发明名称
泵体结构及压缩机

摘要
本发明提供了一种泵体结构及压缩机。该泵体结构包括曲轴、气缸和滚子组件，曲轴包括偏心轴，偏心轴安装在气缸中，滚子组件安装在气缸中的偏心轴上，滚子组件包括内层滚子和外层滚子，内层滚子安装在偏心轴上，外层滚子安装在内层滚子上。该压缩机含有上述泵体结构。本发明的泵体结构及缸压缩机，通过在曲轴的偏心轴上设置有层套件的内层滚子和外层滚子，使滚子组件具备良好的耐冲击性，从而提高了本发明泵体结构的性能。
1. 一种泵体结构，包括曲轴和气缸，所述曲轴包括偏心轴，所述偏心轴安装在所述气缸中，其特征在于，所述泵体结构还包括滚子组件，所述滚子组件安装在所述气缸中的所述偏心轴上；

所述滚子组件包括内层滚子和外层滚子，所述内层滚子安装在所述偏心轴上，所述外层滚子安装在所述内层滚子上。

2. 根据权利要求1所述的泵体结构，其特征在于，所述内层滚子与所述外层滚子的厚度之比的范围为0.428～2.333。

3. 根据权利要求2所述的泵体结构，其特征在于，所述内层滚子的外圆周面上设置有沿所述内层滚子的径向方向贯通的过油孔。

4. 根据权利要求2所述的泵体结构，其特征在于，所述内层滚子的外圆周面上设置有沿所述内层滚子的轴线方向开口的开口槽。

5. 根据权利要求3或4所述的泵体结构，其特征在于，所述内层滚子和所述外层滚子的材质各不相同。

6. 根据权利要求5所述的泵体结构，其特征在于，所述内层滚子由隔热性能较好的材料制成，所述外层滚子由抗冲击、耐磨性能较好的材料制成。

7. 根据权利要求6所述的泵体结构，其特征在于，所述内层滚子的热膨胀系数小于所述外层滚子的热膨胀系数的60%。

8. 根据权利要求7所述的泵体结构，其特征在于，所述内层滚子由陶瓷材料制成，所述外层滚子由金属材料制成。

9. 一种压缩机，其特征在于，包括如权利要求1至8任一项所述的泵体结构。
泵体结构及压缩机

技术领域
[0001] 本发明涉及压缩设备领域，特别是涉及一种泵体结构，以及含有上述泵体结构的压缩机。

背景技术
[0002] 一般地，对于滚动式压缩机而言，电机转子通过曲轴带动滚子在气缸内偏心旋转，从而实现制冷剂压缩。但是由于滚动式压缩机内电机的温度较高，同时曲轴、转子等均采用金属材质制成，具有良好的导热性能，滚动式压缩机在工作过程中，电机的热量传递至滚子，由于滚子温度远高于进气温度，会导致泵体容积效率、绝热效率下降，影响滚动式压缩机的性能。
[0003] 随着人们对空调能效的要求越来越高，滚动式压缩机得到快速发展。滚动式压缩机的电机转子内嵌入永磁体，由于曲轴、滚子一般采用铸铁类材料，具有一定的磁导率和剩磁能力，所以滚动式压缩机装配后，曲轴、滚子均带有一定的剩磁，导致曲轴与滚子之间存在一定的磁力，滚动式压缩机在运行时，影响到滚子的运动状态，导致滚动式压缩机的性能下降。
[0004] 滚子采用陶瓷材料或表面覆盖陶瓷涂层是目前已有解决方案，但都存在一定的缺陷。由于滑片的顶部与滚子的外表面为直接接触磨损，对零件表面的质量要求很高，这两种方法均存在滚子的外表面加工难度大、加工质量难以保证的问题。另一方面，滑片对滚子有一定的冲击作用，甚至滚动式压缩机会使滑片在脱离，接触滚子的过程中产生更大的冲击负荷，而陶瓷材料韧性较差，冲击载荷容易导致陶瓷滚子表面缺陷或涂层脱落。
[0005] 鉴于上述缺陷，本发明人经过长时间的研究和实践终于获得了本发明创造。

发明内容
[0006] 基于此，有必要针对滚动式压缩机内的滚子耐磨性差、导热性差的问题，提供一种能够提高滚子耐磨性能以及导热性能差的泵体结构，以及含有上述泵体结构的压缩机。上述目的通过下述技术方案实现；
[0007] 一种泵体结构，包括曲轴、气缸和滚子组件，所述曲轴包括偏心轴，所述偏心轴安装在所述气缸中，所述滚子组件安装在所述气缸中的所述偏心轴上；
[0008] 所述滚子组件包括内层滚子和外层滚子，所述内层滚子安装在所述偏心轴上，所述外层滚子安装在所述内层滚子上。
[0009] 在其中一个实施例中，所述内层滚子与所述外层滚子的厚度之比的范围为 0.428 ～ 2.333。
[0010] 在其中一个实施例中，所述内层滚子的外圆周面上设置有沿所述内层滚子的径向方向贯通的过油孔。
[0011] 在其中一个实施例中，所述内层滚子的外圆周面上设置有沿所述内层滚子的轴线方向开口的开口槽。
说明 书

[0012] 在其中一个实施例中，所述内层滚子和所述外层滚子的材质各不相同。

[0013] 在其中一个实施例中，所述内层滚子由隔热性能较好的材料制成，所述外层滚子
由抗冲击、耐磨性能较好的材料制成。

[0014] 在其中一个实施例中，所述内层滚子的热膨胀系数小于所述外层滚子的热膨胀系
数的 60%。

[0015] 在其中一个实施例中，所述内层滚子由陶瓷材料制成，所述外层滚子由金属材料
制成。

[0016] 还涉及一种压缩机，包括如上述任一技术特征所述的泵体结构。

[0017] 本发明的优点效果是；

[0018] 本发明的泵体结构及压缩机，结构设计简单合理，在曲轴的偏心轴上设置有内层
滚子和外层滚子，通过内层滚子和外层滚子层层套装，使滚子组件具备良好的耐冲击性，并
且滚子的外表面容易加工，从而保证了本发明泵体结构的可靠性，同时又能保证滚子组件
具有良好的隔磁、隔热、热变形小等特征，从而提高了本发明泵体结构的性能。

附图说明

[0019] 图 1 为本发明一实施例的泵体结构的剖视图；

[0020] 图 2 为图 1 所示的泵体结构中滚子组件的剖面图；

[0021] 图 3 为图 2 所示的滚子组件中内层滚子上设置有油孔的剖视图；

[0022] 图 4 为图 2 所示的滚子组件中内层滚子上设置有开口槽的立体图；

[0023] 其中：

[0024] 100—泵体结构；

[0025] 110—曲轴；

[0026] 111—连杆；112—偏心轴；

[0027] 120—气缸；

[0028] 130—滚子组件；

[0029] 131—内层滚子；132—外层滚子；

[0030] 140—上法兰盘；

[0031] 150—上法兰消音器；

[0032] 160—下法兰盘；

[0033] 170—下法兰消音器；

[0034] 180—垫片。

具体实施方式

[0035] 为了使本发明的目的、技术方案及优点更加清楚明白，以下通过实施例，并结合附
图，对本发明的泵体结构及压缩机进行进一步详细说明。应当理解，此处所描述的具体实施
例仅用以解释本发明，但并不用于限定本发明。

[0036] 参见图 1 和图 2，一实施例的泵体结构 100，包括上法兰盘 140、曲轴 110、气缸 120、
下法兰盘 160 和滚子组件 130；上法兰盘 140 与下法兰盘 160 分别安装在气缸 120 的两端，
曲轴 110 包括连杆 111 和偏心轴 112，偏心轴 112 安装在气缸 120 中，连杆 111 穿过上法兰
盘 140，连杆 111 与偏心轴 112 连接。滚子组件 130 安装在气缸 120 中的偏心轴 112 上，滚子组件 130 包括两层滚子，分别为内层滚子 131 和外层滚子 132，内层滚子 131 安装在偏心轴 112 上，外层滚子 132 安装在内层滚子 131 上。内层滚子 131 与外层滚子 132 层层套装在偏心轴 112 上，当曲轴 110 转动时，偏心轴 112 带动内层滚子 131 与外层滚子 132 转动，外层滚子 132 与滑片 180 直接接触，带动滑片 180 往复运动。由于滑片 180 在往复运动中不断地与外层滚子 132 的外圆周面上的各点接触，滑片 180 在外层滚子 132 上的运动轨迹为圆形，这就导致滑片 180 与外层滚子 132 在不断地接触、脱离、再接触、再脱离，一直循环进行，因此本发明的泵体结构 100 通过内层滚子 131 与外层滚子 132 来提高滚子组件 130 的抗冲击能力。同时内层滚子 131 与外层滚子 132 层层套装在偏心轴 112 上，保证滚子组件 130 具有良好的隔磁、隔热、热变形小等特征。内层滚子 131 与外层滚子 132 能够降低滚子组件 130 中两层滚子间的热传递效率，降低滚子组件 130 的温度，进而保证滚子组件 130 的温度低于气缸 120 的进气温度，进而保证泵体结构 100 的容积效率、绝热效率不降低，使本发明的泵体结构 100 能够正常运转，降低功耗，保证泵体结构 100 的可靠性。

[0037] 在本实施例中，滚子组件 130 包括内层滚子 131 和外层滚子 133，通过内层滚子 131 和外层滚子 132 层层套装在偏心轴 112 上，保证滚子组件 130 具备良好的耐冲击性的同时，提高滚子组件 130 的隔磁、隔热、热变形等特征。外层滚子 132 的外圆周与滑片 180 直接接触，曲轴 110 在转动过程中，通过偏心轴 112 带动滚子组件 130 转动，滑片 180 在滚子组件 130 的作用下往复运动，通过内层滚子 131 与外层滚子 132 的结构提高滑片 180 与外层滚子 132 脱离、接触运动过程中外层滚子 132 的抗冲击能力。同时泵体结构 100 在运转过程中，电机将热量传递给滚子组件 130，通过内层滚子 131 与外层滚子 132 的结构降低热传递效率，保证泵体结构 100 的性能。

[0038] 进一步地，泵体结构 100 还包括上法兰消音器 150 和下法兰消音器 170，上法兰消音器 150 置设在上法兰盘 140 的外侧，下法兰消音器 170 置设在下法兰盘 160 的外侧，通过上法兰消音器 150 和下法兰消音器 170 减轻气缸 120 在工作时的噪声。

[0039] 作为一种可实施方式，内层滚子 131 的厚度与外层滚子 132 的厚度之比的范围为 0.428 ～ 2.333，即内层滚子 131 的厚度等于内层滚子 131 与外层滚子 132 的厚度之和的 0.3 ～ 0.7 倍。为了便于内层滚子 131 与外层滚子 132 的加工制造，内层滚子 131 的厚度最好控制在内层滚子 131 的厚度与外层滚子 132 的厚度之比的范围为 0.428 ～ 2.333 内。

[0040] 参见图 3，作为一种可实施方式，内层滚子 131 的外圆周面上设置有沿内层滚子 131 的径向方向贯通的过油孔。为了保证内层滚子 131 与外层滚子 132 之间具有良好的润滑性能，内层滚子 131 的外圆周面上设置有沿内层滚子 131 的径向方向贯通的过油孔，通过过油孔保证曲轴 110 泵油能够到达内层滚子 131 与外层滚子 132 之间的间隙。

[0041] 参见图 4，当然，内层滚子 131 也可以采用带有开口槽的滚环结构，以便润滑油的流通。为了保证内层滚子 131 与外层滚子 132 之间具有良好的润滑性能，内层滚子 131 的外圆周面上设置有沿内层滚子 131 的轴线方向开口的开口槽，通过开口槽保证曲轴 110 泵油能够到达内层滚子 131 与外层滚子 132 之间的间隙。

[0042] 作为一种可实施方式，内层滚子 131 与外层滚子 132 的材质各不相同。内层滚子 131 与外层滚子 132 采用不同的材质制成，并且内层套装在偏心轴 112 上，保证滚子组件 130 具有良好的隔磁、隔热、热变形小等特征。不同材质的内层滚子 131 与外层滚子 132 能
够降低滚子组件130中两个滚子间的热传递效率，降低滚子组件130的温度，进而保证滚子组件130的温度低于气缸120的进气温度，进而保证泵体结构100的容积效率、绝热效率不降低，使本发明的泵体结构100能够正常运转，降低功耗，保证泵体结构100的性能。

作为一种可实施方式，内层滚子131由隔热性能较好的材料制成，外层滚子132由抗冲击、耐磨性能较好的材料制成。泵体结构100在运转过程中，电机会将热量先传递给曲轴110，通过曲轴110将热量再传递给滚子组件130，曲轴110与内层滚子131直接接触，曲轴110与外层滚子132通过内层滚子131连接，曲轴110先将热量传递给内层滚子131，内层滚子131再将热量传递给外层滚子132，因此，内层滚子131需要由隔热性能较好的材料制成，以减少曲轴110传递给外层滚子132的热量，使滚子在使用过程中，能够降低泵体结构100的传热损失。泵体结构100在运转过程中，通过外层滚子132转动带动滑片180往复运动，由于滑片180与外层滚子132之间是通过接触、脱离、再接触、再脱离的方式工作的，要求外层滚子132具有较高抗冲击能力，因此外层滚子132需要由抗冲击、耐磨性能较好的材料制成。

作为一种可实施方式，内层滚子131的热膨胀系数小于外层滚子132的热膨胀系数的60%。由于滚子组件130的上下端面分别与上法兰盘140、下法兰盘160的端面之间存在间隙，该间隙是泵体结构100内部的重要泄漏通道，既影响泵体结构100的工作能力，又影响泵体结构100的能效。如在目前的泵体结构100中，单个滚子在气缸120内会随温度的变化自由膨胀，导致滚子的端面的间隙在不同的温度下是变化的，会导致部分工况下间隙较大，泄漏增大从而导致泵体结构100的性能较差。本发明的泵体结构100通过内层滚子131保证其与上法兰盘140、下法兰盘160的端面的密封性，内层滚子131采用热膨胀系数小的材料制成，可以保证内层滚子131在不同温度下的高度在较小的范围内变化从而保证内层滚子131的端面间隙不适应于不同工况，因此，要求内层滚子131的热膨胀系数小于外层滚子132的热膨胀系数的60%。

进一步地，内层滚子131由陶瓷材料制成，外层滚子132由金属材料制成。陶瓷材料具有良好的隔热性能和隔磁性能，这样既能降低泵体结构100的传热损失，又避免了滚子组件130与曲轴110之间磁作用力导致的滚子运动不顺畅问题，同时陶瓷类材料密度小，减小了曲轴110与滚子组件130在旋转过程中的不平衡惯量。外层滚子132采用与滑片180对磨性较好的金属材料，可避免外层滚子132的外圆周面上在涂隔热层方案时，导致滑片180与外层滚子132之间的磨损问题及表面隔热层加工难度大、精度不高的问题，同时还能避免由陶瓷材料制成的内层滚子131承受冲击负荷。在本实施例中，内层滚子131由氧化铝陶瓷材料制成，氧化铝陶瓷材料具有耐高温、强度高、耐磨、导热系数低、热膨胀系数低等特性，外层滚子132由铸铁制成，铸铁具有较好的耐冲击韧性，能够承受滑片180产生的冲击负荷，同时具备良好的加工性能，可以保证外表面质量。并且，氧化铝陶瓷材料的导热系数仅为铸铁的1/6左右，氧化铝陶瓷材料的热膨胀系数为铸铁的1/2左右。

一实施例的压缩机，包括以上实施例中的泵体结构100，压缩机通过泵体结构100提高可靠性。当然，压缩机可以为单缸压缩机、双缸压缩机或多缸压缩机。

以上所述实施例仅表达了本发明的几种实施方式，其描述较为具体和详细，但并不能因此而理解为对本发明专利范围的限制。应当指出的是，对于本领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干变形和改进，这些都是实施例的保护范围。因此，本发明专利的保护范围应以所附权利要求为准。