发明名称 自动增益控制装置

本发明揭示一种自动增益控制装置，它在自动增益控制放大器(AGCa)中，RF用自动增益控制器(2)控制无线电频带信号(Srf)的增益，频率变换器(3,4)将无线电频带信号(Srfa)变换成中间频带信号(Sifa)，IF用自动增益控制器(5)控制中间频带信号(Sifa)的增益，电平检测器(1Da)检测增益被控制后的中间频带信号(Sifa)的信号电平，并生成电平信号(SLa,SLb)，自动增益控制器发生器(SGa,SGb)根据电平信号(SLa,SLb)，分别控制RF用自动增益控制器(2)和IF用自动增益控制器。
1. 一种自动增益控制装置，其特征在于，包括
   控制无线电频带信号的增益的 RF 用自动增益控制器，
   将所述无线电频带信号频率变换成中间频带信号的频率变换器，
   控制所述中间频带信号的增益的 IF 用自动增益控制器，
   检测了控制所述增益的中间频带信号的信号电平并生成电平信号的电平
   检测器，和
   根据所述电平信号、生成用于控制所述 RF 用自动增益控制的 RF 用自动
   增益控制信号和用于控制所述 IF 用自动增益控制器的 IF 用自动增益控制信号
   的自动增益控制信号发生器，
   能分别控制所述 RF 用自动增益控制器和 IF 用自动增益控制器。

2. 如权利要求 1 所述的自动增益控制装置，其特征在于，所述自动增益
   控制信号发生器
   在所述电平信号为小于第 1 规定电平的电平时，将所述 RF 用自动增益控
   制器的增益固定在最大值，同时使所述 IF 用自动增益控制器的增益变化；
   在所述电平信号为大于第 1 规定电平并且小于第 2 规定电平的电平时，将所述 IF 用自动增益控制器的增益固定在第 1 规定值，同时使所述 RF 用
   自动增益控制器的增益变化；
   在所述电平信号为大于第 2 规定电平的电平时，将所述 RF 用自动增益控
   制器的增益固定在第 2 规定值，同时使所述 IF 用自动增益控制器的增益变化。

3. 如权利要求 1 所述的自动增益控制装置，其特征在于，所述自动增益
   控制信号发生器
   在所述电平信号为小于第 3 规定电平的电平时，将所述 RF 用自动增益控
   制器的增益固定在最大值
   在所述电平信号为大于所述第 3 规定电平并且小于第 4 规定电平的电平
   时，使所述 RF 用自动增益控制器的增益变化；
   在所述电平信号为大于第 4 规定电平的电平时，将所述 RF 用自动增益控
   制器的增益固定在第 3 规定值，
   在所述电平信号为大于第 5 规定电平的电平时，使所述 IF 用自动增益控
   制器的增益变化。
在所述电平信号为大于所述第 5 规定电平并且小于第 6 规定电平的电平时，将所述 IF 用自动增益控制器的增益固定在第 4 规定值。

在所述电平信号为大于第 6 规定电平的电平时，使所述 IF 用自动增益控制器的增益变化。

4. 如权利要求 3 所述的自动增益控制装置，其特征在于，还包括

设定使所述 RF 用自动增益控制器的增益和 IF 用自动增益控制器的增益变化的部分与固定部分的切换点的参数，所述 RF 用自动增益控制器的增益变化部分的 RF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数和所述 IF 用自动增益控制器的增益变化部分的 IF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数的微型计算机。

5. 如权利要求 3 所述的自动增益控制装置，其特征在于，还包括

设定对应于所述无线电频带信号使所述 RF 用自动增益控制器的增益变化部分与固定部分的切换点的参数，对应于所述无线电频带信号使所述 IF 用自动增益控制器的增益变化部分与固定部分的切换点的参数，所述 RF 用自动增益控制器的增益变化部分的 RF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数和所述 IF 用自动增益控制器的增益变化的部分的 IF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数的微型计算机。
自动增益控制装置

本发明特别涉及电视广播、无线电广播的数字广播接收装置。

图 14 表示以往在数字广播电视接收机中使用的自动增益控制装置的结构。自动增益控制装置 AGC 包括调谐器 30，AD变换器 3、电平检测器 LD 和自动增益控制信号发生器 SG。调谐器 30 包括 RF 用自动增益控制器 2、混频器 3、振荡器 4、IF 用自动增益控制器 5 和 RF 增益控制动作点设定器 40。

在调谐器 30 中，RF 用自动增益控制器 2 根据由 RF 增益控制动作点设定器 40 提供的 RF 用自动增益控制信号 SAGR，对数字广播电波 RF 进行自动增益放大，生成数字广播电波 Srf。混频器 3 根据与振荡器 4 共有的基准频率信号 SB，对数字广播电波 Srf 进行频率变换，生成中频信号 Sif。IF 用自动增益控制器 5 根据由 RF 增益控制动作点设定器 40 提供的 IF 用自动增益控制信号 SAGi，对中频信号 Sif 进行增益控制放大，生成调制后的模拟信号 SMA。即调谐器 30 对用天线接收到的数字广播电波 RF 进行频率变换和放大，生成调制后的模拟调制信号 SMA。

AD 变换器 6 对调制后的模拟信号 SMA 进行模拟数字变换，生成调制后的数字调制信号 SMD。将调制后的数字信号 SMD 向后续的解调处理输出，同时输出到电平检测器 LD。

电平检测器 LD 根据调制后的数字信号 SMD，对调制后的数字信号 SMD 的平均电平进行检测，生成电平信号 SL。此外，电平信号 SL 相当于 IF 用自动增益控制器 5 的输出，即调制后的模拟信号 SMA 的电平。

自动增益控制信号发生器 SG 根据电平信号 SL，生成自动增益控制信号 SAG。此外，自动增益控制信号 SAG 是控制 RF 用自动增益控制器 2 和 IF 用自动增益控制器 5 的增益的控制信号。

RF 增益控制动作点设定器 40 根据自动增益控制信号 SAG，生成控制 IF 用自动增益控制器 5 的 IF 用自动增益控制信号 SAGi 和控制 RF 用自动增益控制器 2 的 RF 用自动增益控制信号 SAGR。

图 15 所示为电平检测器 LD 的详细结构。电平检测器 LD 包括减法器 12、加法器 13、延迟器 14 和移位器 15（在图中表示为 [2^n]）。此外，n 是移位数。
01.06.29

加法器 13 和延迟器 14 构成积分器 100。移位器 15 在例如从 128 = 2^7 个数据求出平均值时，设定 n = 7。此外，从 2048 = 2^12 个数据求出平均值时，设定 n = 12。

由 AD 变换器 6 输入的调制后的数字信号 SMD，在减法器 12 减去从移位器 15 输出的平均信号 Y/2^n，并输出到积分器 100。

图 16 所示为自动增益控制信号发生器 SG 的详细结构。自动增益控制信号发生器 SG 包括减法器 16、参考值发生器 17、乘法器 18、常数发生器 19、积分器 22、电平变换器 LC、脉冲宽度调制器 (PWM) 42 和低通滤波器 43。积分器 22 包括加法器 20 和延迟器 21。电平变换器 LC 包括乘法器 23、反转系数发生器 24、加法器 38 和补偿系数发生器 39。

减法器 16 算出从电平检测器 LD 输出的电平信号 SL 与从参考值发生器 17 提供的规定参考值 R 的误差，生成误差信号 SE。此外，在本说明书中，为简化说明起见，用适当的标号表示信号和参数。乘法器 18 将在减法器 16 算出的误差信号 SE，对由常数发生器 19 提供的常数 G 进行乘法运算，生成 G*SE 并输出到积分器 22。

积分器 22 使从乘法器 18 输入的 G*SE 在延迟器 21 仅延迟 1 个控制周期 t 后，借助于用加法器 20 加上当前时刻来自乘法器 18 的输入，对 G*SE 进行积分。此外，这种积分结果作为来自延迟器 21 的积分信号 Z，输出到加法器 20 和电平变换器 LC。此外，所谓 1 个控制周期是指前述以往的自动增益控制器和后述的本发明的自动增益控制器和在它们的构成要素中连续进行的控制处理的 1 个序列。并且，所谓 1 个控制周期期间是指执行 1 个控制周期所要的时间，是指某个控制周期开始后到下一个控制周期开始为止的期间。

在电平变换器 LC 中，乘法器 23 乘以由反转系数发生器 24 提供的“-1”，使由积分器 22 输入的积分信号 Z 的正负反转，生成-Z。加法器 38 将由补偿系数发生器 39 提供的补偿系数 OB 加上由乘法器 23 输入的-Z，生成-Z + OB。PWM42 将由加法器 38 输入的-Z + OB 进行脉冲宽度调制，生成矩形波信号 Sr。低通滤波器 43 从由 PWM42 输入的矩形波信号 Sr 提取低频成分，生成具有规定控制电压的自动增益控制信号 SAG。其结果，调整调谐器 30、低频检测器 LD 和自动增益控制信号发生器 SG 间形成的闭环增益。

下面，对电平变换器 LC 简单地进行说明。设置电平变换器 LC 是为了，在对由积分器 22 输出的积分信号 Z 用 PWM42 进行处理前，积分信号 Z 的值比基
准值大的情况下，用来对积分信号 Z 的值进行归一化处理，以便也能够正确地进行增益控制。因此，反转系数发生器 24 将规定的负值的反转系数供给乘法器 23，使积分信号 Z 的正负反转。补偿系数发生器 39 供给具有规定值的补偿系数 OB 进行补偿，以便 PWM42 处理方便，使得被反转的积分信号 Z(-Z) 的值为正或 0。

根据由反转系数发生器 24 供给的反转系数与积分器 22 的输出位数，决定补偿系数 OB 的值。现以反转系数为-1，积分器 22 的输出位数是 12 位（OB=2048）的情况为例进行说明。也就是说，积分信号 Z 是 -2048 到 +2047 之间的值。如果将补偿系数 OB 设定成积分器 22 的输出位数即 12 位（4096），则由加法器 38 输出的 Z+OB 的值在 0 到 +4095 之间。

在误差信号 SE 为零时，从加法器 38 输出的 Z+OB 的值是 +2408 (OB)。在误差信号 SE 为负时，-Z+OB 的值在 0 到 +2407 之间。这样的构成，对应于数字广播电波 SR 的平均电平，能正确地进行增益控制。

也就是说，如果经过某个一定的时间，积分器 22 的输出收敛，则在积分器 22 的输出位数为 12 位时，对应于数字广播电波 RF 的值，将大致具有如下所示的 3 种值的信号输入到 PWM42。

首先，在数字广播电波 RF 的平均电平比用参考值发生器 17 的 R 设定的基准值大时，积分器 22 的输出为正值，对 PWM42 输入不到 2048 的值。

在数字广播电波 RF 的平均电平与用参考值发生器 17 的 R 设定的基准值相同时，对 PWM42 输入 2048 的值。

在数字广播电波 RF 的平均电平比用参考值发生器 17 的 R 设定的基准值小时，从加法器 38 输出 +Z+2048。其结果，对 PWM42 输入 2049 以上的值。

图 17 表示对应于输入 PWM42 的 Z+OB 值的矩形波信号 Sr 的波形。用 PWM42 使矩形波信号 Sr 的脉冲宽度根据被输入的 Z+OB 的值变化。例如，当输入 PWM42 的 Z+OB 值为 4095 时，输出如波形 W1 所示，是始终具有 1 的矩形波信号 Sr。当输入 PWM42 的 Z+OB 的值为 2048 时，输出如波形 W2 所示的矩形波信号 Sr，具有 1 的部分占 1/2 的比例。当输入 PWM42 中的值为 0 时，输出如波形 W3 所示，是始终具有 0 的矩形波信号 Sr。

然后，通过低通滤波器 43 将矩形波信号 Sr 变换成直流电压，生成自动增益控制信号 SAG，并且，将自动增益控制信号 SAG 输出到 RF 增益控制动作点设定器 40。当自动增益控制信号 SAG 的值在规定值以下时，RF 增益控制动作点
设定器 40 发生 RF 自动增益控制器 2 的增益开始衰减的 RF 自动增益控制器信号 SAGr，同时发生 IF 自动增益控制器 5 的增益不断变化的 IF 自动增益控制信号 SAGi。参照图 15 和图 16，利用示意图方框图表示在任意的控制周期 t 中的电平检测器 LD 和自动增益控制信号发生器 SG 内部生成的各种信号处理。此外，在本说明书中，不限于以往技术，在本发明的实施形态的说明中，也用 t 表示控制周期，也就是说，对于某个控制周期 t，利用对于 t 加减自然数，分别表示过去或者未来的控制周期，同样地，利用对于 t 加减自然数表示对应的控制周期期间 Pt。这样，控制周期 t 也是表示相对时刻的参数。此外，为了简化说明，根据需要将控制周期 t 简称为 “t”，并用这种标号表示各个信号和参数。

如图 15 所示，在电平检测器 LD 的减法器 12 中，从由 AD 变换器 3 输出的 SMD(t)减去由移位器 15 输出的平均信号 Y(t+1)/2，生成 SMD(t)−Y(t+1)/2。

在积分器 100 的加法器 13 中，对由减法器 12 输出的 SMD(t)−Y(t+1)/2 与由延迟器 14 输出的积分信号 Y(t+1) 进行加法运算，生成 SMD(t)−Y(t+1)/2 + Y(t+1) = SMD(t) + Y(t+1)(1−2^n)。

在延迟器 14 中，使从加法器 13 输出的 SMD(t)+Y(t+1)(1−2^n) 仅延迟 1 个控制周期 t，生成积分信号 Y(t+1)。

移位器 15 仅移位具有规定值的移位数 n，生成平均信号 Y(t+1)/2^n。该平均信号 Y(t+1)/2^n 相当于根据 2^n 个数据值求出输入电平检测器 LD 的调制后的数字信号 SMD 的平均值。这表示移位数 n 规定利用移位寄存器 15 求平均值所需要的数据数。也就是说，2^n 是用于电平检测器 LD 求出被输入的调制后的数字信号 SMD 的平均值所需要的数据数，移位数 n 是平均系数。下面，称 2^n 为平均数据数。

接着，如图 16 所示，在自动增益控制信号发生器 SG 的减法器 16 中，从由电平检测器 LD 输出的电平信号 SL 减去由参考值发生器 17 输出的参考值 R，生成误差信号 SE(t)。

在乘法器 18 中，对由减法器 16 输出的 SE(t) 乘以由常数发生器 19 输出的常数 G，生成 G* SE(t)。

在积分器 22 的加法器 20 中，对由乘法器 18 输出的 G* SE(t) 与由延迟器 21 输出的积分信号 Z(t+1) 进行加法运算，生成 G* SE(t)+Z(t+1)。
在延迟器 21 中，使由加法器 20 输出的 G*SE(t) + Z(t+1) 仅延迟 1 个控制周期 t，生成积分信号 Z(t+1)。

在电平变换器 LC 的乘法器 23 中，对由延迟器 21 输出的积分信号 Z(t+1) 乘以由反转系数发生器 24 输出的反转系数 “-1”，生成-Z(t+1)。

在加法器 38 中，对由乘法器 23 输出的-Z(t+1)加上由补偿系数发生器 39 输入的补偿系数 OB，生成-Z(t+1)+OB。

PWM42 对由电平变换器 LC 输出的-Z(t+1)+OB 进行脉冲宽度调制，生成矩形波信号 Sr。低通滤波器 43 从由 PWM 运算器 25 输出的矩形波信号 Sr 提取低频成分，稳定在所需要的电平，生成自动增益控制信号 SAG。

图 18 表示前述自动增益控制器 AGC 中的对于数字广播电波 RF 不同电平的 RF 用自动增益控制器 2 的增益变化和 IF 用自动增益控制器 5 的增益变化图。在该图中，纵坐标轴 VA 表示从最大增益开始的衰减量 (db)，横坐标轴 LRF 表示数字广播电波 RF 的输入电平。此外，实线 LR 表示 RF 用自动增益控制器 2 的增益的衰减度，虚线 LI 表示 IF 用自动增益控制器 5 的增益衰减度。

由图可见，当衰减度为 0 时，RF 用自动增益控制器 2 和 IF 用自动增益控制器 5 的增益最大。数字广播电波 RF 的大小在-78dBm～-5dBm 的区间内，主要利用 RF 用自动增益控制器 2 使增益衰减，而利用 IF 用自动增益控制器 5 虽也使增益衰减，但是衰减量很小。

另一方面，当数字广播电波 RF 的大小为小于-78dBm 或者大于-5dBm 时，仅用 IF 用自动增益控制器 5 使增益衰减。因为 RF 用自动增益控制信号对于 RF 自动增益控制器的衰减度的斜率比 IF 用自动增益控制信号对于 IF 自动增益控制器的衰减度的斜率大，所以数字广播电波 RF 的电平在-78dBm～-5dBm 的区间内主要利用 RF 用自动增益控制器 2 进行使增益衰减的动作。

此外，数字广播电波 RF 的电平小于-78dBm 时，发生 RF 用自动增益控制信号 SAGr，使得 RF 用自动增益控制器 2 的增益不衰减。数字广播电波 RF 的电平大于-5dBm 时，由于 RF 自动增益控制器 2 不能衰减增益，因此自动地由 IF 自动增益控制器 5 控制增益。

进行这种控制的理由是因为必须对应于数字广播电波 RF 的电平，分别适当地调整 RF 用自动增益控制器 2 和 IF 自动增益控制器 5 的增益。也就是说，数字广播电波 RF 在小于-78dBm 的弱电场中，必须使调谐器 30 的 C/N(载波与噪声之比: Carrier to Noise) 不会恶化。因此，要进行控制使得成调谐器 30
的噪声指数为不良状态，即 RF 用自动增益控制器 2 的增益最大。

另一方面，随着数字广播电波 RF 的电平增大，必须使混频器 3 中的相互调制失真特性良好，并改善相邻频道干扰性能。因此，数字广播电波 RF 的电平大于-78dBm 时，主要使 RF 用自动增益控制器 2 的增益衰减，抑制输入混频器 3 的信号电平，使其不是很大，当 RF 用自动增益控制器 2 超过增益能控制的最大值（数字广播电波 RF 的大小大于-5dBm）时，主要使 IF 用自动增益控制器 5 动作。

图 19 表示在 2699698 号和日本专利公报第 2778260 号提出的自动增益控制装置中，对于数字广播电波 RF 不同电平的 RF 用自动增益控制器 2 的增益变化和 IF 用自动增益控制器 5 的增益变化。在该图中，纵坐标轴 Y 表示从最大增益开始的衰减量（db），横坐标轴 LRF 表示数字广播电波 RF 的输入电平。此外，实线 LR 表示 RF 用自动增益控制器的增益的衰减度，虚线 LI 表示 IF 用自动增益控制器的增益衰减度。

在这种自动增益控制器中，为了例如数字广播电波的电平为-50dBm 时的调制失真特性良好，并改善相邻频道干扰性能，首先，使 RF 输入信号电平为-50dBm 时的 RF 用自动增益控制器（在第 2699698 号专利公报中为低噪声放大器，在第 2699698 号专利公报中为第 1 增益控制电路）的增益为最大，IF 用自动增益控制器的增益衰减。并且，大于-78dBm 时，使 IF 用自动增益控制器的增益一定，并使 RF 用自动增益控制器衰减。即，数字广播电波 RF 用自动增益控制器的最大衰减量为 65dB，IF 用自动增益控制器的最大衰减量为 17dB，接收机的增益变化量、即动态范围为 82dB。

但是，能够用地面波数字广播电视接收机在电视机上显示图像的接收电平是在-85dBm〜5dBm，动态范围是 90dB。也就是说，为了用 RF 用自动增益控制器和 IF 用自动增益控制器两方面控制 RF 输入信号的电平，由于需要有余量，因此实际上需要 100dB 的动态范围。此外，如图 20 所示，为了确保 100dB 的动态范围，也可以考虑使 IF 用自动增益控制器的最大衰减量为 35dB。

但是，IF 用自动增益控制器的最大衰减量为 35dB 时，首先，使数字广播电流 RF 的电平小于-60dBm，使 RF 用自动增益控制器的增益最大，并使 IF 用自动增益控制器衰减。并且，大于-60dBm 时，使 IF 用自动增益控制器的增益一定，并使 RF 用自动增益控制器衰减。因此，数字广播电波的电平为-50dBm 时的 RF 用自动增益控制器 2 的衰减量为 13dB，输入到混频器 3 中的信号电平
增大。其结果，借助于使数字广播电波的电平，例如-50dBm 时的调制失真干扰特性的增大，使相邻频道干扰性能大大地恶化。

如前所述，在图 18 所示的具有 RF 用自动增益控制器 2 的增益的变化和 IF 用自动增益控制器 5 的增益的改变的往的自动增益控制装置 AGC 中，对于 RF 用自动增益控制器 2 的增益衰减的数字广播电波 RF 的电平范围（输入调制信号在-78～-5dBm 变化），IF 用自动增益控制器 5 的增益也衰减，而衰减量很小。在 RF 用自动增益控制器工作时，输入调制信号的电平在-78dBm 到-5dBm 范围的情况下，IF 用自动增益控制器的增益衰减量约变化 7dB（18dB 到 25dB）。

例如，因为数字广播电波 RF 的电平为-78dBm 时的 IF 用自动增益控制器 5 的增益衰减量是 18dB，数字广播电波 RF 的电平为-50dBm 时的 IF 用自动增益控制器 5 的增益衰减量是 22dB，所以增加 4dB 衰减量。与 IF 用自动增益控制器 5 的增益在数字广播电波 RF 的电平为-78dBm～-5dBm 范围中情况下相比，问题在于，数字广播电波 RF 的电平为-50dBm 时，输入混频器 3 的信号电平增大 4dB，利用调制失真干扰特性的恶化，相邻频道干扰的性能恶化 4dB。

此外，因为数字广播电波 RF 的电平为-78dBm 时的 IF 用自动增益控制器 5 的增益衰减量是 18dB，数字广播电波 RF 的电平为-5dBm 时的 IF 用自动增益控制器 5 的增益衰减量是 25dB，所以增加 7dB 衰减量。与 IF 用自动增益控制器 5 的增益在数字广播电波 RF 的电平为-78dBm～-5dBm 范围中情况下相比，问题在于数字广播电波 RF 的电平为-5dBm 时，输入混频器 3 的信号电平增大 7dB，两次相互调制失真干扰的性能恶化 7dB。

此外，在第 2699698 号和第 2778260 号日本专利公报中，在接收地面波数字广播信号情况下，问题在于，如果改善相邻频道干扰的性能，则动态范围减小，如果增大动态范围，则利用调制失真干扰特性的恶化，相邻频道干扰的性能大大恶化。

本发明用于解决前述问题，其目的在于提供一种自动增益控制器，这种自动增益控制器不会损害由于调制失真干扰特性恶化的相邻频道干扰和相互调制失真干扰的性能，并具有更大的动态范围。

本发明的第 1 方面的自动增益控制装置，包括

控制无线电频带信号的增益的 RF 用自动增益控制器，

将所述无线电频带信号频率变换成中间频带信号的频率变换器，
01/06/29

控制所述中间频带信号的增益的 IF 用自动增益控制器，
检测控制了所述增益的中间频带信号的信号电平并生成电平信号的电平
检测器，和

根据所述电平信号、生成用于控制所述 RF 用自动增益控制器的 RF 用自动
增益控制信号和用于控制所述 IF 用自动增益控制器的 IF 用自动增益控制信号
的自动增益控制信号发生器，

能分别控制所述 RF 用自动增益控制器和 IF 用自动增益控制器。

如前所述，在第 1 方面中，借助于分别控制所述 RF 用自动增益控制器和
IF 用自动增益控制器，能增加动态范围，并能改善相邻频道干扰和相互调制失
真干扰的性能。

第 2 方面是在第 1 方面的自动增益控制装置中，所述自动增益控制信号发
生器

在所述电平信号为小于第 1 规定电平的电平时，将所述 RF 用自动增益控
制器的增益固定在最大值，同时使所述 IF 用自动增益控制器的增益变化，

在所述电平信号为大于所述第 1 规定电平并且小于第 2 规定电平的电平
时，将所述 IF 用自动增益控制器的增益固定在第 1 规定值，同时使所述 RF 用
自动增益控制器的增益变化，

在所述电平信号为大于第 2 规定电平的电平时，将所述 RF 用自动增益控
制器的增益固定在第 2 规定值，同时使所述 IF 用自动增益控制器的增益变化。

如前所述，在第 2 方面中，具有与第 1 方面相同的效果，而且能设定更加
细分的动态范围。

第 3 方面是在第 1 方面的自动增益控制装置中，所述自动增益控制信号发
生器

在所述电平信号为小于第 3 规定电平的电平时，将所述 RF 用自动增益控
制器的增益固定在最大值

在所述电平信号为大于所述第 3 规定电平并且小于第 4 规定电平的电平
时，使所述 RF 用自动增益控制器的增益变化，

在所述电平信号为大于第 4 规定电平的电平时，将所述 RF 用自动增益控
制器的增益固定在第 3 规定值，

在所述电平信号为小于第 5 规定电平的电平时，使所述 IF 用自动增益控
制器的增益变化，
在所述电平信号为大于所述第 5 规定电平并且小于第 6 规定电平的电平时，将所述 IF 用自动增益控制器的增益固定在第 4 规定值。

在所述电平信号为大于第 6 规定电平的电平时，使所述 IF 用自动增益控制器的增益变化。

如前所述，第 3 方面具有与第 2 方面相同的效果。

第 4 方面是在第 3 方面的自动增益控制装置中，还包括

设定使所述 RF 用自动增益控制器的增益和 IF 用自动增益控制器的增益变化的部分与固定部分的切换点的参数，所述 RF 用自动增益控制器的增益变化的 RF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数和所述 IF 用自动增益控制器的增益变化部分的 IF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数的微型计算机。

如前所述，第 4 方面除了具有与第 1、2 和第 3 方面相同的效果，还能减小电路规模。

第 5 方面是在第 3 方面的自动增益控制装置中，还包括

设定对应于所述无线电频带信号使所述 RF 用自动增益控制器的增益变化部分与固定部分的切换点的参数，对应于所述无线电频带信号使所述 IF 用自动增益控制器的增益变化部分与固定部分的切换点的参数，所述 RF 用自动增益控制器的增益变化部分 RF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数和所述 IF 用自动增益控制器的增益变化部分的 IF 用自动增益控制信号电平对于 RF 输入信号电平的斜率参数的微型计算机。

如前所述，第 5 方面除了具有与第 4 方面相同的效果，还能减小调谐器质量差异的影响。

参照附图并由以下的详细说明，可以进一步理解本发明的这些以及其它的目的、特征、方面以及效果。

图 1 表示与本发明实施形态 1 相关的自动增益控制装置的结构方框图。
图 2 表示图 1 所示的电平检测器的结构方框图。
图 3 表示图 1 所示的自动增益控制信号发生器的结构方框图。
图 4 表示图 1 所示的 RF/IF 增益控制信号发生器的输入输出特性图。
图 5 表示图 1 所示的 RF 用自动增益控制器对于 RF 输入信号电平的衰减度特性和 IF 用自动增益控制器图。
图 6 表示图 1 所示的自动增益控制器的变形例中 RF/IF 增益控制信号发生
器的输入输出特性图。

图 7 表示图 1 所示的自动增益控制器的变形例中 RF 用自动增益控制器的和 IF 用自动增益控制器对于 RF 输入信号电平的衰减度特性的图。

图 8 表示图 1 所示的自动增益控制器的变形例中由于调谐器质量差异而在 RF 用自动增益控制器的衰减度较小时 RF 用自动增益控制器和 IF 用自动增益控制器对于 RF 输入信号电平的衰减度特性图。

图 9 表示由于调谐器的质量差异而在 RF 用自动增益控制器的衰减度较小时发生的 RF 用自动增益控制器和 IF 用自动增益控制器对于 RF 输入信号电平的衰减度特性图。

图 10 表示与本发明实施形态 2 相关的自动增益控制装置的结构方框图。
图 11 表示图 10 所示的 RF/IF 增益控制信号发生器的结构方框图。
图 12 表示图 10 所示的自动增益控制器的变形例方框图。
图 13 表示图 12 所示的 RF/IF 增益控制信号发生器的结构方框图。
图 14 表示以往的自动增益控制装置的结构方框图。
图 15 表示图 14 所示的电平检测器的结构方框图。
图 16 表示图 14 所示的自动增益控制信号发生器的结构方框图。
图 17 表示图 14 所示的自动增益控制器中的 PWM 输出波形图。
图 18 表示图 14 所示的自动增益控制器中 RF 用自动增益控制器和 IF 用自动增益控制器对于 RF 输入信号电平的衰减度特性图。
图 19 表示在日本专利公报第 2699698 号和日本专利公报第 2778260 号提出的自动增益控制器中，在优先考虑相邻频道干扰性能时的 RF 用自动增益控制器和 IF 用自动增益控制器对于 RF 输入信号电平的衰减度特性图。
图 20 表示在日本专利公报第 2699698 号和日本专利公报第 2778260 号提出的自动增益控制器中，在优先考虑动态范围性能时的 RF 用自动增益控制器和 IF 用自动增益控制器对于 RF 输入信号电平的衰减度特性的图。

下面，参照附图 1-9 对本发明实施形态 1 的自动增益控制装置进行说明。然后，参照附图 10-13 对本发明实施形态 2 的自动增益控制装置进行说明。

实施形态 1

参照附图 1-9 对本发明实施形态 1 的自动增益控制器进行说明前，首先说明本发明的基本概念。在本发明中，是借助于分别控制 RF 用自动增益控制器和 IF 用自动增益控制器，以便在保证扩大动态范围的同时，不损害由于调制
失真干扰特性的恶化的相邻频道干扰和相互调制失真干扰性能的改善。

如图1所示，本实施形态的自动增益控制装置AGCa包括调谐器30、AD变换器3、电平检测器LDa和自动增益控制信号发生器SGa。调谐器30对用天线接收到的数字广播电波RF进行频率变换和放大，生成调制后的模拟信号SMA。

调谐器30包括RF用自动增益控制器2、混频器3、振荡器4、IF用自动增益控制器5。

在调谐器30中，RF用自动增益控制器2根据由自动增益控制信号发生器SGa提供的RF用自动增益控制信号SAGra，对数字广播电波RF进行自动增益放大，生成数字广播电波Srfa。混频器3根据由振荡器4提供的基准频率信号SB，对数字广播电波Srfa进行频率变换，生成中频信号Sifa。IF用自动增益控制器5根据由RF增益控制动作点设定器40提供的IF用自动增益控制信号SAGia，对中频信号Sifa进行增益控制放大，生成调制后的模拟信号SMAa。

AD变换器6对调制后的模拟信号SMAa进行模拟数字变换，生成调制后的数字信号SMDa。将调制后的数字信号SMDa向后续的解调处理输出，同时输出到电平检测器LDa。

电平检测器LDa对调制后的数字信号SMDa的平均电平进行检测，生成电平信号SLa。此外，电平信号SLa表示IF用自动增益控制器5的输出，即调制后的模拟信号SMA的平均电平。

自动增益控制信号发生器SGa根据电平信号SLa，生成IF用自动增益控制信号SAGia和RF用自动增益控制信号SAGra。

图2所示为电平检测器LDa的详细结构。与参考图15说明的构成自动增益控制器AGC的电平检测器LD相同，电平检测器LDa包括减法器12、加法器13、延迟器14和移位器15。此外，移位数n也是与电平检测器LD的情况相同的值(在本例中，n=12)。

参照图3对自动增益控制信号发生器SGa进行说明。自动增益控制信号发生器SGa包括减法器16、参考值发生器17、乘法器18、常数发生器19、积分器22、电平变换器LC、RF/IF增益控制信号发生器25、PWM42i、PWM42r、低通滤波器43i和低通滤波器43r。参考值发生器17输出进行控制的参考值R，使从调谐器30输出的数字广播电波SMAa成为所希望的值。常数发生器19供给决定调谐器30、电平检测器LDa和自动增益控制信号发生器SGa间的闭环增益的常数G。积分器22包括加法器20和延迟器21。电平变换器LC包括乘法
器 23、反转系数发生器 24、加法器 38 和补偿系数发生器 39。

减法器 16 算出从电平检测器 LDa 输入的电平信号 SLa 与从参考值发生器 17 提供的规定参考值 R 的误差，生成误差信号 SEa。此外，乘法器 18 将在减法器 16 算出的误差信号 SEa 与由常数发生器 19 提供的常数 G 进行乘法运算，生成 G*SEa 并输出到积分器 22。

积分器 22 使从乘法器 18 输入的 G*SEa 在延迟器 21 仅延迟 1 个控制周期 t 后，借助于用加法器 20 加上当前时刻来自乘法器 18 的输入，对 G*SEa 进行积分。此外，这种积分结果作为来自延迟器 21 的积分信号 Za，输出到加法器 20 和电平均换器 LC。

在电平均换器 LC 中，乘法器 23 乘以由反转系数发生器 24 提供的“-1”，使由积分器 22 输入的积分信号 Za 的正负反转，生成-Za。加法器 38 将由补偿系数发生器 39 提供的补偿系数 OB 加上由乘法器 23 输入的-Za，生成-Za+OB。

RF/IF 增益控制信号发生器 25 根据从加法器 38 输入的-Za+OB，生成 IF 电平信号 SLi 和 RF 电平信号 SLr。PWM42I 对由 RF/IF 增益控制信号发生器 25a 输出的 IF 电平信号 SLi 进行脉冲宽度调制，生成矩形波信号 Srl。低通滤波器 43i 从由 PWM42i 输出的矩形波信号 Srl 提取低频成分，生成具有规定控制电压的 IF 用自动增益控制信号 SAGi。PWM42r 对由 RF/IF 增益控制信号发生器 25a 输出的 RF 电平信号 SLr 进行脉冲宽度调制，生成矩形波信号 Srr。LPF43r 从由 PWM42r 输出的矩形波信号 Srr 提取低频成分，生成 RF 用自动增益控制信号 SAGr。

下面，对电平均换器 LC 简单地进行说明。设置电平均换器 LC 是为了，在对由积分器 22 输出的积分信号 Za 用 RF/IF 增益控制信号发生器 25 进行处理前，即使积分信号 Za 的值比基准值大情况下，用来对积分信号 Za 的值进行归一化处理，以便也能够正确地进行增益控制。因此，反转系数发生器 24 将规定负值的反转系数供给乘法器 23，使积分信号 Za 的正负反转。补偿系数发生器 39 供给具有规定值的补偿系数 OB 进行补偿，以便 RF/IF 增益控制信号发生器 25 处理方便，使得被反转的积分信号 Za(-Za) 的值为正或 0。

根据由反转系数发生器 24 供给的反转系数与积分器 22 的输出位数，决定补偿系数 OB 的值。现以反转系数为-1，积分器 22 的输出位数是 1 的情况为例进行说明。也就是说，积分信号 Za 是-2048 到+2047 之间的值。如果将补偿系数 OB 设定成积分器 22 的输出位数即 12 位 (OB=2048)，则由加法器 38 输出...
的-Za±OB 的值在 0 到 +4095 之间。

在积分器 22 的输出 Za 为零时，从加法器 38 输出的-Za±OB 的值是 +2408 (OB)。在积分器 22 的输出 Za 为正时，-Za±OB 的值在 0 到 +2047 之间。在积分器 22 的输出 Za 为负时，-Za±OB 的值在 +2049 到 +4095 之间。这样的构成，对应于数字广播电波 RF 的平均电平，能正确地进行增益控制。

也就是说，如果经过某个一定的时间，积分器 22 的输出收敛，则在积分器 22 的输出位数为 12 位时，对应于数字广播电波 RF 的平均电平，将大致具有如下所示的 3 种值的信号输入到 RF/IF 增益控制信号发生器 25。

首先，在数字广播电波 RF 的平均电平值比用参考值发生器 17 的 R 设定的基准值值大时，从加法器 38 输出-Za±2408。其结果，对 RF/IF 增益控制信号发生器 25a 输入不到 2048 的值。

在数字广播电波 RF 的平均电平为与用参考值发生器 17 的 R 设定的基准值相同时，对 RF/IF 增益控制信号发生器 25a 输入 2048 的值。

在数字广播电波 RF 的平均电平比用参考值发生器 17 的 R 设定的基准值小时，从加法器 38 输出-Za±2048。其结果，对 RF/IF 增益控制信号发生器 25 输入 2049 以上的值。

图 4 表示 RF 电平信号 SLr 与 IF 电平信号 SLi 与输入 RF/IF 增益控制信号发生器 25a 的信号 (- Za±OB) 的关系。纵坐标轴表示 RF 电平信号 SLr 与 IF 电平信号 SLi 的电平, 横坐标轴表示输入 RF/IF 增益控制信号发生器 25a 的积分信号 Za±OB 的值。此外，实线 LR 表示 RF 电平信号 SLr，虚线 LI 表示 IF 电平信号 SLi。此外，横坐标轴中的 X1 和 X2 表示 IF 电平信号 SLi 与 RF 电平信号 SLr 的特性变化时的 Za±OB 的值。

在该图中，IF 电平信号 SLi 在 Za±OB 的值从 0 到 X1 之间增大以规定的斜率。即，虚线 LI 用规定的斜率 aif 延伸。然后，从 X1 到 X2 之间，IF 电平信号 SLi 的值是固定的。然后，从 X2 开始到 4095 之间，再次用规定的速率 (aif) 增大。

另一方面，RF 电平信号 SLr 在 Za±OB 的值从 0 开始到 X1 之间固定为 0 不变。即，实线 LR 以斜率 0 延伸。然后，从 X1 开始到 X2 之间 RF 电平信号 SLr 以规定的斜率增大，在 X2 到达 4095。并且，从 X2 开始到 4095 之间保持 4095 不变。

用下式 (1), (2), (3), (4) 和 (5) 表示实线 LR 代表的 RF 电平信号 SLr 的
特性，用下式(6)、(7)、(8)、(9)和(10)表示虚线 IF 代表的电平信号 SLi 的特性。此外，在下式中，y 表示图 4 中的纵坐标轴，即相当于 RF 电平信号 SLr 和 IF 电平信号 SLi 的值，并且，x 表示图 4 中的横坐标轴，即相当于输入 RF/IF 增益控制信号发生器 25a 的信号 -Za+0B 的值。此外，在下面所述的与图 4 相关的说明中，为简化起见，根据需要输入 RF/IF 增益控制信号发生器 25a 的信号 -Za+0B 的值简称为 “x”，将 RF 电平信号 SLr 和 IF 电平信号 SLi 的值简称为 “y”。此外，在下面的式 (2) 和 (12) 中的 “brf” 以及式 (8) 和 (18) 中的 “bif” 分别是常数。

\[
\begin{align*}
  y &= 0 \quad (X1 \geq x) \quad \ldots \ldots \quad (1) \\
  y &= a_{rf} x + brf \quad \ldots \ldots \quad (2) \\
  y &= 4095 \quad (x > X2) \quad \ldots \ldots \quad (3) \\
  a_{rf} &= 4095 / (X2 - X1) \quad \ldots \ldots \quad (4) \\
  brf &= -4095 * X1 / (X2 - X1) \quad \ldots \ldots \quad (5) \\
  y &= a_{if} x \quad (X1 \geq x) \quad \ldots \ldots \quad (6) \\
  y &= a_{if} X1 \quad (X2 \geq x > X1) \quad \ldots \ldots \quad (7) \\
  y &= a_{if} * bif \quad (x > X2) \quad \ldots \ldots \quad (8) \\
  a_{if} &= 4095 / (4095 + X1 - X2) \quad \ldots \ldots \quad (9) \\
  bif &= (X1 - X2) / (4095 + X1 - X2) \quad \ldots \ldots \quad (10)
\end{align*}
\]

下面，对数字广播电波 RF 从低电平开始慢慢地变化时 RF 电平信号 SLr 和 IF 电平信号 SLi 的变化进行说明。当数字广播电波 RF 为最小电平时，输入到 RF/IF 增益控制信号发生器 25a 的 x 的值最大，是 4095，RF 电平信号 SLr 和 IF 电平信号 SLi 的电平都是最大的 4095。然后，数字广播电波 RF 的输入电平慢慢增强时，输入到 RF/IF 增益控制信号发生器 25a 的 x 的值慢慢地从 4095 减小。

在输入到 RF/IF 增益控制信号发生器 25 的值为 X2 < x < 4095 时，根据式 (3)，RF 电平信号 SLr 始终是 4095，保持一定。然后，根据式 (8)，IF 电平信号 SLi 从 4095 开始慢慢地减小。

RF 输入信号进一步增加，输入到 RF/IF 增益控制信号发生器 25 中的值为 X1 < x < X2，根据式 (7)，IF 电平信号 SLi 始终是 y = a_{if} * X1 (这里根据式 (9)，a_{if} = 4095 / (4095 + X1 - X2))，保持一定。然后，根据式 (2)，RF 电平信号 SLr 从 4095 开始慢慢地减小。
RF 输入信号 (-2+0B) 再进一步增加，输入到 RF/IF 增益控制信号发生器 25a 的值为 0<x≤X1，根据式(1)，RF 电平信号 SLr 始终是 0，保持一定。并且，根据式(6)，IF 电平信号 SLi 从 \( y = aif \times X_1 \) (这里，\( aif = 4095 / (4095 + X_1 - X_2) \)) 开始慢慢地减小。

此外，如前所述，分别用 PWM4r 和 PWM4I 对 RF 电平信号 SLr 和 IF 电平信号 SLi 进行脉冲宽度调制后，通过低通滤波器 43r 和低通滤波器 43i 变换成直流电压，并作为 RF 用自动增益控制信号 SAGr 和 IF 用自动增益控制信号 SAGi，控制 RF 用自动增益控制器 2 和 IF 用自动增益控制器 5 的增益。

图 5 表示本自动增益控制器 AGC 中的 RF 用自动增益控制器 2 和 IF 用自动增益控制器 5 对于数字广播电波 RF 电平的增益变化图。在该图中，纵坐标轴 VA 表示从最大增益开始的衰减量 (db)，横坐标轴 LRF 表示数字广播电波 RF 的输入电平。此外，实线 LR 表示 RF 用自动增益控制器 2 的衰减量，虚线 LI 表示 IF 用自动增益控制器 5 的增益衰减量。

由图可知，数字广播电波 RF 的电平 (LRF) 为-50dBm 时，RF 用自动增益控制器 2 的衰减量 (LR) 是 29dB，与以往的自动增益控制器 AGC 中的 25dB(图 18) 相比，大 4dB。这表示在本发明的自动增益控制器 AGCa 中，输入混频器 3 的电平比以往的自动增益控制器 AGC 小 4dB。也就是说，在本发明中，能将以往的自动增益控制器 AGC 中利用调制失真干扰混频器 3 性能恶化后的相邻频道干扰性能改善 4dB。

此外，在本发明中，数字广播电波 RF 的输入电平 (LRF) 为-10dBm 时，RF 用自动增益控制器 2 的衰减量 (LR) 是 65dB，与以往的自动增益控制器 AGC 中的 59dB(图 18) 相比，大 6dB。这表示在本发明的自动增益控制器 AGCa 中，输入到混频器 3 的电平比以往的自动增益控制器 AGC 小 6dB。也就是说，在本发明中，能改善强电场时混频器 3 中发生的相互混合调制失真干扰的性能。

下面，参照图 6、图 7、图 8 和图 9 对前述自动增益控制器 AGCa 的变形例进行说明。在与本变形例相关的自动增益控制器 AGCa' 中，除将 RF/IF 增益控制信号发生器 25a 置换成 RF/IF 增益控制信号发生器 25a' 外，与自动增益控制器 AGCa 结构相同，所以省略关于该结构的说明和图示。此外，对于 RF/IF 增益控制信号发生器 25a' 与 RF/IF 增益控制信号发生器 25a 的工作原理不同的地方，在下面进行说明。

参照图 6 对 RF/IF 增益控制信号发生器 25a' 的工作原理进行说明。与前
述的图4中相同，在图6中所示了RF电平信号SLr和IF电平信号SLi相对于输入到RF/IF增益控制信号发生器25a的信号(-Z+OB)的关系。此外，纵坐标轴y表示RF电平信号SLr和IF电平信号SLi的电平，横坐标轴y表示输入到RF/IF增益控制信号发生器25的积分信号za+OB的值。此外，实线Lr表示RF电平信号SLr，虚线LI表示IF电平信号SLi。

由图可知，在RF/IF增益控制信号发生器25a中，将RF电平信号SLr变化的RF/IF增益控制信号发生器25a”的输入的值x设定成X3<x<X4。并将RF电平信号SLr为一定的RF/IF增益控制信号发生器25a”的输入的值x设定成X4<x<4095和x<X3。将IF电平信号SLi变化的RF/IF增益控制信号发生器25a”的输入的值x设定成X6<x<4095和x<X5。并将RF电平信号SLr为一定的RF/IF增益控制信号发生器25的输入的值x设定成X5<x<X6。

关于RF电平信号SLr和IF电平信号SLi相对于输入的，在前述的RF/IF增益控制信号发生器25a中，当RF电平信号SLr为一定的值(在图6中，X4<x<4095和x<X3)时，IF电平信号SLi的值变化。并且，当IF电平信号SLi为一定的值(在图6中，X5<x<X6)时，RF电平信号SLr的值变化。在X3<x<X5和X6<x<X4时，RF电平信号SLr和IF电平信号SLi两方面的值变化、也就是说，在RF/IF增益控制信号发生器25a中，通过控制RF电平信号SLr和IF电平信号SLi。与此不同的是，在RF/IF增益控制信号发生器25a中，能独立控制RF电平信号SLr和IF电平信号SLi。

此外，在RF/IF增益控制信号发生器25a中，用下式(11)、(12)、(13)、(14)和(15)表示实线LR代表的RF电平信号SLr的特性，用下式(16)、(17)、(18)、(19)和(20)表示虚线LI代表的IF电平信号SLi的特性。

\[
\begin{align*}
 y &= 0 \quad (X3 \geq x) \\
 y &= arf \times x + brf \quad (X4 \geq x > X3) \\
 y &= 4095 \quad (x > X4) \\
 arf &= 4095/(X4-X3) \\
 brf &= -4095\times X3/(X4-X3) \\
 y &= aif \times x \quad (X5 \geq x) \\
 y &= aif \times X5 \quad (X6 \geq x > X5) \\
 y &= aif \times x + bif \quad (x > X6) \\
 aif &= 4095/(4095 + X5 - X6)
\end{align*}
\]
bif = (X5-X6)/(4095+X5-X6)  \quad (20)

下面，参照图 6 对本变形例中使数字广播电波 RF 从低的电平开始慢慢地变化时的 RFF 电平信号 SLr 和 IF 电平信号 Sli 的状态进行说明。在图 6 中也与前述的图4中相同，纵坐标轴表示 RF 电平信号 SLr 和 IF 电平信号 Sli 的电平，横坐标轴表示输入到 RF/IF 增益控制信号发生器 25a’ 中的积分信号 Za+OB 的值。此外，实线 LR 表示 RF 电平信号信号 SLr，虚线 LI 表示 IF 电平信号 Sli。此外，横坐标轴中的 X3、X4、X5 和 X6 表示 RF 电平信号 SLr 和 IF 电平信号 Sli 的特性变化时的 Za+OB 的值。

当数字广播电波 RF 为最小电平时，输入到 RF/IF 增益控制信号发生器 25 的 x 的值为最大，是 4095，RF 电平信号 SLr 和 IF 电平信号 Sli 的电平都是最大的 4095。然后，数字广播电波 RF 逐渐增大时，输入到 RF/IF 增益控制信号发生器 25a 的 x 的值慢慢地从 4095 减小，输入到 RF/IF 增益控制信号发生器 25a 的 x 为 x4 < x < x4 时，根据式(13)，RF 电平信号 SLr 是 4095，始终保持一定。并且，根据式(18)，IF 电平信号 Sli 从 4095 开始慢慢地减小。

数字广播电波 RF 进一步增大，输入到 RF/IF 增益控制信号发生器 25 的值 x 为 X6 < x < X4，根据式(12)，RF 电平信号 SLr 从 4095 开始慢慢地减小。并且，根据式(18)，IF 电平信号 Sli 慢慢地减小。在 X6 < x < X4 中，RF 电平信号 SLr 和 IF 电平信号 Sli 一起变化。数字广播电波 RF 再进一步增大，输入到 RF/IF 增益控制信号发生器 25 中的值 x 为 X5 < x < X6，根据式(12)，RF 电平信号 SLr 慢慢地减小。并且，根据式(17)，IF 电平信号 Sli 为 y=aif*X5(这里，aif = 4095/(4095+X5-X6))，始终保持一定。

数字广播电波 RF 再进一步增大，输入到 RF/IF 增益控制信号发生器 25a’ 的值 x 为 X3 < x < X5，根据式(12)，RF 电平信号 SLr 慢慢地减小。并且，根据式(16)，IF 电平信号 Sli 也从 y=aif*X5(这里，aif=4095/(4095+X5-X6)) 开始慢慢地减小。在 X3 < x < X5 中，RF 电平信号 SLr 和 IF 电平信号 Sli 一起变化。数字广播电波 RF 再进一步增大，输入到 RF/IF 增益控制信号发生器 25a’ 的值 x 为 0 < x < X3，根据式(11)，RF 电平信号 SLr 为 0，始终保持一定。并且，根据式(16)，IF 电平信号 Sli 慢慢地减小。

下面，参照图 7 对图 6 中设定 X4=X6 时的本发明的 RF 用自动增益控制器 2 对于数字广播电波 RF 的输入电平的衰减度特性和 IF 用自动增益控制器 5 对于数字广播电波 RF 的输入电平的衰减度特性进行说明。
由于调谐器 30 质量差异，RF 用自动增益控制器 2 的衰减量（RF 用自动增益控制器的增益）常常由于各个调谐器 30 的不同而不同。例如，在以往的自动增益控制装置 AGC 中，有的情况如图 9 所示 RF 用自动增益控制器 2 的最大衰减量为 51dB，有的情况如图 19 所示 RF 用自动增益控制器 2 的最大衰减量为 65dB。在本发明实施形态的自动增益控制装置 AGCa 中，也有如图 8 所示 RF 用自动增益控制器 2 的最大增益衰减量为 51dB，有的情况如图 5 所示 RF 用自动增益控制器 2 的最大衰减量为 65dB 时。

在前述的自动增益控制装置 AGCa 中，调谐器 30 的 RF 用自动增益控制器 2 的衰减量有差异时，必须进行 RF/IF 增益控制信号发生器 25a 的控制，与图 8 所示 RF 用自动增益控制器 2 的衰减量为最小的一致。也就是说，即使如图 5 所示在自动增益控制器 2 中能衰减的能力为 64dB，也必须决定图 4 中的 X1 和 X2 的值，使得与图 9 所示调谐器 30 的 RF 用自动增益控制器 2 的衰减量为最小值 51dB 的一致。

如果忽略调谐器 30 中 RF 用自动增益控制器 2 的衰减量的差异，考虑如图 5 所示 RF 用自动增益控制器 2 的衰减量为 65dB 的情况，在决定图 4 所示的 X1 和 X2 的值时，在如图 4 所示在 RF/IF 增益控制信号发生器 25a’的输入在 RF 电平信号 SLr 变化的 X1＜x＜X1’中，虽然有质量差异的调谐器 30 的 RF 用自动增益控制器 2 实际衰减量超过 51dB，但有时 RF 用自动增益控制器 2 的衰减量在 51dB 达到顶点。

也就是说，在图 4 的 X1＜x＜X1’中，发生 RF 用自动增益控制器 2 和 IF 用自动增益控制器 5 的衰减量不变的问题。此外，忽略调谐器 30 中 RF 用自动增益控制器 2 的衰减量的差异，考虑如图 5 所示 RF 用自动增益控制器 2 的衰减量为 65dB 的情况，在决定图 4 所示的 X1 和 X2 的值时，必须选择 RF 用自动增益控制器 2 的衰减量为 65dB 以上的调谐器 30，这导致调谐器 30 的成本增加。

如图 6 所示的本变形例中，在 RF/IF 增益控制信号发生器 25a 独立控制 RF 电平信号 SLr 和 IF 电平信号 SLi 时，能够解决前述的实施形态 1 中产生问题。具体地说，如图 7 所示，数字广播电波 RF 的输入电平在 -25dBm ～ -10dBm 之间，也能使 RF 用自动增益控制器 2 和 IF 用自动增益控制器 5 两者动作，通过这样对于数字广播电波 RF 的输入电平为 -50dBm 的 RF 用自动增益控制器 2 的衰减量为 29dB。这与图 14 所示的以往的自动增益控制器 AGC 中对于数字广
10629

播电波 RF 的输入电平为 -50dBm 的 RF 用自动增益控制器 2 的衰减量为 25dB 相比，本发明的 RF 用自动增益控制器 2 的衰减量大 4dB。也就是说，在本发明中，输入到混频器 3 中的信号电平比以往小 4dB，利用混合调制失真干扰在混频器 3 中性能恶化的相邻频道干扰性能改善 4dB。

此外，在如图 18 所示的以往例中，对于数字广播电波 RF 的输入电平为 -10dBm 的 RF 用自动增益控制器 2 的衰减量为 59dB。另一方面，在图 7 所示的本发明中，对于数字广播电波 RF 的输入电平为 -10dBm 的 RF 用自动增益控制器 2 的衰减量为 62dB。也就是说，本发明输入到混频器 3 的电平小 3dB，在混频器 3 中性能恶化的相互失真调制干扰的性能改善 3dB。

实施形态 2

下面，在参照图 10 和图 11 具体进行说明前，对本发明实施形态 2 的自动增益控制器的基本概念进行说明。图 4 所示的实施形态 1 的自动增益控制器 AGCa 的特性，本来若知道前述的式(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9) 和 (10) 中的参数 X1 和 X2 的值就能够确定。但是，即使知道参数 X1 和 X2 的值，为了求出式(2)、(4)、(5)、(6)、(7)、(8)、(9) 和 (10) 中的斜率 arf 和 aif 以及与 y 坐标轴的交点 brf 和 bif 的坐标，由式(4)、(5)、(9) 和 (10) 可见，必须要除法器。

另一方面，如果知道参数 X1、X2、arf 和 aif，则不使用除法器也能求得图 4 所示的特性。因此，借助于设置提供设定参数 X1、X2、arf 和 aif 的微型计算机等参数设定手段，不用除法器也能得到所要的增益特性。

在本发明的自动增益控制 AGCb 中，将自动增益控制信号发生器 SGa 置换成自动增益控制信号发生器 SGb，同时新设置微型计算机 37，除此之外，与图 1 所示的自动增益控制器 AGCa 结构相同。此外，自动增益控制信号发生器 SGb 除去将 RF/IF 增益控制信号发生器 25a 置换成 RF/IF 增益控制信号发生器 25b 外，与 RF/IF 增益控制信号发生器 25a 结构相同。此外，设置微型计算机 37 作为将参照图 4 说明的参数 X1、X2、arf 和 aif 提供给自动增益控制信号发生器 SGb 的设定手段。因此，只要无特别需要，省略对于与自动增益控制器 AGCa 共同部分的说明，仅对本实施形态中固有的 RF/IF 增益控制信号发生器 25b 进行说明。

参照图 11 对 RF/IF 增益控制信号发生器 25b 进行说明。RF/IF 增益控制信号发生器 25b 大致包括根据来自电平变换器 LC 的输入生成 RF 电平信号 SLr
的 RF 电平信号生成器 Ur 和生成 IF 电平信号 SLi 的 IF 电平信号生成器 Ui。RF 电平信号生成器 Ur 包括减法器 47、比较器 48、值发生器 49、切换器 50、乘法器 51 和限幅器 52。将减法器 47 与电平变换器 LC 的加法器 38 和微型计算机 37 相连。并且，减法器 47 从电平变换器 LC 输入的-Za+OB 减去微型计算机 37 输入的 X1，生成-Za+OB-X1。

输入到 RF/IF 增益控制信号发生器 25b 的-Za+OB 的值 x 由减法器 47 仅减去 X1，生成-Za+OB-X1。比较器 48 判断由减法器 47 输出的-Za+OB-X1 的值（电平）是否小于 0，生成第 1 电平判定信号 Ssw1。切换器 50 与 0 值发生器 49 的输出口、减法器 47 的输出口和比较器 48 的输出口相连。并且，根据从比较器 48 输出的第 1 电平判定信号 Ssw1，切换器 50 选择减法器 47 或者 0 值发生器 49 任何一个输出口，与乘法器 51 的输入口相连。

其结果，将从减法器 47 供给的-Za+OB-X1 或者从 0 值发生器 49 输出的 0 值中的某一个输入到乘法器 51。更详细地说，如果减法器 47 的输出小于 0，则从切换器 50 输出 0 值，如果减法器 47 的输出大于 0，则从切换器 50 输出减法器 47 的输出值。在乘法器 51 将切换器 50 的输出值乘以 arf，在乘法器 51 的输出大于 4095 时，对其值进行限幅，并输出 4095 作为 RF 电平信号 SLrb。

对于式(1)，当 x<X1 时，从切换器 50 输出 0 值，经过乘法器 51 和限幅器 52 的 RF 电平信号 SLrb 的值为 0。然后，对于 RF 电平信号 SLrb，关于式(1)、(2)、(3)、(4) 和(5)，当 X1<x<X2 时，从切换器 50 输出减法器 47 的输出值 x-X1，从乘法器输出 arf*(x-X1)。从限幅器电路 52 输出 arf*(x-X1)，即式(1)、(2)、(3)、(4) 和(5) 的 arf*x+brf=arf*(x-X1)。然后，关于式(1)、(2)、(3)、(4) 和(5)，当 X2<x 时，从切换器 50 输出减法器 47 的输出值，从乘法器输出 arf*(x-X1)，并从限幅器 52 输出 arf*(x-X1) 被限幅后的值，即 4095。

IF 电平信号生成器 Ui 包括减法器 53、比较器 54(在图 11 中用“≥X2”表示)、比较器 55(在图 11 中用“≥X1”表示)、反转器 56、乘法器 57、乘法器 58、加法器 59、切换器 60、切换器 61、与门 (AND) 电路 62 和切换器 63。

由减法器 53 将 RF/IF 增益控制信号发生器 25b 的输入值 x 减去 X2，生成-Za+OB-X2。比较器 54 判断由加法器 38 输入的-Za+OB 的值（电平）是否大于 X2 时，生成第 2 电平判定信号 Ssw2。切换器 63 与加法器 38 的输出口、减法器 53 的输出口和比较器 54 的输出口相连。并且，根据从比较器 54 输出的第 2 电平判定信号 Ssw2，切换器 63 选择加法器 38 或者减法器 53 的某一个输出口，
与乘法器 57 的输入口相连。

也就是说，当输入到 RF/IF 增益控制信号发生器 25b 的信号值 $x(-Za+OB) < X2$ 时，切换器 63 输出来自减法器 53 的输出值 $x-X2(-Za+OB-X2)$。并且，当 $x(-Za+OB)$ 小于 $X2$ 时，切换器 63 将输入到 RF/IF 增益控制信号发生器 25b 的输入值 $x(-Za+OB)$ 输出到乘法器 57。乘法器 57 将来自切换器 63 的输出值 $x(-Za+OB)$ 或者 $x(-Za+OB-X2)$ 与由微型计算机 37 输出的 aif 相乘，生成 $(-Za+OB)*aif$ 或者 $(-Za+OB-X2)*aif$。

乘法器 58 将都是由微型计算机 37 输出的 X1 与 aif 相乘，生成 aif*X1。加法器 59 将由乘法器 57 输出的 $(-Za+OB)*aif$ 或者 $(-Za+OB-X2)*aif$ 与由乘法器 58 输出的 aif*X1 相加，生成 $(-Za+OB+X1)*aif$ 或者 $(-Za+OB-X2+X1)*aif$。

切换器 60 与乘法器 57 的输出口、加法器 59 的输出口和比较器 54 的输出口相连，同时与切换器 61 的输入口相连。然后，根据从比较器 54 输入的第 2 电平判定信号 Ssw2，将由加法器 59 输出的 $(-Za+OB+X1)*aif$ 或者 $(-Za+OB-X2+X1)*aif$ 与由乘法器 57 输出的 $(-Za+OB)*aif$ 或者 $(-Za+OB-X2)*aif$ 中的某一个输出到切换器 61 的输入口上。

也就是说，当输入到 RF/IF 增益控制信号发生器 25b 的信号值 $x(-Za+OB)$ 大于 $X2$ 时，切换器 60 输出 $(-Za+OB-X2+X1)*aif$。另外，当输入值 $x(-Za+OB) \leq X2$ 时，切换器 60 输出 $(-Za+OB)*aif$。

此外，比较器 55 判定由加法器 38 输入的 $x(-Za+OB)$ 是否大于 $X1$，并将第 4 电平信号 Ssw4 输出到 AND 电路 62 中。反转器 56 反转由比较器 54 输入的第 2 电平判定信号 Ssw2，并作为第 3 电平判定信号 Ssw3 输出到 AND 电路 62 中。

当从加法器 38 输出的 $x(-Za+OB)$ 当 $x>X1$ 时，第 4 电平判定信号 Ssw4=1，$x(-Za+OB)$ 为 $X \leq X1$ 时，Ssw4=0。

当从加法器 38 输出的 $x(-Za+OB)$ 当 $x \leq X2$ 时，第 2 电平判定信号 Ssw2=0，Ssw3=1。并因 $x \geq X2$ 时，Ssw2=1，所以 Ssw3=0。也就是说，由加法器 38 输入的 $x$ 当 $X1 < x \leq X2$ 时，AND 电路的输出 (第 5 电平判定信号) Ssw5 为 1。当 $X2 < x$ 或 $x \leq X1$ 时，AND 电路的输出 (第 5 电平判定信号) Ssw5 为 0。

切换器 61 与乘法器 58 的输出口、切换器 60 的输出口和 AND 电路 62 的输出口相连。并且，根据由 AND 电路 62 输入的第 5 电平判定信号 Ssw5，将由乘法器 58 输出的 aif * X1 或者由切换器 60 输出的 $(-Za+OB)*aif$ 或者 $(-Za+OB-X2)*aif$ 与由微型计算机 37 输出的 X1 与 aif 相乘，生成 aif*X1。加法器 59 将由乘法器 57 输出的 $(-Za+OB)*aif$ 或者 $(-Za+OB-X2)*aif$ 与由乘法器 58 输出的 aif*X1 相加，生成 $(-Za+OB+X1)*aif$ 或者 $(-Za+OB-X2+X1)*aif$。
01.06.29

OB-X2+X1)*aif 中的某一个作为 IF 电平信号 SLib 输出到 PWM42。

也就是说，当输入到 RF/IF 增益控制信号发生器 25b 的输入值 x(-Za+OB)
为 X1<x≤X2 时，切换器 61 输出由乘法器 58 输出的 aif * X1 作为 IF 电平信号
SLib。而，当输入值 x(-Za+OB) 为 x≤X1 或者 X2<x 时，切换器 61 输出由
切换器 60 输入的(-Za+OB)*aif 或者(-Za+OB-X2+X1)*aif 作为 IF 电平信号
SLib。

也就是说，在式(5)、(6)、(7)、(8) 和(9) 中，当输入到 RF/IF 增益控制
信号发生器 25b 的输入值 x(-Za+OB) 为 x<X1 时，从切换器 63 输出 RF/IF 增
益控制信号发生器 25b 的输入值 x(-Za+OB)。并且，用乘法器 57 输出 aif*(-Za
+OB)。

通过切换器 60 和切换器 61，IF 电平信号 SLib 的值为 aif * x，在式(1),
(2), (3), (4) 和 (5) 中，当输入到 RF/IF 增益控制信号发生器 25b 的输入值 x
为 X1<x≤X2 时，通过切换器 61 输出来自乘法器 58 的输出值 aif * X1 作为
IF 电平信号 SLib。

在式(1), (2), (3), (4) 和 (5) 中，当输入到 RF/IF 增益控制信号发生器
25b 的输入值 x(-Za+OB)+X2 时，从切换器 63 输出乘法器 53 的输出值-Za+
OB-X2。并且，在乘法器 57 输出 aif*(-Za+OB-X2)，从加法器 59 输出(-Za+
OB-X2+X1)。通过切换器 60 和切换器 61，IF 电平信号 SLib 的值为 aif *(-Za
+OB-X2+X1)。

因而决定 X1 和 X2 的值，并根据它们利用式(4) 和 (9) 求得 arf 和 aif，并
由微型计算机 37 通过 IC 总线将参数 X1、X2、arf 和 aif 提供给自动增益控制
信号发生器 SGb 内的 RF/IF 增益控制信号发生器 25b。其结果，能去掉为了构
成 RF/IF 增益控制信号发生器 25b 电路所需要的除法器，能减小电路的规模。

下面，参照图 12 和图 13 对前述实施形态 2 的自动增益控制器 AGCb 的变
形例进行说明。在自动增益控制器 AGCb 中，提出不用除法器而实现图 6 所示
特性的方法。在本变形例中，也提出同样不用除法器而实现图 6 所示特性的方
法。也就是说，若知道前述式(11)、(12)、(13)、(14) 和(15) 中的参数 X3 和
X4 的值，能求得图 6 所示的自动增益控制器 AGCa 的特性。此外，若知道前述
式 (16)、(17)、(18)、(19) 和(20) 中的参数 X5 和 X6 的参数，能求得图 6 所示
的特性。

但是，即使知道参数 X3、X4、X5 和 X6，为了求出式(12)、(14)、(15)、
(16)、(17)、(18)、(19) 和(20) 中的斜率 arf 和 aif 以及与 y 坐标轴的交点 brf
和 bif 的坐标，由式 (14)、(15)、(19) 和 (20) 可见，除法器是必须的。但是，若知道参数 X3 和 arf 的值，则能求得图 6 所示相对于 RF/IF 增益控制信号发生器输入的 RF 电平信号特性。若知道参数 X5、X6 和 aif 的值，也能求得相对于 RF/IF 增益控制信号发生器输入的 IF 电平信号特性。因此，借助于设置提供设定 X3、X5、X6、arf 和 aif 的微型计算机等参数设定手段，不需要除法器也能实现所需要的增益特性。

图 13 所示为这种结构的 RF/IF 增益控制信号发生器 25c 的各部分处理图，并对其进行简单地进行说明。本变形例中的自动增益控制器 AGCb' 除去用微型计算机设定参数 X3、X5 和 X6，其结构和动作都与自动增益控制器 AGCb 相同。但是，RF/IF 增益控制信号发生器 25b' 的减法器 47 输入 X3 来代替 X1，减法器 53 输入 X6 代替 X2，以及乘法器输入 X5 代替 X1。其结果，将比较器 54 置换成比较器 54c，将比较器 55 置换成比较器 55c。此外，由加法器 38 输入的 x(−Za+OB) 当 x>X5 时，第 4 电平判定信号 Ssw=1，x(−Za+OB) 当 x≤X5 时，第 4 电平判定信号 Ssw=0。由加法器 38 输入的 x(−Za+OB) 当 x≤X6 时，Ssw2=0，Ssw3=1。另一方面，当 x>X6 时，Ssw2 为 1，Ssw3 为 0。由加法器 38 输入的 x 为 X5<x≤X6 时，由 AND 电路输出的第 5 电平判定信号 Ssw5 为 1。当 X6<x≤X5 时，由 AND 电路输出的第 5 电平判定信号 Ssw5 为 0。

在 RF/IF 增益控制信号发生器 25b' 中，与 RF/IF 增益控制信号发生器 25b 电路相同，乘法器 35、减法器 53 和乘法器 58 中，根据由微型计算机 37 输入的 X3、X5 和 X6，用式 (14) 和 (19) 计算 arf 和 aif。并且，由微型计算机 37 通过 IC 总线将参数 X3、X5、X6、arf 和 aif 送到 RF/IF 增益控制信号发生器 25b'，能去掉 RF/IF 增益控制信号发生器 25b 所需要的除法器，并能减少电路规模。

这样，在本发明中，在 RF 用自动增益控制器的增益衰减时，使 IF 用自动增益控制器的增益一定，在 IF 用自动增益控制器的增益衰减时，使 RF 用自动增益控制器的增益一定，这样在包括考虑到调谐器差异的情况下，能改善相邻频道干扰的性能和相互调制失真干扰的性能。此外，借助于由微型计算机设定在决定 RF 用自动增益控制器和 IF 用自动增益控制器的动作方法的 RF/IF 增益控制信号发生器中必要的参数，也能减少电路规模。

以上，对本发明详细地进行了说明，但前述说明的所有内容不过是本发明的例子，并不脱离本发明的范围。当然可以进行种种的改进和变形。
图

2

SMDa

+ 12

13

SMDa(t) - Ya(t+1)/2^n

SMDa(t) + Ya(t+1)(1 - 2^{-n})

延迟器

14

Ya(t+1)

15

Ya(t+1)/2^n

SLa

LDa

100
图 15
图 17