This invention relates to ornamental and decorative devices and more particularly is directed to artificial simulated Christmas tree constructions.

Among the objects of the invention is to improve artificial simulated Christmas tree constructions of the character described which shall be particularly adaptable for packaging and shipping in a knockdown condition yet requiring a minimum of skill and time for assembly into an attractive ornamental tree, which shall provide for hingedly mounting on the tree trunk any one of a variety of known branch structures and for selectively positioning each of such branch structures individually at a desired angle with respect to the vertical axis of the trunk to shape the tree in a variety of contours and configurations which shall provide means for readily changing any of said angles, which hinged mounting shall permit quick snap-in attachment and detachment and also the versatility of pivoting of the branches to a collapsed position whereby the branches are disposed substantially lengthwise along the axis of the trunk, which trunk and branch attachment means can be manufactured by quantity production methods in a variety of colors from plastic resinous material to be relatively light in weight yet rugged in construction to withstand breakage in periodic assembly and dismantling, which tree can be erected to a wide range of desired heights by duplicating trunk segments and branch holding elements, which versatility of assembly provides creative interest in both children and adults, and which shall be efficient and practical to a high degree in use.

Other objects of the invention will in part be obvious and in part hereinafter pointed out.

The invention accordingly consists of features of construction, combinations of elements and arrangements of parts which will be exemplified in the constructions hereinafter disclosed, the scope of the application of which will be indicated in the claims following.

In the accompanying drawings in which various embodiments of the invention are shown:

FIG. 1 is a fragmentary elevational view of a Christmas tree construction embodying the invention with parts broken away and in section.

FIG. 2 is an enlarged fragmentary vertical section taken along line 2—2 in FIG. 1, a branch holder being shown in broken lines in a position to illustrate a manner of attachment.

FIG. 3 is an enlarged sectional view taken on line 3—3 in FIG. 1.

FIG. 4 is an exploded view in perspective of a collar, branch holder and shim comprising an adjustable, snap-in hinge construction for the tree trunk embodying the invention.

FIG. 5 is a fragmentary vertical section taken similar to FIG. 2 but showing the tree trunk turned upside down with the branches and branch holders pivoted to a collapsed position.

FIG. 6 is a fragmentary vertical section taken similar to FIG. 2 but showing the elements of FIG. 4 in assembly, the shim being in position to decrease the angular disposition of the branch with respect to the vertical trunk.

FIG. 7 is an enlarged fragmentary perspective view of a collar, branch holder and shim showing a modified form of adjustable and invertible snap-in hinge.

FIGS. 7a and 7b are fragmentary vertical sectional views of a tree trunk incorporating the modified form of collar and branch holder shown in FIG. 7. FIG. 7a showing the branch holder assembled in a position corresponding to FIG. 7 for providing a relatively larger angle with respect to the trunk in comparison to a relatively smaller angle shown in FIG. 7b wherein the branch holder is inverted.

FIG. 8 is an enlarged fragmentary perspective view of another modified form of snap-in hinge constructed to embody the invention showing a branch holder element of the hinge in a spring position in the process of assembly.

FIG. 9 is a fragmentary elevational view of the snap-in hinge shown in FIG. 8 with the parts in full engagement.

FIG. 10 is a section taken on line 10—10 in FIG. 9 showing details of the hinge construction.

FIG. 11 is a perspective view of a modified form of tubular body for forming a tree trunk embodying the invention having hinge elements integrally formed with the body.

FIG. 12 is an enlarged fragmentary exploded view in perspective of a collar and branch holder showing still another modified form of snap-in hinge constructed to embody the invention, the branch holder hinge element having an invertible mounting feature coacting with the tree trunk hinge element for selecting alternative angular dispositions of the branch with respect to the axis of the trunk.

FIG. 13 is a fragmentary vertical section of a tree trunk constructed in accordance with the modified form of snap-in hinge shown in FIG. 12 showing the manner of engaging the parts.

FIGS. 14 and 15 are fragmentary vertical sections of a tree trunk constructed in accordance with the modified form of snap-in hinge shown in FIGS. 12 and 13, FIG. 14 showing the holder mounted in one position to dispose the branch at a relatively large angle with the vertical, FIG. 15 showing the holder in an inverted alternate position disposing the branch at a relatively small angle with the vertical.

FIG. 16 is a fragmentary vertical section showing a variation in the modified snap-in hinge of FIGS. 12 to 15, inclusive.

FIG. 17 is a perspective view of a branch holder incorporating the invertibility feature as a variation of the branch holder shown in FIG. 14.

FIG. 18 is a fragmentary elevational view of a section of modified tree trunk shown in FIG. 11 mounting the branch holder shown in FIG. 17 in its two alternative positions.

FIG. 18a is a fragmentary vertical section showing another modification of an invertible snap-in hinge, and

FIG. 19 is a side elevational view of another modified form of branch holder with parts broken away to show the selective seating means for tree branches.

Referring in detail to the drawings, 20a denotes an artificial Christmas tree constructed to embody the invention comprising a base 20b supporting a vertical trunk 20h having branches 21 extending therefrom in a radial and upward direction.

Branches 21 may be of any conventional construction but each, as shown in FIG. 5, formed generally with a leafless medial or trunk attaching end 21a which may be an extension of an axial core 21b carrying simulated leaves 21c.

Trunk 20h is preferably formed as a segmented structure, each segment, as is clear from FIG. 2, comprising a tubular body 22, a collar 23 and a plurality of branch holders 24. Tubular body 22 may have an upper end section 22a of smaller cross-sectional area in relation to a lower section 22b of larger cross-sectional area and a shoulder 22c therebetween. All bodies 22 may be iden-
tical with upper end section 22c of each body forming an inner sleeve member and lower end section 22d an outer member of a telescoping interfitting connection between adjoining segments. Interposed between shoulder 22c and the free bottom end 22d of an adjoining segment, collar 23 is sized to fit around upper section 22a and seat on shoulder 22c.

One of the features of the invention is the provision on each segment of a quick detachable snap-in hinged mounting means for branches 21 incorporating adjustability of the angle of the axis of the branches with respect to the vertical axis of the trunk. To this end each collar 23, as seen in FIGS. 2, 3 and 4, is formed with a plurality of radially extending anchor plates 23a each having a pair of aligned pivot pins 23b extending from opposite sides thereof, pins 23b forming the male element of a snap-in hinged mounting means for branch holders 24. The latter are each seen to have one end bifurcated to form a pair of bearing plates 24a each with a bearing opening 24b into which pivot pins 23b may be removably snapped through slits 24c communicating bearing openings 24b with the lower edges 24d of plates 24a, bearing openings 24b and slits 24c forming the female element of the snap-in hinged mounting means. Each slit 24c may be formed to taper inwardly from a relatively wide mouth adjacent plate lower edge 24d to a constricted end at bearing opening 24b to function with pin 23b.

As is clear from the drawings, each bearing plate 24a may be formed with a narrowed end 24e extending beyond bearing openings 24b for engaging collar 23 to dispose branch holders 24 and branches 21 at predetermined angles with respect to the vertical axis of trunk 20b. The upper edges of bearing plates 24a may be formed with beveled intermediate portions 24f extending toward narrowed ends 24e. The ends of branch holders 24 opposite bearing plates 24a are formed with axial bores forming seats 24g for frictional engagement therein of leafless ends 21a of branches 21.

Adjustability of the angle between branches 21 and the vertical axis of trunk 20b may be readily accomplished by inserting a shim 25 of suitable thickness between collar 23 and branch holder 24. As seen in FIG. 6, branch holder 24 may be rotated in a counter clockwise direction on pivot pins 23b from a normal position shown in FIG. 2 to a raised position shown in FIG. 6 and shim 25 inserted between collar 23 and the narrowed ends 24e. In a preferred form of the invention herein shown, shim 25 is fashioned as a U-shaped structure having parallel arms 25a inter-connected at the upper ends by cross-pieces 25b. Shim 25 is sized to have cross-piece 25b seat on the upper edge of anchor plate 23a with arms 25a extending downwardly along the opposite sides thereof. If desired, the bottom edge of collar 23 may be formed with a beveled surface 25c against which narrowed ends 24e abut when branches 21 are disposed at a normal predetermined angle and into which toes 25c, projecting from the free ends of arms 25a, extend to serve as a retaining means against accidental dislodging caused by the upward pressure component exerted by the branch holder 24.

It is to be understood that collar 23 may be made as a solid ring of substantially uniform cross-section so that the free bottom end 22d of tubular body 22 when in assembly as trunk 20b will lie in abutment thereagainst (not shown). A preferred form of collar 23 is shown in FIGS. 2, 3 and 4 to be L-shaped in cross-section providing an inter-connected horizontal flange 33a and a vertical flange 33b, the latter, when collar 23 is positioned on shoulder 22c, cooperating with upper end section 22a to provide a groove for receiving free bottom end 22d of the adjacent tubular body 22. Any suitable number of anchor plates 23a may be provided on collar 23, and such plates may be arranged in any desired spacing. For most purposes 4, 5 or 6 anchor plates symmetrically spaced around collar 23 will prove satisfactory.

For topping tree 20 any suitable finial may be provided as for example, cap 26 shown in FIG. 1 as fitting over upper end 22a of the uppermost tubular body 22 and having a well 26a formed in the top wall thereof for reception of the collar 23. One or more wells 26a may be provided as desired.

The utility and operation of the invention will now be apparent. Christmas tree 20 may be packed for shipping in a carton in a knock-down condition, that is, preferably with the tubular bodies 22, collars 23, branch holders 24 and shims 25 separated from one another, ready to resist and prevent breakage but, if desired, each branch leafless end 21a may be pre-inserted in seat 24g of a branch holder 24 to be ready for attachment to the tree trunk.

Assembly of Christmas tree 20 is readily accomplished by first inserting the lower section 22b of one of the tubular bodies 22 into an opening or groove 24c formed in base 20a, a second, third or more tubular bodies 22 may then be telescoped, respectively, onto the upper ends 22a of the preceding bodies to form a lower branchless trunk section. At a desired level above base 20a the first collar 23 may be positioned on upper end 22a to rest on shoulder 22c and then a branch holder 24 carrying branch 21 snapped-in to hinged position on each of the male elements provided about collar 23. This may be readily accomplished by bringing branch holder 24 down from above anchor plate 23a with bearing plates 24a in straddling alignment on anchor plate 23a between collar 23 and pivot pins 23b so that slits 24c are brought in register with pivot pins 23b as shown in broken lines in FIG. 2. Slight pressure of branch holder 24 against pins 23b will cause the latter to snap into bearing openings 24b. The weight of branch 21 will cause holder 24 to rotate clockwise as seen in FIG. 2 until mating of entire contact collar 23. After all the branches are mounted on the lowermost collar or segment the next segment is added until tree 20 is erected to a desired or predetermined height.

The top of tree 20 may then be completed by adding a tubular body 22 fitted with cap 26 and mounting leafless branch end 21a in well 26a.

After assembly in the above described manner, tree 20 may be shaped by rotating the various collars 23 with respect to each other to either vertically align or stagger branches 21. The angular disposition of branches 21 with respect to trunk 20b may then be adjusted by inserting shims 25 to straddle anchor plates 23a between collars 23 and branch holder narrowed ends 24e in the manner hereinbefore described. Shims 25 of different thicknesses may be furnished to provide a wider range of angles thereby increasing the variety of shapes and configurations into which tree 20 can be fashioned.

Modifications embodying the invention may provide for and utilize an invertibility feature of the branch holder as a means for selectively controlling the angular disposition of branches 21 with respect to tree trunk 20b. FIGS. 7, 7a and 7b illustrate a modified form of snap-in hinged mounting means in which the female hinge element is integrally formed with the collar and the male element is formed on the branch holder. This arrangement illustrates the utilization of the invertibility feature to render two alternative angular positions for the branches and can be combined with a shim to provide two addition positions.

Thus, each hinge element of modified collar 33 is seen in FIG. 7 to comprise a pair of spaced bearing plates 33a each with a bearing opening 33b communicating through slits 33c with the upper edges 33d thereof. Complementary branch holder 34 is formed with a single anchor plate 34a having a pair of aligned pivot pins 34b extending from opposite sides thereof for snap-in engagement with bearing openings 33b. Anchor plate 34a has a narrow slot 34c with respect to a longitudinal axis x-x extending through pivot pin 34b. As shown, one edge 34d of anchor plate 34a may be stepped or beveled medially to provide narrowed
end 34c with one edge 34e that is closer to said axis x—x than opposite straight edge 34f.

As is clear from FIG. 7c when pins 34b are snapped into engagement in bearing openings 33b so that narrowed end edge 34e faces upwardly contacting beveled surface 33e of collar 33 branch holder 34 is disposed at a relative angular adjustment and will function in the same manner as hereinbefore described in reference to collar 23, holder 24 and shim 25. Shim 35 may be T-shaped to have a top cross-piece 35a for seating on bearing plates upper edges 33d and a vertical center leg 35c sized to snugly fit between bearing plates 33a, and, if desired, a toe 35e for engaging bevel surface 33e.

FIG. 11 shows a modified form of tubular body 32 which is generally similar to tubular body 22 but has integral anchor plates 32e each supporting a pair of aligned pivot pins 32f similar to anchor plates 22a and pins 23b of FIG. 13. A tree trunk embodying the invention is preferably formed by assembling tubular bodies 32—30 of their larger cross-sectional ends 32b as upper sections and their smaller cross-sectional ends 32a as lower sections telescoping into the upper ends 32b of adjacent bodies 32 with shoulders 32c of each seating on the free top ends 32b of the body 323 beneath. As is clear from FIG. 11, anchor plates 32e may be located adjacent the upper end sections 32b of each body 32.

FIGS. 8, 9 and 10 illustrate another modified form of snap-in hinged mounting means in which the female element may be integrally formed with a portion of the trunk, such as a collar (not shown) as in FIG. 11. A tubular body as bearing blocks 42e formed with a bearing opening 42f extending horizontally and spaced from section 42t. A branch holder 44 carries the male element provided as a pair of spaced resilient anchor plates 44a each having a pivot pin 44b extending inwardly toward the free top ends 44s of the body 44t beneath. Anchors of anchor plates 44a extending beyond pins 44b terminate in a pair of beveled edges 44c and 44d forming an asymmetrical taper, that is, being disposed at different angles with respect to a longitudinal axis y—y passing through pins 44b. To aid snap-in engagement of the male and female elements, bearing blocks may each have the free edge beveled to provide opposite tapering cam surfaces 42f which serve to spread resilient anchor plates 44a when pins 44b are moved therealong for insertion into bearing opening 42f as shown in FIG. 8. As is clear from FIG. 9, one of the beveled edges 44e contacts, tubular body end section 42b to dispose the branch holder 44 and its supported branch at a predetermined angle with respect to the vertical. In the manner hereinbefore described in reference to branch holder 34, holder 44 may be inverted on bearing block 42e so that the other beveled edge 44d will contact tubular body end section 42b and dispose branch holder 44 at a different predetermined angle with respect to the vertical. It will also be apparent that a suitable shim may be interposed between beveled edges 42c or 44c and tubular body end section 42b in the same manner as hereinbefore described.

FIG. 12 to 15, inclusive, illustrate a modified form of snap-in hinged mounting means in which the branch holder is also reversible to selectively provide two alternative predetermined angles for branches 21. In this modification, the female element of the hinged mounting means is supported by the tree trunk either by direct attachment to the tubular body, or, as shown, may be integrally formed on a collar 53 and may comprise a radially extending bearing plate 53a having an enlarged free end 53e through which bearing opening 53b extends adjacent the upper edge 53d with a communicating slits 53c therebetween. Branch holders 54 may each be formed with a bifurcated end portion having a pair of parallel walls 54a separated by a slot sized to receive bearing plate 53a therein. A pivot pin 54b may be formed to extend between walls 54a and is located adjacent the inner end 54c of the slot. A transverse end wall 54d extends between walls 54a and is eccentrically arranged off center with respect to pivot pin 54b to provide inner and outer edges 54e and 54f, respectively, serving as angle limiting means. The opposite ends of branch holder 54 are also formed with axial bores 54g for frictional engagement therein of leafless ends 21a of branches 21.

As will be clear from FIG. 13, branch holder 54 is readily mounted in either of the two positions shown in FIGS. 14 and 15 by holding branch holder in a relatively upright position to bring bearing plate 53a into the slot between walls 54a so that downward pressure will snap pivot pin 54b into bearing opening 53b and by tilting the branch away from the trunk inner edge 54c of end wall 54d will abut bottom edge 54f of bearing plate 53a to dispose branch holder 54 and branch 21 at a predetermined angle. Reversal, that is, inversion of branch holder 54 will bring outer edge 54e of end wall 54d into abutment with bottom edge 54f to provide a more acute angle for branch 21.

FIG. 16 shows a variation of the form embodying the invention illustrated in FIGS. 12 to 15, inclusive, in which a modified bearing plate 63a is utilized in place of plate 53a. Plate 63a may be provided with a pair of bearing openings 63b and 63' spaced from each other and having communicating slits 63c and 63c', respectively, in an enlarged end 63e. Branch holder 54 may be mounted in either of the two invertible positions in bearing opening 63b to dispose branch 21 at similar angles in a manner similar to that hereinbefore described in reference to openings 53b or in two additional positions by openings 63b'. When mounted in opening 63b', transverse end wall 54d will register in notch 63g formed in bottom edge 63f so that in one position outer edge 54f will abut the edge of the notch 63g to dispose holder 54 and branch 21 at a third angle and upon inversion inner edge 54f will abut notch 63g providing a fourth angle of disposition.

FIGS. 17 and 18 illustrate a variation in branch holder 24 incorporating the inverting feature of holders 34, 44 and 54. Branch holder 64 is shown in FIG. 17 to comprise a bifurcated end having a pair of bearing plates 64a each formed with a pair of bearing openings 64b and 64c, bearing openings 64d and 64e having slits 64c communicating with edges 64d, openings 64e having slits 64f communicating with opposite edges 64g of plates 64a. For the purpose of illustrating the operation of branch holder 64, FIG. 18 shows the latter mounted on two adjoining trunk segments formed of tubular bodies 33. The upper branch holder 64 is shown with openings 64e engaging pivot pins 32f extending from anchor plate 32e so that beveled surfaces 64a adjacent edges 64d abut tubular body end section 32b positioning branch holder 64 at a relatively acute angle with respect to the tree trunk. The lower branch holder 64 is shown in FIG. 18 inverted with openings 64b engaging pivot pins 32f so that beveled surfaces 64b adjacent the opposite edges 64g now abut tubular body end section 32b positioning branch holder 64 at a relatively larger angle with respect to the tree trunk.

It is also contemplated that the number of possible angles for positioning branches 21 available for selection may be increased by providing multiple seats in angular relation to each other in the free end of the branch holders. FIG. 19 illustrates such a branch holder 74 having at one end 74a any of the hereinbefore described snap-in hinged elements, as for example, elements here shown similar to holder 24, and the opposite end 74b fan shaped preferably in a vertical plane to provide at least two bores 74c and 74d arranged at an angle to each other for selectively seating branch ends 21a, or if desired a branch
3,115,435

1. A practical modification of an invertible branch holder and bearing plate is shown in FIG. 16a as a collar 83 having a bearing plate 83a serving as the female element of the mounting means similar to but shorter than bearing plate 53a shown in FIG. 12. Bearing plate 83a may also be formed with an enlarged free end 83e through which a bearing opening extends adjacent the upper edge 83d with a communicating slit 83f therebetween. Branch holder 84 may be formed with a bifurcated end portion serving as the male element of the mounting means and having a pair of parallel walls 84a separated by a slot sized to receive bearing plate 83e therein. A pivot pin 84p is formed to extend between walls 84a and is located adjacent the inner 84c of the slot in a manner similar to branch holder 54. The ends of walls 84a are free and provided with a bevel of edges 84d and 84e which are asymmetrical and function in a similar manner to edges 44c and 44d of holder 44 by contacting the tubular body of the tree trunk when bearing plate 83a is integrally formed therewith or, as shown in FIG. 16b, by contacting collar 83 to dispose branch holder 84 at a predetermined angle when edges 84d abut 83c and at a different predetermined angle when branch holder is inverted on bearing plate 83e to bring edges 84e in abutment with collar 83.

The parts of the constructions shown in the drawings and herein described embodying the invention are particularly adaptable for manufacture in quantity production by injection molding methods in suitable resinous plastic, such as, polystyrene, polyethylene and the like.

It is also to be understood that within the scope of the invention branch holders 24, 34, 44, 54, 64 and 84 may be provided at their branch connecting ends with male elements such as projections or pins for engaging seats, bores or other types of female elements provided on the ends of branches 21 or the branches and holders may be integrally formed or molded as a unit.

When ready for storage Christmas tree 20 affords a variety of choices, such as, collapsing branches 21 against tree trunk 20b, by inversion as shown in FIG. 5 or otherwise, removing branches 21 from the holders, disconnecting the branch holders at the snap-in lugs and separating the trunk segments.

It is thus seen that there is provided decorative simulated Christmas tree constructions in which the several objects of the invention are achieved and which are well adapted to meet conditions of practical use.

Various possible embodiments might be made in the above invention, and as various changes might be made in the constructions above set forth, it is to be understood that all the matters herein set forth or shown in the accompanying drawings are to be interpreted as illustrative and not in a limiting sense.

Having thus described my invention, I claim as new and desire to secure by Letters Patent:

1. In an artificial Christmas tree construction, an elongated trunk, a plurality of branches, means for quick detachable snap-in pivotal mounting of each branch to said trunk for swinging movement from an out-stretched position to an upwardly folded position substantially against said trunk, said quick detachable mounting means including a first element and a second separable companion element for each of said branches, each first element being carried by the trunk and having a horizontal pivotal axis spaced from the trunk, each second companion element being attached to one end of one of said branches and being separable at and supported on said pivotal axis so as to form in combination with said first element a bearing and pin, and means connecting therewith each of said pivotal mounting means for independently adjusting the angular relationship between its respective branch and said trunk.

2. The artificial Christmas tree construction defined in claim 1, in which each of said first elements includes a bearing plate extending from the trunk having a bearing opening providing said vertical pivotal axis, each of said second separable companion elements having pin means for snap-in engaging relationship with said pivotal mounting means of said trunk.

3. The artificial Christmas tree construction defined in claim 1, in which each of said means for independently adjusting the angular relationship between its respective branch and the trunk is an extension of said second separable companion element for engaging the trunk to displace the trunk to a first predetermined angular relation and upon inverting said second element to displace the branch to a second predetermined angular relation.

4. The artificial Christmas tree construction defined in claim 1 in which each of said first elements comprises a bearing plate extending from the trunk having an up-facing edge, an opposite down-facing edge and a bearing opening extending therethrough providing said horizontal pivotal axis spaced from the trunk, and a slit communicating the up-facing edge of the plate with said bearing opening, each of said second companion elements comprising a pair of parallel walls separated by a slot sized to receive thé bearing plate therebetween and a pivot pin extending between the walls removable engaging said bearing opening for said pivotal mounting of its respective branch, said walls extending beyond said pivot pin and below said down-facing edge of the plate, said independent adjusting means including a transverse end wall extending between said parallel walls having said pivot pins eccentrically placed with respect to said pivot pin, said transverse wall serving to engage said plate down-facing edge to position the branch in a first predetermined angular relation with respect to said trunk and in a second predetermined angular relation when said second companion element is inverted in said bearing opening.

5. The artificial Christmas tree construction defined in claim 1 in which each of said first elements comprises a bearing plate extending from the trunk having an up-facing edge, an opposite down-facing edge and a bearing opening extending therethrough providing said horizontal pivotal axis spaced from the trunk, and a slit communicating the up-facing edge of the plate with said bearing opening, each of said second companion elements comprising a pair of parallel walls separated by a slot sized to receive the bearing plate therebetween and a pivot pin extending between the walls removable engaging said bearing opening for said pivotal mounting of its respective branch, said walls extending beyond said pivot pin and below said down-facing edge of the plate, said independent adjusting means including a transverse end wall extending between said parallel walls having said pivot pins eccentrically placed with respect to said pivot pin, said transverse wall serving to engage said plate down-facing edge to position the branch in a first predetermined angular relation with respect to said trunk and in a second predetermined angular relation when said second companion element is inverted in said bearing opening, each of said bearing plate up-facing edges having a plurality of bearing openings extending therethrough for selectively receiving said pin, and each of said down-facing edges being contoured to engage said transverse end wall for effecting different predetermined angular relations with respect thereto.

6. The artificial Christmas tree construction defined in claim 1, in which each of said second separable companion elements comprises a branch holder having an end mounting one of said branches and a midportion supported by said pivotal axis with the branch extending in a predetermined angular relation to the horizontal plane of said pivotal axis, said branch holder means including an opposite end of each of said branch holders extending below said pivotal axis for engaging the trunk and positioning the branch in said angular relation.

7. The artificial Christmas tree construction defined in claim 1, in which each of said first elements includes a bearing block extending from the trunk having a bearing
opening extending therefrom providing said horizontal pivotal axis, each of said second separable companion elements comprising a pair of resilient plates spaced to receive said bearing block therebetween, each plate having an inwardly extending pivot pin aligned to engage said bearing opening, said resilient plates being deflectible for said independent engagement of the pins in the openings.

8. The artificial Christmas tree construction defined in claim 1, in which each of said first elements includes an anchor plate extending from the trunk having a pair of aligned pins extending from opposite sides thereof providing said horizontal pivotal axis, each of said second companion elements having a pair of bearing plates extending in parallel relation spaced from each other to receive said anchor plate therebetween, each plate having opposite edges and two bearing openings therebetween, the bearing openings being paired to align those of one plate respectively with those of the other, slits formed in said plates communicating one pair of aligned openings with one of the opposite edges and the other pair of openings with the other edge for alternative snap-in engagement with said pin.

9. The artificial Christmas tree construction defined in claim 1, in which at least one of said second separable companion elements is included in a branch holder having one end formed with a plurality of seats for selectively receiving a plurality of branches to extend at different angles with respect to each other.

10. The artificial Christmas tree construction defined in claim 1, in which said elongated trunk is formed as a segmented structure comprising a plurality of substantially identical tubular members molded of resinous plastic having a first end section of larger cross sectional area relative to a second end section of smaller cross sectional area and a shoulder formed between said sections, the smaller end section of one member being sized to telescoping engage the larger section of an adjoining member, a plurality of resinous plastic collars, one seated on each of said shoulders between adjoining members, a plurality of said first elements of the quick detachable snap-in pivotal mounting means being integrally formed with said collars.

11. The artificial Christmas tree construction defined in claim 1 in which each of said second separable companion elements is formed as an integral part of a resinous plastic molded branch holder separable from the remainder of the branch.

12. The artificial Christmas tree construction defined in claim 1 in which each of said first elements comprises a bearing plate extending from the trunk having an up-facing edge, a bearing opening extending through said bearing plate providing said horizontal pivotal axis, a slit communicating the up-facing edge of the plate with said bearing opening, each of said second companion elements comprising a pair of parallel walls separated by a slot sized to receive said bearing plate therebetween and a pivot pin extending between the walls removably engaging one of said bearing openings, said independent adjust-

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>735,010</td>
<td>Zahl</td>
<td>July 28, 1903</td>
</tr>
<tr>
<td>1,694,974</td>
<td>Glover</td>
<td>Dec. 11, 1928</td>
</tr>
<tr>
<td>1,737,151</td>
<td>Derbyshire</td>
<td>Nov. 26, 1929</td>
</tr>
<tr>
<td>2,826,846</td>
<td>Warren</td>
<td>Mar. 18, 1958</td>
</tr>
</tbody>
</table>