按照专利合作条约所公布的国际申请

世界知识产权组织

国际局

国际公布日
2015年10月8日（08.10.2015）

W O 2015/149708 A 1

指定国


申请人：华博生物医药技术（上海）有限公司

代理人：上海一平知识产权代理有限公司

发明名称：新型重组双功能融合蛋白及其制法和用途

发明名称：新型重组双功能融合蛋白及其制法和用途

摘要：本发明公开了重组双功能融合蛋白及其制法和用途，具体地，公开了一种融合蛋白，其具有包括TGF-β受体膜外区的元件A，包括VEGFRII第二膜外区D2的元件B和免疫球蛋白元件C，三者串联在一起。该蛋白可以同时与VEGF和TGF-βI两种配体结合，抑制配体的生物学活性。本发明还提供了新型重组双功能融合蛋白在疾病治疗中的应用。
新型重组双功能融合蛋白及其制法和用途

技术领域
本发明涉及生物医药领域。具体而言，本发明涉及一种新型重组双功能融合蛋白及其制法和用途。

背景技术
肿瘤、肝纤维化等疾病每年夺走几千万人的生命，造成数亿美元的经济损失。细胞膜表面的TGF-β和VEGFR1受体和相应配体的结合，是此类疾病产生和发展的一个重要原因，因此开发相应的蛋白配体药物具有良好的应用前景。

目前公知的蛋白药物包括生长因子、激素类蛋白、酶类蛋白、细胞因子、干扰素、促红细胞生成素以及融合蛋白等。这类蛋白药物中，其他蛋白药物均属于均质蛋白，即只含有一种蛋白成分。而现有的融合蛋白药物(如阿瓦斯汀AvastinK、阿柏西普Aflibercept)由受体蛋白的膜外区与人IgG Fc段融合而成，含有两种或两种以上蛋白成分，但仍然只发挥一种功能，即只能阻断一种细胞膜内源性受体与相应配体的结合。

虽然基因重组双功能融合蛋白已有报道，但其组成及所对应的靶点各异。迄今为止可以同时与TGF-β和VEGF结合，并同时阻断这两个靶点的生物学活性的双功能融合蛋白药物未有报道。因此，开发此类新型双功能融合蛋白药物对延长患者的生存时间、改善患者的生存质量及降低死亡率具有重要意义。

发明内容
本发明目的在于提供一种新型重组双功能融合蛋白及其制法和用途。

本发明的另一方面，提供了一种融合蛋白，所述融合蛋白包括融合在一起的以下元件：

任选的位于N端的信号肽；

(i) 第一蛋白元件；

(ii) 第二蛋白元件；以及

(iv) 与第一蛋白元件和/或第二蛋白元件连接的免疫球蛋白元件，其中，所述信号肽可操作地连于由(i)、(ii)和(iv)所构成的融合元件；

并且第一蛋白元件为TGF-β受体膜外区蛋白元件；第二蛋白元件为包括血管内皮细胞生长因子受体VEGFR1第二膜外区D2的蛋白元件。

在另一优选例中，所述的“可操作地连于”指所述信号肽可引导所述融合元件的表达或跨膜转移(定位)。

在另一优选例中，所述的融合蛋白具有选自下组的结构：

(1) 式Ia或式Ib所述结构；
(2) 式 Il a 或式 lib 所述结构：
- D-A-C-B (Il a)，或
- D-B-C-A (Il b)

其中，
- A 为 TGF-β 受体膜外区蛋白元件；
- B 为包括血管内皮细胞生长因子受体 VEGFR1 第二膜外区 D2 的蛋白元件；
- C 为免疫球蛋白元件；
- D 为任选的信号肽序列；

"-" 表示连接上述元件的肽键或肽接头。

在另一优选例中，所述元件 A 选自下组：\(\tau \beta \text{R} II、\tau \beta \text{R} II、\tau \beta \text{R} II\)。

在另一优选例中，所述元件 A 为 \(\tau \beta \text{R} II\) 膜外区的蛋白元件。

在另一优选例中，所述元件 A 具有 SEQ ID NO: 1 中第 24-184 位所示的氨基酸序列。

在另一优选例中，所述元件 B 具有 SEQ ID NO: 1 中第 190-282 位所示的氨基酸序列（核心序列）并且长度为 94、95、96、97、98、99、或 100 个氨基酸。

在另一优选例中，所述元件 B 位于 SEQ ID NO: 1 中第 190-282 位所示的氨基酸序列（核心序列）两侧的氨基酸序列分别来自于天然 VEGFR1 的第二膜外区 D2(Domain 2) 两侧氨基酸序列。

在另一优选例中，所述 D2 具有侧翼序列，所述侧翼序列包括：

位于 D2 氨基端的第一侧翼序列；和/或位于 D2 羧基端的第二侧翼序列。

在另一优选例中，所述第一侧翼序列由 1-5 个氨基酸残基组成。

在另一优选例中，所述第二侧翼序列由 1-2 个氨基酸残基组成。

在另一优选例中，所述第一和第二侧翼序列分别来自天然 VEGFR1 的第二膜外区 D2(SEQ ID NO: 1 中第 190-282 位) 两侧氨基酸序列。

在另一优选例中，所述第一侧翼序列为 SDTGR。

在另一优选例中，所述第二侧翼序列为 NT。

在另一优选例中，所述元件 C 为人免疫球蛋白 IgGl 的 Fc 片段。

在另一优选例中，所述的肽接头的长度为 0-10 氨基酸，较佳地为 0-5 个氨基酸。

在另一优选例中，所述融合蛋白还包括信号肽元件 D。

在另一优选例中，所述信号肽元件 D 的氨基酸序列如 SEQ ID NO: 1 中第 1-23 位所示。

在另一优选例中，所述融合蛋白的氨基酸序列如 SEQ ID NO: 1 所示。

在另一优选例中，所述融合蛋白不含信号肽，并且结构式选自下组：

(1) 式 la' 或式 lb' 所述结构：
- A-B-C (Ia')，或
- B-A-C (Ib')

(2) 式 Il a' 或式 lib' 所述结构：
在另一优选例中，所述融合蛋白具有以下多种功能：

a) 与 VEGF 的结合活性 EC_{50} 为 0.6-2nM；
b) 与 TGF-βI 的结合活性 EC_{50} 为 1.5-2.5nM；
c) 可以同时与 VEGF 和 TGF-βI 两种配体结合；
d) 可阻断 VEGF 诱导的体外或体内血管形成；
e) 可抑制 TGF-βI 所诱导的肿瘤细胞的迁移和侵袭。

本发明的第二方面，提供了一种蛋白二聚体，所述的二聚体由两个根据本发明第一方面的任一所述的融合蛋白构成。

在另一优选例中，所述二聚体具有选自下组的结构：

(1) 式 Ia-1 或式 Ib-1 所述结构：

A-B-C (Ia-1')

A-C-B (IIa-1')

B-C-A (lib')

B-A-C (Ib-1')

D-A-B-C (Ia-1)

D-B-A-C (Ib-1)

D-A-C-B (IIa-1)

D-B-C-A (IIb-1)

D-A-C-B (Ia-1)

D-B-C-A (Ib-1)

其中，
A 为 TGF-β 受体膜外区蛋白元件；
B 为包括 VEGFR 第二膜外区 D2 的蛋白元件；
C 为免疫球蛋白元件；
D 为任选的信号肽序列；
"-" 表示连接上述元件的肽键或肽接头；
"|""表示二硫键。

在另一优选例中，所述融合蛋白不含信号肽，并且具有选自下组的结构：

(1) 式 Ia-1' 或式 Ib-1' 所述结构：

A-B-C (Ia-1')

A-B-C (Ib-1')

B-A-C (Ib-1')

B-A-C (Ib-1')

A-C-B (IIa-1')

B-C-A (IIb-1')

式中，A、B、C、“-”和“|”的定义如上所述。

本发明的第三方面，提供了一种分离的多核苷酸，所述的多核苷酸编码根据
本发明第一方面的所述的融合蛋白。

本发明的第四方面，提供了一种载体，它含有本发明第三方面所述的多核苷酸。

本发明的第五方面，提供了一种宿主细胞，它含有本发明第四个方面所述的载体或基因组中整合有本发明第三方面所述的所述的多核苷酸。

在另一优选例中，所述宿主细胞为原核细胞或真核细胞（如CHO细胞、NS0细胞、293细胞）。

本发明的第六方面，提供了一种产生蛋白的方法，它包括步骤：
(1) 在适合表达的条件下，培养权利要求8所述的宿主细胞，从而表达出权利要求1所述的融合蛋白；和
(2) 分离所述融合蛋白或由所述融合蛋白形成的二聚体。

本发明的第七方面，提供了一种药物组合物，所述组合物包含：
根据本发明第一方面所述的融合蛋白和/or根据本发明第二方面所述的蛋白二聚体，以及
药学上可接受的载体。

本发明的第八方面，提供了根据本发明第一方面所述的融合蛋白和/or根据本发明第二方面所述的蛋白二聚体的用途，用于制备治疗疾病的药物。
在另一优选例中，所述的疾病为与TGF-β及VEGF相关的疾病。
在另一优选例中，所述的疾病选自：肿瘤、肝脏纤维化。
在另一优选例中，所述肿瘤包括：大肠癌肿瘤、肺癌肿瘤、肝癌肿瘤、乳腺癌肿瘤、胃癌肿瘤、胰腺癌肿瘤。

本发明的第九方面，提供了一种抑制与TGF-β及VEGF相关的疾病的方法，包括步骤：给需要的对象施用第一方面所述的融合蛋白。
在另一优选例中，所述的融合蛋白以单体和/or二聚体形式施用。
在另一优选例中，所述的对象是人。

本发明的其它方面由于本文的公开内容，对本领域的技术人员而言是显而易见的。应理解，在本发明范围内中，本发明的上述技术特征和在下文（如实施例）中具体描述的各技术特征之间都可以互相组合，从而构成新的或优选的技术方案。限于篇幅，在此不再一一累述。

附图说明
图1为本发明一种重组融合蛋白TPRII-D2-Fc的分子结构示意图，显示
TPRII-D2-Fc含有三种成分，TGF-β二型受体的膜外端(TβRII)、VEGF受体1膜
图2A显示了TPRII-D2-Fc的核苷酸序列，其中红色的69个核苷酸为信号肽编码序列，蓝色的483个核苷酸为TβRII膜外端的编码序列，淡红色的300个核苷酸为VEGFR1-D2的编码序列；黑色的702个核苷酸中前6个为EcoRI酶切位点，后696个核苷酸为人IgGlFc片断的编码序列。

图2B显示了TPRII-D2-Fc的氨基酸序列，其中红色的23个氨基酸为信号肽，蓝色的161个氨基酸为TβRII膜外端，淡红色的100个氨基酸为VEGFR1-D2，黑色的234个氨基酸为EcoRI位点（2个氨基酸“EF”）及人IgGlFc片断（232个氨基酸）。

图3A显示了各融合蛋白的SDS-PAGE电泳图，图中R泳道为还原（Reducing）条件下的电泳条带，NR泳道为非还原（Non-Reducing）条件下的电泳条带，从TPRII-D2-Fc的电泳图可以看出在还原条件下，TPRII-D2-Fc的分子大小约为80-90kDa，非还原条件下大于170kDa，均比理论值（57kDa、120kDa）大，因为分子中有很多糖基化位点，这提示该蛋白是糖基化的；从D2-TPRII-Fc的电泳图可以看出无论还原还是非还原条件下，其大小均比TPRII-D2-Fc略大，这是由于结构组合的变化导致空间结构改变所造成的；从TPRII-Fc-D2的电泳图可以看出其大小与TPRII-D2-Fc相似，还原条件下为80-90kDa，非还原条件下大于170kDa。

图3B显示了TPRII-D2-Fc蛋白HPLC分析图，从图中可以看出TpRII-D2-Fc蛋白纯度很高，聚体含量低于2%。

图4A显示了各融合蛋白与靶点TGF-β1结合活性测试结果，从图中可以看出，三种不同组合的融合蛋白均具有与TGF-β1的结合活性，其中TPRII-D2-Fc的活性最好，D2-TPRII-Fc的活性次之，TPRII-Fc-D2最弱。三种蛋白的EC_{50}分别为：TPRII-D2-Fc=1.52nM；D2-TpRII-Fc =2.14nM；TpRII-Fc-D2=2.50nM。阳性对照蛋白TβKII-Fc也具有很好的TGF-β1结合活性，其EC_{50}为2.30nM。需要强调的是，在相同浓度下，TPRII-D2-Fc对该靶点的结合活性要高出TβKII-Fc约34%以上。D2-Fc及阴性对照蛋白IgG-Fc均没有活性。

图4B显示了各融合蛋白与靶点VEGF-165结合活性测试结果。从图中可以看出，三种不同组合的融合蛋白均具有与VEGF-165的结合活性，其中D2-TPRII-Fc的活性最好，TPRII-Fc-D2的活性次之，TPRII-D2-Fc相对较弱。三种蛋白的EC_{50}分别为：TPRII-D2-Fc=0.60nM；D2-TpRII-Fc=0.11nM；TpRII-Fc-D2=0.16nM。阳性对照蛋白D2-Fc具有很好的VEGF-165结合活性，其EC_{50}为0.14nM；TβRII-Fc及阴性对照IgG-Fc均没有活性。

通过比较图4A和图4B可以看出，本发明的融合蛋白具有优异的同时结合靶点TGF-β1和靶点VEGF活性。

图5显示了TPRII-D2-Fc可抑制TGF-β1所诱导的肿瘤细胞的侵袭。图A为对照（培养基中不额外添加TPRII-D2-Fc和TGF-β1），图B加入了TGF-β110ng/ml，图C中加入了TGF-β110ng/ml，TpRII-D2-Fc1μg/ml，图D中加入了TGF-β110ng/ml，TPRII-D2-Fc=10μg/ml，图E中加入了TGF-β110ng/ml，TpRII-D2-Fc=50μg/ml，图F中加入了TGF-β110ng/ml及IgG50μg/ml。从图5中可以看出，TGF-β1显著诱导肿瘤细胞从小室上层向下层的侵袭（Invasion），但加入TpRII-D2-Fc以后，
肿瘤细胞的侵袭被显著抑制，而且抑制效应呈剂量依赖性。阴性对照蛋白hlgG则不能抑制TGF-β1诱导的肿瘤细胞的侵袭（Invasion）。本实验结果表明，TpRII-D2-Fc通过与TGF-β1结合，阻断了TGF-β1与肿瘤细胞膜上的TGF-β受体的结合，从而抑制了下游信号传导，并最终抑制肿瘤细胞的侵袭。

图6显示了TpRII-D2-Fc可阻断VEGF所诱导的血管内皮细胞管状形成。图A为对照（培养基中只加VEGF-165，不额外添加TpRII-D2-Fc），图B加入VEGF-165 20ng/ml，TpRII-D2-Fc 20 μg/ml，图C加入VEGF-165 20ng/ml，TpRII-D2-Fc 50 μg/ml，图D加入VEGF-165 20ng/ml，TpRII-D2-Fc 100 μg/ml，图E加入VEGF-165 20ng/ml，hlgG 100 μg/ml。从图6中可以看出VEGF-165诱导血管内皮细胞（HUVEC）管状形成，但如果同时加入TpRII-D2-Fc，则可显著抑制HUVEC细胞的管状形成，而且抑制效应呈剂量依赖性。阴性对照蛋白hlgG则不能抑制VEGF-165所诱导的HUVEC细胞管状形成。

图7A显示了本发明的融合蛋白对小鼠乳腺癌细胞（4T1）生长的抑制作用。从图中可以看出，肿瘤细胞皮下接种以后如果不进行治疗，20天以后肿瘤体积生长至600立方毫米（mm³），而用融合蛋白治疗以后，两种剂量（5mg/kg、10mg/kg）的TpRII-D2-Fc及高剂量的（10mg/kg）D2-Fc均可显著抑制肿瘤生长，20天以后肿瘤体积只有阴性对照组的一半，为300立方毫米（mm³）。TβKII-Fc具有一定的抑制效果，但不显著。

图7B显示了本发明的融合蛋白对小鼠乳腺癌细胞（4T1）转移的抑制作用。从图中可以看出，两种剂量的TpRII-D2-Fc均可显著抑制肿瘤向肺部的转移，与阴性对照组相比，抑制率达60-70%。TβKII-Fc对肿瘤转移的抑制率达61%，而D2-Fc抑制率只有50%。

具体实施方式
本发明人经过广泛而深入的研究，首次建立了一个基因工程技术平台，利用该平台可生产重组双功能融合蛋白类药物，例如TpRII-D2-Fc。在此基础上完成了本发明。

以TpRII-D2-Fc为例，它具有以下功能：1)可以同时与VEGF和TGF-β1两种配体结合；2)可阻断VEGF所诱导的体外或体内血管形成；3)可抑制TGF-β1所诱导的肿瘤细胞的迁移和侵袭。

试验结果，本发明TpRII-D2-Fc不仅同时具有与VEGF和TGF-β1的结合活性，EC₅₀分别为0.60和1.53，而且可以协同地、更有效地治疗某些疾病，尤其是诸如肿瘤、老年眼黄斑变性、肝脏纤维化等疾病。

VEGFR及其膜外区

VEGFR蛋白属于受体酪氨酸激酶超家族，是一种膜镶嵌蛋白。VEGFR的膜外部分大约有750个氨基酸残基，由7个与免疫球蛋白结构相似的Ig结构域组成。当与其相应配体结合以后，根据其相应的受体特性，VEGFR蛋白可诱导一系列不同的生物学功能反应。本发明的VEGFR蛋白包括：VEGFR(Flt-1)、VEGFR2(KDR/Flk-I)、VEGFR3(Flt-4)或其组合。
在本发明中，优选为 VEGFR1(Flt-1)，优选天然型 VEGFR1 为野生型的。
本发明的 D2 指 VEGFR1(Flt-1) 的第二个膜外区(Domain 2)。一种代表性的 D2
序列为 SEQ ID NO.: 1 中第 190-282 位。

TGF-β 受体及其膜外区

TGF-β 受体为单次跨膜蛋白受体，在胞内区具有丝氨酸/苏氨酸蛋白激酶活性，
该受体以异二聚体行使功能。目前已知的 TGF-β 受体有 I ～ V 5 种类型，在人的多
种细胞表面存在 3 种类型的 TGF-β 糖蛋白受体(即 I 型、II 型、III 型受体)，I 型和
II 型受体起信号转导作用。I 型、II 型受体都是单次跨膜的丝氨酸/苏氨酸蛋白激
酶受体。胞膜外区较短，胞浆区较长。胞膜外区富含半胱氨酸。胞浆区含有丝氨酸
/苏氨酸蛋白激酶结构域，当与其相应配体结合以后，根据其相应的受体特性，TGF-β
蛋白可诱导一系列不同的生物学功能反应。

本发明的 TGF-β 受体蛋白包括：τβRII、τβRII、τβRII 或其组合。在本发明中，
优选为 τβRII，优选天然型 τβRII 为野生型的。

本发明一类优选的 TGF-β 受体膜外区指 TβRII 的膜外区。一种代表性的 TβRII
的膜外区序列为 SEQ ID NO.: 1 中第 24-184 位。

免疫球蛋白 G 元件

在本发明中，适用的免疫球蛋白 G 元件没有特别限制，可以是来自人或其他
哺乳动物的免疫球蛋白元件，或其突变体和衍生物。优选来自人的免疫球蛋白的元
件。人免疫球蛋白 G 包括四个亚类：IgGI、IgG2、IgG3、IgG4。这四个亚类的蛋
白结构有很大的相似性，都有四个区域：一个可变区(VH)，三个恒定区(CH1、CH2、
CH3)。Fc 片段由两个恒定区(CH2-CH3) 所组成，其中在 CH2 区域有一个二硫键，
使得两个 Fc 片段单体组成共价结合的同源二聚体。正常生理条件下，人体血浆内
IgG 的浓度以 IgGI 最高，IgG2 次之，IgG3 和 IgG4 浓度较低。

一种优选的 G 元件是人 IgGI Fc 片段，或其突变体、衍生物。

双功能融合蛋白及其制备

在本发明中，"重组双功能融合蛋白"、"本发明蛋白"、"本发明融合蛋白"、
"双功能融合蛋白" 可互换使用，指具有式 Ia 或 Ib 所述结构，或者 IIa 或 IIb 所述结构，即含有包括 TGF-β 受体膜外区蛋白元件，VEGFR 第二个膜外区 D2 的
蛋白元件和免疫球蛋白元件的融合蛋白。一个代表性的例子是 TPRII-D2-Fc。本发
明蛋白可以是单体或由单体形成的多聚体(如二聚体)。此外，应理解，所述术语
还包括融合蛋白的活性片段和衍生物。

如本文所用，"分离的"是指物质从其原始环境中分离出来(如果是天然的物
质，原始环境即是天然环境)。如活体细胞内的天然状态下的多核苷酸和多肽是
没有分离纯化的，但同样的多核苷酸或多肽如从天然状态中同存在的其他物质
中分开，则为分离纯化的。

如本文所用，"分离的重组融合蛋白"是指重组融合蛋白基本上不含天然与其
相关的其它蛋白、脂类、糖类或其它物质。本领域的技术人员能用标准的蛋白质纯化技术纯化重组融合蛋白。基本上纯的蛋白在非还原聚丙烯酰胺凝胶上能产生单一的主带。

本发明的多核苷酸可以是 DNA 形式或 RNA 形式。DNA 形式包括 cDNA、基因组 DNA 或人工合成的 DNA。DNA 可以是单链的或是双链的。DNA 可以是编码链或非编码链。

本发明还涉及上述多核苷酸的变异体，其编码与本发明有相同的氨基酸序列的蛋白质片段、类似物和衍生物。此多核苷酸的变异体可以是天然发生的等位变异体或非天然发生的变异体。这些核苷酸变异体包括取代变异体、缺失变异体和插入变异体。如本领域所知的，等位变异体是一个多核苷酸的替换形式，它可能是一个或多个核苷酸的取代、缺失或插入，但不会从实质上改变其编码的多肽的功能。

如本文所用，术语"引物"指的是在与模板配对，在 DNA 聚合酶的作用下能以其为起点进行合成与模板互补的 DNA 链的寡居核苷酸的总称。引物可以是天然的 RNA、DNA，也可以是任何形式的天然核苷酸。引物甚至可以是非天然的核苷酸如 LNA 或 ZNA 等。引物"大致上"(或"基本上")与模板上一条链上的一个特殊的序列互补。引物必须与模板上的一条链充分互补才能开始延伸，但引物的序列不必与模板的序列完全互补。比如，在一个 3'端与模板互补的引物的 5'端加上一段与模板不互补的序列，这样的引物仍大致上与模板互补。只要有足够长的引物能与模板充分的结合，非完全互补的引物也可以与模板形成引物-模板复合物，从而进行扩增。

本发明融合蛋白的元件(如 VEGFR1D2 或 TβRII 膜外区)的核苷酸全长序列或其片段通常可以用 PCR 扩增法、重组法或人工合成的方法获得。对于 PCR 扩增法，可根据已公开的有关核苷酸序列，尤其是开放阅读框架序列来设计引物，并用市售的 cDNA 库或按本领域技术人员已知的常规方法所制备的 cDNA 库作为模板，扩增而得有关序列。当序列较长时，常常需要进行两次或多次 PCR 扩增，然后再将各次扩增出的片段按正确次序拼接在一起。

一旦获得了有关的序列，就可以用重组法来大批量地获得有关序列。这通常是将其克隆入载体，再转入细胞，然后通过常规方法从增殖后的宿主细胞中分离得到有关序列。

此外，还可人工合成的方法来合成有关序列，尤其是片段长度较短时。通常，通过先合成多个小片段，然后再进行连接可获得序列很长的片段。

应用 PCR 技术扩增 DNA/RNA 的方法被优选用于获得本发明的基因。用于 PCR 的引物可根据本文所公开的本发明的序列信息适当地选择，并可用常规方法合成。可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RNA 片段。

本发明也涉及包含本发明的多核苷酸的载体，以及用本发明的载体或融合蛋白编码序列经基因工程产生的宿主细胞，以及经重组技术产生本发明所述蛋白质的方法。

通过常规的重组 DNA 技术，可利用本发明的多核苷酸序列可用来表达或生产重组蛋白。一般来说有以下步骤：

1. 用本发明的编码本发明蛋白的多核苷酸(或变异体)，或用含有该多核苷
酸的重组表达载体转化或转导合适的宿主细胞；
(2).在合适的培养基中培养的宿主细胞；
(3).从培养基或细胞中分离、纯化蛋白质。
本领域的技术人员熟知的方法能用于构建含本发明蛋白的编码 DNA 序列和
合适的转录/翻译控制信号的表达载体。这些方法包括体外重组 DNA 技术、DNA
合成技术、体内重组技术等。所述的 DNA 序列可有效连接到表达载体中的适当
启动子上，以指导 mRNA 合成。表达载体还包括翻译起始用的核糖体结合位点
和转录终止子。
此外，表达载体优选地包含一个或多个选择性标记基因，以提供用于选择
转化的宿主细胞的表型性状，如真核细胞培养用的二氨叶酸还原酶、新霉素抗
性以及绿色荧光蛋白(GFP)，或用于大肠杆菌的四环素或氨苄青霉素抗性。
包含上述的适当 DNA 序列以及适当启动子或者控制序列的载体，可以用于
转化适当的宿主细胞，以使其能够表达蛋白质。
宿主细胞可以是原核细胞，如细菌细胞；或是低等真核细胞，如酵母细胞；
或是高等真核细胞，如哺乳动物细胞。代表性例子有：大肠杆菌，链霉菌属的
细菌细胞；真菌细胞如酵母；植物细胞；果蝇 S2 或 SF9 的昆虫细胞；CHO、COS
或 293 细胞的动物细胞等。
用重组 DNA 转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿
主为原核生物如大肠杆菌时，能吸收 DNA 的感受态细胞可在指数生长期后收获，
用 CaCl2 法处理，所用的步骤在本领域众所周知。另一种方法是使用 MgCl2。如
果需要，转化也可用电穿孔的方法进行。当宿主是真核生物，可选用如下的 DNA
转染方法：磷酸钙共沉淀法，常规机械方法如显微注射、电穿孔、脂质体包装
等。
获得的转化子可以用常规方法培养，表达本发明的基因所编码的多肽。根
据所用的宿主细胞，培养中所用的培养基可选自各种常规培养基。在适于宿主
细胞生长的条件下进行培养。当宿主细胞生长到适当的细胞密度后，用合适的
方法 (如温度转换或化学诱导)诱导选择的启动子，将细胞再培养一段时间。

在上面的方法中的蛋白质可在细胞内、或在细胞膜上表达、或分泌到细胞
外。如果需要，可利用其物理的、化学的和其它特性通过各种分离方法分离和
纯化蛋白。这些方法是本领域技术人员所熟知的。这些方法的例子包括但不限于：
常规的复性处理、用蛋白变性剂处理 (如盐析方法)、离心、渗透破膜、超处理
、超离心、分子筛层析 (凝胶过滤)、吸附层析、离子交换层析、高效液相层析
(HPLC) 和其它各种液相层析技术及这些方法的结合。

抗体

本发明中，"抗体"、"配体"可互换使用，是指对本发明蛋白具有特异性的多
克隆抗体和单克隆抗体，尤其是单克隆抗体。这里，"特异性"是指抗体能分别结
合于本发明蛋白或其片段。较佳地，指那些能与本发明蛋白或片段结合但不识
别和结合于其它非相关抗原分子的抗体。本发明的抗体可以通过本领域内技术
人员已知的各种技术进行制备。
本发明不仅包括完整的单克隆或多克隆抗体，而且还包括具有免疫活性的抗体片段，如 Fab'或 (Fab)₂片段；抗体重链；抗体轻链；遗传工程改造的单链 Fv 分子；或嵌合抗体。

肽接头

本发明提供了一种双功能融合蛋白，它可任选地含有肽接头。肽接头大小和复杂性可能会影响蛋白的活性。通常，肽接头应当具有足够的长度和柔韧性，以保证连接的两个蛋白在空间上有足够的自由度以发挥其功能。同时避免肽接头中形成 α 螺旋或 β 折叠等对融合蛋白的稳定性的影响。

连接肽的长度一般为 0-10 个氨基酸，较佳地 0-5 个氨基酸。

药物组合物及施用方法

本发明还提供了一种组合物，它含有有效量的本发明融合蛋白，以及药学上可接受的载体。通常，可将本发明的融合蛋白配制于无毒的、惰性的和药学上可接受的水性载体介质中，其中 pH 通常约为 5-8，较佳地，pH 约为 6-8。

如本文所述，术语“有效量”或“有效剂重”是指可对人和/或动物产生功能或活性的且可被人和/或动物所接受的量，如 0.001-99wt%；较佳的 0.01-95wt%；更佳的，0.1-90wt%。

如本文所述，“药学上可接受的”成分是适用于人和/或哺乳动物而无过度不良反应（如毒性、刺激和变态反应）的，即具有合理的效益/风险比的物质。术语“药学上可接受的载体”指用于治疗剂给药的载体，包括各种赋形剂和稀释剂。

本发明的药物组合物含有安全有效量的本发明的融合蛋白以及药学上可接受的载体。这类载体包括（但不限于）：盐水、缓冲液、葡萄糖、水、甘油、乙醇、及其组合。通常药物制剂应与给药方式相匹配，本发明的药物组合物可以被制成剂型形式，例如用生理盐水或含有葡萄糖和其他辅料的水溶液通过常规方法进行制备。所述的药物组合物宜在无菌条件下制造。活性成分的给药量是治疗有效量。本发明的药物制剂还可制成缓释制剂。

本发明融合蛋白的有效量可随给药的模式和对治疗的疾病的严重程度等而变化。优选的有效量的选择可以由本领域普通技术人员根据各种因素来确定（例如通过临床试验）。所述的因素包括但不限于：本发明融合蛋白的药代动力学参数例如生物利用度、代谢、半衰期等；患者所要治疗的疾病的严重程度、患者的体重、患者的免疫状况、给药的途径等。通常，当本发明的融合蛋白每天以约 5mg-20mg/kg 动物体重（较佳的 5mg-10mg/kg）动物体重）的剂量给予，能得到令人满意的效果。例如，由治疗状况的迫切要求，可每天给予若干次分开的剂量，或将剂量按比例地减少。

本发明融合蛋白特别适合用于治疗 VEGF 和 TGF-β1 分泌过量的疾病，或以血管异常增生和肿瘤细胞的侵袭为特征的疾病。代表性的疾病包括（但不限于）：肿瘤、湿性黄斑变性或肝纤维化。

本发明的融合蛋白及其二聚体或多聚体主要包括以下优点：

5
1) 可以同时与 VEGF 和 TGF-βI 两种配体结合，与 VEGF 和 TGF-βI 具有很强的结合活性，结合活性 EC50 最高可分别到达 0.60nM 和 1.53nM；
2) 可阻断 VEGF 诱导的体外或体内血管形成；
3) 可抑制 TGF-βI 所诱导的肿瘤细胞的迁移和侵袭；
4) 可阻断 TGF-βI 及 VEGF 诱导肝脏纤维化；
5) 可阻断 TGF-β的免疫抑制活性，从而增强免疫功能。

下面结合具体实施例，进一步阐述本发明。应理解，这些实施例仅用于说明本发明而不限于限制本发明的范围。下列实施例中未注明具体条件的实验方法，通常按照常规条件，例如 Sambrook 等人，分子克隆：实验室手册 (New York: Cold Spring Harbor Laboratory Press, 1989) 中所述的条件，或按照制造厂商所建议的条件。除非另外说明，否则百分比和份数是重量百分比和重量份数。

实施例 1

构建 TpRII-D2-Fc 表达载体

TpRII膜外区基因编码序列由 483 个核苷酸组成，如 SEQ ID NO. : 2 中第 70-552位所示。VEGFR1-D2 基因编码序列由 300 个核苷酸组成，如 SEQ ID NO. : 2 中第 553-852 位所示，其中包括 D2 编码序列 279 个核苷酸，上游侧翼序列 15 个核苷酸，下游侧翼序列 6 个核苷酸。在 TpRII 膜外区 5'端加上了 69 个来自于 TpRII 的信号肽编码序列（即 SEQ ID NO. : 2 中第 1-69 位），组成 852 个核苷酸。

在这 852 个核苷酸的氨基端再加上 'HindIII " 基因克隆位点，在羧基端加上 "EcoRI " 基因克隆位点，组成了一个含有 873 个核苷酸的基因片段。

合成产物 (南京金斯瑞生物科技公司合成) 经过 HindIII/EcoRI 酶切，克隆至 pHB-Fc 质粒载体，形成 pHB-TpRII-D2-Fc 蛋白表达载体。pHB-Fc 质粒载体的制法如下：以 pcDNA/HA-FLAG (Accessions : FJ524378) 载体为出发质粒，在内切酶 EcoRI 后面加上了 IgG1 的 Fc 序列，再内切酶 HindIII 前面加上了人类巨细胞病毒 (HCMV) 促进子序列 (Accessions : X17403)，在氨苄青霉素耐受基因后面，HCMV 促进子前面加上了中国仓鼠鼠谷氨酰胺合成酶基因 (Accessions : X03495)。序列设计好以后，委托上海捷瑞生物工程有限公司予以合成改造。

序列 SEQ ID NO. : 2 为编码重组双功能融合蛋白的核苷酸序列，如图 2A 所示。全长 1554bp，其中 1-69bp 为信号肽编码序列，70-552bp 为 TpRII 膜外区编码序列，553-852bp 为 VEGFR1D2 编码序列，853-858EcoRI 酶切位点 GAATTC，859-1554bp 为 Fc 片段，TGA 为终止密码。

图 1 为重组双功能融合蛋白 TpRII-D2-Fc 的分子结构示意图。该示意图仅起到示意作用，不代表本发明双功能融合蛋白的具体结构。

序列 SEQ ID NO. : 1 为编码重组双功能融合蛋白的氨基酸序列，如图 2B 所示。全长 518 个氨基酸。其中 1-23 位氨基酸为信号肽，24-184 位氨基酸为 TpRII 膜外区，185-284 位为含侧翼序列（下划线标出）的 VEGFR1D2 片段，285-286 位为 EcoRI 酶切位点的 2 个氨基酸，287-518 位氨基酸为 Fc 片段。
实施例2

TpRII-D2-Fc > D2-TpRII-Fc > TpRII-Fc-D2 的表达

细胞经过一系列驯化步骤，驯化成可在无血清培养基 (EX-CELLTM 302) 中进行悬浮培养的 CH0-K1 细胞。

利用该细胞，通过电转的方法，将质粒 pHb-TpRII-D2-Fc 、pHB-D2-TpRII-Fc、pHB-TpRII-Fc-D2 分别转入细胞。具体方法是：在无菌条件下收集处于对数生长期的细胞，离心沉淀 (1200 rpm x 5 min) 后重悬于完全培养基，并调整细胞密度至 1 x 10^7 cells/ml 。取 350ul 细胞悬液转移至 0.4 cm 电转杯，于设定电转条件下 (电压范围 200 to 350V, 一般 260V, 时间 20ms 左右) 脉冲 1 次。加入 10 - 30ug 质粒 DNA 至含有的细胞电转杯中，轻轻混匀后，将电转杯放入电转仪中，通脉冲。取出电转杯，静置 5 分钟，加 0.6 ml 细胞培养基，混匀后吸出来，转到培养皿中，放入培养箱培养。24-48 小时后检查蛋白表达。如有蛋白表达，则证明基因转入成功，此时将细胞用培养基进行稀释，然后转移至 20 块 96 孔细胞培养板中，每孔细胞数 3000-5000 个。细胞经过一系列压力 (谷氨酰胺合成酶抑制剂) 筛选，最终筛选出能够高表达蛋白的细胞株。

蛋白生产时，将高表达蛋白的细胞株细胞接种至含有 3 升 EX-CELLTM 302 培养基的细胞反应器中，细胞密度为 3 x 10^5 cells/ml ，培养条件为 37°C、5% CO2。

细胞在培养过程中经过 pH、葡萄糖、谷氨酰胺等检测，并根据各项指标适时补加营养成分。当细胞密度达 5-6 x 10^6 cells/ml 时，将培养温度从 37°C 降至 33°C，继续培养至细胞活率达到 60-70% 时进行收获。收获的细胞培养上清经过超滤浓缩，以及 Protein A 亲和层析柱进行纯化。纯化的蛋白利用 Lowry 法进行定量测定 (参照 2010 版中国药典)。蛋白定量标准品为牛血白蛋白 (批号 140619-201 120，中国药品检验研究院)。生产的蛋白经 SDS-PAGE 电泳分析大小与理论值基本吻合，内毒素含量低于标准要求。

通过蛋白电泳 (SDS-PAGE) 分析，发现在还原条件下，TpRII-D2-Fc 大小介于 80kDa 位置 (单体)，非还原条件下则大于 170kDa (二聚体)，而 TpRII-D2-Fc 相似。此外，二种结构组合的重组蛋白的实测分子量 (图 3) 提示，重组蛋白存在一定程度的糖基化 (二聚体的理论分子量为 114kDa)。

HPLC 分析蛋白纯度大于 98%。

实施例3

TpRII-D2-Fc 与靶点 (VEGF 和 TGF-β1) 结合活性检测

利用酶联免疫吸附检测 (ELISA) 方法测定融合蛋白与靶点 (VEGF 和 TGF-β1) 结合特性。具体步骤如下：

用包被缓冲液 (CBS (Sigma-Aldrich Co., Product code: 1001329288 C3041-100CAP) 将 TGF-p(Cat: 10804-HNAH, Sino biological Inc.) 及 VEGF-165 (Cat: 11066-HNAH, Sino biological Inc.) 分别稀释至 500ng/ml，取 100ul 加入到 ELISA 板 (Nunc™, Cat: 442404) 中，每孔 50ng。将包被板置于 4°C 冰箱过夜。检
测时先用0.05% PBS-T洗涤包被板一次，再用3%脱脂牛奶室温封闭1小时。将2倍系列稀释好的TbRII-D2-Fc蛋白（100nM、50nM、25nM至0.0244nM）加入到包被板中，每孔100ul。室温孵育一个半小时以后，弃样品，用0.05% PBS-T洗涤5次，然后加入100ul经过稀释（1:20000）的HRP-Rabbit Anti-Human IgG Fc（洛阳佰奥通，Cat#C030222），室温孵育一个半小时，洗涤液洗涤5次，加入HRP底物，避光显色10-20分钟以后用2N H₂S₄终止显色反应，于酶标仪上读取OD450值。

结果显示（表1），TbRII-D2-Fc分别具有与TGF-βI（图4A）和VEGF-A （图4B）的结合活性，其对应的EC₅₀分别达到1.53mM及0.6mM。其它两种结构组合的蛋白对两种靶点的结合活性也很强，EC₅₀分别达到2.5mM左右（TGF-βI）及0.16mM（VEGF-165）。

<table>
<thead>
<tr>
<th>表1 融合蛋白与靶点的结合活性EC₅₀(nM)</th>
<th>TbRII-D2-Fc</th>
<th>D2-TbRII-Fc</th>
<th>TbRII-Fc-D2</th>
<th>D2-Fc</th>
<th>TbRII-Fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-βI</td>
<td>1.53</td>
<td>2.14</td>
<td>2.50</td>
<td>无活性</td>
<td>2.33</td>
</tr>
<tr>
<td>VEGF-A</td>
<td>0.60</td>
<td>0.11</td>
<td>0.16</td>
<td>0.14</td>
<td>无活性</td>
</tr>
</tbody>
</table>

实施例4

TbRII-D2-Fc可抑制TGF-βI所诱导的肿瘤细胞的侵袭

利用24孔细胞室培养板进行了肿瘤细胞侵袭实验。方法是：将小室中加入含有TGF-βI的培养基，在滤膜的上层加入肿瘤细胞（PC-3）及一定浓度的TbRII-D2-Fc，培养箱培养24小时以后，用结晶紫对滤膜进行染色，并观察拍照滤膜底部细胞的密度。

利用PC-3细胞，分析了TbRII-D2-Fc对TGF-βI所诱导的肿瘤细胞的侵袭。

具体步骤如下：将含有Matrigel的细胞筛网放置于含有细胞培养液的24孔培养板内（BD Bioscience），培养液中含有10ng/ml的TGF-pi。将1x10⁵个PC-3细胞加入到细胞筛网内，然后按照分组要求将不同浓度的TbRII-D2-Fc及hlgG分别加入到相应筛网内，将24孔细胞培养板放置于细胞培养箱中，于30℃、5% CO₂条件下培养24小时。取出筛网，将滤膜用4%多聚甲醛固定15分钟，0.5%结晶紫染液染色15分钟，染完色洗掉多余染液，用棉签擦掉膜上层未穿过的细胞，于100倍显微镜下拍照侵袭细胞。每膜上下左右中5个不同视野。

如图5所示，TbRII-D2-Fc可显著抑制PC-3细胞从小室上层向下层的侵袭，抑制效应呈剂量依赖性。

实施例5

TbRII-D2-Fc可阻断VEGF所诱导的血管内皮细胞管状形成

将HUVEC细胞调整浓度至3×10⁵/ml，将细胞加入到含有Matrigel的96孔培养板中，每孔50ul。然后将配制好的含有VEGF（20ng/ml）及不同浓度的TbRII-D2-Fc（20、50、100ng/ml）的培养液加入到培养板中，每孔50ul。培养板置于培养箱培养，并于不同时间点（0h，2h，4h，6h，8h，24h）显微镜下拍照存档。
结果表明，HUVEC 细胞在 VEGF 存在的条件下在凝胶中培养时，显微镜下可形成血管状图形，类似于体内血管的形成。人们通常利用该实验来验证某种药物对血管形成的影响。利用该实验本发明人分析了 TPRII-D2-Fc 对体外血管形成的影响。结果表明（图 6），TPRII-D2-Fc 可显著抑制 HUVEC 细胞的管状形成。

实施例 6

TPRII-D2-Fc 抑制肿瘤生长及肿瘤转移

利用常规技术，混合以下组分，制得终浓度为 1wt%重组蛋白溶液，其配方如下：

| 重组蛋白 | 10mg |
| 生理盐水 | 加至 10ml |

调节 pH 至 6.8-7.1。

给正常雄性 Balb/c 小鼠乳腺部位皮下注射 lx10^5 个小鼠乳腺癌细胞 (4T1)，第二天随机分为 5 组，第一组腹腔注射 5mg/kg TPRII-D2-Fc，第二组腹腔注射 10mg/kg TPRII-D2-Fc，第三组腹腔注射 10mg/kg D2-Fc（对照）、第四组腹腔注射 10mg/kg TPRII-Fc（对照）、每周两次，连续 6 次给药。第五组为阴性对照，腹腔注射 PBS。每周三次测量肿瘤体积。治疗后第 21 天处死小鼠，摘取肿瘤称重，取肺脏，显微镜下观察肺部转移灶。

结果表明，TPRII-D2-Fc 在两个剂量都可以显著抑制肿瘤生长（图 7A），抑制率均大于 50%。D2-Fc 的肿瘤抑制率也很好，达到～55%，而 TPRII-Fc 的肿瘤抑制率只有 26%。

肺部转移情况（图 7B），阴性对照组平均有 11.4 个转移灶，TPRII-D2-Fc 治疗组分别有 4.2(5mg/kg) 及 3.56(10mg/kg) 个。TPRII-Fc 虽然不能有效抑制肿瘤生长，但对肺部的肿瘤转移则有显著抑制作用（转移灶有 4.4 个）。虽然 D2-Fc 能很好的抑制肿瘤生长，但对肿瘤转移的抑制作用明显低于 TPRII-D2-Fc 及 D2-Fc。

结果

双功能融合蛋白 TPRII-D2-Fc 具有更强的对肿瘤生长及肿瘤转移的协同抑制效果，而只针对一个靶点的融合蛋白只能具有一种明显的抑制作用，要么只能抑制肿瘤生长（阻断 VEGF），要么只能抑制肿瘤转移（阻断 TGF-pi）。

此外，10mg/kg TPRII-D2-Fc 的实验组的抑制效果也明显优于 5mg/kg D2-Fc+5mg/kg TPRII-Fc 的实验组。

在本发明提及的所有文献都在本申请中引用作为参考，就如同每一篇文献被单独引用作为参考那样。此外应理解，在阅读了本发明的上述讲授内容之后，本领域技术人员可以对本发明作各种改动或修改，这些等价形式同样落于本申请所附权利要求书所限定的范围。
1. 一种融合蛋白，其特征在于，所述融合蛋白包括融合在一起的以下元件：
   «任选的位于N端的信号肽；
(ii) 第一蛋白元件；
(iii) 第二蛋白元件；以及
(iv) 与第一蛋白元件和/或第二蛋白元件连接的免疫球蛋白元件，
   其中，所述信号肽可操作地连于由(ii)、(iii)和(iv)所构成的融合元件；
   并且第一蛋白元件为TGF-β受体膜外区蛋白元件；第二蛋白元件为包括血管内皮细胞生长因子受体VEGFR1第二膜外区D2的蛋白元件。
2. 如权利要求1所述融合蛋白，其特征在于，所述的融合蛋白具有选自下组的结构：
   (1) 式Ia或式Ib所述结构：
      D-A-B-C     (Ia)，或
      D-B-A-C     (Ib)
   (2) 式IIa或式IIb所述结构：
      D-A-C-B     (IIa)，或
      D-B-C-A     (IIb)
   其中，
   A为TGF-β受体膜外区蛋白元件；
   B为包括血管内皮细胞生长因子受体VEGFR1第二膜外区D2的蛋白元件；
   C为免疫球蛋白元件；
   D为任选的信号肽序列；
   “.”表示连接上述元件的肽键或肽接头。
3. 如权利要求1所述融合蛋白，其特征在于，所述融合蛋白具有以下多种功能：
   a) 与VEGF的结合活性EC₅₀为0.6-2nM；
   b) 与TGF-βI的结合活性EC₅₀为1.5-2.5nM；
   c) 可以同时与VEGF和TGF-βI两种配体结合；
   d) 可阻断VEGF诱导的体外或体内血管形成；
   e) 可抑制TGF-βI诱导的肿瘤细胞的迁移和侵袭。
4. 一种蛋白二聚体，其特征在于，所述的二聚体由两个权利要求1-3中任一所述的融合蛋白构成。
5. 如权利要求4所述的二聚体，其特征在于，所述二聚体具有选自下组的结构：
   (1) 式Ia-1或式Ib-1所述结构：
      D-A-B-C     D-B-A-C
      ""或""
      D-A-B-C     (Ia-1) D-B-A-C     (Ib-1)
(2) 式 II a-1 或式 IIb-1 所述结构：

D-A-C-B  
D-B-C-A  

或

D-A-C-B (II a-1)  
D-B-C-A (IIb-1)

其中：
A 为 TGF-β 受体膜外区蛋白元件；
B 为包括 VEGFR 第二膜外区 D2 的蛋白元件；
C 为免疫球蛋白元件；
D 为任选的信号肽序列；

"-" 表示连接上述元件的肽键或肽接头；

"Ⅱ" 表示二硫键。

6. 一种分离的多核苷酸，其特征在于，所述的多核苷酸编码权利要求 1 所述的融合蛋白。

7. 一种载体，其特征在于，它含有权利要求 6 所述的多核苷酸。

8. 一种宿主细胞，其特征在于，它含有权利要求 7 所述的载体或基因组中整合有权利要求 6 所述的多核苷酸。

9. 一种产生蛋白的方法，其特征在于，它包括步骤：

(1) 在适合表达的条件下，培养权利要求 8 所述的宿主细胞，从而表达出权利要求 1 所述的融合蛋白；和

(2) 分离所述融合蛋白或由所述融合蛋白形成的二聚体。

10. 一种药物组合物，其特征在于，所述组合物包含：

权利要求 1 所述的融合蛋白和/或权利要求 4 所述的蛋白二聚体，以及

药学上可接受的载体。

11. 如权利要求 1 所述的融合蛋白和/或权利要求 4 所述的蛋白二聚体的用途，其特征在于，用于制备治疗疾病药物。

12. 一种抑制与 TGF-β 及 VEGF 相关疾病的方法，包括步骤：给需要的对象施用权利要求 1 所述的融合蛋白。
图 1

图 2A

信号肽：69bp
TpRII：483bp
VEGFR1-b2：300bp
EcoRI：6bp
hIgG1-Fc：696bp
SEQ ID NO.: 1

信号肽: 23aa
TβRII: 161aa
VEGFR1-D2: 100aa
EcoRI: 2aa
hIgG1-Fc: 232aa

图 2B

<table>
<thead>
<tr>
<th>TβRII-D2-Fc</th>
<th>D2-TβRII-Fc</th>
<th>TβRII-Fc-D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>kD</td>
<td>NR</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 3A
图 4B

图 5
图 7B
**International Search Report**

A. **CLASSIFICATION OF SUBJECT MATTER**

C07K 19/00 (2006.01) i; C07K 14/00 (2006.01) i; C12N 15/00 (2006.01) i; C12N 1/00 (2006.01) i; C12P 21/00 (2006.01) i; A61K 38/16 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

C07K; C12N; C12P; A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Databases: WPI, EPDOC, CNPAT, CNKI, ISi Web of knowledge, NCBI, Google Scholar

Key words: transforming growth factor, vascular endothelial growth factor, TGF, VEGF, receptor, immunoglobulin, IgG, fusion protein

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>W O 2010003118 A1 (TRUBION PHARMA CEUTICALS INC.), 07 January 2010 (07.01.2010), claims, and description, paragraphs 31, 32, 87, 93, 135 and 170</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CN 102850458 A (HUABO BIOPHARM CO., LTD.), 02 January 2013 (02.01.2013), claims, and description, paragraphs 5-73</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CN 103319610 A (HUABO BIOPHARM CO., LTD.), 25 September 2013 (25.09.2013), claims, and description, paragraphs 5-46</td>
<td>1-11</td>
</tr>
</tbody>
</table>

$\n$ Further documents are listed in the continuation of Box C. $\n$ See patent family annex.

* Special categories of cited documents:
  * "A" document defining the general state of the art which is not considered to be of particular relevance
  * "E" earlier application or patent but published on or after the international filing date
  * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  * "O" document referring to an oral disclosure, use, exhibition or other means
  * "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* "F" document member of the same patent family

Date of the actual completion of the international search: 30 April 2015 (30.04.2015)

Date of mailing of the international search report: 06 May 2015 (06.05.2015)

Name and mailing address of the ISA/OC:

State Intellectual Property Office of the P. R. China

No. 6, Xitucheng Road, Jinningqiao

Haodian District, Beijing 100086, China

Facsimile No.: (86-10) 62019451

Authorized officer: ZHANG, Qi

Telephone No.: (86-10) 62411036

Form PCT/IS A/210 (second sheet) (July 2009)
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing filed or furnished:
   a. (means)
      - [ ] on paper
      - [x] in electronic form
   b. (time)
      - [x] in the international application as filed
      - [ ] together with the international application in electronic form
      - [ ] subsequently to this Authority for the purposes of search

2. [ ] In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.**: 12
   because they relate to subject matter not required to be searched by this Authority, namely:
   [1] The subject matter of claim 12 relates to a method for treatment of a disease of a human or animal body, and thus falls within the case under PCT Rule 39.1(iv), for which an international search is not required.

2. **Claims Nos.**:
   because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.**:
   because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2010003118 A I</td>
<td>07 January 2010</td>
<td>NZ 590667 A</td>
<td>25 January 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K R 20110044992 A</td>
<td>03 May 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U S 2011177070 A I</td>
<td>21 July 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011526794 A</td>
<td>20 October 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2011000039 A</td>
<td>31 May 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 210268 D O</td>
<td>31 March 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2009266873 A I</td>
<td>07 January 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201170031 A I</td>
<td>30 August 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 27298 10 A I</td>
<td>07 January 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102203258 A</td>
<td>28 September 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2310508 A I</td>
<td>20 April 2011</td>
</tr>
<tr>
<td>CN 102850458 A</td>
<td>02 January 2013</td>
<td>WO 2013000234 A I</td>
<td>03 January 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102850458 B</td>
<td>01 October 2014</td>
</tr>
<tr>
<td>CN 103319610 A</td>
<td>25 September 2013</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
A. 主题的分类
C07K 19/00 (2006.01) i ; C07K 14/00 (2006.01) i ; C12N 15/00 (2006.01) i ; C12N 1/00 (2006.01) i ; C12P 21/00 (2006.01) i ; A61K 38/16 (2006.01) i

按照国际专利分类 (IPC) 或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)
C07K ; C12N ; C12P ; A61K

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库 (数据库的名称，和使用的检索词 (如使用))
数据库：WIPO，EPDOCD，CNPAT，CNKI，ISI Web of knowledge，NCBI，Google Scholar；关键词：转化生长因子，血管内皮细胞生长因子，受体，免疫球蛋白，融合蛋白，TGIF，VEGF，receptor，immunoglobulin，IgG，fusion protein

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文献</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WD 20100031 18 AI (TRIBUNION PHARMACEUTICALS INC) 2010 年 1 月 7 日 (2010 - 01 - 07)</td>
<td>1-1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>右利要书，说明书第 31，32，87，93，135，170 段</td>
</tr>
<tr>
<td>A</td>
<td>CN 102890458 A (华博生物医药技术（上海）有限公司) 2013 年 1 月 2 日 (2013 - 01 - 02)</td>
<td>1-1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>右利要书，说明书第 7-53 段</td>
</tr>
<tr>
<td>A</td>
<td>CN 103319610 A (华博生物医药技术（上海）有限公司) 2013 年 9 月 25 日 (2013 - 09 - 25)</td>
<td>1-1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>右利要书，说明书第 5-46 段</td>
</tr>
</tbody>
</table>

□ 其他文件在C框的续页中列出。

国际检索实际完成的日期

2015 年 4 月 30 日

国际检索报告邮寄日期

2015 年 5 月 6 日

ISA/CN 的名称和邮寄地址

中华人民共和国国家知识产权局 (ISA/CN)
北京市海淀区凤凰桥西土城路 6 号
100088 中国

电话号码: 86411036

表 PCT/ISA210 （第 2 页） (2009 年 7 月)
第 I 栏 核苷酸和 / 或氨基酸序列 (续第 1 页第 1. c 项)

1. 关于国际申请中公开的任何对要求保护的发明必要的核苷酸和 / 或氨基酸序列，国际检索是在下列基础上进行的：

   a. (提交提供)
      - 纸件形式
      - 电子形式

   b. (提交时间)
      - 在申请提交时的国际申请中
      - 以电子形式与国际申请一起提交
      - 为检索之用随后提交本单位

2. 另外，在提交 / 提供了多个版本或副本的序列表的情况下，提供了关于随后提交的或附加的副本中的信息与申请时提交的申请中的信息相同或未超出申请时提交的申请中的信息范围（如适用）的所需声明。

3. 补充意见：
根据条约第17条(2) (a), 对某些权利要求未做国际检索报告的理由如下:

1. **√** 权利要求：12
   因为它们涉及不要求本国单位进行检索的主题，即:
   [1] 权利要求12的主题涉及人体或动物体的疾病治疗方法，属于PCT实施细则第39.1 (iv) 规定的无须检索的情况。

2. **×** 权利要求：
   因为它们涉及国际申请中不符合规定的要求的部分，以致不能进行任何有意义的国际检索，具体地说:

3. **×** 权利要求：
   因为它们是从属权利要求，并且没有按照细则6.4 (a) 第2句和第3句的要求撰写。
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 20100031 18 A1</td>
<td>2010年1月7日</td>
<td>NZ 590067 A</td>
<td>2013年1月25日</td>
</tr>
<tr>
<td>KR 20110044992 A</td>
<td>2011年5月3日</td>
<td>US 2011177070 A</td>
<td>2011年7月21日</td>
</tr>
<tr>
<td>JP 20111526794 A</td>
<td>2011年10月20日</td>
<td>MX 201100039 A</td>
<td>2011年5月31日</td>
</tr>
<tr>
<td>IL 210268 A</td>
<td>2011年3月31日</td>
<td>AU 20109266873 A</td>
<td>2011年1月7日</td>
</tr>
<tr>
<td>EA 201170031 A</td>
<td>2011年8月30日</td>
<td>CA 2011729810 A</td>
<td>2011年1月7日</td>
</tr>
<tr>
<td>CN 102203258 A</td>
<td>2011年9月28日</td>
<td>EP 2310508 A</td>
<td>2011年4月20日</td>
</tr>
<tr>
<td>CN 102850458 A</td>
<td>2013年1月2日</td>
<td>WO 2013000234 A</td>
<td>2013年1月3日</td>
</tr>
<tr>
<td>CN 102850458 B</td>
<td>2014年10月1日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 103318610 A</td>
<td>2013年9月25日</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>