（54）发明名称
一种铝挂件阳极氧化方法

（57）摘要
本发明公开了一种铝挂件阳极氧化方法，其特征在于：包括采用阳极氧化槽液作除油剂，并设碱蚀第一道水洗布置在除油水洗和碱蚀中问，工艺步骤包括除油、除油水洗、碱蚀水洗1、碱蚀水洗2、出光、出光水洗1、出光水洗2、阳极氧化、氧化水洗1、氧化水洗2、电解脱色、着色水洗1、着色水洗2、着色水洗3、着色水洗4、电泳、电泳水洗1、电泳水洗2、封孔、封孔水洗、风干和固化，得道阳极氧化电解着色电泳铝挂件或阳极氧化电解着色铝挂件或阳极氧化电泳铝挂件或阳极氧化铝挂件。本方法能解决因碱蚀工艺特殊性影响到碱蚀槽工艺参数波动极大的弊病，彻底解决阳极氧化槽铝增加对铝挂件氧化质量的影响，并能降低除油、碱蚀的成本，而且保证了产品质量。
1. 一种极极氧化促解着色电泳铝挂件的制备方法，其特征在于；将铝挂件工件移入用极极极氧槽液调制成硫酸浓度为 90g/l 的除油水溶液中除油，温度为常温，工作时间为 4min，移出除油铝挂件进行水洗；在碱液前先进行水洗，然后将铝挂件工件移入由工业氢氧化钠与水配制浓度为 50g/l 的液碱，并按 1000m²铝挂件添加固体长寿碱 1kg，控制工作温度为 50℃，工作时间为 3min，铝挂件工件碱解完成后进行碱解第二道水洗；将经碱解第二道水洗铝挂件工件移入浓度为 120g/l 的硫酸水溶液，并按 2000m²铝挂件添加出光剂 1kg 的出光工作液中出光，工作温度为常温，时间为 3.5min，后进行两道水洗；氧化工作液中氧化，工作温度为 20℃，电流密度为 1.2A/dm²铝挂件阳极氧化完成后进行两道水洗；将阳极氧化铝挂件工件移入由硫酸铝 8g/l 和硫酸锰 17g/l 组成，pH=1 的电解着色液中电解着色，工作温度为 21℃，工作时间为 200S，电压为 21V；电解着色完成后进行两道水洗，再用去离子水洗一次，后用去离子水再水洗一次；将电解着色铝挂件工件移入电泳漆为 5g/l 的电泳液中电泳，控制电导率 900μs，pH=8 和电压 120V；电泳完成后用去离子水洗二次，然后控制固化时间 50min，固化温度 180℃条件固化得到极极氧化，电解着色电泳铝挂件产品。

2. 一种极极氧化促解着色电泳铝挂件的制备方法，其特征在于；将铝挂件工件移入用极极氧化槽液调制成硫酸浓度为 80g/l 的除油水溶液中除油，温度为常温，工作时间为 6min，移出除油铝挂件进行水洗；在碱液前先进行水洗，然后将铝挂件工件移入由工业氢氧化钠与水配制浓度为 30g/l 的液碱，并按 1000m²铝挂件添加固体长寿碱 1kg，控制工作温度为 60℃，工作时间为 4min，铝挂件工件碱解完成后进行碱解第二道水洗；将经碱解第二道水洗铝挂件工件移入浓度为 120g/l 的硫酸水溶液，并按 2000m²铝挂件添加出光剂 1kg 的出光工作液中出光，工作温度为常温，时间为 3.5min，后进行两道水洗，再将铝挂件移入浓度为 180g/l 的硫酸水溶液，并按 100m²铝挂件添加浓度氧化剂 1kg 的阳极氧化工作液中氧化，工作温度为 20℃，电流密度为 1.2A/dm²铝挂件阳极氧化完成后进行两道水洗；将阳极氧化铝挂件工件移入由硫酸铝 10g/l 和硫酸锰 18g/l 组成，pH=1.2 的电解着色液中电解着色，工作温度为 20℃，工作时间为 400S，电压为 16V；电解着色完成后进行两道水洗，再用去离子水洗一次，后用去离子水再水洗一次；将电解着色铝挂件工件移入电泳漆为 1g/l 的电泳液中电泳，控制电导率 900μs，pH=6 组成的封孔槽；封孔完成后用去水洗水洗一次，经风机风干得到极极氧化，电解着色铝挂件产品。

3. 一种极极氧化电泳铝挂件的制备方法，其特征在于；将铝挂件工件移入用极极氧化槽液调制成硫酸浓度为 110g/l 的除油水溶液中除油，温度为常温，工作时间为 3min，移出除油铝挂件进行水洗；在碱液前先进行水洗，然后将铝挂件工件移入由工业氢氧化钠与水配制浓度为 60g/l 的液碱，并按 1000m²铝挂件添加固体长寿碱 1kg，控制工作温度为 50℃，工作时间为 2min，铝挂件工件碱解完成后进行碱解第二道水洗；将经碱解第二道水洗铝挂件工件移入浓度为 120g/l 的硫酸水溶液，并按 2000m²铝挂件添加出光剂 1kg 的出光工作液中出光，工作温度为常温，时间为 3.5min，后进行两道水洗，再将铝挂件移入浓度为 180g/l 的硫酸水溶液，并按 100m²铝挂件添加浓度氧化剂 1kg 的阳极氧化工作液中氧化，工作温度为 20℃，电流密度为 1.2A/dm²铝挂件阳极氧化完成后进行两道水洗；再用去离子水洗一次，后用去离子水再水洗一次；将阳极氧化铝挂件工件移入电泳漆为 6g/l 的电泳液中电泳，控制电导率 960μs，pH=7 和电压 140V；电泳完成后用去离子水洗二次，然后控制固化时间 45min，固化温度 185℃条件固化得到极极氧化电泳铝挂件产品。
4. 一种阳极氧化铝挂件的制备方法，其特征在于：将铝挂工件移入用阳极氧化槽液调制成硫酸浓度为70g/l的除油工作液中除油，温度为常温，工作时间为8min，移出除油铝挂工件进行水洗；在碱蚀前先进行水洗，然后将铝挂工件移入由工业氢氧化钠与水配制浓度为70g/l的液碱，并按1000m²铝挂件添加固体长寿碱1kg，控制工作温度为45℃，工作时间为5min，铝挂工件碱蚀完成后进行碱蚀第二道水洗；将经碱蚀第二道水洗铝挂工件转移浓度为120g/l的硫酸水溶液，并按2000m²铝挂件添加出光剂1kg的出光工作液中出光，工作温度为常温，时间为3.5min，后进行两道水洗，再将铝挂移入浓度为180g/l的硫酸水溶液，并按100m²铝挂件添加宽温氧化剂1kg的阳极氧化工作液中氧化，工作温度为20℃，电流密度为1.2A/dm²，铝挂工件阳极氧化完成后进行两道水洗；再用去离子热水洗一次，后用去离子水再水洗一次；将阳极氧化铝挂件移入由镍离子浓度0.8g/l；氯离子浓度0.3g/l；pH=5.5组成的封孔槽；封孔完成后用自来水洗一次，经风机风干得到阳极氧化铝挂件产品。
说明书写

一种铝制件阳极氧化方法

技术领域
[0001] 本发明属于铝及铝合金表面处理技术领域，涉及一种铝制件阳极氧化方法。

背景技术
[0002] 铝具有一定系列优异的物理、化学和加工性能，是有色金属中使用最大、应用面最广的金属材料之一。经过阳极氧化处理的铝件，表面美观、大方、耐用，广泛应用于建筑装饰和结构材料、交通运输、电子产品、家用电器和金属家具等，与人民群众的日常生活关系越来越密切。
[0003] 阳极氧化前处理对氧化质量起到至关重要的作用。现有的技术中，采用铝件经除油、碱洗、出光、阳极氧化、电解着色、电泳、封孔，烘干得到成品。其中，除油工序为酸性除油剂除油，直接外购除油剂，造成除油成本较高。碱洗前为一道自来水洗，碱洗后两道自来水洗后直接进入出光槽除灰，带来以下诸多问题：
[0004] 1. 除油后带进的酸性水质，造成液碱浓度极不稳定的波动，影响碱洗效果，降低碱的含量；
[0005] 2. 由于碱洗的特殊要求，铝件出槽后需尽快地转移，带出的碱洗液较多，快速降低了液位，造成槽液温度的失控；
[0006] 3. 喷洗后第一道水洗工序，浓度很高，排放的污水，增加处理难度，同时也影响了第二道水洗的洁净度。
[0007] 4. 在阳极氧化过程中，铝离子含量不断增多，要保证阳极氧化质量，需增加硫酸回收装置以降低铝离子含量，并增加该装置的清洗、维护和管理人员。

发明内容
[0008] 本发明的目的在于针对现有铝制件阳极氧化技术存在的除油成本高昂、碱洗水洗难度大、阳极氧化槽铝离子增加的技术缺点，提供一种铝制件阳极氧化方法。
[0009] 本发明的技术方案是：
[0010] 从降低前处理成本出发，同时兼顾处理效果，将氧化槽液添加到除油槽，不用添加任何除油剂，彻底解决阳极氧化槽槽铝离子增加的问题，同时降低除油成本，并且没有影响到除油质量。并将碱洗第一道水洗布置在除油水洗和碱洗中止，彻底消除了碱洗槽液温度降低的弊病，降低液碱浓度的控制难度，提高碱洗第二道水洗的洁净度。
[0011] 本发明是这样的实现的：
[0012] 铝制件阳极氧化方法，包括除油、碱洗、出光、阳极氧化、电解着色、电泳、封孔和水洗工序，其特征在于包括采用阳极氧化槽液作除油剂，并设碱洗第一道水洗布置在除油水洗和碱洗中止，工艺步骤包括：除油、除油水洗、碱洗水洗1、碱洗、碱洗水洗2、出光、出光水洗1、出光水洗2、阳极氧化、氧化水洗1、氧化水洗2、电解着色、着色水洗1、着色水洗2、着色水洗3、着色水洗4、电泳、电泳水洗1、电泳水洗2、封孔、封孔水洗、风干和固化，得到阳极氧化电解着色电泳铝制件或阳极氧化电解着色铝制件或阳极氧化电泳铝制件或阳极氧化
铝挂件。

[0013] 以上所述的除油,槽液是由阳极氧化槽液稀释硫酸浓度为 60 ～ 120g/l 的硫酸水
溶液,工作温度为常温,工作时间为 2 ～ 8 min。

[0014] 以上所述的碱蚀,槽液是由工业强碱与水配制成浓度为 20 ～ 80g/l 的液碱,并按
1000m² 铝挂件添加固体长寿液 1kg,工作温度为 40 ～ 60℃,工作时间为 0.5 ～ 5 min。

[0015] 以上所述的工业强碱,采用氢氧化钠。

[0016] 以上所述的固体长寿碱,固体长寿碱含有铝离子络合剂,整平剂,缓蚀剂,砂面剂,抑
垢剂等多种成分,无毒,可长期保存,主要是对铝合金进行碱蚀,碱蚀的目的是为了除去
铝件表面除油后残留的油脂和自然氧化物,使表面均匀一致,同时可以消除轻微的挤压纹,
获得亚光或者一定的砂面效果,还可以防止碱蚀过程中产生的铝离子水解沉淀及结块,以
延长槽液的使用寿命,具有缓蚀,整平,抑制碱雾,降低铝的损失等功能,国内目前有; 佛山市
南海彩铝铝业科技有限公司, 仙桃市伟业化工有限公司, 佛山市王江化工有限公司, 深圳
赛邦新材料有限公司等, 本发明采用深圳赛邦新材料有限公司生产的固体长寿碱。

[0017] 以上所述的出光,槽液是浓度为 80 ～ 140g/l 的硫酸水溶液,并按 2000m² 铝挂件
添加出光剂 1kg,工作温度为常温,工作时间为 2 ～ 4 min。

[0018] 以上所述的出光剂,是以草酸为主要原料的溶液,本发明采用深圳赛邦新材料有限
公司生产的出光剂。

[0019] 以上所述的阳极氧化,槽液是浓度为 160 ～ 200g/l 的硫酸水溶液,并按 100m² 铝
挂件添加宽温氧化剂 1kg,工作温度为 18 ～ 30℃,电流密度为 1.0 ～ 1.5A/dm²。

[0020] 以上所述的电解着色,槽液的组成;硫酸锌 :6 ～ 12g/l,硫酸镍 :12 ～ 20g/l, pH =
0.5 ～ 1.5,余量为水; 工作温度为 18 ～ 22℃,工作时间为 15 ～ 1200S, 电压为 12 ～ 25V。

[0021] 以上所述的着色水洗 3,着色水洗 4,电泳水洗 1 和电泳水洗 2 的水洗,采用去离子
水洗进行水洗。

[0022] 以上所述的电泳,槽液的组成;电泳漆为 3.5 ～ 7.5g/l,电导率为 750 ～ 1000 μS,
pH = 7.5 ～ 8.5, 电压为 110 ～ 150V。

[0023] 以上所述的封孔,槽液的组成;铝离子浓度为 0.7 ～ 1.4g/l,氟离子浓度为 0.2 ～
0.6g/l, pH = 5.8 ～ 6.5。

[0024] 以上所述的风干,采用常温风干。

[0025] 以上所述的固化,固化时间为 45 ～ 50 min,固化温度为 170 ～ 185℃。

[0026] 本发明的优点和有益效果:

[0027] 1,本发明方法采用阳极氧化槽液作铝挂件除油剂,并设碱蚀第一道水洗布置在除
油水洗和碱蚀中间,能解决因碱蚀工艺特殊性影响到碱蚀槽工艺参数波动极大的弊病,彻
底解决阳极氧化槽铝增加对铝挂件氧化质量的影响。

[0028] 2,本发明方法能降低除油,碱蚀的成本,而且保证了产品质量,制备出高质量的阳
极氧化电解着色电泳铝挂件,阳极氧化电解脱色铝挂件,阳极氧化电泳铝件和阳极氧化铝
挂件。

附图说明

[0029] 图 1 为本发明铝挂件阳极氧化工艺流程示意图。
具体实施方式

【0030】 以下结合附图对本发明进行具体的描述，但本发明所要求保护的范围并不局限于
实施例所描述的范围。

【0031】 实施例 1

【0032】 产品 1- 阳极氧化、电解着色电泳材的生产

【0033】 将铝挂件工件移入用阳极氧化槽液调制成硫酸浓度为 90g/l 的除油工作液中除油，
温度为常温，工作时间为 4min，移出除油挂件工件进行水洗；在碱液前先进行水洗，然后将
铝挂件工件移入由工业氢氧化钠与水配制浓度为 50g/l 的液碱，并按 1000m² 铝挂件添加固体
长寿碱 1kg，控制工作温度为 50℃，工作时间为 3min，铝挂件工件碱化完成再进行碱液第二道
水洗；将碱液第二道水洗铝挂件工件移入浓度为 120g/l 的硫酸水溶液，并按 2000m² 铝挂件
添加出光剂 1kg 的出光工作液中出光，工作温度为常温，时间为 3.5min，后进行两道水洗，
氧化工作液中氧化，工作温度为 20℃，电流密度为 1.2A/dm²，铝挂件工件阳极氧化完成后进行
两道水洗；将阳极氧化铝挂件工件移入由硫酸钠 8g/l 和硫酸镍 17g/l 组成，pH = 1 的电解
槽液中电解着色，工作温度为 21℃，工作时间为 200S，电压为 21V；电解着色完成后进行
两道水洗，再用去离子水洗一次，后用去离子水再水洗一次；将电解着色铝挂件工件移入电
泳漆为 5g/l 的电泳液中电泳，控制电导率 900 μ A，pH = 8，电压 120V；电泳完成后用去
离子水洗二次，然后控制固化时间 50min，固化温度 180℃条件固化得到阳极氧化、电解着
色电泳铝挂件产品。

【0034】 产品质量满足国家标准 GB 5237.2-2004、GB 5237.3-2004 要求，颜色多样，色泽
均匀，电泳涂膜晶莹剔透，硬度符合国家标准要求。

【0035】 实施例 2

【0036】 产品 2- 阳极氧化、电泳着色的生产

【0037】 将铝挂件工件移入用阳极氧化槽液调制成硫酸浓度为 80g/l 的除油工作液中除油，
温度为常温，工作时间为 6min，移出除油挂件工件进行水洗；在碱液前先进行水洗，然后将
铝挂件工件移入由工业氢氧化钠与水配制浓度为 30g/l 的液碱，并按 1000m² 铝挂件添加固体
长寿碱 1kg，控制工作温度为 60℃，工作时间为 4min，铝挂件工件碱化完成再进行碱液第二道
水洗；将碱液第二道水洗铝挂件工件移入浓度为 120g/l 的硫酸水溶液，并按 2000m² 铝挂件
添加出光剂 1kg 的出光工作液中出光，工作温度为常温，时间为 3.5min，后进行两道水洗，
再将铝挂件移入浓度为 80g/l 的硫酸水溶液，并按 100m² 铝挂件添加宽温氧化剂 1kg 阳极
氧化工作液中氧化，工作温度为 20℃，电流密度为 1.2A/dm²，铝挂件工件阳极氧化完成后进行
两道水洗；将阳极氧化铝挂件工件移入由硫酸钠 10g/l 和硫酸镍 18g/l 组成，pH = 1.2 的电
解槽液中电解着色，工作温度为 20℃，工作时间为 400S，电压为 16V；电解着色完成后进行
两道水洗，再用去离子水洗一次，后用去离子水再水洗一次；将电解着色铝挂件工件移入
由镍离子浓度 1g/l, 铝离子浓度 0.5g/l, pH = 6 组成的封孔槽，封孔完成后用自来水洗
一次，经风机风干得到阳极氧化、电解着色铝挂件产品。

【0038】 产品质量满足国家标准 GB 5237.2-2004 要求，颜色多样，色泽均匀。

【0039】 实施例 3

【0040】 产品 3- 阳极氧化电泳材的生产
将铝挂工件移入用阳极氧化槽液调制成硫酸浓度为110g/1的除油工作液中除油。温度为常温，工作时间为3min，移出除油铝挂工件进行水洗；在碱蚀前先进行水洗，然后将铝挂工件移入由工业氢氧化钠与水配制浓度为60g/l的液碱，并按1000m²铝挂件添加固体长寿命碱1kg，控制工作温度为50℃，工作时间为2min，铝挂工件碱蚀完成后进行碱蚀第二道水洗；将经碱蚀第二道水洗铝挂工件移入浓度为120g/l的硫酸水溶液，并按2000m²铝挂件添加出光剂1kg的出光工作液中出光，工作温度为常温，时间为3.5min，后进行两道水洗；再将铝挂工件移入浓度为180g/l的硫酸水溶液，并按1000m²铝挂件添加温氧化剂1kg的阳极氧化工作液中氧化，工作温度为20℃，电流密度为1.2A/dm²，铝挂工件阳极氧化完成后进行两道水洗；再用去离子热水洗一次，后用去离子水再水洗一次，再将阳极氧化铝挂工件移入电泳液中电泳，控制电导率960μS，pH＝7和电压140V；电泳完成后用去离子水洗二次，然后控制固化时间45min，固化温度185℃条件固化得到阳极氧化电泳铝挂件产品。

产品质量满足国家标准GB 5237.2-2004、GB 5237.3-2004要求，电泳涂膜晶莹剔透，硬度符合国家标准要求。

实施例4

产品4-铝件阳极氧化后的生产

将铝挂工件移入用阳极氧化槽液调制成硫酸浓度为70g/l的除油工作液中除油，温度为常温，工作时间为8min，移出除油铝挂工件进行水洗；在碱蚀前先进行水洗，然后将铝挂工件移入由工业氢氧化钠与水配制浓度为70g/l的液碱，并按1000m²铝挂件添加固体长寿命碱1kg，控制工作温度为45℃，工作时间为5min，铝挂工件碱蚀完成后进行碱蚀第二道水洗；将经碱蚀第二道水洗铝挂工件移入浓度为120g/l的硫酸水溶液，并按2000m²铝挂件添加出光剂1kg的出光工作液中出光，工作温度为常温，时间为3.5min，后进行两道水洗，再将铝挂工件移入浓度为180g/l的硫酸水溶液，并按1000m²铝挂件添加温氧化剂1kg的阳极氧化工作液中氧化，工作温度为20℃，电流密度为1.2A/dm²，铝挂工件阳极氧化完成后进行两道水洗，再用去离子热水洗一次，后用去离子水再水洗一次，再将阳极氧化铝挂工件移入由镁离子浓度0.8g/l；氟离子浓度0.3g/l；pH＝5.5组成的封孔槽；封孔完成后用自来水水洗一次，经风机风干得到阳极氧化铝挂件产品。

产品质量满足国家标准GB 5237.2-2004要求。