(54) 发明名称
一种基于网络模型的电力系统连锁故障实时预警方法

(57) 摘要
本发明公开了一种基于网络模型的电力系统连锁故障实时预警方法，包括电网静态潮流计算、网络抽象、提取分析静态模型、建立动态模型、计算动态模型的统计指标、实时在线预警步骤。本发明基于复杂网络理论，着重描述电网连通性变化，并对连锁停电故障进行预警，与其他方法不同，能够在线并且实时对连锁故障进行预警。
1. 一种基于网络模体的电力系统连锁故障实时预警方法，其特征在于：包括以下步骤：
步骤1：电网静态潮流计算；对电网进行静态潮流分析，获得电网的潮流计算数据；
步骤2：网络抽象：利用电网的潮流计算数据将电网抽象成一个有向无权网络G=(V,E)；V表示电网中的母线集合，V中的元素vi表示电网的各母线，E表示电网中线路集合，E中的元素ei代表电网中的各线路，元素xi包括1条以上电力系统的并联线路；
步骤3：提取分析静态模体：逐一提取所述有向无权网中的各静态模体，所述静态模体为所述有向无权网中的一个子图；逐一计算各静态模体的统计特征Zi:

\[Z_i = \frac{N_{\text{real},i} - <N_{\text{rand},i}>}{\sigma_{\text{rand},i}} \] \tag{1}

其中，N_{\text{real},i}和N_{\text{rand},i}分别为模体M_{i}在真实网络和随机网络中出现的次数记，<N_{\text{rand},i}>和\sigma_{\text{rand},i}分别为N_{\text{rand},i}的平均值和标准差；
步骤4：确定动态模体：将有向无权网中节点超过预设阈值的线路视为功能上的断开，得到修正后的有向无权网；动态模体在修正后的有向无权网中提取，动态模体中邻接矩阵A中元素a_{i,j}为：

\[a_{i,j} = \begin{cases} 1, & \text{if } 0 < \text{Flow}_{i,j} / F_{\text{max},i,j} < 0.8 \\ 0, & \text{else} \end{cases} \] \tag{2}

Flow_{i,j}表示从节点i流向其相邻节点j的有功功率，F_{\text{max},i,j}表示节点i和相邻节点j之间线路的传输容量极限；
步骤5：计算动态模体的统计指标；
步骤6：实时在线预警：当电网运行状态发生变化时，根据各动态模体的统计值变化，分析电网连通性的变化，对连锁故障进行早期预警。

2. 根据权利要求1所述的基于网络模体的电力系统连锁故障实时预警方法，其特征在于：所述静态模体满足：

a. 所述静态模体对应的子图在所述有向无权网络中出现的次数大于其在对应的随机网络中出现次数N_{\text{rand}}的概率小于预设的阈值P；所述随机网络与所述有向无权网络具有相同节点数以及出度入度，其边随机确定；

b. 所述静态模体对应的子图在真实网络中出现的次数N_{\text{real}}不小于预设下限U且N_{\text{real}} > 1.1 \times N_{\text{rand}}。

3. 根据权利要求1所述的基于网络模体的电力系统连锁故障实时预警方法，其特征在于：

所述动态模体满足：

a. 所述动态模体对应的子图在修正后的有向无权网中出现的次数大于其在与修正后的有向无权网对应的随机网络中出现次数N_{\text{rand}}的概率小于预设的阈值P；所述与修正后的有向无权网对应的随机网络和修正后的有向无权网具有相同节点数以及出度入度，其边随机确定；

b. 所述动态模体对应的子图在真实网络中出现的次数N_{\text{real}}不小于预设下限U且N_{\text{real}} > 1.1 \times N_{\text{rand}}。
一种基于网络模体的电力系统连锁故障实时预警方法

技术领域

[0001] 本发明涉及一种电力系统连锁故障实时预警方法，尤其是一种基于网络模体的电力系统连锁故障实时预警方法，属于电力系统故障保护技术领域。

背景技术

[0002] 自2003年的美加大停电以来，国内外又发生了多起较大规模的停电事故。这些事故大多是在互联电网内发生的，其显著特点是单一故障引发多重故障，最终导致大面积停电甚至全网崩溃。造成大面积停电的原因已不再是单一的过负荷、电压稳定性或暂态稳定性破坏，而是在故障持续过程中电网内部发生大范围负荷转移，发、输变电设备相继跳闸，局部电网电压稳定性或暂态稳定性破坏，电网解列，频率异常升高或降低等现象相互交织，呈现连锁反应的演化过程。因此，为保证电网安全可靠运行，开展电网连锁故障预警研究迫在眉睫。

[0003] 基于还原论研究电力系统连锁故障的方法，一般是借助计算机仿真技术，通过求解各元件的数学模型来解析电网故障，这类方法或因模型过于简化而不能反映电网由小故障引发连锁故障的动态过程，或因过于繁琐而陷入维数灾，难以揭示电网由小故障引发连锁故障的动态过程中电力系统整体行为。

[0004] 尽管网络的形态复杂多变，但是构成网络的方式和过程却有一定的规律。近年来的研究表明，网络中各种关系，即节点间的连接方式出现的频率并不完全随机的，有一些连接方式反复出现。甚至在现实世界网络中，这些典型连接方式出现的次数要远远高于随机网络中出现的次数。这种出现频率相对高的连通子图被称为网络模体。如图1所示，真实网络中与模体同构的子图出现的次数为5次。而在图2中随机网络中与模体同构的子图个数远远超过这个数目，以上是对上述网络模体定义的直观描述。

[0005] 模体一般由少数几个节点连接构成。在现实中，三个节点和四个节点构成的模体较为常见，在有向网络中，三个节点之间可以形成13种不同的连通关系如图2所示。四个节点之间可以形成199种不同的连通关系。

发明内容

[0006] 本发明要解决的技术问题是提供一种基于网络模体的电力系统连锁故障实时预警方法。

[0007] 本发明采用下述技术方案：

[0008] 一种基于网络模体的电力系统连锁故障实时预警方法，包括以下步骤：

[0009] 步骤1：电网状态潮流计算：对电网进行状态潮流分析，获得电网的状态潮流数据。

[0010] 步骤2：网络抽象：利用电网的潮流计算数据将电网抽象成一个有向无权网络G＝(V,E)；V表示电网中母线集合，V中元素v；表示电网的各母线，E表示电网中线路集合，E中的元素e表示电网中的各线路，元素e包括1条以上电力系统中的并联线路；
步骤3：提取分析静态模体；逐一提取所述有向无权网中的各静态模体，所述静态模体为所述有向无权网中的一个子图，逐一计算各静态模体的统计特征Z_i：

$$Z_i = \frac{N_{real,i} - \langle N_{rand,i} \rangle}{\sigma_{rand,i}}$$ \hspace{1cm} (3)$$

其中，$N_{real,i}$和$N_{rand,i}$分别为模体M_i在真实网络和随机网络中出现的次数记，$\langle N_{rand,i}\rangle$和$\sigma_{rand,i}$分别为$N_{rand,i}$的平均值和标准差；

步骤4：确立动态模体：将有向无权网负载率超过预设阈值的线路视为功能上的断开，得到修正后的有向无权网；动态模体在修正后的有向无权网中提取，动态模体中邻接矩阵A中元素$a_{i,j}$为：

$$a_{i,j} = \begin{cases} 0, & \text{if } 0 < \frac{Flow_{i,j}}{F_{max_{i,j}}} < 0.8 \\ 1, & \text{else} \end{cases}$$ \hspace{1cm} (4)$$

$Flow_{i,j}$表示从节点i流向其相邻节点j的有功功率，$F_{max_{i,j}}$表示节点i和相邻节点j之间线路的传输容量极限；

步骤5：计算动态模体的统计指标；

步骤6：实时在线预警：当电网运行状态发生变化时，根据各动态模体的统计值变化，分析电网连通性的变化，对连锁故障进行早期预警。

所述静态模体满足：

a. 所述静态模体对应的子图在所述有向无权网络中出现的次数大于其在对应的随机网络中出现次数N_{rand}的概率小于预设的阈值P；所述随机网络与所述有向无权网络具有相同节点数以及出度入度，其边随机确定；

b. 所述静态模体对应的子图在真实网络中出现的次数N_{real}不小于预设下限U且$N_{real} > 1.1 \cdot N_{rand}$。

所述动态模体满足：

a. 所述动态模体对应的子图在修正后的有向无权网中出现的次数大于其在与修正后的有向无权网对应的随机网络中出现次数N_{rand}的概率小于预设的阈值P；所述与修正后的有向无权网对应的随机网络和修正后的有向无权网具有相同节点数以及出度入度，其边随机确定；

b. 所述动态模体对应的子图在真实网络中出现的次数N_{real}不小于预设下限U且$N_{real} > 1.1 \cdot N_{rand}$。

采用上述技术方案所产生的有益效果在于：

本发明基于复杂网络理论，着重描述电网连通性变化，并对连锁停电故障进行预警，与其他方法不同，能够在线并且实时对连锁故障进行预警。

附图说明

图1是本发明中真实网络中模体的示意图；
图2是本发明中随机网络中模体的示意图；
图3是本发明中随机网络中三节点模体的示意图；
图4是本发明的流程图；
图5是本发明的验证仿真流程图；
具体实施方式

[0034] 下面结合附图和具体实施方式对本发明作进一步详细的说明。

[0035] 本发明提出一种基于网络模型的电力系统部分故障实时预警方法，首先利用电网潮流计算数据将电网抽象成一个有向无权网络，然后针对该有向无权网络进行静态网络分析，得到描述电网局部结构特征的“基元”；其次，基于连通过负荷这一故障传播模式，定义了电网的动态模体，通过分析电网运行状态变化，变化时电网动态模体统计值的变化，分析电网连通性的变化，对连通故障进行短期预警。

[0036] 如图4所示，一种基于网络模型的电力系统连通故障实时预警方法，包括以下步骤：

[0037] 步骤1：电网静态潮流计算；对电网进行静态潮流分析，获得电网的潮流计算数据；

[0038] 步骤2：网络抽象；利用电网的潮流计算数据将电网抽象成一个有向无权网络G＝(V,E)；V表示电网中母线集合，V中的元素νi表示电网的各母线，E表示电网中线路集合，E中的元素e表示电网中的各线路，元素e表示1条以上电力系统中的并联线路；

[0039] 步骤3：提取分析静态模体；逐一提取所述有向无权网中的各静态模体，所述静态模体为所述有向无权网中的一个子图；逐计算各静态模体的统计特征Zi；

\[Z_i = \frac{N_{real,i} - \langle N_{rand,i} \rangle}{\sigma_{rand,i}} \] (5)

[0040] 其中，N_{real,i}和N_{rand,i}分别为电网在真实网络和随机网络中出现的次数，\langle N_{rand,i} \rangle和\sigma_{rand,i}分别为N_{rand,i}的平均值和标准差；

[0041] 步骤4：确立动态模体；将有向无权网负载率超过预设阈值的线路视为功能上的断开，得到修正后的有向无权网；动态模体在修正后的有向无权网中提取，动态模体中邻接矩阵A中元素a_{ij}为：

\[a_{ij} = \begin{cases} 1, & \text{if } 0 < \text{Flow}_{i,j} / F_{max_{i,j}} < 0.8 \\ 0, & \text{else} \end{cases} \] (6)

[0042] Flow_{i,j}表示从节点i流向其相邻节点j的有功功率，F_{max_{i,j}}表示节点i和相邻节点j之间线路的传输容量极限；

[0043] 步骤5：计算动态模体的统计指标；

[0044] 步骤6：实时在线预警；当电网运行状态变化时，根据各静态模体的统计值变化，分析电网连通性的变化，对连通故障进行早期预警。

[0045] 所述静态模体满足：

[0046] a.所述静态模体对应的子图在所述有向无权网络中出现的次数大于其在对应的随机网络中出现次数N_{rand}的概率小于预设的阈值P；所述随机网络与所述有向无权网络具有相同节点数以及出度入度，其边随机确定；

[0047] b.所述静态模体对应的子图在真实网络中出现的次数N_{real}不小于预设下限U且

\[N_{real} \geq 1.1 \cdot N_{rand} \]
所述动态模体满足:

a. 所述动态模体对应的子图在修正后的有向无权网中出现的次数大于其在与修正后的有向无权网对应的随机网络中出现次数N_{rand}的概率小于预设的阈值P;所述与修正后的有向无权网对应的随机网络和修正后的有向无权网具有相同节点数以及出度入度, 其边随机确定。

b. 所述动态模体对应的子图在真实网络中出现的次数N_{real}不小于预设下限U且N_{real} > 1.1 \cdot N_{rand}。

实际运行时, 元件负载率的变化受多个因素影响, 难以一一列举。因此, 本发明采用常用的连锁故障仿真方法, 在OPA模型的基础上进行一定的简化, 不考虑系统改造建设, 如线路改接和发电机扩容等。这一过程, 通过负荷的持续增加来模拟系统运行压力的持续增加, 系统传输裕度的不断下降。在不同的系统运行压力下, 使仿真线路随机故障, 获得不同运行状态下系统的潮流数据及停电数据。根据潮流数据, 计算电网内网络模体的统计值Z_i。利用动态网络模体指标的变化, 描述演化过程中电网连通性变化, 以此对连锁故障进行预警。

本模型中的负荷波峰幅度采取当前循环平均负荷之上分区间波峰的方式, 即所有负荷节点按其所处位置不同划分为N_r个区域, 处于同一区域的负荷变化幅度相同, 不同区域负荷变化幅度不同。具体表达式如下所示:

\[P_r = P_{r-1} \cdot \mu \]
\[P_r = P_{r-1} \cdot r \]

式(3)中, \(\mu \) 为相邻循环中平均负荷的增加倍数, 其值由年负荷增长率确定; 此增长率可根据分析的目标电网的负荷增长率情况设定; \(P_r \) 和 \(P_{r-1} \) 分别为第r次和第r-1次循环的平均负荷, \(P_i \) 为节点i在第r次循环的负荷。随机因子r在区间[1/r, r]基础上变化, 对于给定的r, 所引入的负荷波动系数为(r-1)/2\sqrt{N_a}。

为观察电网的微观特性, 本发明对IEEE-30/57/118/300以及某区域电网中20条母线分别进行潮流计算后, 基于公式(1), 采用软件matfinder, 计算寻找了上述电网的3节点子图和4节点子图, 结果如表1所示。

电网设计的基本原则是满足一定的安全可靠性, 近、远景发展的经济合理性的要求。可靠性主要包括满足向用户安全用电的要求, 防止发生灾难性的大面积停电; 从可靠性角度分, 电网接线基本上可分为无备用网络和有备用网络两大类。根据表1可以发现, 三节点子图: ID36、ID38属于电网接线中的无备用接线, 通过两条回路向节点供电。子图ID36的Z_i值为负表明该连接模式在电网中出现的频率小于其在随机生成的网络中出现的频率, 无法作为该电网的典型连接模式。观察表1中的四节点网络子图, 可以发现子图: 除ID904之外, ID92、ID344、ID392、ID394、ID408、ID2186均以ID38为原型, 并在其基础上增加一条边。在此提出网络模体的结构独立性概念, 即一个网络模体包含的子网络模体越少, 结构就越独立。原因: 某个网络中含有两个网络模体M_a和M_b, M_a包含一个网络模体, 那么M_a成为网络模体, 或者说M_a在网络中大量出现, 可能是因为它所包含的子网络模体的大量存在。所以M_a自身的重要性就会受到影响。而M_b完全由于自身结构的大量出现而成为网络模体, 所以相对于M_a, M_b更重要。如果一个网络模体是因为它的子网络模体而大量存在
时，那么它在网络中的重要性一定会小于它的子网络模体的重要性。因此，由于模体ID38为四节点模体ID92、204、344、392、394、408、2184、2186的子图，因此ID38的重要性远高于这些四节点网络模体。

【0060】因此，网络模体ID38和ID904属于电网中较为典型的“两端供电”模式，是电网的主要构成单元，同时符合提高电网供电可靠性的设计原则。因此，这两个网络模体在局部反映电网的功能特质。而当这两种“两端供电”的网络模体无法发生设计功能时，会产生由于局部故障而导致电能无法从其他路径送达终端负荷节点的问题，进而产生大大小小不同规模的停电故障。

【0061】本实施例以IEEE-30节点为例，采用图5的仿真模型，进行了10000次仿真。IEEE-30节点系统共有6台发电机、30个节点和41条线路。仿真模型主要参数如表2所示。

【0062】观察图6可以发现，停电负荷损失百分比从355次循环开始逐渐增大，图7中的Z_{i38} = 1.36出现的频率从2258次循环开始逐渐增大，表明此时该电网中“两端供电”回路越来越小，局部可靠性开始变差，扰动对其造成的影响越来越大。网络模体ID38指标在系统发生较为严重的连锁故障前出现了显著的变化，对连锁故障有较好的预警作用。

【0063】表1
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2

<table>
<thead>
<tr>
<th>P_e</th>
<th>P_i</th>
<th>负荷增长率 g</th>
<th>负荷波动 y_i</th>
<th>重载线路阈值</th>
<th>初始负荷</th>
<th>装机容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.25</td>
<td>1.00006</td>
<td>1.20</td>
<td>0.9</td>
<td>189.2mW</td>
<td>3.35MW</td>
</tr>
</tbody>
</table>
图3

图4