wo 2016/026516 A1 |1 I} NN OAT OO0 O A RO

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2016/026516 Al

25 February 2016 (25.02.2016) WIPOI|PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/44 (2006.01) HO4L 12/24 (2006.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
 PCT/EP2014/067641 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
19 August 2014 (19.08.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(71) Applicant (for all designated States except US): HUAWEIL ZW.
TECHNOLOGIES CO., LTD. [CN/CN]; Huawei Ad- . L
ministration Building, Bantian Longgang, Shenzhen, (84) Designated States (uniess otherwise indicated, for every
Guangdong 518129 (CN). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Inventor; and TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(71) Applicant (for US only): PORAT, Hayim [IL/DE]; Hua- TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
wei Technologies Duesseldorf GmbH, Riesstr. 25, 80992 DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Munich (DE). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(74) Agent: KREUZ, Georg M.; Huawei Technologies SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

Duesseldorf GmbH, Messerschmittstr. 4, 80992 Munich
(DE).

GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SOFTWARE DEFINED NETWORK CONTROLLER AND METHOD FOR ITS CREATION

100
301
/
305 w300
7 7 /
7 7 T
302 303 304

Fig. 3

(57) Abstract: The present invention provides an SDN con-
troller 100 and a method for its creation. The SDN control -
ler 100 is configured to fully replace a Neutron server in an
Openstack networking service. The SDN controller 100 is
provided with a unified data model 300 for all network
devices in the network. In the unified data model 300, all
network devices are abstracted, including, for instance, FEs,
FWs and/or LBs. To this end, the unified data model 300 in-
cludes at least a root meta-class 301 defining a plurality of
elementary attributes and/or operations 305, which are
shared by all of the network devices. The unified data model
300 further includes a plurality of device classes 302, 303,
304, each device class representing one class of the network
devices. The root meta-class 301 is inherited by each of the
device classes 302, 303, 304.

WO 2016/026516 A1 |IIWAT 00N 0RO O

Published:
— with international search report (Art. 21(3))

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

SOFTWARE DEFINED NETWORK CONTROLLER AND METHOD FOR ITS
CREATION

TECHNICAL FIELD

The present invention relates to a software defined network (SDN) controller and a
method for creating such an SDN controller. In particular, the present invention presents
an SDN controller based Neutron server, i.e. a SDN controller configured to replace a

Neutron server of an Openstack networking service.

BACKGROUND

Openstack is a free and open source software cloud computing platform. The Openstack
networking service is a standard service, which often involves deploying several
processes across a plurality of network nodes. A main process of the Openstack
networking service is a so called Neutron server, which is a Python daemon that exposes
Openstack network application programming interfaces (API) to tenants of the
networking service, and passes tenant requests to a suite of plug-ins for additional

processing.

The Openstack networking service typically encompasses the components shown in Fig,.
8. A Neutron server (formerly known as Quantum) runs on a controller node, in order to
service the networking APIs and their extensions. The Neutron server is also used to
enforce the network model and the IP addressing of each port. A Neutron server typically
comprises at least one (Neutron) plug-in. The Neutron server requires access to a
database for persistent storage, and requires access to a message queue for inter-

communication.

A plug-in agent (Neutron agent) typically runs on a compute node, in order to manage
and configure local virtual switches. The plug-in agent also requires message queue

acCcCcEss.

10

15

20

25

30

WO 2016/026516 PCT/EP2014/067641

A set of plug-ins / agents are applications that run on top of the neutron infrastructure.
Among them are the dynamic host configuration protocol (DHCP) agent, which
provides services to tenant networks, and also requires message queue access. Or the L3
agent that provides L3/NAT forwarding for external network access of virtual machines
on tenant networks, and also requires message queue access. These agents run on the

network node.

The Neutron server of the state of the art has several problems and drawbacks. For
example, the Neutron server is only an API translation layer, which does not deploy any
application logic, and does also not provide any other services, for example, to SDN
applications. The only way to add applications or services is through the plug-in
infrastructure. This, however, causes the problem that since there are no services
provided by the Neutron server, the applications need to encapsulate all of the services.

That is, the encapsulation needs to be done separately by each and every application.

Moreover, the state of the art Neutron server does also not provide an infrastructure for
application chaining, so there is no coordination between applications that may interfere
or interact with each other. In addition, applications may be partitioned only if they are
operating in a “share nothing” mode using a Neutron scheduler service. In any case,
applications do not control the data path as in SDN, and thus require that all processed
traffic runs through network nodes, which may hinder applications like distributed

virtual router (DVR).

Another disadvantage is that any addition or change of an application requires a
complete compiling of a new version of the Neutron server. The Neutron server does
further not support any large scale deployment, which requires clustering and high

availability (HA) of the Neutron server.

In the state of the art some approaches were presented for addressing the above-
mentioned problems. Two of these approaches are shown in the Figs. 9a and 9b,
respectively. According to the approach shown in Fig. 9a, an external SDN controller
901 is connected through an Open Flow (OF) plug-in. Although this approach is quick
and easy, and enables SDN integration, it has several drawbacks. Namely, redundant
functions of virtual networking management are present in the Neutron server and in the
SDN controller 901. Furthermore, both the Neutron server and the SDN controller901

need to control the switches, because both have overlapping functions with distinct

2

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

30

applications. Finally, there is a risk of inconsistency in application deployment, because

both the SDN controller 901 and the Neutron server may support SDN applications.

According to the approach shown in Fig. 9b, an external SDN controller 902 is
connected through the plug-in backend to the Neutron server, and has message queue
access. However, this approach suffers the same drawbacks as the approach shown in

Fig. 9a.

SUMMARY

In view of the above-mentioned disadvantages and problems, the present invention aims
to improve the state of the art. In particular, the object of the present invention is to
provide another approach that allows full SDN integration into an Openstack networking
service in a quick and easy manner without the above-mentioned drawbacks. By the full
integration of SDN into the Openstack networking service, control of the network from
a management plane through a control plane to a data plane should be enabled.
Furthermore, SDN controller support for controlling and managing switching devices
and other forwarding elements (FEs), but also other network elements such as load

balancers (LBs) and firewalls (FW5s) is desired.

The above-mentioned object of the present invention is achieved by the solution
provided in the enclosed independent claims. Advantageous implementations of the
present invention are further defined in the respective dependent claims. In particular
the core idea of the present invention is to provide a full-featured SDN controller for
replacing a Neutron server in an Openstack network service. In particular, the SDN
controller is provided with a unified data model, which allows control of all network

devices including LBs and FWs.

A first aspect of the present invention provides a software defined network, SDN,
controller, comprising a unified data model for all network devices in a network, wherein
the unified data model includes a root meta-class defining a plurality of elementary
attributes and/or operations shared by all network devices, and a plurality of device
classes each representing one class of the network devices, and wherein the root meta-

class is inherited by each of the device classes.

10

15

20

25

30

WO 2016/026516 PCT/EP2014/067641

The SDN controller is configured to enhance a Neutron server in an Openstack
networking service, thereby providing the Openstack networking service with full SDN
capability while retaining all of the Neutron server capabilities. By means of the unified
data model, which provides a single root representation for all network devices in the
network, the SDN controller is configured to control all network devices, including LBs,
FWs etc., from a management plane. In particular, by the use of polymorphism, the SDN
controller can reference actions and attributes in an easy manner across different network
device classes, i.¢. to different network devices. With the SDN controller of the present
invention, newly added or changed applications can be simply registered on the SDN

controller, and a complete recompiling of a Neutron server is unnecessary.

In a first implementation form of the SDN controller according to the first aspect, the
SDN controller is configured as a network controller of a cloud management system,

preferably of an Openstack cloud management system.

In a second implementation form of the SDN controller according to the first aspect as
such or according to the first implementation form of the first aspect, the unified data
model is contained in an abstraction layer of the SDN controller, and is a unified

abstraction of all devices and functions of the network infrastructure.

The abstraction of all network devices allows an easy integration of new or changed
applications or devices into the network service, regardless of their type or manufacturer.
That is, by the abstraction of all network devices is ensured that devices of the same
type, but e.g. of a different manufacturer, can be integrated easily into the networking

service.

In a third implementation form of the SDN controller according to the first aspect as
such or according to any implementation forms of the first aspect, the clementary
attributes and/or operations shared by each network device include a primary capability,
a port, a match rule for determining data traffic that is to be operated on, and an action

to be taken on the determined data traffic.

In particular by means of the match rule and the action to be taken, a single interface for
controlling the different network devices, which are abstracted in the unified data model,

is provided.

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

In a fourth implementation form of the SDN controller according to the third
implementation form of the first aspect, the elementary attributes and/or operations
shared by each network device also include a communication protocol, and a control

protocol.

In a fifth implementation form of the SDN controller according to the third or fourth
implementation form of the first aspect, in each of the plurality of device classes the
primary capability of the network device is attributed, and specific data model attributes

and/or operations of the network device are contained.

In a sixth implementation form of the SDN controller according to the third to fifth
implementation forms of the first aspect, the match operation and action operation in the
root meta-class reference simultaneously all network devices across the plurality of
device classes, in order to cause the network devices to execute at least their primary

capability on the determined data traffic.

Due to the above implementation forms, all network devices can be controlled from the
management plane, and in a simultaneous manner. That means, if the match rule or the
action is changed, all network devices are accordingly instructed in parallel, because the

root meta-class attributes are inherited to each device class.

In a seventh implementation form of the SDN controller according to the first aspect as
such or according to any implementation forms of the first aspect, the plurality of

network devices comprises at least one of a FE, a FW, and a LB.

The SDN controller of the present invention is thus in contrast to an SDN controller of

the prior art, which can only control forwarding devices.

In an eighth implementation form of the SDN controller according to the first aspect as
such or according to any implementation forms of the first aspect, the SDN controller
comprises at least one application programming interface, API, for registering at least

one SDN application.

All service plug-ins existing in conventional Openstack networking services (e.g. L3
agent, DHCP agent etc.) can be reintroduced as pure SDN applications registered and

running on the SDN controller. As a consequence, the service plug-ins do not cause

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

30

bottlenecks for data traffic, as their data path portion is offloaded to the data-plane
according to the SDN paradigm.

In a ninth implementation form of the SDN controller according to the first aspect as
such or according to any implementation forms of the first aspect, the SDN controller
further comprises at least one application programming interface, API, for registering

service plug-ins.

For example, standard SDN or OF service plug-ins may be registered on the SDN

controller.

In a tenth implementation form of the SDN controller according to the first aspect as
such or according to any implementation forms of the first aspect, the SDN controller
further comprises at least one application programming interface, API, for registering a

message queue, MQ, application.

Thereby, MQ connectivity for other Openstack elements and for a legacy Neutron agent
is provided (the legacy Neutron agent may support non-forwarding elements like FWs).

MQ connectivity is a significant enhancement to the conventional SDN model.

In an eleventh implementation form of the SDN controller according to the first aspect
as such or according to any implementation forms of the first aspect, the SDN controller
further comprises a driver wrapper for adapting Openstack vendor specific device plug-

ins and/or drivers to be used by SDN applications.

In a twelfth implementation form of the SDN controller according to the first aspect as
such or according to any implementation forms of the first aspect, the SDN controller
further comprises a core layer containing a plurality of services including at least one of
a topology service, routing service, chaining service, dispatching service, clustering

service, and high availability service.

Thereby, the Openstack networking service is provided with full SDN capability. The

additional services greatly improve the Openstack networking service.

A second aspect of the present invention provides a method for creating a software
defined network, SDN, controller, the method comprising creating, in an abstraction
layer of the SDN controller, a unified data model for all network devices in a network,

including, in the unified data model, a root meta-class containing a plurality of

6

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

clementary attributes and/or operations shared by all network devices, and a plurality of
device classes each representing one class of the network devices, and inheriting the root

meta-class to each of the device classes.

In a first implementation form of the method according to the second aspect, the SDN
controller is configured as a network controller of a cloud management system,

preferably of an Openstack cloud management system.

In a second implementation form of the method according to the second aspect as such
or according to the first implementation form of the second aspect, the unified data
model is created in the abstraction layer of the SDN controller, and is a unified

abstraction of all devices and functions of the network infrastructure.

In a third implementation form of the method according to the second aspect as such or
according to any implementation forms of the second aspect, the elementary attributes
and/or operations shared by each network device include a primary capability, a port, a
match rule for determining data traffic that is to be operated on, and an action to be taken

on the determined data traffic.

In a fourth implementation form of the method according to the third implementation
form of the second aspect, the elementary attributes and/or operations shared by each

network device also include a communication protocol, and a control protocol.

In a fifth implementation form of the method according to the third or fourth
implementation form of the second aspect, in each of the plurality of device classes the
primary capability of the network device is attributed, and specific data model attributes

and/or operations of the network device are included.

In a sixth implementation form of the method according to the third to fifth
implementation forms of the second aspect, the match operation and action operation in
the root meta-class reference simultaneously all network devices across the plurality of
device classes, in order to cause the network devices to execute at least their primary

capability on the determined data traffic.

In a seventh implementation form of the method according to the second aspect as such

or according to any implementation forms of the second aspect, the plurality of network

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

devices comprises at least one of a forwarding element, FE, a firewall, FW, and a load

balancer, LB.

In an eighth implementation form of the method according to the second aspect as such
or according to any implementation forms of the second aspect, at least one application
programming interface, API, for registering at least one SDN application is created in

the SDN controlled.

In a ninth implementation form of the method according to the second aspect as such or
according to any implementation forms of the second aspect, at least one application
programming interface, API, for registering service plug-ins is created in the SDN

controller.

In a tenth implementation form of the method according to the second aspect as such or
according to any implementation forms of the second aspect, at least one application
programming interface, API, for registering a message queue, MQ, application is created

in the SDN controller.

In an eleventh implementation form of the method according to the second aspect as
such or according to any implementation forms of the second aspect, a driver wrapper
for adapting Openstack vendor specific device plug-ins and/or drivers to be used by SDN

applications is created in the SDN controller.

In a twelfth implementation form of the method according to the second aspect as such
or according to any implementation forms of the second aspect, a core layer containing
a plurality of services including at least one of a topology service, routing service,
chaining service, dispatching service, clustering service, and high availability service is

created in the SDN controller.

The above-described second aspect and its implementation forms achieve the same
advantages as described in relation to the first aspect and its implementation forms,

respectively.

A third aspect of the present invention provides a computer program comprising a
program code for performing, when running on a computer, a method according to the

second aspect as such or according to any implementation forms of the second aspect.

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

The third aspect achieves to the same advantages as described in relation to the second

aspect and its implementation forms, respectively.

It has to be noted that all devices, elements, units and means described in the present
application could be implemented in the software or hardware elements or any kind of
combination thereof. All steps which are performed by the various entities described in
the present application as well as the functionalities described to be performed by the
various entities are intended to mean that the respective entity is adapted to or configured
to perform the respective steps and functionalities. Even if, in the following description
of specific embodiments, a specific functionality or step to be full formed by eternal
entities not reflected in the description of a specific detailed element of that entity which
performs that specific step or functionality, it should be clear for a skilled person that
these methods and functionalities can be implemented in respective software or

hardware elements, or any kind of combination thereof.

BRIEF DESCRIPTION OF DRAWINGS

The above-described aspects and implementation forms of the present invention will be
explained in the following description of specific embodiments in relation to the

enclosed drawings, in which

Fig. 1 shows an SDN controller according to an embodiment of the present

invention in an Openstack networking service.

Fig. 2 shows an SDN controller according to an embodiment of the present
invention interacting with a cloud controller node, a message queue and a

Neutron plug-ins agent in an Openstack cloud management system.

Fig. 3 shows an SDN controller according to an embodiment of the present
invention.
Fig. 4 shows schematically a unified data model as used in an SDN controller

according to an embodiment of the present invention.

Fig. 5 shows a specific unified data model as used in an SDN controller according

to an embodiment of the present invention.

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

Fig. 6 shows a specific configuration of an SDN controller according to an

embodiment of the present invention.

Fig. 7 shows a method for creating an SDN controller according to an embodiment

of the present invention.
Fig. 8 shows an Openstack networking services according to the prior art.

Fig. 9a/9b show an Openstack networking services according to the prior art.

DETAILED DESCRIPION OF EMBODIMENTS

Fig.1 shows an SDN controller 100 according to an embodiment of the present invention
within a network, specifically within an Openstack networking service. The SDN
controller 100 is configured to replace a Neutron server of such an Openstack
networking service. Alternatively, a conventional Neutron server may be enhanced with
functions that enable it to function as an SDN controller 100. Fig. 1 shows in particular
some elements of an Openstack networking service, including an Openstack object store,
Openstack image service, Openstack compute, Openstack block storage and Openstack
identity service. The Openstack networking (i.e. the Neutron server of a conventional
Openstack networking service) is replaced one-by-one with the SDN controller 100. It
can be seen from fig. 1 that no reconfiguration of the remaining conventional Openstack

networking service is necessary with the new SDN controller 100 based Neutron server.

Fig. 2 shows how the SDN controller 100 according to an embodiment of the present
invention interacts with a cloud controller node 201, a message queue 200 and a network
node 202 (running e.g. a Neutron plug-in agent) of an Openstack cloud management
system. Message queue connectivity (e.g. for Openstack elements) is enabled via the
connection of the SDN controller to the message queue 200. Via the message queue 200,
the SDN controller 100 can connect to the cloud controller node 201. Furthermore, the
SDN controller 100 may connect to the Neutron plug-in agent on the network node 202.
In comparison with the prior art solution shown in Fig. 9b, it can be seen that all service
plug-ins of a conventional Openstack networking service (i.e. L3 agent, DHCP etc.) are

reintroduced as SDN applications on the SDN controller 100, and do no longer act as a

10

10

15

20

25

30

WO 2016/026516 PCT/EP2014/067641

bottleneck for data traffic. Specifics of the SDN controller 100 and SDN applications

are explained in more detail below.

Fig. 3 shows a basic embodiment of an SDN controller 100 of the present invention as
shown in the figs. 1 and 2. The SDN controller 100 is configured to fully replace a
Neutron server in an Openstack networking service. The SDN controller 100 is provided
at least with a unified data model 300 for all network devices in the network. In the
unified data model 300, all network devices are abstracted, including, for instance, FEs,
FWs and/or LBs. To this end, the unified data model 300 includes at least a root meta-
class 301 defining a plurality of elementary attributes and/or operations 305, which are
shared by all of the network devices. The unified data model 300 further includes a
plurality of device classes 302, 303, 304, each device class representing one class of the
network devices. The root meta-class 301 is inherited by each of the device classes 302,

303, 304.

Fig. 4 shows schematically a unified data model 300 as preferably included in the SDN
controller 100 of fig. 3. The unified data model 300 is preferably cloud enabled and
suitable for Neutron of Openstack. In particular, the unified data model 300 abstracts
shared attributes of all network elements (network devices) including FEs, FWs, and
LBs in the root meta-class 301. Specific attributes of the network elements are abstracted
in the device classes 302, 303, 304. For instance, a FE is abstracted in a first device class
302 with flows 401 and tables 402. Further, a FW is for instance abstracted in a second
device class 303 by a policy 403 and a rule 404. The unified data model 300 is preferably
pluggable, i.e. may be easily extended to further network devices (i.e. without
recompiling the SDN controller based Neutron server), and may model all types of
network devices. In this way, a single control of all network devices by the SDN

controller 100 is enabled, i.e. a control under the same infrastructure.

Fig. 5 shows a unified data model 300, which is a more specific illustration of the unified
data model 300 shown in Fig. 4, and may be used in the SDN controller 100. In
particular, the unified data model 300 includes again the root meta-class 301, which is
valid for all network elements/devices, and defines a plurality of elementary attributes
and an/or operations 305, which are shared by all network devices. The root meta-class
301 is also called network element. The root meta-class 301 may include as the attributes

and/or operations 305, for instance, a primary capability, i.e. the main capability of a

11

10

15

20

25

30

WO 2016/026516 PCT/EP2014/067641

network device, a port for getting network data, a match rule for determining data traffic
at least to be operated on, and an action to be taken on the determined data traffic. The
root meta-class 301 may preferably further include a communication protocol for

understanding the network data, and a control protocol.

For each type of network device, the root meta-class 301 is inherited by a device class
302, 303, 304, respectively, wherein each device class represents a specific network
device type. In each device class 302, 303, 304, the primary capability of the respective
network device type is attributed, and specific data model attributes and/or operations
502, 503, 504 of the respective network device are contained. For example, in Fig. 5 the
third device class 304 represents a LB. The primary capability of the LB is a stateful L7
load balancer. The specific attributes 504 of the LB include a link state and a balancing
algorithm. The second device class 303 represents a FW. The primary capability of the
FW is a stateful firewall. The specific attributes 503 of the FW include a rule, a policy
and a log. The first device class 302 represents a FE. The primary capability of the FE
is programmable frame forwarding. The specific attributes 502 of the FE include a flow

and a table.

Thus, the unified data model 300 in the SDN controller 100 is a single root representation
for all network devices, and is an abstraction of all devices and functions of the network

infrastructure.

The unified data model 300 allows the SDN controller 100 the use of polymorphism,
which enables referencing actions and attributes across different device classes with
abstract operations. For example, the match operation and action operation abstracted in
the root meta-class 301 may reference simultancously network devices across the
plurality of device classes 302, 303, 304, and may thus cause each of the respective

network devices to execute at least its primary capability on the determined data traffic.

For example, in a cloud environment, two of the most fundamental actions are to define
connectivity and security access rules between different virtual machines. On the
abstract level, these two operations overlap. Therefore, as a typical policy, only actions
are allowed from wvirtual machines that have connectivity between another. In
conventional cloud environments, the two actions are modelled differently and
controlled at different places. Synchronizing and coordinating the policy is therefore

typically left to the user.

12

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

30

In contrast, the solution of the present invention allows modelling and controlling the
two actions in the SDN controller. As mentioned above, in the unified data model of the
present invention, a match and an action are abstracted at the root meta-class level. The
match and action can thereby define the above-mentioned policy. For example, it can be
defined as policy that only on data traffic originating from a certain IP address an action
is taken. Then, each relevant network element (FE, FW, etc.) will implement its
associated capabilities on the data traffic. The polymorphism that may thus be used
reduces dramatically the need to integrate new functionalities into the SDN controller,

enables the SDN controller to control all network elements using the unified data model.

Fig. 6 shows an SDN controller 100 according to an embodiment of the present
invention. The SDN controller 100 of fig. 6 may be the SDN controller 100 of Fig. 3
shown in more detail. The SDN controller 100 has an abstraction layer 601, which
unifies and abstracts all aspects of the network infrastructure, including functions such
as FWs and LBs. The abstraction layer 601 includes preferably the unified data model

300 of all network devices.

Existing service plug-ins 606 (e.g. L3 agent, DHCP agent, FWaaS agent etc.) are
preferably running as SDN applications on the SDN controller 100 shown in Fig. 6, and
are registered to the SDN controller 100 via a north-bound interface (NBI) 603. The
SDN controller 100 is preferably also provided with at least one legacy API 604 at the
NBI 603, which is configured to function, for example, as the at least one (Neutron)

plug-in of a conventional Neutron server, and allow the connection to legacy services.

The SDN controller 100 preferably also has south-bound interface (SBI) 607, which is
preferably configured with multiple further plug-ins. The SBI includes preferably at
least one API for registering service plug-ins, preferably SDN service plug-ins.
Furthermore, the SBI contains an API for registering a MQ queue application (as shown
in Fig.2). Furthermore, a driver wrapper 609 for adapting Openstack vendor specific
device plug-ins and/or drivers, which may for instance be used by SDN applications, is
provided on the SBI. Finally, also at the SBI a legacy API 608 is provided for allowing
legacy plug-ins of conventional Neutron servers to plug-in to the SDN controller of the

present invention.

The SDN controller 100 preferably also includes an internal database 602, in which the

SDN controller 100 can store, for instance, information regarding SDN applications and

13

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

30

services running on it. The database 602 may also store application chains, in order to

provide service chaining.

The SDN controller 100 further comprises preferably a core layer 605 containing a
plurality of services including at least one of a topology service, routing service,

chaining service, dispatching service, clustering service and high availability service.

Fig. 7 shows a method 700 for creating the SDN controller 100 of the present invention.
In a first step 701, a unified data model 300 for all network devices is created, preferably
in the abstraction layer 601 of the SDN controller 100. In a second step 702 a root meta-
class 301 containing a plurality of elementary attributes and/or operations 305 shared by
all network devices is included in the unified data model 300. In a third step 703, a
plurality of device classes 302, 303, 304 cach representing one class of the network
devices is included in the unified data model 300. In a fourth step 704, the root meta-

class 301 is inherited by each of the device classes 302, 303, 304.

The present invention may be applied to specific use cases. For example, the present
invention may be applied to a DVR. In current Openstack networking service solutions,
all data traffic, that crosses subnets, must pass through the network node. This makes
the network node an unnecessary bottleneck, because the information it holds could be
much more efficiently distributed. However, a conventional solution distributing the
routing function to the compute nodes would require a compute node to exchange full
routing information or store global routing information. This would put an unnecessary

burden on the compute nodes in conventional solutions.

By using an SDN controller 100 according to an embodiment of the present invention
as a full placement of a Neutron server, the data path may be distributed to the compute
nodes, while the control part is maintained at the SDN controller level. Only required
forwarding information base (FIB) segments may be sent to the compute nodes as
required. Therefore, the network node is no longer a bottleneck, since not all routed data
traffic must pass through it. The compute nodes are also not necessarily burdened, since

they need not maintain routing protocols or large routing databases.

The present invention may also be applied to FW-as-a-Service (FWaaS).
Conventionally, a FW behaviour is tightly coupled to the network behaviour. In

conventional Openstack networking service solutions, the FWaaS is a separate and

14

10

15

20

WO 2016/026516 PCT/EP2014/067641

disconnected service plug-in. A conventional Neutron server has the benefit of a
common management platform for both networking and FWs. However, conventional
SDN has no notion of FW as a controlled element but as an application associated with
forwarding elements, and the FW must either run as a centralized FW, making it a
bottleneck, or may be disconnected from the FW management. With the SDN controller
100 of the present invention, this problem can be solved by merging the two models, i.e.

by merging a Neutron server and an SDN controller 100.

In summary, the present invention presents a full integration of SDN into Openstack
networking service by means of the presented SDN controller 100. This enables
controlling the whole network from a management plane through a control plane to a
data plane. Furthermore, the SDN controller supports control and management of both

switching devices and other network elements such as LBs and/or FWs.

The present invention has been described in conjunction with various embodiments as
examples as well as implementations. However, other variations can be understood and
effected by those persons skilled in the art and practicing the claimed invention, from
the studies of the drawings, this disclosure and the independent claims. In the claims as
well as in the description the word “comprising” does not exclude other elements or
steps and the indefinite article “a” or “an” does not exclude a plurality. A single element
or other unit may fulfil the functions of several entities or items recited in the claims.
The mere fact that certain measures are recited in the mutual different dependent claims
does not indicate that a combination of these measures cannot be used in an

advantageous implementation.

15

WO 2016/026516 PCT/EP2014/067641

10

15

20

25

CLAIMS
Software defined network, SDN, controller (100), comprising
a unified data model (300) for all network devices in a network,

wherein the unified data model (300) includes a root meta-class (301) defining
a plurality of elementary attributes and/or operations (305) shared by all
network devices, and a plurality of device classes (302, 303, 304) each

representing one class of the network devices, and

wherein the root meta-class (301) is inherited by each of the device

classes (302, 303, 304).

SDN controller (100) according to claim 1, which is configured as a network
controller of a cloud management system, preferably of an openstack cloud

management system.

SDN controller (100) according to claim 1 or 2, wherein the unified data
model (300) is contained in an abstraction layer (601) of the SDN
controller (100), and is a unified abstraction of all devices and functions of the

network infrastructure.

SDN controller (100) according to one of the claims 1 to 3, wherein the
clementary attributes and/or operations (305) shared by each network device

include

a primary capability,

a port,

a match rule for determining data traffic that is to be operated on, and
an action to be taken on the determined data traffic.

SDN controller (100) according to claim 4, wherein the elementary attributes

and/or operations (305) shared by each network device also include

a communication protocol, and

16

10

15

20

25

WO 2016/026516 PCT/EP2014/067641

10.

11.

12.

a control protocol.

SDN controller (100) according to claim 4 or 5, wherein in each of the plurality

of device classes (302, 303, 304)
the primary capability of the network device is attributed, and

specific data model attributes and/or operations (502, 503, 504) of the network

device are contained.
SDN controller (100) according to one of the claims 4 to 6, wherein

the match operation and action operation in the root meta-class (301) reference
simultaneously all network devices across the plurality of device classes (302,
303, 304), in order to cause the network devices to execute at least their

primary capability on the determined data traffic.
SDN controller (100) according to one of the claims 1 to 7, wherein

the plurality of network devices comprises at least one of a forwarding element,

FE, a firewall, FW, and a load balancer, LB.
SDN controller (100) according to one of the claims 1 to 8, further comprising

at least one application programming interface (603), API, for registering at

least one SDN application (606).
SDN controller (100) according to one of the claims 1 to 9, further comprising

at least one application programming interface (610), API, for registering

service plug-ins.
SDN controller (100) according to one of the claims 1 to 10, further comprising

at least one application programming interface (611), API, for registering a

message queue, MQ, application.
SDN controller (100) according to one of the claims 1 to 11, further comprising

a driver wrapper (609) for adapting Openstack vendor specific device plug-ins

and/or drivers to be used by SDN applications.
17

WO 2016/026516 PCT/EP2014/067641

10

15

13.

14.

15.

SDN controller (100) according to one of the claims 1 to 12, further comprising

a core layer (605) containing a plurality of services including at least one of a
topology service, routing service, chaining service, dispatching service,

clustering service, and high availability service.

Method (700) for creating a software defined network, SDN, controller (100),

the method comprising

creating (701), in an abstraction layer (601) of the SDN controller (100), a

unified data model (300) for all network devices in a network,

including (702, 703), in the unified data model (300), a root meta-class (301)
containing a plurality of elementary attributes and/or operations (305) shared
by all network devices, and a plurality of device classes (302, 303, 304) each

representing one class of the network devices, and

inheriting the root meta-class (301) to each of the device classes (302, 303,
304).

A computer program comprising a program code for performing, when running

on a computer, the method (700) according to claim 14.

18

PCT/EP2014/067641

WO 2016/026516

ao1nieg Alusp) l
puasoeq Busyoeq) HoEISUSAO
Apuspy uao}
o Aiuep e
weisusdo T T e S e
v Awdepr vy e S e (s1d¥ wiwpe 3 esiaes)
peIsusdo HEISSdD T suoishey e
] A A T a Ruspy
| i i | worjgUado -
; 1eddeim suibnid / 8be0i5 3§o01g aindiwe) yoejguedo awen | ||/ @omieg ebewy | |
PIC N ow || | Tempeuss) weeisusdo ldv aep P ; ,
senup Asebe| 1gs NaS ; emswda | |/ PREISUSO | Eiois pela0 Yorisuedo ,
1as " oo m
! 18fe| uonoensqy ! eiols 8d aa
i | : welfqo | lieurzjuod! |junoooe
EER m
: ‘ awn|oA - E “
VH - : |
Buyoredsi - W,
Buwreyny- | 4NV T /v T o idvuex :
sun Ay ,. |
uRnoY - . j | pelgo
ABojodo] - _dony i ﬁ
WIN{OA-18pUID } -{endwoos-erou}) ; :
1S89IMIBSG 840D !
9 —L '
= v ;
D 2und m_n_< _mz \\\vﬁﬂm H
S Huiwpy ¢ ¢ ; . ‘
Aoebaq 8|0SUOD-EAOU wpy 203 ‘SO) idv eBewy | | - - ;
1de-iepup [oeigusdo T ide-asue|B | 1V swﬁw
. : i | eesu
013 3 i :
e I e o dv Auep 18V 1alao | \
.......... R \ A Hﬁimmo wuguedo ; peisusdo
. spriIguade Aty 1dv 203 orisusdo : \dv ebew; N (S)dLLH
. idy ebrioig soog 58014185 QO N : \:.oﬂwcoao B heT 14V elao
»oeiguedo .. uozewy L m yoeiguado
e X 1dv Bupyosen _ iy S VA MMmﬁmm_
soriguado Y e [i 1 1dv ebew ;
1 Bunpomen OannVONA [T N R E ’ sorisuedo
yoeiguado 1Y MMMMMQMO_m Hﬁ%%%»u:ﬁo pieoqused
N woejguedg (SldiiH ;
]
m 10uIBU|
e S

('uo os pue ‘Juaijo aUoY4} ‘preOqyYSE() SI00} IND »
(‘uo os pue ‘sngessul ‘sjeosiybiy) sjoo) juswabeuep pnojn e
(U0 OS PUE ‘YIMS ‘UOHNBU ‘BAOU) SS0BLIDIUI SUI-PUBLLILLIOYD

SUBSTITUTE SHEET (RULE 26)

WO 2016/026516 PCT/EP2014/067641

2/9
ETC DVR DHCP L3 Agent || &
l SQLdb I ! l I l | I l gen l %
[nova-scheduter | NBI Legacy APIs || §
rd
| keystone | Core Services: a
- Topology c
av [AMQP | > - Routing <
201 - - Chaining >
sl nova-api | - Dispatching z
-HA B
Cloud Controller Node - Clustering o
* - Etc. 3
\ Abstraction layer O
\ SBI
\ SDN sBI Legacy driver a\
\ MQ plugins wrapper / 100
\ rad ~
\ e o
Ve = '
I\ Message Queue e
200 -
5 p
\»
\, /".
(]
Neutron Plugin Agent 9
pd
Extended SDN driver =
abstraction layer g—
@]
O
Driver A Driver B
/ (OF) (FW)
AV
Fig. 2

SUBSTITUTE SHEET (RULE 26)

WO 2016/026516

100

3/9

PCT/EP2014/067641

301

300

305

303 304

302

Fig. 3

PCT/EP2014/067641

WO 2016/026516

4/9

¥ 814

140)%
[40) 7

9INy

10v

SMO|

14013

JaY10 JusaWa|d Suipsemio

/iaduejeq peo

llemauiy

10€

JUsWo|d)}40M]loN

J40MloN

00€

PCT/EP2014/067641

WO 2016/026516

G '3

€0€ —

€05 —

807 -
Maijod -
a|ny -

[|lemadld |njaiels =|jemadld :Ayjigeded Adewld -

0S YO€

llemaung

\ ™~

N\

\

wy3lJogje Supuelegq -
a1e1s YUl -
Jadue|eq peo| /7 |nja1els = Jadueleg peo Alljiqede) Alewlid -

Jaduejeg peoT

5/9

20S [4{0]3
A\

~

N\

\

9|qel -
Mol -

3uipJemio} awel) ajgewwesdold =usawa|g Suipiemio :Alljigede) Auewlid -

juawWa|g Suipsemiod

uonay -
yole -

SO€

|[02030.(|0J43UO0)) -
[02030.(-

1od -

Alljigeded Auewlid -

LW HI0MI3N
,Ssejoelaw’

10€

00€

PCT/EP2014/067641

WO 2016/026516

6/9

609 019 119
809 N\ e s
-~ Nadd 4 7
SIdV me>”ﬂu>> suisnid -
Aoedan >umwm._ 19S NAs
19S
I | [L09
~N
00€ \\v JoAe| uondeaisqy /HO@
o =
guuLisnD .
509 o
uiyoledsig .
Sululeyn . N
sunnoy . NG
N A3ojodo] . - 09
1S9DIAJIDS 340D
| N
09 A savsocsa an | €09
909 | BV ET dJHQ Seemd $J9430

00T

PCT/EP2014/067641

WO 2016/026516

7/9

0L

(074

0L

10L

L 814

*S9SSe|D
921A3P 3Y3 JO Yoea 01 SSejI-e1aW 1004 ay3 Suniayul

"S9IIAJP NJOMIaU
9Y3 JO sse[d auo 3uipuasatdal yoea sasse|d 9dIAap
Jo Ajijean|d e |9pow eiep pailjiun ayl ul suipnjauj

"S9JIA9P dJoMmiau ||e Ag paJeys suoliesado
Jo/pue sainguiie Asejuawals Jo Ayljean|d e Suluieluod
SSe|2-e1awW 1004 B [9pow elep paljiun ayi ul 3uipnpoul

119]|0J1U02 NdS 2Y1 Jo JaAe| uoideJisge ue ui Ul
S9IIADP }JOMIBU || JOJ [pOW eiep paiiun e Suieatd

00

PCT/EP2014/067641

8/9

WO 2016/026516

g b4

IS ooTesr2er T
|V @orlguedo
1™ as0dxg A_\E/ oue
|
| BTN uiBnid youmgAuedo
. wnjueny winjueny LozloH

]
SETIEIT i e LA S80|AI9S BAON e suoishay

SPONJ8|j0U0D

¥2/0'001'891°261
$S800Y 18UIBIU| WA

) | (1

SUBSTITUTE SHEET (RULE 26)

/070404004
siomienN uswabeue

3ejsusdp

¥¢/0°'02°02°001
MIOMIBN JUOD INA

usbe wsby weby dOHAO jusbe
poz;wéoao E:Ew:@ m_ E:Em:@ m wnueny yonmsauado wnuend WA eInduiod eroN

SPONMOMIBN apoNsindwo)

|-

WO 2016/026516

9/9

(Quantum)

(Quantum Controller]

PCT/EP2014/067641

(Nova Network
Quantum AP L ova Networ! }—

i

[NEC Plugin } (

Nova Compute
LibvirtOVSDriver

agent

LMessage Queue
"’

N Open vSwitch)

3N
\. J (Hypervisor)]
_ _ OpenFlow{Contralir API (REST)
ﬂ OpenFlow | OpenFlow
5 (/)/1\\ Controller J Switch

Fig. 9a

..... ”

Software-Defined
Networking Service

quantum-server*

| Plugin [
A

~ rr,
~ ! 7/
A 4 '~ - '/‘/"//',
Al Message Z-
Queue
* May be named neutron-server
Fig. 9b

/

SDN
_ controller

L3-Agent

Fl

Plugin
Agent

DHCP

Agent

—.—--RPC
---------- REST AP

SUBSTITUTE SHEET (RULE 26)

and others

NI

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2014/067641

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44 HO4L12/24
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, IBM-TDB, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20147112190 A1l (CHOU WU [US] ET AL) 1-15
24 April 2014 (2014-04-24)
paragraph [0022]
A US 6 249 291 B1 (POPP NICOLAS [US] ET AL) 1-15
19 June 2001 (2001-06-19)
column 18, line 39 - line 50
A US 2013/262685 Al (SHELTON JAMES H [US] ET 1-15
AL) 3 October 2013 (2013-10-03)
paragraph [0007] - paragraph [0010]
A US 5 493 680 A (DANFORTH SCOTT H [US]) 1-15
20 February 1996 (1996-02-20)
column 14, line 25 - line 42

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 October 2014

Date of mailing of the international search report

29/10/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Suciu, Radu

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2014/067641
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2014112190 Al 24-04-2014 US 2014112190 Al 24-04-2014
WO 2014063605 Al 01-05-2014
US 6249291 Bl 19-06-2001 US 6249291 B1 19-06-2001
US 2002007376 Al 17-01-2002
US 2006184887 Al 17-08-2006
US 2007113192 Al 17-05-2007
US 2007113193 Al 17-05-2007
US 2007192709 Al 16-08-2007
US 2013262685 Al 03-10-2013 (N 103460184 A 18-12-2013
EP 2625601 Al 14-08-2013
US 2013262685 Al 03-10-2013
WO 2012047756 Al 12-04-2012
US 5493680 A 20-02-1996 JP HO6103075 A 15-04-1994
US 5493680 A 20-02-1996

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report

