(54) 发明名称
基于磁流体填充光子晶体微腔的磁场和温度同时测量方法

(57) 摘要
本发明提出了基于磁流体填充光子晶体微腔的磁场和温度同时测量方法。通过将两种不同类型
的磁流体分别填充在一个光子晶体波导平板中两个不同区域的空气孔中，形成两个级联的
光子晶体微腔。这样光子晶体波导的传播光谱中就会出现两个相互独立的模振态（对应两个模
振波长）。随着外界磁场或温度的变化，两种填充磁流体的折射率均会发生不同程度的变化，从而使
光子晶体波导传播光谱中的两个模振波长发生移动，且两个模振波长对磁流体折射率变化的敏感
度不一致。最后，采用双波长矩阵法，根据两个模振波长的移动量反推出外界磁场和温度的变化
量，实现对磁场和温度的同时测量。计算可得，最小可检测的磁场变化量为 1.33300e，最小可检测
的温度变化量为 0.301K。
1. 基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：将两种不同类型的磁流体分别填充在一个光子晶体波导平板中两个不同区域（分别记为1#和2#填充区域）的空气孔中，形成两个级联的光子晶体微腔，这样光子晶体波导的输出光谱中就会出现两个相互独立的谐振谷（对应于不同的谐振波长），当外界磁场或温度发生变化时，两种磁流体的折射率会发生不同程度的变化，最终使光子晶体波导输出光谱中的两个谐振波长发生移动，且两个谐振波长对磁流体折射率变化的敏感度不一致，最后，采用双波长矩阵法，可以根据两个谐振波长的移动量解调出磁场和温度的变化量，实现磁场和温度的同时测量。

2. 如权利要求1所述的基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：光子晶体波导为空气桥结构，空气孔呈等边三角形排列，除2#填充区域外，其余区域用的半径均为r=0.32a（其中a=447nm为光子晶体的晶格常数，即相邻空气孔之间的间距），2#填充区域的空气孔半径为r2=0.30a，波导宽度为d=1.9052a，所选用的基底介质为普通硅材料，其厚度为h=220nm，有效折射率为n=2.87。

3. 如权利要求1所述的基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：所填充的两种磁流体分别是体积浓度为1.8%的水基Fe₃O₅（记为1#磁流体）和质量浓度为0.855mg/g的水基Fe₃O₅（记为2#磁流体），对于1#磁流体，它的磁光系数（即磁流体的折射率随磁场的变化率）为K₁₂=1.50×10⁻⁵RIU/0e，热光系数（即磁流体的折射率随温度的变化率）为K₂₁=6.64×10⁻⁵RIU/K，而对于2#磁流体，它的磁光系数为K₁₂=1.71×10⁻⁵ RIU/0e，热光系数为K₂₁=7.56×10⁻⁵ RIU/K。

4. 如权利要求1所述的基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：所述的两个不同的填充区域分别是半径为r₁=0.32a的10个相邻空气孔（1#填充区域）和半径为r₂=0.30a的10个相邻空气孔（2#填充区域），它们均紧邻于波导且垂直于波导的一侧。

5. 如权利要求1所述的基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：所述的两个级联光子晶体微腔分别是将1#磁流体填充在1#填充区域形成1#光子晶体微腔，同时将2#磁流体填充在2#填充区域形成2#光子晶体微腔，1#光子晶体微腔的谐振波长λ₁在1520nm附近，其折射率灵敏度为K₁₂=500nm/RIU，2#光子晶体微腔的谐振波长λ₂在1545nm附近，其折射率灵敏度为K₁₂=520nm/RIU。

6. 如权利要求1所述的基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：当两个级联的光子晶体微腔所受磁场由500e增加到2000e时，1#磁流体的折射率由1.3420变化到1.3440，同时，2#磁流体的折射率由1.4623变化到1.4650，通过计算所得谐振波长λ₁的磁场变化灵敏度为0.0075nm/0e，谐振波长λ₂的磁场变化灵敏度为0.0089nm/0e。

7. 如权利要求1所述的基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，其特征在于：当两个级联的光子晶体微腔所受温度由8K增加到60K时，1#磁流体的折射率由1.3427变化到1.3385，同时，2#磁流体的折射率由1.4671变化到1.4635，通过计算所得谐振波长λ₁的温度变化灵敏度为-0.0332nm/K，谐振波长λ₂的温度变化灵敏度为-0.0393nm/K。
基于磁流体填充光子晶体微腔的磁场和温度同时测量方法

技术领域

[0001] 本发明涉及一种基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，属于光电检测技术领域。

背景技术

发明内容

（一）要解决的技术问题

本发明的目的在于解决传统磁场传感器中精度不高、测量精度受温度影响等问题，提出一种结构简单，易于实现，灵敏度高，体积小，稳定性好，且能够同时对磁场和温度进行测量的方法。

（二）技术方案

为了达到上述目的，本发明提出一种基于磁流体填充全光子晶体微腔的磁场和温度同时测量方法，其特征在于：将两种不同类型的磁流体分别填充在一个光子晶体波导平板中两个不同区域的空气孔中，形成两个级联的光子晶体微腔，这样光子晶体波导的输出光谱中就会出现两个相互独立的谐振谷（对应于不同的谐振波长）。当外界磁场或温度发生变化时，两种磁流体的折射率均会发生不同程度的变化，最终导致光子晶体波导输出光谱中的两个谐振波长发生移动，且两个谐振波长对磁流体折射率变化的敏感度不一致。最后，采用双波长频率法，根据两个谐振波长的移动量解调出外界磁场和温度的变化量，实现磁场和温度的同步测量。

上述方案中，所述的磁流体波导为空气桶结构，空气孔呈等边三角形排列，空气孔的半径为r=0.32μm（其中a=447nm为光子晶体的晶格常数，即相邻空气孔之间的间距），波导宽度为d=1.15a=1.9052μm，所选用的背景介质为普通硅材料，其厚度为h=220nm，有效折射率为n=2.87。

上述方案中，所填充的两种磁流体分别为体积浓度为1.8%的水基Fe_{3}O_{4}（记为1#磁流体）和质量浓度为0.85emu/g的水基Fe_{5}O_{4}（记为2#磁流体），对于1#磁流体，其磁光系数（即，磁流体的折射率随磁场的变化率）为K_{M1}=1.50×10^{-6}RIU/Oe，热光系数（即，磁流体的折射率随温度的变化率）为K_{T1}=-6.64×10^{-6}RIU/K，而对2#磁流体，其磁光系数为K_{M2}=1.71×10^{-6}RIU/Oe，热光系数为K_{T2}=-7.56×10^{-6}RIU/K。

上述方案中，所述的两个不同的填充区域分别是半径为r_{1}=0.32μm的10个相邻空气孔（1#填充区域）和半径为r_{2}=0.30μm的10个相邻空气孔（2#填充区域），它们均紧邻于波导且位于波导的一侧。

上述方案中，所述的两个级联光子晶体微腔分别是将1#磁流体填充在1#填充区域形成1#光子晶体微腔，同时将2#磁流体填充在2#填充区域形成2#光子晶体微腔，1#光子晶体微腔的谐振波长λ_{1}在1520nm附近，其折射率灵敏度为K_{1}=500nm/RIU，2#光子晶体微腔的谐振波长λ_{2}在1545nm附近，其折射率灵敏度为K_{3}=520nm/RIU。

上述方案中，当两个级联的光子晶体微腔所受磁场由500e增加到2000e时，1#磁流体的折射率由1.3420变化到1.3440，同时，2#磁流体的折射率由1.4623变化到1.4650，通过计算可得谐振波长λ_{1}的磁场变化灵敏度为0.0075nm/0e，谐振波长λ_{2}的磁场变化灵
敏感度为 0.0089nm/Oe。

[0012] 上述方案中，当两个级联的光子晶体微腔所受温度由 8K 增加到 60K 时，1# 磁流体的折射率由 1.3427 变化到 1.3385，同时，2# 磁流体的折射率由 1.4671 变化到 1.4635，通过计算可得谐振波长 λ_1 的温度变化灵敏度为 -0.0332nm/K，谐振波长 λ_2 的温度变化灵敏度为 -0.0393nm/K。

[0013] （三）有益效果

从上述技术方案可以看出，本发明具有以下有益效果：

1）本发明提出的这种基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，既具有传统光学磁场传感器所具有的灵敏度高、抗电磁干扰、系统性好、精度高、稳定性好的特性，又能解决传统光学磁场传感器测量精度易受外界温度干扰的问题，大大提高了磁场测量的精度。[0014] 2）本发明提出的这种基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，不仅解决了磁场和温度之间的交叉敏感问题，还为双参数测量提供了新技术和新方法。[0015] 3）本发明提出的这种基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，实现了单个系统的双参数检测，大大降低了成本，并且光子晶体微腔的尺寸仅为微米量级，能用于测量空间狭小或者某些需要单点测量要求的场合。

附图说明

[0016] 以下各图所取的光子晶体微腔的结构参数以及填充磁流体的折射率大小均与具体实施方式中相同。

[0017] 图 1 为基于磁流体填充的级联光子晶体微腔结构示意图；

图 2(a) 为 2# 填充区域的空气孔折射率不变时，内联光子晶体微腔的输出光谱与 1# 填充区域的空气孔折射率之间的关系曲线，图 2(b) 为 1# 填充区域的空气孔折射率不变时，内联光子晶体微腔的输出光谱与 2# 填充区域的空气孔折射率之间的关系曲线；

图 3(a) 为外部磁场变化时，两个光子晶体微腔的谐振波长 $\lambda_1、\lambda_2$ 的变化量与磁场之间的关系曲线，图 3(b) 为外部温度变化时，两个光子晶体微腔的谐振波长 $\lambda_1、\lambda_2$ 的变化量与温度之间的关系曲线。

具体实施方式

[0018] 为使本发明的目的、技术方案和优点更加清楚明白，以下结合具体实施例，并参照附图，对本发明的具体结构、原理以及传感特性作进一步的详细说明。

[0019] 本发明提出了一种基于磁流体填充光子晶体微腔的磁场和温度同时测量方法，如图 1 所示为基于磁流体填充的级联光子晶体微腔的结构示意图。该结构中，空气孔呈等边三角形排列，空气孔的半径为 $r=0.32a$（其中 $a=447$nm 为光子晶体的晶格常数，即相邻空气孔之间的间距），波导宽度为 $d=1.1\sqrt{3}a=1.9052a$，所选用的背景介质为普通硅材料，其厚度为 $h=220$nm，有效折射率为 $n=2.87$。为了形成两个级联的微腔结构，将体积浓度为 1.8% 的水基 Fe$_3$O$_4$（记为 1# 磁流体）填充在如图 1 中所示的 1# 填充区域的 10 个空气孔（半径为 $r_1=0.32a$）中形成 1# 光子晶体微腔，将质量浓度为 0.85emu/g 的水基 Fe$_3$O$_4$（记为 2# 磁流体）填充在如图 1 中所示的 2# 填充区域的 10 个空气孔（半径为 $r_2=0.30a$）中形成 2# 光子
晶体微腔。两个微腔具有不同的谐振波长（λ₁和λ₂），当一束宽谱光通过波导传输时，从波导末端探测到的输出谱中将会出现两个谐振谷，分别对应于两个微腔的谐振波长。当2#填充区域的折射率n₂不变，1#填充区域的空气孔折射率n₁由1.34变化到1.355（变化间隔为0.005）时，级联光子晶体微腔的输出光谱与n₁之间的关系曲线如图2(a)所示，它们是利用麻省理工学院的MEEP软件仿真得到的，横坐标为入射光波长λ，纵坐标为归一化透射率T。相反，当1#填充区域的折射率n₁不变，2#填充区域的空气孔折射率n₂由1.34变化到1.355（变化间隔为0.005）时，级联光子晶体微腔的输出光谱与n₂之间的关系曲线如图2(b)所示。比较图2(a)和图2(b)，我们可以发现：(1)当填充孔的折射率增加时，两个谐振腔的谐振波长均会发生红移，其中1#光子晶体微腔的谐振波长λ₁在1520nm附近，其折射率灵敏度为K₁=500nm/RIU，2#光子晶体微腔的谐振波长λ₂在1545nm附近，其折射率灵敏度为K₂=520nm/RIU；(2)当其中一个填充区域的空气孔折射率发生变化时，只会影响填充区域所在的微腔谐振波长发生移动，而不会影响另外一个微腔的谐振特性，也就是说，两个级联的光子晶体微腔谐振谷是相互独立的，可以作为两个独立的传感器使用。

[0020]磁流体是磁性纳米颗粒借助表面活性剂均匀地弥散在基液中而形成的稳定胶体体系。在没有外加磁场的情况下，磁性纳米颗粒会随机分布在基液中，但是当施加一定的外界磁场时，磁流体中的纳米颗粒就会发生聚集并沿磁场方向形成以一定形式排列的磁链结构，而外界温度和磁场会同时影响磁链的形成和排列规律，从而影响磁流体的折射率。表1为实验得到的1#磁流体的折射率n₁和2#磁流体的折射率n₂与外界磁场H之间的关系，当磁场由500e增加到2000e时，n₁由1.3420变化到1.3440，n₂由1.4623变化到1.4650。对数据进行线性拟合后得到1#磁流体的磁光系数（即，磁流体的折射率随磁场的变化率）为K₁=1.50×10⁻³RIU/0e，2#磁流体的磁光系数为K₂=1.71×10⁻³ RIU/0e。表2为实验得到的1#磁流体折射率n₁和2#磁流体的折射率n₂与外界温度T之间的关系。当温度由8K上升到60K时，n₁由1.3427变化到1.3385，n₂由1.4671变化到1.4635。对数据进行线性拟合后得到1#磁流体的热光系数（即，磁流体的折射率随温度的变化率）为K₁=−6.64×10⁻⁶RIU/K，2#磁流体的磁光系数为K₂=−7.56×10⁻⁵RIU/K。

[0021]表1. 1#磁流体的折射率n₁和2#磁流体的折射率n₂与外界磁场H之间的关系

<table>
<thead>
<tr>
<th>H(0e)</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>n₁</td>
<td>1.3420</td>
<td>1.3424</td>
<td>1.3428</td>
<td>1.3432</td>
<td>1.3436</td>
<td>1.3438</td>
<td>1.3440</td>
</tr>
<tr>
<td>n₂</td>
<td>1.4623</td>
<td>1.4628</td>
<td>1.4633</td>
<td>1.4638</td>
<td>1.4643</td>
<td>1.4647</td>
<td>1.4650</td>
</tr>
</tbody>
</table>

表2. 1#磁流体的折射率n₁和2#磁流体的折射率n₂与外界温度T之间的关系

<table>
<thead>
<tr>
<th>T(K)</th>
<th>8</th>
<th>15</th>
<th>24.3</th>
<th>32</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>n₁</td>
<td>1.3427</td>
<td>1.3422</td>
<td>1.3414</td>
<td>1.3409</td>
<td>1.3404</td>
<td>1.3385</td>
<td>1.3385</td>
</tr>
<tr>
<td>n₂</td>
<td>1.4671</td>
<td>1.4663</td>
<td>1.4655</td>
<td>1.4648</td>
<td>1.4642</td>
<td>1.4639</td>
<td>1.4635</td>
</tr>
</tbody>
</table>

由以上的分析可知，当外界磁场或者温度作用在级联光子晶体微腔上时，会引起1#磁流体和2#磁流体的折射率发生变化，将两者的变化量记为Δn₁, Δn₂，则有如下关系：

\[
\begin{pmatrix}
\Delta n_1 \\
\Delta n_2
\end{pmatrix} =
\begin{pmatrix}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{pmatrix}
\begin{pmatrix}
\Delta H \\
\Delta T
\end{pmatrix} =
\begin{pmatrix}
1.50 \times 10^{-5} & -6.64 \times 10^{-6} \\
1.71 \times 10^{-5} & -7.56 \times 10^{-5}
\end{pmatrix}
\begin{pmatrix}
\Delta H \\
\Delta T
\end{pmatrix}
\]

而光子晶体微腔空气孔的折射率变化会引起谐振波长的移动，将两个波长的移动量记
为 $\Delta \lambda_1, \Delta \lambda_2$, 可得出以下关系式：

$$
\begin{pmatrix}
\Delta \lambda_1 \\
\Delta \lambda_2
\end{pmatrix} =
\begin{pmatrix}
K_1 & 0 \\
0 & K_2
\end{pmatrix}
\begin{pmatrix}
\Delta n_1 \\
\Delta n_2
\end{pmatrix} =
\begin{pmatrix}
K_1 K_{H1} & K_1 K_{T1} \\
K_2 K_{H2} & K_2 K_{T2}
\end{pmatrix}
\begin{pmatrix}
\Delta H \\
\Delta T
\end{pmatrix} =
\begin{pmatrix}
0.0075 & -0.0332 \\
0.0089 & -0.0393
\end{pmatrix}
\begin{pmatrix}
\Delta H \\
\Delta T
\end{pmatrix}
$$

(2)

由公式 (2) 可得到外界磁场与两个谐振波长的移动量之间的定量关系（如图 3(a) 所示），以及外界温度与两个谐振波长的移动量之间的定量关系（如图 3(b) 所示）。对于 1# 光子晶体微腔，其谐振波长 λ_1 的磁场变化灵敏度为 0.0075nm/0e, 温度变化灵敏度为 -0.0332nm/K; 对于 2# 光子晶体微腔, 其谐振波长 λ_2 的磁场变化灵敏度为 0.0089nm/0e, 温度变化灵敏度为 -0.0393nm/K。

[0022] 根据双波长检测理论可得：

$$
\begin{pmatrix}
\Delta H \\
\Delta T
\end{pmatrix} =
\begin{pmatrix}
0.0075 & -0.0332 \\
0.0089 & -0.0393
\end{pmatrix}^{-1}
\begin{pmatrix}
\Delta \lambda_1 \\
\Delta \lambda_2
\end{pmatrix} =
\begin{pmatrix}
-53835.62 & 45479.45 \\
-12191.78 & 10273.97
\end{pmatrix}
\begin{pmatrix}
\Delta \lambda_1 \\
\Delta \lambda_2
\end{pmatrix}
$$

(3)

由此，当外界磁场或者温度作用在级联光子晶体微腔上时，我们可以通过监测两个谐振波长的移动量反推出外界磁场和温度的大小。考虑到目前光谱仪最小可探测的波长移动量为 0.01nm，则最小可检测的磁场强度变化量为 1.3330e, 最小可检测的温度变化量为 0.301K。
图 3(b)