METHOD FOR FIXING A REINFORCING MESH TO A BASE OR TO THE GROUND

Inventor: Rinaldo Diloreto, Richmond, VA (US)

Correspondence Address:
SHLESINGER, ARKWRIGHT & GARVEY LLP
3000 South Eads Street
Arlington, VA 22202 (US)

Appl. No.: 10/937,307
Filed: Sep. 10, 2004

Publication Classification

Int. Cl.
E04H 12/00 (2006.01)

U.S. Cl. .. 52/649.1

ABSTRACT

Method of providing a reinforced substrate includes providing a base layer, providing a reinforcing mesh on the base layer and providing an adhesive strip. The adhesive strip includes an adhesive and a backing covering the adhesive. The adhesive strip is put on at least a portion of the reinforcing mesh, and force is applied to the adhesive strip to adhere the adhesive strip to the base layer and to the reinforcing mesh, so that the reinforcing mesh is secured to the base layer. The resultant reinforced substrate may include a reinforcing mesh having longitudinal and transverse wires which are surrounded by a solid adhesive on the adhesive strip to reduce or eliminate movement of the reinforcing mesh during the making of the reinforced substrate.
METHOD FOR FIXING A REINFORCING MESH TO A BASE OR TO THE GROUND

FIELD OF THE INVENTION

[0001] The invention relates to a method for applying a substrate. More specifically, the invention relates to a method for securing a reinforcing element on a base or on the ground to reinforce a substrate. Even more particularly, the invention relates to a system and method for adhering a reinforcing element, such as a reinforcing mesh to the ground or to a base layer, such as a layer including a hydrocarbon-containing material or the like, and then adding a substrate which is thus reinforced.

BACKGROUND OF THE INVENTION

[0002] Reinforcing roads or surfaces, such as parking lots, with wire mesh is known.

[0003] A reinforcing mat or mesh which has been used for reinforcing the ground or a layer of the road that is made of asphalt, bitumen, or other hydrocarbon-containing material, and the like, includes the successful reinforcing mat sold by the N. V. Bekaert S.A. under the name MESH TRACK™. MESH TRACK™ includes a woven galvanized steel wire mat or mesh.

[0004] Methods of securing a reinforcing mat in such roads have been described in:

[0005] Published European Patent Application No. 0 429 106 to N. V. Bekaert S.A., published May 29, 1991; and

OBJECTS AND SUMMARY OF THE INVENTION

[0009] It is an object of the invention to overcome the drawbacks of the prior art systems, methods, and devices.

[0010] It is another object of the invention to provide a system and method of reinforcing asphalt and the like that is easier and faster to apply than the prior art.

[0011] A further object of the invention is to provide a method of attaching a substrate to an underlying base, such as a base of concrete or asphalt.

[0012] Another object of the invention is to provide a method of attaching a substrate, including a mesh, to an underlying base that uses a roll of material, such as asphalt, as an adhesive.

[0013] A further object of the invention is to provide a method of securing a reinforcing element, such as a mesh, to an underlying base that sufficiently secures the reinforcing element so that forces applied by an asphalt paving machine when applying asphalt over the reinforcing element do not move the reinforcing element, such as by lifting up the mesh.

[0014] It is another object of the invention to provide a system and method of reinforcing asphalt and the like that can be evenly and consistently applied.

[0015] It is a further object of the invention to provide a mesh or mat, such as a wire mesh, which can be embedded in a base layer, such as the ground or the existing asphalt layer, and which cannot be pulled through the securing material which secures the mesh to the existing layer.

[0016] Another object of the invention is to provide a system and method which require no on-site heating of a liquid or solid adhesive, nor the use of a liquid adhesive on-site, for example.

[0017] Yet another object of the invention is to provide a system and method of securing a reinforcing mesh or mat that are faster than known methods.

[0018] It is another object of the invention to provide a system and method of reinforcing a layer of asphalt on a base layer that includes a mesh configured and engineered so that even if the mesh is moved longitudinally or transversely under forces applied to a securing layer or element during installation, the securing layer will not loosen or come up, even if the mesh is moved relative to the base layer.

[0019] It is yet another object of the invention to provide a system or method of securing a mesh for reinforcing a layer of material, such as an asphalt material, which cannot be loosened, such as by substantially vertically applied forces pulling on an adhering mesh or an adhering layer which secures the mesh to an existing layer, such as by one, two, or more workers pulling up on the mesh and/or adhering mesh securing the reinforcing mesh to the existing layer.

[0020] It is another object of the invention to provide a system and method for securing a mesh to a layer, such as a layer of asphalt, which requires no curing time for such an adhesive layer.

[0021] Another object of the invention is to provide a method and system of securing a mesh for reinforcing a layer of material, such as a layer of asphalt, that require no fasteners, such as mechanical fasteners.

[0022] In sum, the invention is directed to a method for reinforcing a layer of material, such as an asphalt layer, including providing a bottom layer of material, providing a mesh on the bottom layer of the material, providing an adhesive strip of the type including a backing and an adhesive material on the backing, placing the adhesive strip on the mesh, applying a force to the adhesive strip sufficient to secure the adhesive strip sufficiently to the bottom layer and sufficiently to secure the mesh relative to the bottom layer, and then adding a top layer of material, such as an asphalt layer.

[0023] The invention likewise includes a reinforced layer of material, such as an asphalt material, including a base layer, a reinforcing mesh, an adhesive strip adhering the mesh to the base layer, and a top layer of material, such as asphalt.

[0024] The invention likewise includes a reinforcing element, such as a mesh which may be in the form of a metal, steel, galvanized steel, polymer grid, polymer reinforcing plastic, other plastics, and with or without additional materials, backings, layers, mesh configurations, and other inter-layer products.
It will be appreciated that relative terms such as up, down, top, bottom, left, and right, are for convenience only and are not intended to be limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top front perspective view of an adhesive strip which may be used for fixing a reinforcing mesh to a base layer or to the ground, according to the invention;

FIG. 2 is a top front perspective view showing the first steps of the method for fixing a reinforcing mesh to a base layer or to the ground according to the invention, in which the adhesive strip of FIG. 1 is being rolled out onto a reinforcing element, such as the illustrated reinforcing mesh;

FIG. 3 is a top front perspective view of further steps according to the method for fixing a reinforcing mesh to a base layer or to the ground according to the invention, in which the adhesive strip of FIGS. 1 and 2 is being further adhered to the reinforcing mesh and the base layer or the ground;

FIG. 4 is a top front perspective view showing a still further step in the method for fixing a reinforcing mesh to a base layer or to the ground according to the invention, in which a further substrate, such as asphalt or another hydrocarbon-containing material is being applied to the secured adhesive strip which secures the reinforcing mesh to the base layer or to the ground, in accordance with the invention; and

FIG. 5 is a front elevational cross sectional view of the reinforced substrate according to the invention, taken along 5-5' of FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION

Turning to FIGS. 1-5, the system, method, and reinforced substrate according to the invention will be described in greater detail.

FIG. 1 shows an adhesive strip 10 which may be used in accordance with the invention. Adhesive strip 10 may include an adhesive or reinforcing layer 14. Adhesive layer 14 may include an adhesive or reinforcing layer 22 provided on a substantially nonadhesive layer or backing 26. Layer or backing 26 may be made of a fabric, such as a synthetic fabric, which may be a nonwoven synthetic fabric, such as a felt.

For convenience, and depending on the degree of “stickiness” or adhesive capabilities of adhesive layer 22 required, in use, a removable layer 30, such as a peel-off backing 30, may be provided on adhesive layer 26. It will be appreciated that peel-off backing 30 may be provided on a side of adhesive layer 22 opposite to the side of adhesive layer 22 on which the backing 26 is provided. A leading edge 32 of backing 30 is shown partially peeled off.

In use, as shown in FIG. 2, initial steps 50 of securing, such as by adhering, a reinforcing element, such as a reinforcing mesh 60 may be seen.

Reinforcing mesh 60 may be in the form of a hexagonal mesh including longitudinal reinforcing elements or wires 64 and transversely extending reinforcing elements or wire 68 extending transversely relative to longitudinal wire 64.

First, a base, the ground, or other substrate 80 is provided or selected.

Then, the reinforcing mesh 60 may be placed on base layer 80, such as by laying the reinforcing mesh 60 on top, as shown, or by rolling out the reinforcing mesh in the case where reinforcing mesh 60 is provided in rolls.

Depending on the manner in which reinforcing mesh 60 is supplied, reinforcing mesh 60 may or may not be further smoothed or “flattened out” on top of base layer 80.

In order to secure mesh 60 relative to base layer 80, the user then provides securing or adhering element or adhesive layer 10 on top of mesh 60 and base layer 80; i.e. on the side of reinforcing mesh 60 opposite to base layer 80, as will be readily appreciated from considering FIGS. 2-5, for example.

In the case where the adhesive layer or strip 10 is provided in the form of a roll 90, backing 30 may be removed at the same time roll 90 is unrolled on top of reinforcing mesh 60 in order to secure mesh 60 to base 80. That is, a free edge 94 of peel-off layer 30 may be pulled away from roll 90, as shown, as roll 90 is unrolled in the direction of arrow 100. Needless to say, adhesive layer 22 may face mesh 60, as shown, during the unrolling process, depending on the intended use.

As will be appreciated from FIG. 3, in which the adhesive strip has been completely unrolled as a substantially flat strip 110, the nonadhesive or substantially nonadhesive backing 26 will face upwardly away from mesh 60.

If desired, the adhesive strip and, specifically, adhesive layer 22 thereof, may be pressed against reinforcing mesh 60 and bottom layer 80 with sufficient additional force to ensure that reinforcing element or mesh 60 is substantially prevented from being moved relative to base layer 80. That is, the adhesive of adhesive layer 22 and the degree to which adhesive layer 22 is pressed against bottom 80 may be selected so that reinforcing strip is retained in a desired location and configuration relative to the other components, such as bottom layer 80, and depending on the intended use, a top layer of material to be added onto bottom layer 80, reinforcing mesh 60, and reinforcing strip 14, so that the method of providing a reinforced substrate may be completed in the desired fashion with the desired physical characteristics.

Thus, for example, the user may simply apply a downward force directing forces on top of backing 26 during the step of unrolling roll 90, such as shown in FIG. 2, or the user may walk or otherwise apply downward forces on backing 26 to secure adhesive layer 22 to reinforcing mesh 60 and bottom 80, or the user may, for example, apply even greater forces to strip 14, such as by use of the wheel of a vehicle driving one or more times on top of backing 26 when backing 26 is in place as shown in FIG. 3, or the user may make use of a roller, such as illustrated by a roller 120 of FIG. 3 being rolled in a direction 130 along and on top of backing 26 so that forces are applied downwardly on adhesive strip 14 to ensure that adhesive layer 22 is sufficiently
secured to base 80 and reinforcing mesh 60 to achieve the desired physical characteristics described above.

[0044] After sufficient downward forces have been applied to backing 26, such as shown in FIG. 4, depending on the thickness of adhesive layer 22 and backing 26, some or all of portions of reinforcing mesh 60 covered by strip 10 may be visible, owing to adhesive layer 22 having been forced down securely against reinforcing mesh 60 and base layer 80.

[0045] The adhesive strip 22 may be selected so that adhesive strip may be applied to mesh 60 at ambient temperature; i.e., without preheating adhesive layer 22 on-site.

[0046] As will be appreciated by viewing FIG. 4, a further layer 150, such as a hydrocarbon-containing layer, a bituminous layer, an asphalt layer, or a bitumen material, for example, may be provided on top of each of mesh 60, base 80, and adhesive strip 14.

[0047] Further layer 150 may be provided as soon as desired on top of mesh 60, base 80, and strip 10, thanks to there being no need to wait for adhesive layer 22 to cool, dry, or otherwise harden to adhere to mesh 60 and base layer 80.

[0048] In the cross sectional view of FIG. 5 it will be appreciated that base 80 may be an existing substrate, such as an existing asphalt layer, and the like, which has been provided on an existing ground layer or concrete layer 140, for example.

[0049] The reinforcing mesh may be made of metal, such as galvanized steel, plastic, and other materials, and may be made in accordance with U.S. Pat. No. 6,168,118 to Van Craynest et al., issued Jan. 2, 2001, which is incorporated herein by reference. The reinforcing mesh may be the reinforcing supplied by N. V. Bekaert S.A., such as PAVETRAC® mesh.

[0050] The adhesive layer or strip may be made to include an adhesive layer comprising asphalt or bituminous materials. The asphalt base compound may be extruded onto a geotextile backing; e.g., a nonwoven polypropylene fabric, and the non-stick backing layer may be a removable thin plastic layer. It is further contemplated that the nonwoven fabric may be a nonwoven (needle felt) polypropylene layer. The non-adhesive fabric backing may be thicker than the adhesive layer, depending on the intended use. The adhesive may be a solid selected to substantially surround wires of a reinforcing mesh, in use.

[0051] The adhesive strip may be as supplied under the name Trac'liq, a product of Pavetech International (see e.g. www.pavetech-intl.com).

[0052] While this invention has been described as having a preferred design, it is understood that it is capable of further modifications, and uses and/or adaptations of the invention and following in general the principle of the invention and including such departures from the present disclosure as come within the known or customary practice in the art to which the invention pertains, and as may be applied to the central features hereinbefore set forth, and fall within the scope of the invention or limits of the claims appended hereto.

What is claimed is:

1. A method of reinforcing a substrate to provide a reinforced substrate, the method comprising:
 a) providing a base layer;
 b) providing a reinforcing mesh on the base layer;
 c) providing an adhesive strip, the adhesive strip including a substantially solid adhesive and a backing substantially covering the adhesive;
 d) providing the adhesive strip on at least a portion of the reinforcing mesh;
 e) applying a sufficient force to the adhesive strip to sufficiently adhere the adhesive strip to the base layer and to sufficiently adhere the adhesive strip to the reinforcing mesh, and the reinforcing mesh being sufficiently secured to the base layer, so that before and during a step of providing the substrate on the base layer and the adhesive strip, the reinforcing mesh and the adhesive strip remain in place relative to the base layer; and
 f) providing the substrate on the adhesive strip and on the reinforcing mesh secured to the base layer by the adhesive strip to provide the reinforced substrate.

2. A method as in claim 1, wherein:
 a) the base layer includes an existing hydrocarbon-containing layer.

3. A method as in claim 2, wherein:
 a) the substrate includes a hydrocarbon-containing layer.

4. A method as in claim 1, wherein:
 a) the substrate includes a hydrocarbon-containing layer.

5. A method as in claim 4, wherein:
 a) the reinforcing mesh includes a metal mesh.

6. A method as in claim 5, wherein:
 a) the metal mesh includes a hexagonal mesh including longitudinal wires and transverse reinforcing wires extending transversely relative to the longitudinal wires.

7. A method as in claim 6, wherein:
 a) the backing of the adhesive strip includes a synthetic fabric, and the adhesive of the adhesive strip includes an asphalt layer.

8. A method as in claim 1, wherein:
 a) the backing of the adhesive strip includes a synthetic fabric, and the adhesive of the adhesive strip includes an asphalt layer.

9. A method as in claim 1, wherein:
 a) the adhesive strip is provided on the at least a portion of the reinforcing strip at ambient temperature.

10. A method as in claim 9, wherein:
 a) the adhesive strip includes a removable backing provided on the asphalt layer.
cause the substantially solid adhesive to substantially surround the longitudinal and transverse wires of the reinforcing mesh.

12. A method as in claim 1, wherein:
 a) in said step of providing an adhesive strip, the adhesive strip is supplied in a roll, and the rolled adhesive strip is unrolled onto the reinforcing mesh.

13. A method as in claim 12, wherein:
 a) in said step of providing a sufficient force, a roller is used to provide the sufficient force to adhere the adhesive strip to the base layer.

14. A reinforced substrate, comprising:
 a) a base layer;
 b) a reinforcing mesh on the base layer, the reinforcing mesh including longitudinal and transverse wires;
 c) an adhesive strip, the adhesive strip including a substantially solid adhesive and a backing substantially covering the adhesive;
 d) the adhesive strip being provided on at least a portion of the reinforcing mesh;
 e) the adhesive strip adhering to the base layer and adhering to the reinforcing mesh, and substantially surrounding the longitudinal and transverse wires of the reinforcing mesh and adhering the reinforcing mesh to the base layer; and
 f) the substrate substantially surrounding the adhesive strip and the reinforcing mesh secured to the base layer by the adhesive strip.

15. A reinforced substrate as in claim 14, wherein:
 a) the base layer includes an existing hydrocarbon-containing layer.

16. A reinforced substrate as in claim 15, wherein:
 a) the substrate includes a hydrocarbon-containing layer.

17. A reinforced substrate as in claim 14, wherein:
 a) the substrate includes a hydrocarbon-containing layer.

18. A reinforced substrate as in claim 17, wherein:
 a) the reinforcing mesh includes a metal mesh.

19. A reinforced substrate as in claim 18, wherein:
 a) the metal mesh includes a hexagonal mesh.

20. A reinforced substrate as in claim 19, wherein:
 a) the backing of the adhesive strip includes a synthetic fabric, and the adhesive of the adhesive strip includes an asphalt layer.

21. A reinforced substrate as in claim 14, wherein:
 a) the backing of the adhesive strip includes a synthetic fabric, and the adhesive of the adhesive strip includes an asphalt layer.

22. A reinforced substrate as in claim 21, wherein:
 a) the adhesive is substantially solid and adhesive at ambient temperature.

23. A method, as in claim 22, wherein:
 a) the hydrocarbon-containing layer includes an asphalt layer which is substantially solid at ambient temperature.

24. A method of attaching a reinforcing mesh, the method comprising:
 a) providing a base layer;
 b) providing a reinforcing mesh on the base layer;
 c) providing an adhesive strip, the adhesive strip including a substantially solid adhesive and a backing substantially covering the adhesive;
 d) providing the adhesive strip on at least a portion of the reinforcing mesh;
 e) applying a sufficient force to the adhesive strip to sufficiently adhere the adhesive strip to the reinforcing mesh, and the reinforcing mesh being sufficiently secured to the base layer, so that before and during a step of providing a substrate on the base layer and the adhesive strip, the reinforcing mesh and the adhesive strip remain in place relative to the base layer.

25. A method as in claim 24, wherein:
 a) the base layer includes an existing hydrocarbon-containing layer.

26. A method as in claim 25, wherein:
 a) the reinforcing mesh includes a metal mesh.

27. A method as in claim 24, wherein:
 a) the backing of the adhesive strip includes a synthetic fabric, and the adhesive of the adhesive strip includes an asphalt layer.

28. A method as in claim 24, wherein:
 a) the adhesive strip is provided on the at least a portion of the reinforcing strip at ambient temperature.

* * * * *