl.

In connection with alkyl or aliphatic group - unless defined otherwise - the term substituted in the context of this invention is understood as meaning replacement of at least one hydrogen radical by F, Cl, Br, I, NH2, SH or OH, "polysubstituted" radicals being understood as meaning that the replacement takes effect both on different and on the same atoms several times with the same or different substituents, for example three times on the same C atom, as in the case of CF3, or at different places, as in the case of e.g. \(-\text{CH(OH)}\cdot\text{CH} \equiv \text{CHCl}_2\).

The term \((\text{CH}_2)_3\) is to be understood as meaning \(-\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\), \(-\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\) and \(-\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\), \((\text{CH}_2)_4\) is to be understood as meaning \(-\text{CH}_2\cdot\), \(-\text{CH}_2\cdot\text{CH}_2\cdot\), \(-\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\) and \(-\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\), \((\text{CH}_2)_5\) is to be understood as meaning \(-\text{CH}_2\cdot\text{CHr}\cdot\text{CH} \equiv \text{CHr}\) and \(-\text{CH}_2\cdot\text{CHrCHr} \equiv \text{CHrCHr}\), etc.

An aryl radical or group is understood as meaning ring systems with at least one aromatic ring but without heteroatoms even in only one of the rings. Examples are phenyl, naphthyl, fluoranthenyl, fluorenyl, tetralinyl or indanyl, in particular 9H-fluorenyl or anthracenyl radicals, which can be unsubstituted or monosubstituted or polysubstituted.

In the context of this invention alkyl-aryl is understood as meaning an aryl group (see above) being connected to another atom through an alkyl-group (see above) (preferably a C-M-alkyl), whereas the alkyl is always saturated and linear or branched always refers to the alkyl. Examples include a benzyl-group.
A heterocyl radical or group is understood as meaning heterocyclic ring systems, saturated or unsaturated ring which contains one or more heteroatoms from the group consisting of nitrogen, oxygen and/or sulfur in the ring and can also be mono- or polysubstituted. Examples which may be mentioned from the group of heterocycls are furan, benzofuran, thiophene, benzothiophene, pyrrole, pyridine, pyrimidine, pyrazine, quinoline, isoquinoline, phthalazine, benzo-1,2,5-thiadiazole, benzothiazole, indole, benzotriazole, benzodioxolane, benzodioxane, carbazole and quinazoline.

In the context of this invention alkyl-heterocyl is understood as meaning a heterocycl group (see above) being connected to another atom through an alkyl group (see above) (preferably a d -4-alkyl), whereas the alkyl is always saturated and linear or branched always refers to the alkyl.

In connection with aryl or alkyl-aryl, cycloalkyl or alkyl-cycloalkyl, heterocyclcyl or alkyl-heterocycl, substituted is understood - unless defined otherwise - as meaning substitution of the ring-system of the aryl or alkyl-aryl, cycloalkyl or alkyl-cycloalkyl; heterocyclcyl or alkyl-heterocycl by OH, SH, =O, halogen (F, Cl, Br, I), CN, NO2, COOH; NR,Ry, with Rx and Ry independently being either H or a saturated or unsaturated, linear or branched, substituted or unsubstituted Ci-alkyl; a saturated or unsaturated, linear or branched, substituted or unsubstituted d^-alkyl; a saturated or unsaturated, linear or branched, substituted or unsubstituted -0-Ci. 6-alkyl (alkoxy); a saturated or unsaturated, linear or branched, substituted or unsubstituted -S-Ci. 6-alkyl; a saturated or unsaturated, linear or branched, substituted or unsubstituted -C(O)-C1,6-alkyl-group; a saturated or unsaturated, linear or branched, substituted or unsubstituted -C(O)-Oi. 6-alkyl-group; a substituted or unsubstituted aryl or alkyl-aryl; a substituted or unsubstituted cycloalkyl or alkyl-cycloalkyl; a substituted or unsubstituted heterocyclcyl or alkyl-heterocyclcyl.

The term "salt" is to be understood as meaning any form of the active compound used according to the invention in which it assumes an ionic form or is charged and is coupled with a counter-ion (a cation or anion) or is in solution. By this are also to be understood complexes of the active compound with other molecules and ions, in particular complexes which are complexed via ionic interactions.
The term "physiologically acceptable salt" means in the context of this invention any salt that is physiologically tolerated (most of the time meaning not being toxic-especially not caused by the counter-ion) if used appropriately for a treatment especially if used on or applied to humans and/or mammals. These physiologically acceptable salts can be formed with cations or bases and in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention - usually a (deprotonated) acid - as an anion with at least one, preferably inorganic, cation which is physiologically tolerated - especially if used on humans and/or mammals. The salts of the alkali metals and alkaline earth metals are particularly preferred, and also those with NH4, but in particular (mono)- or (di)sodium, (mono)- or (di)potassium, magnesium or calcium salts.

These physiologically acceptable salts can also be formed with anions or acids in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention - usually protonated, for example on the nitrogen - as the cation with at least one anion which are physiologically tolerated - especially if used on humans and/or mammals. By this is understood in particular, in the context of this invention, the salt formed with a physiologically tolerated acid, that is to say salts of the particular active compound with inorganic or organic acids which are physiologically tolerated - especially if used on humans and/or mammals. Examples of physiologically tolerated salts of particular acids are salts of: hydrochloric acid, hydrobromic acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, oxalic acid, succinic acid, malic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid or citric acid.

The compounds of the invention may be in crystalline form or either as free compounds or as solvates and it is intended that those forms are within the scope of the present invention. Methods of solvation are generally known within the art. Suitable solvates are pharmaceutically acceptable solvates. The term "solvate" according to this invention is to be understood as meaning any form of the active compound according to the invention in which this compound has attached to it via non-covalent binding another molecule (most likely a polar solvent) especially including hydrates and alcoholates, e.g. methanolate.
Unless otherwise stated, the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13C- or 14C-enriched carbon or 15N-enriched nitrogen are within the scope of this invention.

The compounds of formula (I) or their salts or solvates are preferably in pharmaceutically acceptable or substantially pure form. By pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels. Purity levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90%. In a preferred embodiment it is above 95% of the compound of formula (I) or, or of its salts, solvates or prodrugs.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas Ia or Ib,

\[
\text{Ia} \quad \text{lb}
\]

wherein
X and Y independently represent phenyl, thienyl, naphtyl or pyridyl which groups may be substituted with 1, 2 or 3 substituents W, which can be the same or different, from the group:

- branched or linear d\textsubscript{3}-alkyl or branched or linear C\textsubscript{1,3}-alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, CHF\textsubscript{2}, CH\textsubscript{2}F, OCHF\textsubscript{2}, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated Cβ\textsubscript{2,0}-alkyl or C(O)-Cl\textsubscript{2,0}-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted CfOJ-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

- R8 representing a Cy-β-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different selected from the group:

 H, F, Cl, Br, I, OH, SH, C^alkyl, C^alkoxy, CF\textsubscript{3}, CHF\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, a keto-group, NO\textsubscript{2} or NH\textsubscript{2};

- n being 0 or 1

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formula II,
wherein

R_{11}, R_{12}, R_{13} and R_{14} independently of one another represent:

- H; branched or linear d-3-alkyl or branched or linear Ci-3-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl,
- CHF$_2$, CH$_2$F, OCHF$_2$, trifluoromethylthio, trifluoromethoxy,
- methylsulfonyl, carboxyl, trifluoromethyl sulfonyl, cyano, carbamoyl,
- sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear,
- saturated or unsaturated C$_{8-2}$-o-alkyl or C(0)-Ci$_{2-0}$-o-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocycl or alkyl-heterocycl;
- substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-
- heterocycl or C(O)-alkyl-heterocycl;
- R_{18} representing a C$_{7-8}$-Cycloalkyl, unsubstituted or at least monosubstituted
- with 1, 2 or 3 substituents Z, which can be the same or different, selected from the group:
- H, F, Cl, Br, I, OH, SH, C^alkyl, C^alkoxy, CF$_3$, CHF$_2$, CH$_2$F,
- OCF$_3$, a keto-group, NO$_2$ or NH$_2$;
- m being 0 or 1
optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio; in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas M_a and $lib,$

wherein

R^{11}, R^{12}, R^{13} and R^{14} independently of one another represent:

H; branched or linear Ci-3-alkyl or branched or linear Ci-3-alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl,
trifluoromethylthio, trifluoromethoxy, CHF$_2$, CH$_2$F, OCHF$_2$, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C$_3$H$_7$-o-alkyl or C(O)-C$_1$H$_2$-o-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

- R^{18} representing a C$_7$H$_8$-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different selected from the group:

 H, F, Cl, Br, I, OH, SH, C$^\text{alkyl}$, C$^\text{alkoxy}$, CF$_3$, CHF$_2$, CH$_2$F, OCF$_3$, a keto-group, NO$_2$ or NH$_2$;

- m being 0 or 1

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas II, IIIa and IIIb, wherein

\[R^{11}, R^{12}, R^{13} \text{ and } R^{14} \text{ independently of one another represent } H, \text{CH}_3, \text{C}_2\text{H}_5, \text{C}_3\text{H}_7, \text{OCH}_3, \text{OC}_2\text{H}_5, \text{OH}, \text{SH}, \text{F, } \text{Cl, Br, I, CF}_3, \text{CHF}_2, \text{CH}_2\text{F, OCF}_3, \text{OCHF}_2; \]

preferably

\[R^{11}, R^{12}, R^{13} \text{ and } R^{14} \text{ independently of one another represent } H, \text{OH, OCH}_3, \text{F, Cl, Br, I, CF}_3, \text{CHF}_2 \text{ or OCF}_3. \]

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas II, IVa and IVb, wherein

substituents Z, which can be the same or different are selected from the group:

\[H, \text{F, Cl, Br, I, OH, CH}_3, \text{C}_2\text{H}_5, \text{OCH}_3, \text{OCF}_3, \text{or CF}_3. \]
In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formula III

wherein

R^{21}, R^{22}, R^{23} and R^{24} independently of one another represent:

- H; branched or linear C_{1-3}-alkyl or branched or linear C_{1-3}-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P,

with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C_{1-20}-alkyl or $C(0)-C_{1-20}$-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted $C(0)$-aryl, $C(0)$-alkyl-aryl, $C(0)$-heterocyclyl or $C(0)$-alkyl-heterocyclyl;

- R^{28} representing a C_{7-8}-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different, selected from the group:

 - H, F, Cl, Br, I, OH, SH, d^alkyl, C_1^alkOxy, CF_3, CHF_2, CH_2F,
 - OCF_3, a keto-group, NO_2 or NH_2;
- \(p \) being 0 or 1

optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio;
in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas III, Illa and IMb,

wherein

\(R^{21}, R^{22}, R^{23} \) and \(R^{24} \) independently of one another represent:
H; branched or linear C\textsubscript{1-3}-alkyl or branched or linear d\textsubscript{-3}-alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, trifluoromethyliio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C\textsubscript{\beta2o-3}kyl or C(0)-Ci. \textsubscript{2o-alkyl}; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;
- R28 representing a C\textsubscript{7-8}-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different selected from the group:
 \(\text{H, F, Cl, Br, I, OH, SH, C^alkyl, C^alkoxy, CF}_3, \text{CHF}_2, \text{CH}_2\text{F, OCF}_3, \text{a keto-group, NO}_2 \text{ or NH}_2; \)
- p being 0 or 1

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas III, IMa and Mlb, wherein

\[\text{R}^{21} \text{ represents } \text{O-P, with P denoting a prodrug group consisting of aryl, C}_8\text{\textsubscript{-o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Ci }_2\text{o-alkyl, while R}^{22}, \text{R}^{23} \text{ and } \text{R}^{24} \text{ independently of one another represent } \text{H, CH}_3, \text{C}_2\text{H}_5, \text{C}_3\text{H}_7, \text{OCH}_3, \text{OC}_2\text{H}_5, \text{OH, SH, F, Cl, Br, I CF}_3, \text{CHF}_2, \text{CH}_2\text{F, OCF}_3, \text{OCHF}_2; } \]

preferably

\[\text{R}^{21} \text{ represents } \text{O-P, with P denoting a prodrug group consisting of aryl, C}_8\text{\textsubscript{-o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Ci }_2\text{o-alkyl, while R}^{22}, \text{R}^{23} \text{ and } \text{R}^{24} \text{ independently of one another represent } \text{H, OH, OCH}_3, \text{F, Cl, Br, I, CF}_3, \text{CHF}_2 \text{ or OCF}_3; } \]
most preferably
R^{21} represents $O-P$, with P denoting a prodrug group consisting of aryl, $C\beta_{20}$-alkyl, heterocyclyl, $C(O)$-aryl, $C(O)$-heterocyclyl, $C(0)$-$\text{cho}-\text{alkyl}$, while R^{22}, R^{23} and R^{24} independently of one another represent OH, OCH$_3$, F, Cl, Br, I or OCF$_3$.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas III, IHa and IHb, wherein

R^{21}, R^{22}, R^{23} and R^{24} independently of one another represent H, CH$_3$, C$_2$H$_5$, C$_3$H$_7$, OCH$_3$, OC$_2$H$_5$, OH, SH, F, Cl, Br, I, CF$_3$, CHF$_2$, CH$_2$F, OCF$_3$, OCHF$_2$; preferably

R^{21}, R^{22}, R^{23} and R^{24} independently of one another represent H, OH, OCH$_3$, F, Cl, Br, I, CF$_3$, CHF$_2$ or OCF$_3$;

most preferably

R^{21} represents H, while R^{22}, R^{23} and R^{24} independently of one another represent OH, OCH$_3$, F, Cl, Br, I or OCF$_3$.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas III, IHa and IHb, wherein

substituents Z_1 which can be the same or different are selected from the group:

H, F, Cl, Br, OH, CH$_3$, C$_2$H$_5$, OCH$_3$, OCF$_3$, or CF$_3$.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas III and selected from the group consisting of:

- δ^\wedge-chlorophenyl-J-N-cycloheptyl-δ^\wedge,4-dichlorophenylH. δ-dihydro-I H-pyrazole-3-carboxamide,
• (R)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• (S)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-chlorophenyl)-N-(cycloheptylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-chlorophenyl)-N-cyclooctyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-fluorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5^methoxyphenyO-N-cycloheptyl-1^dichlorophenyl^ 5-dihydro-1H-pyrazole-3-carboxamide,

optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio;
optionally in the form of a corresponding N-oxide, a corresponding salt or a corresponding solvate.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas IV, IVa or IVb
wherein

R^{31}, R^{32}, R^{33} and R^{34} independently of one another represent:

- H; branched or linear γ-alkyl or branched or linear γ-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl,
- trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl,
- trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; OP,
- with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C_{10}-alkyl or $C(0)$-alkyl; substituted or unsubstituted aryl, alkyl-aryl,
heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-
aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;
R35, R36 and R37 are independently from one another selected from, H, F, Cl,
Br, I, OH, SH, C\textsubscript{1-4}alkyl, C\textsubscript{1-4}alkoxy, CF\textsubscript{3}, CHF\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, a keto-group,
NO\textsubscript{2} or NH\textsubscript{2};

optionally in the form shown or in form of the acid or base or in form of a salt,
especially a physiologically acceptable salt, or in form of a solvate, especially a
hydrate or in form of a corresponding N-oxide thereof.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline
compounds according to the invention are of general formulas IV, IVa or IVb, wherein

R31 represents ; O-P, with P denoting a prodrug group consisting of aryl,
C\textsubscript{6-2}o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-C\textsubscript{2}o-alkyl, while
R32, R33 and R34 independently of one another represent H, CH\textsubscript{3}, C\textsubscript{2}H\textsubscript{5}, C\textsubscript{3}H\textsubscript{7},
OCH\textsubscript{3}, OC\textsubscript{2}H\textsubscript{5}, OH, SH, F, Cl, Br, I, CF\textsubscript{3}, CHF\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, OCHF\textsubscript{2};

preferably
R31 represents ; O-P, with P denoting a prodrug group consisting of aryl,
C\textsubscript{6-2}o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-C\textsubscript{2}o-alkyl, while
R32, R33 and R34 independently of one another represent H, OH, OCH\textsubscript{3}, F, Cl,
Br, I, CF\textsubscript{3}, CHF\textsubscript{2} or OCF\textsubscript{3};

most preferably
R31 represents ; O-P, with P denoting a prodrug group consisting of aryl,
C\textsubscript{6-2}o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-C\textsubscript{2}o-alkyl, while
R32, R33 and R34 independently of one another represent OH, OCH\textsubscript{3}, F, Cl, Br,
I or OCF\textsubscript{3};

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline
compounds according to the invention are of general formulas IV, IVa or IVb, wherein
R31, R32, R33 and R34 independently of one another represent H, \(\text{CH}_3\), \(\text{C}_2\text{H}_5\), \(\text{C}_3\text{H}_7\), \(\text{OCH}_3\), \(\text{OC}_2\text{H}_5\), OH, SH, F, Cl, Br, \(\text{ICF}_3\), CHF\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, OCHF\textsubscript{2}; preferably

R31, R32, R33 and R34 independently of one another represent H, OH, \(\text{OCH}_3\), F, Cl, Br, I, \(\text{ICF}_3\), CHF\textsubscript{2} or OCF\textsubscript{3}; most preferably

R31 represents H, while R32, R33 and R34 independently of one another represent OH, \(\text{OCH}_3\), F, Cl, Br, I or OCF\textsubscript{3}.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention are of general formulas IV, IVa or IVb, wherein

R35, R36 and R37 are independently from one another selected from, H, F, Cl, Br, I, OH, \(\text{CH}_3\), \(\text{C}_2\text{H}_5\), \(\text{OCH}_3\), OCF\textsubscript{3}, or CF\textsubscript{3}.

In a preferred embodiment of the invention the cycloalkane-substituted pyrazoline compounds according to the invention of general formulas IV, IVa or IVb are selected from:

- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
- (R)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
- (S)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
- 5-(4-chlorophenyl)-N-(cycloheptylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
- \(\delta\)-\(\wedge\)-bromophenyl\(\text{J}\)-N-cycloheptyl-1-\(\wedge\wedge\)-dichlorophenyl\(\wedge\). \(\delta\)-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
- 5-(4-fluorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
- 5-(4-methoxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1\(\text{H}\)-pyrazole-3-carboxamide,
optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio; optionally in the form of a corresponding N-oxide, a corresponding salt or a corresponding solvate.

In another aspect the present invention also provides a process for the manufacture of substituted pyrazoline compounds of general formula I according to the invention, characterized in that at least one benzaldehyde compound of general formula V

\[
\text{O} \quad \text{H} \\
\text{X} \\
(V)
\]

wherein X has the meaning as described above, is reacted with a pyruvate compound of general formula (VI)

\[
\text{G} \quad \text{O} \\
\text{O} \\
\text{CH}_3 \\
(VI),
\]

wherein G represents an OR group with R being a branched or unbranched \(C_{1-6}\) alkyl radical or G represents an O-K group with K being a cation, to yield a compound of general formula (VII)
wherein X has the meaning given above, which is optionally isolated and/or optionally purified, and which is reacted with an optionally substituted phenyl hydrazine of general formula (VIII)

\[
\begin{align*}
\text{HN} & \quad \text{NH}_2 \\
\text{Y} & \\
\end{align*}
\]

(VIII)

or a corresponding salt thereof, wherein Y has the meaning as described above, under inert atmosphere, to yield a compound of general formula (IX)

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{X} & \quad \text{Y} \\
\end{align*}
\]

(IX)

wherein X and Y have the meaning as given above, which is optionally isolated and/or optionally purified, and optionally transferred under inert atmosphere to a compound of general formula (XI) via the reaction with an activating agent
wherein the substituents X and Y have the meaning given above and A represents a leaving group, said compound being optionally isolated and/or optionally purified, and at least one compound of general formula (XI) is reacted with a compound of general formula XII

wherein n and R₈ are defined as described above; under inert atmosphere to yield a substituted pyrazoline compound of general formula I, which is optionally isolated and/or optionally purified.

The inventive process is also illustrated in scheme I given below:
The reaction of the benzaldehyde compound of general formula V with a pyruvate compound of general formula VI is preferably carried out in the presence of at least one base, more preferably in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an alkali metal methoxide such as sodium methoxide, as described, for example, in Synthetic communications, 26(11), 2229-33, (1996). The respective description is hereby incorporated by reference and forms part of the disclosure. Preferably sodium pyruvate may be used as the pyruvate compound. Preferably said reaction is carried out in a protic reaction medium such as a C1-4 alkyl alcohol or mixtures of these. Mixtures of such alcohols with water, e.g. ethanol/water may also be used.

Reaction temperature as well as the duration of the reaction may vary over a broad range. Preferred reaction temperatures range from -10 °C to the boiling point of the reaction medium. Suitable reaction times may vary for example from several minutes to several hours.
Also preferred the reaction of the benzaldehyde compound of general formula V with a pyruvate compound of general formula VI is carried out under acid catalysed conditions, more preferably by refluxing the mixture in dichloromethane in the presence of copper(II)trifluoromethanesulfonate as described, for example, in Synlett, (1), 147-149, 2001. The respective description is hereby incorporated by reference and forms part of the disclosure.

The reaction of the compound of general formula (VII) with an optionally substituted phenyl hydrazin of general formula (VIII) is preferably carried out in a suitable reaction medium such as C1-4-alcohols or ethers such as dioxane or tetrahydrofurane or mixtures of at least two of these aforementioned compounds. Also preferably, said reaction may be carried out in the presence of an acid, whereby the acid may be organic such as acetic acid and/or inorganic such as hydrochloric acid. Furthermore, the reaction may also be carried out in the presence of a base such as piperidine, piperazine, sodium hydroxide, potassium hydroxide, sodium methoxide or sodium ethoxide, or a mixture of at least two of these bases may also be used.

Reaction temperature as well as the duration of the reaction may vary over a broad range. Suitable reaction temperatures range from room temperature, i.e. approximately 25 °C to the boiling point of the reaction medium. Suitable reaction times may vary for example from several minutes to several hours.

The carboxylic group of the compound of general formula (IX) may be activated for further reactions by the introduction of a suitable leaving group according to conventional methods well known to those skilled in the art. Preferably the compounds of general formula (IX) are transferred into an acid chloride, an acid anhydride, a mixed anhydride, a C1-4 alkyl ester, an activated ester such as p-nitrophenylester. Other well known methods for the activation of acids include the activation with N,N-dicyclohexylcarbodiimide or benzotriazol-N-oxotris(dimethylamino) phosphonium hexafluorophosphate (BOP)).
If said activated compound of general formula (XI) is an acid chloride, it is preferably prepared by reaction of the corresponding acid of general formula (IX) with thionyl chloride or oxalyl chloride, whereby said chlorinating agent is also used as the solvent. Also preferably an additional solvent may be used. Suitable solvents include hydrocarbons such as benzene, toluene or xylene, halogenated hydrocarbons such as dichloromethane, chloroform or carbon tetrachloride, ethers such as diethyl ether, dioxane, tetrahydrofurane or dimethoxyethane. Mixtures of two or more solvents from one class or two or more solvents from different classes may also be used. Preferred reaction temperature range from 0°C to the boiling point of the solvent and reaction times from several minutes to several hours.

If said activated compound of general formula (XI) is a mixed anhydride, said anhydride may preferably be prepared, for example, by reaction of the corresponding acid of general formula (IX) with ethyl chloroformiate in the presence of a base such as triethyammine or pyridine, in a suitable solvent.

The afore mentioned reactions involving the synthesis of the 4,5-dihydro-pyrazole ring or the reaction of a compound comprising said ring are carried out under an inert atmosphere, preferably nitrogen or argon, to avoid oxidation of the ring-system.

During the processes described above the protection of sensitive groups or of reagents may be necessary and/or desirable. The introduction of conventional protective groups as well as their removal may be performed by methods well-known to those skilled in the art.

If the substituted pyrazoline compounds of general formula (I) themselves are obtained in form of a mixture of stereoisomers, particularly enantiomers or diastereomers, said mixtures may be separated by standard procedures known to those skilled in the art, e.g. chromatographic methods or fractunalized crystallization with chiral reagents. It is also possible to obtain pure stereoisomers via stereoselective synthesis.
In a further aspect the present invention also provides a process for the preparation of salts of substituted pyrazoline compounds of general formula (I) and stereoisomers thereof, wherein at least one compound of general formula (I) having at least one basic group is reacted with at least one inorganic and/or organic acid, preferably in the presence of a suitable reaction medium. Suitable reaction media include, for example, any of the ones given above. Suitable inorganic acids include hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, nitric acid, suitable organic acids are e.g. citric acid, maleic acid, fumaric acid, tartaric acid, or derivatives thereof, p-toluenesulfonic acid, methanesulfonic acid or camphersulfonic acid.

In yet a further aspect the present invention also provides a process for the preparation of salts of substituted pyrazoline compounds of general formula (I) or stereoisomers thereof, wherein at least one compound of general formula (I) having at least one acidic group is reacted with one or more suitable bases, preferably in the presence of a suitable reaction medium. Suitable bases are e.g. hydroxides, carbonates or alkoxides, which include suitable cations, derived e.g. from alkaline metals, alkaline earth metals or organic cations, e.g. \([\text{NH}_nR_{4-n}]^+\), wherein \(n\) is 0, 1, 2, 3 or 4 and \(R\) represents a branched or unbranched d-4-alkyl-radical. Suitable reaction media are, for example, any of the ones given above.

Solvates, preferably hydrates, of the substituted pyrazoline compounds of general formula (I), of corresponding stereoisomers, of corresponding N-oxides or of corresponding salts thereof may also be obtained by standard procedures known to those skilled in the art.

Substituted pyrazoline compounds of general formula I, which comprise nitrogen-atom containing saturated, unsaturated or aromatic rings may also be obtained in the form of their N-oxides by methods well known to those skilled in the art.

Those skilled in the art understand that the term substituted pyrazoline compounds as used herein is to be understood as encompassing derivatives such as ethers, esters and complexes of these compounds as well. The term "derivatives" as used in this application is defined here as meaning a chemical compound having undergone a chemical derivation starting from an acting (active) compound to change
(ameliorate for pharmaceutical use) any of its physico-chemical properties, especially a so-called prodrug, e.g. their esters and ethers. Examples of well known methods of producing a prodrug of a given acting compound are known to those skilled in the art and can be found e.g. in Krogsgaard-Larsen et al., Textbook of Drugdesign and Discovery, Taylor & Francis (April 2002). The respective description is hereby incorporated by reference and forms part of the disclosure.

The purification and isolation of the inventive substituted pyrazoline compounds of general formula (I), of a corresponding stereoisomer, or salt, or N-oxide, or solvate or any intermediate thereof may, if required, be carried out by conventional methods known to those skilled in the art, e.g. chromatographic methods or recrystallization.

The Cycloalkane-substituted pyrazoline compounds of general formula I given above, their stereoisomers, corresponding N-oxides, corresponding salts thereof and corresponding solvates are toxicologically acceptable and are therefore suitable as pharmaceutical active substances for the preparation of medicaments.

It has been found that the Cycloalkane-substituted pyrazoline compounds of general formula I given above, stereoisomers thereof, N-oxides thereof, corresponding salts and corresponding solvates have a high affinity to cannabinoid receptors, particularly cannabinoid 1 (CB1)-receptors, i.e. they are selective ligands for the (CB^A-receptor and act as modulators, e.g. antagonists, inverse agonists or agonists, on these receptors. In particular, these pyrazoline compounds show little or no development of tolerance during treatment, particularly with respect to food intake, i.e. if the treatment is interrupted for a given period of time and then continued afterwards, the inventively used pyrazoline compounds will again show the desired effect. After ending the treatment with the pyrazoline compounds, the positive influence on the body weight is found to continue.

Furthermore, these Cycloalkane-substituted pyrazoline compounds show relatively weak Herg channel affinity, thus a low risk of prolongation of the QT-interval is to be expected for these compounds.
In summary, the inventively used 4-subsituted pyrazoline compounds are distinguished by a broad spectrum of beneficial effects, while at the same time showing relatively little undesired effects, i.e. effects which do not positively contribute to or even interfere with the well being of the patient.

Thus, an other aspect of the present invention relates to a medicament comprising at least one Cycloalkane-substituted pyrazoline compound of general formula I, optionally in form of one of its stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of its stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a physiologically acceptable salt thereof, or a corresponding solvate thereof, and optionally at least one physiologically acceptable auxiliary agent.

Preferably said medicament is suitable for the modulation (regulation) of cannabinoid-receptors, preferably cannabinoid 1 (CB1) receptors, for the prophylaxis and/or treatment of disorders of the central nervous system, disorders of the immune system, disorders of the cardiovascular system, disorders of the endocrinous system, disorders of the respiratory system, disorders of the gastrointestinal tract or reproductive disorders.

Particularly preferably said medicament is suitable for the prophylaxis and/or treatment of psychosis.

Also particularly preferably said medicament is suitable for the prophylaxis and/or treatment of food intake disorders, preferably bulimia, anorexia, cachexia, obesity and/or type II diabetus mellitus (non-insuline dependent diabetes mellitus), more preferably obesity. The inventive medicament also seems to be active in the prophylaxis and/or treatment of appetency disorders, e.g. the pyrazoline compounds of general formula I also reduce the desire for sweets.

Also particularly preferably said medicament is suitable for the prophylaxis and/or treatment of cancer, preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of brain cancer, bone cancer, lip cancer, mouth cancer, esophageal cancer, stomach cancer, liver cancer, bladder
cancer, pancreas cancer, ovary cancer, cervical cancer, lung cancer, breast cancer, skin cancer, colon cancer, bowel cancer and prostate cancer, more preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of colon cancer, bowel cancer and prostate cancer.

Particularly preferably said medicament is suitable for the prophylaxis and/or treatment of alcohol abuse and/or alcohol addiction, nicotine abuse and/or nicotine addiction, drug abuse and/or drug addiction and/or medicament abuse and/or medicament addiction, preferably drug abuse and/or drug addiction and/or nicotine abuse and/or nicotine addiction.

Medicaments and/or drugs, which are frequently the subject of misuse include opioids, barbiturates, cannabis, cocaine, amphetamines, phencyclidine, hallucinogens and benzodiazepines.

The medicament is also suitable for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of bone disorders, preferably osteoporosis (e.g. osteoporosis associated with a genetic predisposition, sex hormone deficiency, or ageing), cancer-associated bone disease or Paget’s disease of bone; schizophrenia, anxiety, depression, epilepsy, neurodegenerative disorders, cerebellar disorders, spinocerebellar disorders, cognitive disorders, cranial trauma, head trauma, stroke, panic attacks, peripheric neuropathy, inflammation, glaucoma, migraine, Morbus Parkinson, Morbus Huntington, Morbus Alzheimer, Raynaud's disease, tremblement disorders, compulsive disorders, senile dementia, thymic disorders, tardive dyskinesia, bipolar disorders, medicament-induced movement disorders, dystonia, endotoxemic shock, hemorrhagic shock, hypotension, insomnia, immunologic disorders, sclerotic plaques, vomiting, diarrhoea, asthma, memory disorders, pruritus, pain, or for potentiation of the analgesic effect of narcotic and non-narcotic analgesics, or for influencing intestinal transit.

Another aspect of the present invention is the use of at least one Cycloalkane-substituted pyrazoline compound of general formula I given above as suitable active substances, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the
stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the modulation of cannabinoid-receptors, preferably cannabinoid 1 (CB1) receptors, for the prophylaxis and/or treatment of disorders of the central nervous system, disorders of the immune system, disorders of the cardiovascular system, disorders of the endocrinous system, disorders of the respiratory system, disorders of the gastrointestinal tract or reproductive disorders.

Particularly preferred is the use of at least one of the respective Cycloalkane-substituted pyrazoline compounds, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of psychosis.

Also particularly preferred is the use of at least one of the respective Cycloalkane-substituted pyrazoline compounds, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of food intake disorders, preferably bulimia, anorexia, cachexia, obesity and/or type II diabetes mellitus (non-insuline dependent diabetes mellitus), more preferably obesity.

Also particularly preferred is the use of at least one of the pyrazoline compounds as defined herein and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the treatment of metabolic syndrome.
The metabolic syndrome and definitions thereof are described in detail by Eckel et al., The Lancet, Vol. 365 (2005), 1415-1428, included herewith by reference. One of the respective definitions was established by the WHO in 1998 (as described in Alberti et al., Diabet. Med. 1998, 15, pages 539-53, the respective description thereof is herewith incorporated by reference and forms part of the present disclosure). The other, more widely accepted, definition of the metabolic syndrome was established by the Adult Treatment Panel (ATP III) of the US National Cholesterol Education Program (NCEP) in 2001, as described in JAMA 2001; 285; 2486-97, the respective description thereof is herewith incorporated by reference and forms part of the present disclosure.

The metabolic syndrome is characterized by an interaction of several physiological parameters such as triglycerides, lipids, blood pressure, glucose levels and insuline levels.

Even though obesity may play a critical role in the development of metabolic syndrome, many of its aspects are weight independent, especially some lipid parameters. Especially the positive influence on the weight independent aspects of the metabolic syndrome (see e.g. Pagotto and Pasquali, The Lancet, Vol. 365 (2005), 1363, 1364, included herewith by reference) like some blood parameters, especially lipid parameters is one of the major and surprising advantages of the inventively used substituted pyrazoline compounds.

Another aspect of the invention is the use of one or more pyrazoline compounds as defined herein for the manufacture of a medicament for improvement of cardiovascular and/or metabolic risk factors, such as one or more of the following factors:

Elevated triglycerides, whereby elevated levels of triglycerides are preferably understood as being > 150 mg/dl,

Low HDL cholesterol, whereby low levels of HDL cholesterol are preferably understood as being < 40 mg/dl in men and < 50 mg/dl in women,

Hypertension, whereby hypertension is preferably understood as being > 130/85 mmHg,
Impaired fasting glucose, whereby impaired fasting glucose levels are preferably understood as being > 110 mg/dl,

Insulin resistance

Dyslipidemia.

Another aspect of the invention is the use of one or more pyrazoline compounds as defined herein for the manufacture of a medicament for the treatment of the weight independent aspects of metabolic syndrome.

Another aspect of the invention is a method for improving cardiovascular and/or metabolic risk factors, such as one or more of the following factors:

Elevated triglycerides, whereby elevated levels of triglycerides are preferably understood as being > 150 mg/dl,

Low HDL cholesterol, whereby low levels of HDL cholesterol are preferably understood as being < 40 mg/dl in men and < 50 mg/dl in women,

Hypertension, whereby hypertension is preferably understood as being > 130/85 mmHg,

Impaired fasting glucose, whereby impaired fasting glucose levels are preferably understood as being > 110 mg/dl,

Insulin resistance

Dyslipidemia,

in a subject, preferably a human.

Another aspect of the invention is a method for treating of the weight independent aspects of metabolic syndrome.
Also particularly preferred is the use of at least one of the respective Cycloalkane-substituted pyrazoline compounds, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of cancer, preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of brain cancer, bone cancer, lip cancer, mouth cancer, esophageal cancer, stomach cancer, liver cancer, bladder cancer, pancreas cancer, ovary cancer, cervical cancer, lung cancer, breast cancer, skin cancer, colon cancer, bowel cancer and prostate cancer, more preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of colon cancer, bowel cancer and prostate cancer.

Also particularly preferred is the use of at least one of the respective Cycloalkane-substituted pyrazoline compounds, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of alcohol abuse and/or alcohol addiction, nicotine abuse and/or nicotine addiction, drug abuse and/or drug addiction and/or medicament abuse and/or medicament addiction, preferably drug abuse and/or drug addiction and/or nicotine abuse and/or nicotine addiction.

Medicaments/drugs, which are frequently the subject of misuse include opioids, barbiturates, cannabis, cocaine, amphetamines, phencyclidine, hallucinogens and benzodiazepines.

Also preferred is the use of at least one of the respective Cycloalkane-substituted pyrazoline compounds, optionally in form of one of the stereoisomers, preferably
enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding N-oxide thereof, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of bone disorders, preferably osteoporosis (e.g. osteoporosis associated with a genetic predisposition, sex hormone deficiency, or ageing), cancer-associated bone disease or Paget's disease of bone; schizophrenia, anxiety, depression, epilepsy, neurodegenerative disorders, cerebella disorders, spinocerebellar disorders, cognitive disorders, cranial trauma, head trauma, stroke, panic attacks, peripheric neuropathy, inflammation, glaucoma, migraine, Morbus Parkinson, Morbus Huntington, Morbus Alzheimer, Raynaud's disease, tremblement disorders, compulsive disorders, senile dementia, thymic disorders, tardive dyskinesia, bipolar disorders, medicament-induced movement disorders, dystonia, endotoxemic shock, hemorrhagic shock, hypotension, insomnia, immunologic disorders, sclerotic plaques, vomiting, diarrhea, asthma, memory disorders, pruritus, pain, or for potentiation of the analgesic effect of narcotic and non-narcotic analgesics, or for influencing intestinal transit.

The medicament of the present invention may for example be administered parentally in combination with conventional injectable liquid carriers, such as water or suitable alcohols. Conventional pharmaceutical excipients for injection, such as stabilizing agents, solubilizing agents, and buffers, may be included in such injectable compositions. These medicaments may for example be injected intramuscularly, intraperitoneally, or intravenously.

Medicaments according to the present invention may also be formulated into orally administrable compositions containing one or more physiologically compatible carriers or excipients, in solid or liquid form. These compositions may contain conventional ingredients such as binding agents, fillers, lubricants, and acceptable wetting agents. The compositions may take any convenient form, such as tablets, pellets, granules, capsules, lozenges, aqueous or oily solutions, suspensions, emulsions, or dry powdered forms suitable for reconstitution with water or other suitable liquid medium before use, for immediate or retarded release. The multiparticulate forms, such as pellets or granules, may e.g. be filled into a capsule, compressed into tablets or suspended in a suitable liquid.

Medicaments according to the present invention may also comprise an enteric coating, so that their dissolution is dependent on pH-value. Due to said coating the medicament can pass the stomach undissolved and the respective nitro-subsituted
phenyl-piperazine compound is liberated in the intestinal tract. Preferably the enteric coating is soluble at a pH value of 5 to 7.5. Suitable materials and methods for the preparation are known from the prior art.

Typically, the medicaments according to the present invention may contain 1-60 % by weight of one or more Cycloalkane-substituted pyrazoline compounds as defined herein and 40-99 % by weight of one or more auxiliary substances (additives).

The liquid oral forms for administration may also contain certain additives such as sweeteners, flavoring, preservatives, and emulsifying agents. Non-aqueous liquid compositions for oral administration may also be formulated, containing edible oils. Such liquid compositions may be conveniently encapsulated in e.g., gelatin capsules in a unit dosage amount.

The compositions of the present invention may also be administered topically or via a suppository.

The daily dosage for humans and animals may vary depending on factors that have their basis in the respective species or other factors, such as age, sex, weight or degree of illness and so forth. The daily dosage for humans may preferably be in the range from 2000, preferably 1 to 1500, more preferably 1 to 1000, even more preferably 1 to 150 milligrams of active substance to be administered during one or several intakes per day.

The present invention is illustrated below with the aid of examples. These illustrations are given solely by way of example and do not limit the general spirit of the present invention.

Examples:
The following compounds were prepared according to the general processes described above. Those skilled in the art are familiar with the starting materials that are needed to obtain said compounds.

a) Preparation of compound of general formula 4-(4-substituted-phenyl)-2-oxo-3-butenoic acid

![Chemical Structure]

(Where W has the meaning given above)

In a three neck flask p-substituted-benzaldehyde (95 mmoles) and ethyl pyruvate (86 mmoles) are dissolved in 150 ml of absolute ethanol. The solution is ice-cooled to 0°C and an aqueous solution of NaOH (3.8 g in 45 mL water) is added dropwise keeping the temperature below or equal to 10°C, whereby a yellow-orange colored precipitate is formed. The reaction mixture is stirred for 1 hour at 0°C and an additional 1.5 hours at room temperature (approximately 25°C). Afterwards the reaction mixture is cooled down to approximately 5°C and the insoluble sodium salt of 4-(4-substituted-phenyl)-2-oxo-3-butenoic acid is isolated by filtration.

The filtrate is left in the refrigerator overnight, whereby more precipitate is formed, which is filtered off, combined with the first fraction of the salt and washed with diethyl ether. The sodium salt of 4-(substituted-phenyl)-2-oxo-3-butenoic acid is then treated with a solution of 2N HCl, stirred for some minutes and solid 4-(4-substituted-phenyl)-2-oxo-3-butenoic acid is separated via filtration and dried to give the desired product (yield range: 20-70%).

4-(4-chlorophenyl)-2-oxo-3-butenoic acid.

IR (KBr, cm⁻¹) : 3500-2500, 1719.3, 1686.5, 1603.4, 1587.8, 1081.9.
1H NMR (400 MHz, CDCl$_3$, δ): 7.4 (d, J=8.4 Hz, 2H), 7.5 (d, J=16.1 Hz, 1H), 7.6 (d, J=8.4 Hz, 2H), 8.1 (d, J=16.1 Hz, 1H).

4-(4-bromophenyl)-2-oxo-3-butenoic acid.

1H NMR (400 MHz, CDCl$_3$): δ 7.55 (2H, m, ArH), 7.61 (3H, m, Ar H), 8.09 (1H, d, J=16.4 Hz)

13C NMR (100 MHz, CDCl$_3$): δ 118.1 (CH), 127.2 (C), 130.7 (CH), 132.7 (CH), 149.7 (C + CH), 160.0 (CO), 182.2 (CO).

4-(4-fluorophenyl)-2-oxo-3-butenoic acid.

1H NMR (400 MHz, CDCl$_3$): δ 7.15 (2H, apt, J=8.4 Hz, ArH), 7.53 (1H, d, J=16.0Hz, CH), 7.70 (2H, m, ArH), 8.11 (1H, d, J=16.0 Hz)

13C NMR (100 MHz, CDCl$_3$): δ 116.5 (CH, d, J_F=24 Hz), 117.4 (CH, d, J_F=8.7 Hz), 130.1 (C, d, J_F=2.4 Hz), 131.7 (CH, d, J_F=9.1 Hz), 149.9 (CH), 162.0 (C, d, J_F=320 Hz), 166.7 (CO), 182.4 (CO).

4-(4-methoxyphenyl)-2-oxo-3-butenoic acid.

1H NMR (400 MHz, CDCl$_3$): δ 3.88 (3H, s, OCH$_3$), 6.95 (2H, d, J=6.8 Hz), 7.45 (2H, d, J=6.8 Hz), 8.09 (2H, d, J=6.8 Hz).

b) Preparation of compound of general formula 5-(4-substituted-phenyl)-1-(chloro-phenyl)-4,5-dihydro-pyrazole-3-carboxylic acid
4-(4-substituted-phenyl)-2-oxo-3-butenoic acid obtained according to step a) (60 mmoles), 2,4-dichlorophenylhydrazine or 2-chlorophenylhydrazine hydrochloride (60 mmoles) and glacial acetic acid (200 ml) are mixed under a nitrogen atmosphere and heated to reflux for 4 hours, cooled down to room temperature (approximately 25°C) and given into ice-water, whereby a sticky mass is obtained, which is extracted with methylene chloride. The combined methylene chloride fractions are washed with water, dried with sodium sulfate, filtered and evaporated to dryness to give a pale yellow or white solid (yield range: 10-90%). The two enantiomers of this acid can be separated by chiral HPLC or by crystallization of the diastereoisomeric salts formed with chiral amines (ee>99% are obtained)

5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydropyrazole-3-carboxylic acid

IR (KBr, cm⁻¹): 3200-2200, 1668,4, 1458, 1251,4, 1104,8.

¹H NMR (400 MHz, CDCl₃, δ): 3.3 (dd, J= 18.0, 6.4, 1H), 3.7 (dd, J= 18, 12.8, 1H), 5.9 (dd, J= 12.8, 6.4Hz, 1H), 7.09-7.25 (m, 7H).

5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydropyrazole-3-carboxylic acid

IR (KBr, cm⁻¹): 3200-2200, 1685, 1571,1549, 1480, 1112
1H NMR (400 MHz, CDCl$_3$): δ 3.27 (1H, dd, J 18.0, 6.4 Hz, ArH), 3.71 (1H, dd, J 18, 12.8 Hz, ArH), 5.88 (1H, dd, J 12.8, 6.4 Hz, CH), 7.02 (2H, d, J 7.6 Hz, ArH), 7.08 (1H, m, ArH), 7.19 (1H, d J 8.4 Hz, ArH), 7.26 (1H, m, ArH), 7.37 (2H, d, 7.6 Hz, ArH)

13C NMR (100 MHz, CDCl$_3$): δ 40.4 (CH$_2$), 67.4 (CH), 122.7 (C), 126.0 (CH), 126.5 (C), 127.6 (CH), 128.3 (CH), 130.2 (CH), 131.2 (C), 132.2 (CH), 138.4 (C), 138.5 (C), 140.2 (C), 165.7 (C).

5-(4-fluorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid

IR (KBr, cm$^{-1}$): 3200-2200, 1687.5, 1478, 1230, 1107.

1H NMR (400 MHz, CDCl$_3$): δ 3.30 (1H, dd, J 18.0, 6.4 Hz, ArH), 3.31 (1H, dd, J 18, 12.8 Hz, ArH), 5.93 (1H, dd, J 12.8, 6.4 Hz, CH), 6.92 (2H, t, J 8.4 Hz, ArH), 7.09-7.12 (3H, m, ArH), 7.22 (1H, bs, ArH), 7.26 (1H, m, ArH)

13C NMR (100 MHz, CDCl$_3$): δ 40.7 (CH$_2$), 67.8 (CH), 115.9 (CH, d, J$_F$ 21 Hz), 126.1 (CH), 126.5 (C), 127.6 (CH), 128.3 (CH, d, J$_F$ 8.2 Hz), 130.1 (CH), 131.2 (C), 135.1 (C, d, J$_F$ 3 Hz), 138.6 (C), 140.1 (C), 160.6 (C, d, J$_F$ 240 Hz), 166.3 (C).

5-(4-methoxyphenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid

IR (NaCl film, cm$^{-1}$) ν 2938, 2833, 1663, 1476

IR (KBr, cm$^{-1}$) ν 3200-2200, 1685, 1513, 1478, 1248, 105

1H NMR (400 MHz, CDCl$_3$): δ 1.45 (2H, m, CH$_2$), 1.75 (4H, m), 2.84 (4H, m), 3.45 (1H, dd J 4.8, 18 Hz), 3.61 (1H, dd J 11.2, 19.6 Hz), 5.93 (1H, dd J 4.8, 11.2 Hz), 6.57 (2H, ap s), 7.13 (2H, m), 7.32 (1H, m), 7.40 (1H, m)

13C NMR (100 MHz, CDCl$_3$): δ 23.2 (CH$_2$), 25.3 (CH$_2$), 40.5 (CH$_2$), 57.3 (CH$_2$), 63.7 (CH), 125.7 (CH), 125.8 (CH), 126.1 (CH), 127.1 (C), 127.8 (CH), 130.1 (CH), 131.1 (C), 139.6 (C), 139.9 (C), 146.1 (C), 158.9 (CO).
(c) 5-(4-substituted-phenyl)-1-(chloro-phenyl)-4,5-dihydro-pyrazole-3-carboxylic acid chloride

5-(4-substituted-phenyl)-1-(chloro-phenyl)-4,5-dihydro-pyrazole-3-carboxylic acid (15 mmols) obtained according to step (b) is dissolved in 120 mL of dry toluene and thionyl chloride (18 mmols) is added. The mixture is heated to 80 °C for 2.5 hours. The solvent is removed under reduced pressure and the resulting crude residue is used without any further purification.

5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid chloride

IR (KBr, cm⁻¹) : 1732, 1700, 1533, 1478, 1212, 826.

5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid chloride

IR (KBr, cm⁻¹) : 1737, 1534, 1477, 1212, 1127.

5-(4-fluorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid chloride

IR (KBr, cm⁻¹) : 1733, 1548, 1511, 1478, 1212, 832.

5-(4-methoxyphenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid chloride
IR (KBr 1 cm$^{-1}$): 1735, 1513, 1477, 1249, 1129

5-(4-substituted-phenyl)-1-(2,4-dichlorophenyl) (or 2-chlorophenyl)-4,5-dihydropyrazole-3-carboxamides.

(Where W, n and R^{28} and X have the meaning given above)

Under nitrogen atmosphere an appropriate amine (5.6 mmoles) and triethylamine (4 ml) were dissolved in methylene chloride (25 ml). The resulting mixture was ice-cooled down to 0°C and a solution of 5-(4-substituted-phenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-pyrazole-3-carboxylic acid chloride (4.6 mmoles) obtained in step (c) in methylene chloride (15 ml) was added dropwise. The resulting reaction mixture was stirred at room temperature (approximately 25 °C) overnight. Afterwards the reaction mixture was washed with water, followed by a saturated aqueous solution of sodium bicarbonate, then again with water, dried over sodium sulfate, filtered and evaporated to dryness in a rotavapor. The resulting crude solid was crystallized from ethanol. The crystallized solid was removed via filtration and the mother liquors were concentrated to yield a second fraction of crystallized product. The two fractions were combined to give the desired product (yield range: 60-80 %). Alternatively, the compound can be purified by crystallization of its hydrochloride form, prepared with a solution of 2 N HCl in ether or 2.8 N HCl in ethanol.

If the starting material in step c) is a chiral acid.

Example 1:
5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide (i)

1H NMR (300 MHz, DMSO-d6) δ ppm 1.53 (m, 10 H) 1.79 (m, 2 H) 3.05 (dd, J=18.16, 5.71 Hz, 1 H) 3.64 (dd, J=18.16, 11.94 Hz, 1 H) 3.85 (m, 1 H) 5.80 (dd, J=1.94, 5.71 Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 2 H) 7.43 (d, J=2.34 Hz, 1 H) 7.51 (d, J=8.79 Hz, 1 H) 8.10 (d, J=8.35 Hz, 1 H)

Example 6:
5-(4-chlorophenyl)-N-cyclobutyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide

1H NMR (300 MHz, DMSO-d6) δ ppm 1.61 (m, 2 H) 2.14 (m, 4 H) 3.05 (dd, J=18.16, 5.57 Hz, 1 H) 3.63 (dd, J=18.16, 11.94 Hz, 1 H) 4.33 (m, 1 H) 5.81 (dd, J=1.94, 5.57 Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 3 H) 7.43 (d, J=2.34 Hz, 1 H) 7.52 (d, J=8.79 Hz, 1 H) 8.53 (d, J=8.06 Hz, 1 H)

Example 8:
5-(4-chlorophenyl)-N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide
Example 10:
5-(4-chlorophenyl)-N-cyclooctyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide

Example 11:
5-(4-chlorophenyl)-N-cyclopentyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide (11)
Example 13:
5-(4-chlorophenyl)-N-cyclododecyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide.

Example 22:
5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide
Example 25:
5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide

\[
\begin{align*}
\text{1H NMR (300 MHz, DMSO-\text{Cl}_6)} & \delta \text{ ppm} \\
1.36 - 1.67 & (m, 10 \text{ H}) \quad 1.72 - 1.87 & (m, 2 \text{ H}) \quad 3.05 \\
3.63 & (dd, J=18.02, 5.64 \text{ Hz, 1 H}) \quad 3.79 - 3.92 & (m, J=8.95, 1 \text{ H}) \quad 5.80 \\
7.04 & (t, J=8.79 \text{ Hz, 2 H}) \quad 7.12 - 7.18 & (m, 2 \text{ H}) \\
7.26 & (dd, J=8.79, 2.34 \text{ Hz, 1 H}) \quad 7.43 & (d, J=2.34 \text{ Hz, 1 H}) \quad 7.50 & (d, J=8.79 \text{ Hz, 1 H}) \quad 8.10 \\
& (d, J=8.20 \text{ Hz, 1 H}).
\end{align*}
\]
<table>
<thead>
<tr>
<th>No.</th>
<th>STRUCTURE</th>
<th>Autonom</th>
<th>1H-NMR</th>
<th>MS (M+H)$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, DMSO-d$_6$) δ ppm 1.53 (m, 10 H) 1.79 (m, 2 H) 3.05 (dd, J=18.16, 5.71 Hz, 1 H) 3.64 (dd, J=18.16, 11.94 Hz, 1 H) 3.85 (m, 1 H) 5.80 (dd, J=11.94, 5.71 Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 2 H) 7.43 (d, J=2.34 Hz, 1 H) 7.51 (d, J=8.79 Hz, 1 H) 8.10 (d, J=8.35 Hz, 1 H)</td>
<td>464</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(R)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, DMSO-d$_6$) δ ppm 1.53 (m, 10 H) 1.79 (m, 2 H) 3.05 (dd, J=18.16, 5.71 Hz, 1 H) 3.64 (dd, J=18.16, 11.94 Hz, 1 H) 3.85 (m, 1 H) 5.80 (dd, J=11.94, 5.71 Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 2 H) 7.43 (d, J=2.34 Hz, 1 H) 7.51 (d, J=8.79 Hz, 1 H) 8.10 (d, J=8.35 Hz, 1 H)</td>
<td>464</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(S)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, DMSO-d$_6$) δ ppm 1.53 (m, 10 H) 1.79 (m, 2 H) 3.05 (dd, J=18.16, 5.71 Hz, 1 H) 3.64 (dd, J=18.16, 11.94 Hz, 1 H) 3.85 (m, 1 H) 5.80 (dd, J=11.94, 5.71 Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 2 H) 7.43 (d, J=2.34 Hz, 1 H) 7.51 (d, J=8.79 Hz, 1 H) 8.10 (d, J=8.35 Hz, 1 H)</td>
<td>464</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(4-methylcyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, DMSO-d$_6$) δ ppm 1.53 (m, 10 H) 1.79 (m, 2 H) 3.05 (dd, J=18.16, 5.71 Hz, 1 H) 3.64 (dd, J=18.16, 11.94 Hz, 1 H) 3.85 (m, 1 H) 5.80 (dd, J=11.94, 5.71 Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 2 H) 7.43 (d, J=2.34 Hz, 1 H) 7.51 (d, J=8.79 Hz, 1 H) 8.10 (d, J=8.35 Hz, 1 H)</td>
<td>464</td>
</tr>
<tr>
<td>№</td>
<td>STRUCTURE</td>
<td>Autonom</td>
<td>(^1\text{H-NMR})</td>
<td>MS (M+H)^+</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(2-methylcyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>(\delta) ppm 1.61 (m, 2 H) 2.14 (m, 4 H) 3.05 (dd, (J=18.16, 5.57) Hz, 1 H) 3.63 (dd, (J=18.16, 11.94) Hz, 1 H) 4.33 (m, 1 H) 5.81 (dd, (J=11.94, 5.57) Hz, 1 H) 7.13 (m, 2 H) 7.27 (m, 3 H) 7.43 (d, (J=2.34) Hz, 1 H) 7.52 (d, (J=8.79) Hz, 1 H) 8.53 (d, (J=8.06) Hz, 1 H)</td>
<td>464</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5-(4-chlorophenyl)-N-cyclobutyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>422</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>N-(4-tert-butylcyclohexyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>(\delta) ppm 0.99 (m, 2 H) 1.21 (m, 4 H) 1.69 (m, 1 H) 1.76 (m, 4 H) 3.15 (dd, (J=17.98, 6.06) Hz, 1 H) 3.32 (dt, (J=12.60, 6.40) Hz, 2 H) 3.67 (dd, (J=17.98, 12.11) Hz, 1 H) 5.73 (dd, (J=12.11, 6.06) Hz, 1 H) 6.75 (t, (J=6.06) Hz, 1 H) 7.06 (m, 3 H) 7.12 (m, 1 H) 7.17 (d, (J=8.60) Hz, 2 H) 7.26 (m, 1 H)</td>
<td>506</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5-(4-chlorophenyl)-N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>No</td>
<td>Structure</td>
<td>Autonom</td>
<td>¹H-NMR</td>
<td>MS (M+H)*</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5-(4-chlorophenyl)-N-(cycloheptylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>¹H NMR (300 MHz, CHLOROFORM-d) δ ppm 1.23 (m, 2 H) 1.45 - 1.77 (m, 11 H) 3.16 (m, 1 H) 3.33 (dd, J=18.38, 6.08 Hz, 2 H) 3.68 (dd, J=18.38, 12.08 Hz, 1 H) 5.74 (dd, J=12.08, 6.08 Hz, 1 H) 6.76 (t, J=6.01 Hz, 1 H) 7.03 - 7.09 (m, 3 H) 7.10 - 7.19 (m, 3 H) 7.25 (d, J=2.0 Hz, 1 H)</td>
<td>478</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5-(4-chlorophenyl)-N-cyclooctyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>¹H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.59 (m, 12 H) 1.91 (m, 2 H) 3.32 (dd, J=18.37, 5.86 Hz, 1 H) 3.66 (dd, J=18.37, 12.11 Hz, 1 H) 4.10 (dd, J=8.60, 4.01, 3.71 Hz, 1 H) 5.72 (dd, J=12.11, 5.86 Hz, 1 H) 6.65 (d, J=8.60 Hz, 1 H) 7.07 (m, 3 H) 7.15 (m, 3 H) 7.25 (m, 1 H)</td>
<td>478</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>5-(4-chlorophenyl)-N-cyclopentyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>¹H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.44 - 1.75 (m, 6 H) 2.06 (d, J=13.09, 5.86 Hz, 2 H) 3.32 (dd, J=18.37, 6.25 Hz, 1 H) 3.66 (dd, J=18.37, 12.11 Hz, 1 H) 4.31 (m, 1 H) 5.73 (dd, J=12.11, 6.25 Hz, 1 H) 6.62 (d, J=7.82 Hz, 1 H) 7.06 (m, 3 H) 7.12 (s, 1 H) 7.17 (m, 2 H) 7.25 (m, 1 H)</td>
<td>436</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>5-(4-chlorophenyl)-N-cyclohexyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>NO.</td>
<td>1H-NMR</td>
<td>MS (M+H)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(3-methylcyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>13</td>
<td>16/07/2006</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(3-methylcyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>14</td>
<td>16/07/2006</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(1R,2S,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>15</td>
<td>16/07/2006</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>16</td>
<td>16/07/2006</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>STRUCTURE</td>
<td>Autonom</td>
<td>'H-NMR</td>
<td>MS (M+H)</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-((1R,2R)-2-hydroxycyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, METHANOL-<d6>) δ ppm 1.36 (m, 4 H) 1.75 (m, 2 H) 2.02 (m, 2 H) 3.24 (dd, J=5.71, 18.08 Hz, 1 H) 3.50 (m, 1 H) 3.70 (dd, J=18.10, 12.01 Hz, 1 H) 3.74 (m, 1 H) 5.91 (dd, J=12.01, 5.71 Hz, 1 H) 7.12 - 7.32 (m, 6 H) 7.45 (t, J=8.28 Hz, 1 H)</td>
<td>466</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-((1S,2S)-2-hydroxycyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, METHANOL-<d6>) δ ppm 1.36 (m, 4 H) 1.75 (m, 2 H) 2.02 (m, 2 H) 3.24 (dd, J=5.71, 18.08 Hz, 1 H) 3.50 (m, 1 H) 3.70 (dd, J=18.10, 12.01 Hz, 1 H) 3.74 (m, 1 H) 5.91 (dd, J=12.01, 5.71 Hz, 1 H) 7.12 - 7.32 (m, 6 H) 7.45 (t, J=8.28 Hz, 1 H)</td>
<td>466</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>(R)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-((1S,2S)-2-hydroxycyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>466</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>(S)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-N-((1S,2S)-2-hydroxycyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>466</td>
</tr>
<tr>
<td>№</td>
<td>STRUCTURE</td>
<td>Autonom</td>
<td>1H-NMR</td>
<td>MS (M+H)$^+$</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>N-(bicycle[2.2.1]heptan-2-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>1H NMR (300 MHz, METHANOL-d$_4$) δ ppm 1.49 - 1.78 (m, 10 H) 1.95 (br. s., 2 H) 3.21 (dd, J=18.09, 5.79 Hz, 1 H) 3.67 (dd, J=18.09, 12.08 Hz, 1 H) 3.99 (m, 1 H) 5.86 (dd, J=12.08, 5.79 Hz, 1 H) 7.09 (d, J=8.50 Hz, 2 H) 7.15 (dd, J=8.79, 2.34 Hz, 1 H) 7.30 (d, J=2.34 Hz, 1 H) 7.33 - 7.44 (m, 3 H)</td>
<td>462</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>508</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>(R)-5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>508</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>(S)-5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>508</td>
</tr>
<tr>
<td>No.</td>
<td>STRUCTURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1H-NMR

(300 MHz, DMSO-4d) δ ppm

1.36 (t, J=7.2 Hz, 1H)	1.36 (t, J=7.2 Hz, 1H)
1.72 (s, 3H)	1.72 (s, 3H)
2.70 (q, J=7.2 Hz, 2H)	2.70 (q, J=7.2 Hz, 2H)
3.29 (t, J=7.2 Hz, 2H)	3.29 (t, J=7.2 Hz, 2H)
3.85 (s, 3H)	3.85 (s, 3H)
4.00 (d, J=7.2 Hz, 2H)	4.00 (d, J=7.2 Hz, 2H)
7.45 (s, 1H)	7.45 (s, 1H)

MS (M+H)

448

5-(4-Fluorophenyl)-N-cyclohexyl-1H-pyrazole-3-carboxamide

R)-5-(4-Chlorophenyl)-N-cyclohexyl-1H-pyrazole-3-carboxamide

S)-5-(4-Chlorophenyl)-N-cyclohexyl-1H-pyrazole-3-carboxamide
<table>
<thead>
<tr>
<th>Autonom</th>
<th>STRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-(4-methoxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,3-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
</tr>
<tr>
<td>(R)-5-(4-methoxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
</tr>
<tr>
<td>(S)-5-(4-methoxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
</tr>
<tr>
<td>5-(4-hydroxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
</tr>
<tr>
<td>MS (M+H)^+</td>
<td>460</td>
</tr>
<tr>
<td>1H-NMR</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>29, 30, 31, 32</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Structure</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Autonom</td>
<td>1H-NMR</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5-(4-bromophenyl)-N-(cyclohexylmethyl)-1H-</td>
<td></td>
</tr>
<tr>
<td>dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-</td>
<td></td>
</tr>
<tr>
<td>carboxamide</td>
<td></td>
</tr>
<tr>
<td>5-(4-fluorophenyl)-N-(cyclohexylmethyl)-1H-</td>
<td></td>
</tr>
<tr>
<td>dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-</td>
<td></td>
</tr>
<tr>
<td>carboxamide</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N°</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS (M+H)</td>
<td>508</td>
<td>448</td>
<td>556</td>
<td>460</td>
</tr>
<tr>
<td>No</td>
<td>STRUCTURE</td>
<td>¹H-NMR</td>
<td>MS (M+H)^+</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>446</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>522</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-5-(4-bromophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>'1-H-NMR</td>
<td>STRUCTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>N-(cyclohexylmethyl)-1-(2,4-dichlorophenyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1-(2-chlorophenyl)-5-(4-chlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>5-(4-bromophenyl)N-cyclohexyl-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS (M+H$^+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>474</td>
</tr>
<tr>
<td>460</td>
</tr>
<tr>
<td>430</td>
</tr>
<tr>
<td>474</td>
</tr>
<tr>
<td>Structure</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Autonom

1-(2-Chlorophenyl)-N-cyclohexyl-4,5-dihydro-1H-pyrazole-3-carboxamide

1-(2-Chlorophenyl)-N-cyclohexyl-4,5-dihydro-1H-pyrazole-3-carboxamide

1-(2-Chlorophenyl)-N-cyclohexyl-4,5-dihydro-1H-pyrazole-3-carboxamide

1-(2-Chlorophenyl)-N-cyclohexyl-4,5-dihydro-1H-pyrazole-3-carboxamide

MS (M+H)

<p>| 414 | 522 | 426 | 412 |</p>
<table>
<thead>
<tr>
<th>Autonom</th>
<th>1H-NMR</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-(2-chlorophenyl)-5-(4-chlorocyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>MS (M+H)<sup>+</sup> 432</td>
<td></td>
</tr>
<tr>
<td>5-(4-bromophenyl)-1-(2-chlorocyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>1-(2-chlorophenyl)-5-(4-fluorocyclohexyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>1-(2-chlorocyclohexyl)-5-(4-bromophenyl)-3-(4,5-dihydro-1H-pyrazole-3-carboxamide)</td>
<td>524</td>
<td></td>
</tr>
</tbody>
</table>

<p>| N° | 65 | 66 | 67 | 68 |</p>
<table>
<thead>
<tr>
<th>Nº</th>
<th>STRUCTURE</th>
<th>Autonom</th>
<th>1H-NMR</th>
<th>MS (M+H)$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td></td>
<td>1-(2-chlorophenyl)-N-((1S,2S)-2-hydroxycyclohexyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>428</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>1-(2-chlorophenyl)-N-((1S,2S)-2-hydroxycyclohexyl)-5-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide</td>
<td></td>
<td>414</td>
</tr>
</tbody>
</table>
Pharmacological Data:

Pharmacological Methods

I. In-vitro determination of affinity to CB1/CB2-Receptors

The in-vitro determination of the affinity of the inventive quaternary ammonium salts of substituted pyrazoline compounds to CBi/CB₂-Rezeptors is carried out as described in the publication of Ruth A. Ross, Heather C. Brockie et al., "Agonist-inverse agonist characterization at CB₁ and CB₂ cannabinoid receptors of L-759633, L759656 and AM630", British Journal of Pharmacology, 126, 665-672, (1999), whereby the transfected human CB₁ and CB₂ receptors of Receptor Biology, Inc. are used. The radioligand used for both receptors is [³H]-CP55940. The respective parts of the description are hereby incorporated by reference and forms part of the present disclosure.

Results:

The affinity of the inventive substituted pyrazoline compounds to CB₁/CB₂ receptors was determined as described above. Some of the EC50-values obtained are given in the table 3 below:

As can be seen from the values given in table 1 the inventive pyrazoline compounds are particularly suitable for regulating the CBrReceptor.

II. *In-vivo bioassay system for determination of cannabinoid activity*

Mouse tetrad model

Substances with affinity for cannabinoid receptors are known to produce a wide range of pharmacological effects. It is also known that intravenous administration of a substance with affinity for cannabinoid receptors in mice produces analgesia, hypothermia, sedation and catalepsy. Individually, none of these effects can be considered as proof that a tested substance has affinity for cannabinoid-receptors, since all of these effects are common for various classes of centrally active agents.
However, substances, which show all of these effects, i.e. substances that are active in this so-called tetrad model are considered to have affinity for the cannabinoid receptors. It has further been shown that cannabinoid receptor antagonists are highly effective in blocking the effects of a cannabinoid agonist in the mouse tetrad model.

Material and Methods

Male NMRI mice with a weight of 20-30 g (Harian, Barcelona, Spain) are used in all of the following experiments.

Before testing in the behavioral procedures given below, mice are acclimatized to the experimental setting. Pre-Treatment control values are determined for analgesia hot plate latency (in seconds), rectal temperature, sedation and catalepsy.

In order to determine the agonistic activity of the substance to be tested, the mice are injected intravenously with the substance to be tested or the vehicle alone. 15 minutes after injection, latency in hot plate analgesia is measured. Rectal temperature, sedation and catalepsy are measured 20 minutes after injection.

In order to determine the antagonistic activity the identical procedure is used as for the determination of the agonistic effects, but with the difference that the substance to be evaluated for its antagonistic activity is injected 5 minutes before the intravenous injection of 1.25 mg/kg Win-55,212 a known cannabinoid-receptor agonist.

Hot plate analgesia
The hot plate analgesia is determined according to the method described in Woolfe D. et al. "The evaluation of analgesic action of pethidine hydrochloride (Demerol)", J. Pharmacol. Exp. Ther. 80, 300-307, 1944. The respective description is hereby incorporated by reference and forms part of the present disclosure.

The mice are placed on a hot plate (Harvard Analgesimeter) at 55 ± 0.5 °C until they show a painful sensation by licking their paws or jumping and the time for these sensations to occur is recorded. This reading is considered the basal value (B). The maximum time limit the mice are allowed to remain on the hot plate in absence of any painful response is 40 seconds in order to prevent skin damage. This period is called the cut-off time (PC).

Fifteen minuts after the administration of the substance to be tested, the mice are again placed on the hot plate and the afore described procedure is repeated. This period is called the post-treatment reading (PT).

The degree of analgesia is calculated from the formula:

\[
\% \text{ MPE of Analgesia} = \frac{(PT - B)}{(PC - B)} \times 100
\]

MPE = Maximum possible effect.

Determination of sedation and ataxia

Sedation and ataxia is determined according to the method described in Desmet L. K. C. et al. "Anticonvulsive properties of Cinarizine and Flunarizine in Rats and Mice", Arzneim. -Forsch. (Frug Res) 25, 9, 1975. The respective description is hereby incorporated by reference and forms part of the present disclosure.

The chosen scoring system is

0: no ataxia;
1: doubtful;
2: obvious calmness and quiet;
3 pronounced ataxia;

prior to as well as after treatment.

The percentage of sedation is determined according to the formula:

\[
\% \text{ of sedation} = \frac{\text{arithmetic mean}}{3} \times 100
\]

Hypothermia:

Hypothermia is determined according to the method described in David R. Compton et al. Jn-vivo Characterization of a Specific Cannabinoid Receptor Antagonist (SR141716A) Inhibition of Tetrahydrocannbinol- induced Responses and Apparent Agonist Activity", J. Pharmacol Exp Ther. 277 , 2, 586-594, 1996. The respective description is hereby incorporated by reference and forms part of the present disclosure.

The base-line rectal temperatures are determined with a thermometer (Yello Springs Instruments Co., Panlabs) and a thermistor probe inserted to 25mm before the administration of the substance to be tested. Rectal temperature is again measured 20 minutes after the administration of the substances to be tested. The temperature difference is calculated for each animal, whereby differences of >-2 °C are considered to represent activity.

Catalepsy:

Catalepsy is determined according to the method described in Alpermann H. G. et al. ..Pharmacological effets of Hoe 249: A new potential antidepressant", Drugs Dev. Res. 25, 267-282. 1992. The respective description is hereby incorporated by reference and forms part of the present disclosure.

The cataleptic effect of the substance to be tested is evaluated according to the duration of catalepsy, whereby the animals are placed head downwards with their kinlegs upon the top of the wooden block.
The chosen scoring system is:

Catalepsy for:
more than 60 seconds = 6; 50 -60 seconds = 5, 40-50 seconds = 4, 30-40 seconds = 3, 20-30 seconds = 2, 10-20 seconds = 1, and less than 5 seconds = 0.

The percentage of catalepsy is determined according to the following formula:

\[\% \text{ Catalepsy} = \frac{\text{arithmetic mean}}{6} \times 100 \]

Antagonistic Assay:

Materials and Methods.

Membrane preparation:
Chinese hamster ovary (CHO) cells stably expressing recombinant human cannabinoid 1 receptor (CB1) were cultured in nutrient mixture Ham's F 12 supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 50 U/ml penicillin, 50 U/ml streptomycin and 0.5 mg/ml geneticin. In order to obtain cells, culture flasks were washed twice with phosphate buffered saline and scraped. Then, cells were collected by centrifugation (200 x g, 10 min) and stored dry at -80°C. Cells were homogenized in ice-cold 20 mM HEPES, 10 mM EDTA (pH 7.5) and centrifuged at 40,000 x g for 15 min at 4°C. The pellet was resuspended in 20 mM HEPES, 0.1 mM EDTA (pH 7.5) and centrifuged for 15 min at 4°C. The final pellet was resuspended in 20 mM HEPES, 0.1 mM EDTA (pH 7.5), and divided in aliquots and stored at -80°C until use.

[^35S]GTPyS binding assay:
The reaction was performed in 96-well plates. Membranes (15 Dg protein/well) were incubated for 60 min at 30°C in buffer (50 mM HEPES, 100 mM KCl, 5 mM MgCl₂, 1 mM EDTA, 0.1% wt/vol bovine serum albumin, 5 µM GDP, saponin (10 µg/ml), 0.5 nM[^35S]GTPyS, pH 7.4) with compound at 1 µM final concentration in either the absence or presence of dose response curve of agonist WIN 55,212-2 between 3 nM and 3 µM.
incubation was terminated by rapid filtration through Millipore Multiscreen glass fiber FB, and rinsed two-times with ice-cold assay buffer. Filter plates were dried and 30 µl of scintillation liquid was added. Radioactivity was determined using Wallac Microbeta Trilux. Each experiment was performed at least in duplicate. A WIN 55,212-2 dose-response was systematically performed.

Calculations:
The average of basal [35S]GTPyS binding was subtracted from all binding data. In order to compare the antagonism results from one screening campaign to another one, the difference between the maximal agonist effect of WIN 55,212-2 alone, and the maximal antagonism effect due to WIN 55,212-2 compared to an internal standard was defined as 100 %.

Results:
The determination of cannabinoid activity in-vivo was determined as described above. The antagonistic effect (against Win 55212-2) was determined for some of the compounds as given in the table 3 below:

The results of testing some of the above examples for binding and antagonism are shown together in the following table 3:

Table 3:

<table>
<thead>
<tr>
<th>Example</th>
<th>IC50 (nM)</th>
<th>Antagonism (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100/31.6</td>
<td>78 ± 4</td>
</tr>
<tr>
<td>2</td>
<td>15.8</td>
<td>107 ± 9</td>
</tr>
<tr>
<td>3</td>
<td>65.9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>71 ± 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.1</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>501.2</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>84</td>
<td>89± 5</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
<td>82 ± 0</td>
</tr>
<tr>
<td>10</td>
<td>56.2</td>
<td>62 ± 4</td>
</tr>
</tbody>
</table>
III. In vivo testing for antiobesic activity

a) Accute-Treatment
Normally handled rats were habituated to a reversed cycle 12/12h, and the compound as well as saline was acutely orally administered. After administration the cumulated food intake (g) was measured at 6h and 23 h. Following that the difference in body weight between control and compound treated animals was measured.

Fig. 1 shows the results for 10 mg/kg of the compound according to example 2. The number of rats used was 11 for saline and 12 for the compound.

In addition also the compound according to example 18 shows good activity in this model.

b) Long-Term-treatment
The in-vivo testing for antiobesic activity of the inventive pyrazoline compounds is carried out as described in the publication of G. Colombo et al., ..Appetite Suppression and Weight Loss after the Cannabinoid Antagonist SR 141 716"; Life Sciences, 63 (8), 113-117, (1998). The respective part of the description is hereby incorporated by reference and forms part of the present disclosure.
IV. In vivo testing for antidepressant activity

The in-vivo testing for antidepressant activity of the inventive pyrazoline compounds in the water despair test is carried out as described in the publication of ET. Tzavara et al., "The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions"; Br. J. Pharmacol. 2003, 138(4):544:53. The respective part of the description is hereby incorporated by reference and forms part of the present disclosure.
Claims:

1. Cycloalkane-substituted pyrazoline compounds of general formula I,

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{X} \\
\text{Y} \\
\text{R}^8 \\
\end{array}
\]

wherein

X and Y independently represent phenyl, thienyl, naphtyl or pyridyl which groups may be substituted with 1, 2 or 3 substituents W, which can be the same or different, selected from the group

- branched or linear C_{1-3}-alkyl or branched or linear d_{3}-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, CHF₂, CH₂F, OCHF₂, trifluoromethylthio, trifluoromethoxy,
- methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C_{2-0}-alkyl or C(O)-C_{1-2}-0-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocycl or alkyl-heterocycl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocycl or C(O)-alkyl-heterocycl;

- R\(^8\) representing a Cycloalkyl - especially a C\(_7\)-Cycloalkyl - unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different, selected from the group:
H, F, Cl, Br, I, OH, SH, C^{alkyl}, C₁₋₄alkoxy, CF₃, CHF₂, CH₂F, OCF₃, a keto-group, NO₂ or NH₂;
- n being 0 or 1

optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio;
in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

2. Cycloalkane-substituted pyrazoline compounds of general formulas I_a or I_b according to claim 1,

![Diagram](image)

wherein

X and Y independently represent phenyl, thienyl, naphtyl or pyridyl which groups may be substituted with 1, 2 or 3 substituents W, which can be the same or different, from the group:

- branched or linear C₁₋₃-alkyl or branched or linear C₁₋₃-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, CHF₂, CH₂F, OCHF₂, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denominating a prodrug group consisting of substituted or unsubstituted, branched or linear,
saturated or unsaturated C₈₋₂-o-alkyl or C(O)-C₋₁₋₂-o-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

- R⁸ representing a C₇⁻⁻玢

- n being 0 or 1

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

3. Cycloalkane-substituted pyrazoline compounds of general formula II according to claim 1,
R11, R12, R13 and R14 independently of one another represent:

H; branched or linear Ci-3-alkyl or branched or linear d 3-alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, CHF\textsubscript{2}, CH\textsubscript{2}F, OCHF\textsubscript{2}, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C\textbeta\textsubscript{2}o-alkyl or C(O)-Ci\textsubscript{2}o-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

- R18 representing a C\textgamma\textbeta Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different selected from the group:

 H, F, Cl, Br, I, OH, SH, C^alkyl, C^alkoxy, CF\textsubscript{3}, CHF\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, a keto-group, NO\textsubscript{2} or NH\textsubscript{2};

- m being Oor 1

optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio;

in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

4. Cycloalkane-substituted pyrazoline compounds of general formulas M\textsubscript{A} and H\textsubscript{B} according to claim 3,
wherein

\(R^{11}, R^{12}, R^{13} \) and \(R^{14} \) independently of one another represent:

- H; branched or linear \(C_i \)-(3-alkyl or branched or linear \(C_i \)-(3-alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, trifluoromethylthio, trifluoromethoxy, \(CHF_2 \), \(CH_2F \), \(OCHF_2 \), methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P designating a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated \(C_{\beta,2,0} \)-alkyl or \(C(O)-C_{1,20} \)-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted \(C(O) \)-aryl, \(C(O) \)-alkyl-aryl, \(C(O) \)-heterocyclyl or \(C(O) \)-alkyl-heterocyclyl;
- \(R^{18} \) representing a C\(_{7-8}\)-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents \(Z \), which can be the same or different, selected from the group:

 \[\text{H, F, Cl, Br, I, OH, SH, C}_{1-4}\text{-alkyl, C}^\text{-alkoxy, CF}_3, \text{CHF}_2, \text{CH}_2\text{F, OCF}_3, \text{a keto-group, NO}_2 \text{ or NH}_2; } \]

- \(m \) being 0 or 1

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

5. Cycloalkane-substituted pyrazoline compounds according to any of claims 3 or 4, characterized in that

\(R^{11}, R^{12}, R^{13} \) and \(R^{14} \) independently of one another represent \(H, \text{CH}_3, \text{C}_2\text{H}_5, \text{C}_3\text{H}_7, \text{OCH}_3, \text{OC}_2\text{H}_5, \text{OH, SH, F, Cl, Br, I, CF}_3, \text{CHF}_2, \text{CH}_2\text{F, OCF}_3, \text{OCHF}_2; \)

preferably

\(R^{11}, R^{12}, R^{13} \) and \(R^{14} \) independently of one another represent \(H, \text{OH, OCH}_3, \text{F, Cl, Br, I, CF}_3, \text{CHF}_2 \text{ or OCF}_3. \)

6. Cycloalkane-substituted pyrazoline compounds according to any of claims 3 to 5, characterized in that

substituents \(Z \), which can be the same or different are selected from the group:

\[\text{H, F, Cl, Br, I, OH, CH}_3, \text{C}_2\text{H}_5, \text{OCH}_3, \text{OCF}_3, \text{or CF}_3. \]

7. Cycloalkane-substituted pyrazoline compounds of general formula III according to claims 1 or 3,
wherein

$\text{R}^{21}, \text{R}^{22}, \text{R}^{23}$ and R^{24} independently of one another represent:

- H; branched or linear Ci-3^--alkyl or branched or linear d-3^--alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C8-2o-alkyl or C(O)-Ci-2^--alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

- R^{28} representing a C$_7^-$-8-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different, selected from the group:

 - H, F, Cl, Br, I, OH, SH, C$_{1-4}$alkyl, C$_{1-4}$alkoxy, CF$_3$, CHF$_2$, CH$_2$F, OCF$_3$, a keto-group, NO$_2$ or NH$_2$;

- p being 0 or 1
optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio;
in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

8. Cycloalkane-substituted pyrazoline compounds of general formulas 1Ma and 1Mb according to claim 8,

\[
\text{Mia} \quad \quad \text{1Mb}
\]

wherein

\[R^{21}, R^{22}, R^{23} \text{ and } R^{24} \text{ independently of one another represent: } \]
\[\text{H; branched or linear } \text{C}_{i-3}-\text{alkyl or branched or linear } \text{C}_{i-3}-\text{alkoxy, phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl,} \]
trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P, with P denoting a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated C₈-2o-alkyl or C(0)-Ci.₄-o-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

- R²¹ representing a C₁₋₃-Cycloalkyl, unsubstituted or at least monosubstituted with 1, 2 or 3 substituents Z, which can be the same or different selected from the group:
 H, F, Cl, Br, O, OH, SH, C₄₋₅-alkyl, C₁₋₄-alkoxy, CF₃, CHF₂, CH₂F, OCF₃, a keto-group, NO₂ or NH₂;

- p being 0 or 1

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

9. Cycloalkane-substituted pyrazoline compounds according to any of claims 7 or 8, characterized in that

R²¹ represents O-P, with P denoting a prodrug group consisting of aryl, C₈₋₂o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-C₁₋₂₀-alkyl, while R²², R²³ and R²⁴ independently of one another represent H, CH₃, C₂H₅, C₃H₇, OCH₃, OC₂H₅, OH, SH, F, Br, I, CF₃, CHF₂, CH₂F, OCF₃, OCHF₂;

preferably

R²¹ represents O-P, with P denoting a prodrug group consisting of aryl, C₁₋₂o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Cl₋₂o-alkyl, while R²², R²³ and R²⁴ independently of one another represent H, OH, OCH₃, F, Cl, Br, I, CF₃, CHF₂ or OCF₃;

most preferably
R21 represents ; O-P, with P denoting a prodrug group consisting of aryl, C$_{20}^\beta$-alkyl, heterocyclyl, C(O)-aryl, C(O)-hetecyclyl, C(O)-d$_{20}$-alkyl, while R22, R23 and R24 independently of one another represent OH, OCH$_3$, F, Cl, Br, I or OCF$_3$.

10. Cycloalkane-substituted pyrazoline compounds according to any of claims 7 or 8, characterized in that

R21, R22, R23 and R24 independently of one another represent H, CH$_3$, C$_2$H$_5$, C$_3$H$_7$, OCH$_3$, OC$_2$H$_5$, OH, SH, F, Cl, Br, 1CF$_3$, CHF$_2$, CH$_2$F, OCF$_3$, OCHF$_2$; preferably

R21, R22, R23 and R24 independently of one another represent H, OH, OCH$_3$, F, Cl, Br, I, CF$_3$, CHF$_2$ or OCF$_3$;

most preferably

R21 represents H, while R22, R23 and R24 independently of one another represent OH, OCH$_3$, F, Cl, Br, I or OCF$_3$.

11. Cycloalkane-substituted pyrazoline compounds according to any of claims 7 to 10, characterized in that

substituents Z, which can be the same or different are selected from the group:

H, F, Cl, Br, I, OH, CH$_3$, C$_2$H$_5$, OCH$_3$, OCF$_3$, or CF$_3$.

12. Compound according to claim 7 selected from the group consisting of:

- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1 H-pyrazole-3-carboxamide,
- (R)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1 H-pyrazole-3-carboxamide,
- (S)- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1 H-pyrazole-3-carboxamide,
• 5-(4-chlorophenyl)-N-(cycloheptylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-chlorophenyl)-N-cyclooctyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5^-^bromophenoO-N-cycloheptyl-i^-^-AdichlorophenylH. 5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-fluorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
• 5-(4-methoxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,

optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio;
optionally in the form of a corresponding N-oxide, a corresponding salt or a corresponding solvate.

13. Cycloalkane-substituted pyrazoline compounds of general formulas IV, IVa or IVb according to claim 7,
wherein

\[R^{31}, R^{32}, R^{33} \text{ and } R^{34} \text{ independently of one another represent:} \]

- \(H \); branched or linear \(\text{d}_{0} \)-alkyl or branched or linear \(\text{d}_{0} \)-alkoxy,
- phenyl, hydroxy, chloro, bromo, fluoro, iodo, SH, trifluoromethyl, trifluoromethylthio, trifluoromethoxy, methylsulfonyl, carboxyl, trifluoromethylsulfonyl, cyano, carbamoyl, sulfamoyl and acetyl; O-P,
- with P denominating a prodrug group consisting of substituted or unsubstituted, branched or linear, saturated or unsaturated \(C_{2}^{\beta_{0}} \)-alkyl
or C(0)-Ci- 2o-alkyl; substituted or unsubstituted aryl, alkyl-aryl, heterocyclyl or alkyl-heterocyclyl; substituted or unsubstituted C(O)-aryl, C(O)-alkyl-aryl, C(O)-heterocyclyl or C(O)-alkyl-heterocyclyl;

R35, R36 and R37 are independently from one another selected from, H, F, Cl, Br, I, OH, SH, C1-4 alkyl, C^alkoxy, CF3, CHF2, CH2F, OCF3, a keto-group, NO2 or NH2;

optionally in the form shown or in form of the acid or base or in form of a salt, especially a physiologically acceptable salt, or in form of a solvate, especially a hydrate or in form of a corresponding N-oxide thereof.

14. Cycloalkane-substituted pyrazoline compounds according to claim 12, characterized in that

R31 represents ; O-P, with P denoting a prodrug group consisting of aryl, Cβ2o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Ci-2o-alkyl, while R32, R33 and R34 independently of one another represent H, CH3, C2H5, C3H7, OCH3, OC2H5, OH, SH, F, Cl, Br, I CF3, CHF2, CH2F, OCF3, OCHF2;

preferably

R31 represents ; O-P, with P denoting a prodrug group consisting of aryl, Cβ2o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Ci-2o-alkyl, while R32, R33 and R34 independently of one another represent H, OH, OCH3, F, Cl, Br, I, CF3, CHF2 or OCF3;

most preferably

R31 represents ; O-P, with P denoting a prodrug group consisting of aryl, C8-2o-alkyl, heterocyclyl, C(O)-aryl, C(O)-heterocyclyl, C(O)-Ci-2o-alkyl, while R32, R33 and R34 independently of one another represent OH, OCH3, F, Cl, Br, I or OCF3.

15. Cycloalkane-substituted pyrazoline compounds according to claim 12, characterized in that
R31, R32, R33 and R34 independently of one another represent H, CH\textsubscript{3}, C\textsubscript{2}H\textsubscript{5}, C\textsubscript{3}H\textsubscript{7}, OCH\textsubscript{3}, OC\textsubscript{2}H\textsubscript{5}, OH, SH, F, Cl, Br, I, CF\textsubscript{3}, CHF\textsubscript{2}, CH\textsubscript{2}F, OCF\textsubscript{3}, OCHF\textsubscript{2}; preferably
R31, R32, R33 and R34 independently of one another represent H, OH, OCH\textsubscript{3}, F, Cl, Br, I, CF\textsubscript{3}, CHF\textsubscript{2} or OCF\textsubscript{3};

most preferably
R31 represents H, while R32, R33 and R34 independently of one another represent OH, OCH\textsubscript{3}, F, Cl, Br, I or OCF\textsubscript{3}.

16. Cycloalkane-substituted pyrazoline compounds according to any of claims 12 to 14, characterized in that

R35, R36 and R37 are independently from one another selected from, H, F, Cl, Br, I, OH, CH\textsubscript{3}, C\textsubscript{2}H\textsubscript{5}, OCH\textsubscript{3}, OCF\textsubscript{3}, or CF\textsubscript{3}.

17. Compound according to claim 12 selected from the group consisting of:

- 5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
- (R)-5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
- (S)-5-(4-chlorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
- 5-(4-chlorophenyl)-N-(cycloheptylmethyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
- 5-(4-bromophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
- 5-(4-fluorophenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
- 5-(4-methoxyphenyl)-N-cycloheptyl-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxamide,
optionally in the form of its racemate, pure stereoisomers, especially enantiomers or diastereomers or in the form of mixtures of stereoisomers, especially enantiomers or diastereomers, in any suitable ratio; optionally in the form of a corresponding N-oxide, a corresponding salt or a corresponding solvate.

18. Process for the manufacture of substituted pyrazoline compounds of general formula I according to one or more of claims 1 to 2, characterized in that at least one benzaldehyde compound of general formula V

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{X} & \\
(V)
\end{align*}
\]

wherein \(X\) has the meaning according to one or more of claims 1 or 2, is reacted with a pyruvate compound of general formula (VI)

\[
\begin{align*}
\text{G} & \quad \text{O} \\
\text{C} & \quad \text{CH}_3 \\
\text{O} & \\
(VI),
\end{align*}
\]

wherein \(G\) represents an OR group with \(R\) being a branched or unbranched \(\text{C}_6\) alkyl radical or \(G\) represents an OK group with \(K\) being a cation, to yield a compound of general formula (VII)
wherein X has the meaning given above, which is optionally isolated and/or optionally purified, and which is reacted with an optionally substituted phenyl hydrazine of general formula (VIII)

\[\text{[Diagram of structure VIII]} \]

or a corresponding salt thereof, wherein Y has the meaning according to one or more of claims 1 or 2, under inert atmosphere, to yield a compound of general formula (IX)

\[\text{[Diagram of structure IX]} \]

wherein X and Y have the meaning as given above, which is optionally isolated and/or optionally purified, and optionally transferred under inert atmosphere to a compound of general formula (XI) via the reaction with an activating agent
wherein the substituents X and Y have the meaning given above and A represents a leaving group, said compound being optionally isolated and/or optionally purified, and at least one compound of general formula (XI) is reacted with a compound of general formula XII

wherein n and R^8 are defined as in any of claims 1 or 2; under inert atmosphere to yield a substituted pyrazoline compound of general formula I, which is optionally isolated and/or optionally purified.

19. Medicament comprising at least one substituted pyrazoline compound of general formula I according to claims 1 to 17, and optionally one or more pharmaceutically acceptable excipients.

20. Use of at least one substituted pyrazoline compound according to one or more of claims 1-17 and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the modulation of cannabinoid-receptors, preferably cannabinoid 1 (CB1) receptors, for the prophylaxis and/or treatment of disorders of the central nervous system, disorders of the immune system, disorders of the cardiovascular system, disorders of the endocrinous system, disorders of the respiratory system, disorders of the gastrointestinal tract or reproductive disorders.
21. Use of at least one substituted pyrazoline compound according to one or more of claims 1-17 and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of food intake disorders, preferably bulimia, anorexia, cachexia, obesity, type II diabetus mellitus (non-insuline dependent diabetes mellitus), more preferably obesity.

22. Use of at least one substituted pyrazoline compound according to one or more of claims 1-17 and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of psychosis.

23. Use of at least one substituted pyrazoline compound according to one or more of claims 1-17 and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of alcohol abuse and/or alcohol addiction, nicotine abuse and/or nicotine addiction, drug abuse and/or drug addiction and/or medicament abuse and/or medicament addiction, preferably drug abuse and/or drug addiction and/or nicotine abuse and/or nicotine addiction.

24. Use of at least one substituted pyrazoline compound according to one or more of claims 1-17 and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of cancer, preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of brain cancer, bone cancer, lip cancer, mouth cancer, esophageal cancer, stomach cancer, liver cancer, bladder cancer, pancreas cancer, ovary cancer, cervical cancer, lung cancer, breast cancer, skin cancer, colon cancer, bowel cancer and prostate cancer, more preferably for the prophylaxis and/or treatment of one or more types of cancer selected from the group consisting of colon cancer, bowel cancer and prostate cancer.
25. Use of at least one substituted pyrazoline compound according to one or more of claims 1-17 and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of bone disorders, preferably osteoporosis (e.g. osteoporosis associated with a genetic predisposition, sex hormone deficiency, or ageing), cancer-associated bone disease or Paget's disease of bone; schizophrenia, anxiety, depression, epilepsy, neurodegenerative disorders, cerebellar disorders, spinocerebellar disorders, cognitive disorders, cranial trauma, head trauma, stroke, panic attacks, peripheral neuropathy, glaucoma, migraine, Morbus Parkinson, Morbus Huntington, Morbus Alzheimer, Raynaud's disease, tremblement disorders, compulsive disorders, senile dementia, thymic disorders, tardive dyskinesia, bipolar disorders, medicament-induced movement disorders, dystonia, endotoxemic shock, hemorrhagic shock, hypotension, insomnia, immunologic disorders, sclerotic plaques, vomiting, diarrhea, asthma, memory disorders, pruritus, pain, or for potentiation of the analgesic effect of narcotic and non-narcotic analgesics, or for influencing intestinal transit.
Fig. 1

Cumulated Data.

Male W Rats. Adm: oral.

Reversed Cycle and Handled animals

![Diagram showing cumulative food intake and body weight data.](image-url)

- **Cumulated Food Intake (g) 24h**
 - Open bars: saline, N = 11
 - Black bars: Example 2 10mg/kg, N = 12

- **Body Weight (g)**
 - One asterisk (*) indicates a significant difference.
A. CLASSIFICATION OF SUBJECT MATTER

| INV. | C07D231/06 | A61K31/415 | A61P3/04 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols): C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used):

EPO-Internal, WPI Data, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>F,Y</td>
<td>US 2006/030563 A1 (MAKRIYANNIS ET. AL.) 9 February 2006 (2006-02-09) claims; examples; tables 1-8</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 20 November 2006

Date of mailing of the international search report: 01/12/2006

Name and mailing address of the ISA:

European Patent Office
P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer: Helps, Ian
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2005077911 A</td>
<td>25-08-2005</td>
<td>AU 2005212836 A1</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2556400 A1</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1626963 A1</td>
<td>22-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006020010 A1</td>
<td>26-01-2006</td>
</tr>
<tr>
<td>US-2006030563 A1</td>
<td>09-02-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2005261281 A1</td>
<td>24-11-2005</td>
<td>CA 2507712 A1</td>
<td>24-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1602656 A1</td>
<td>07-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005350458 A</td>
<td>22-12-2005</td>
</tr>
</tbody>
</table>