

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/105926 A1

(43) International Publication Date

22 June 2017 (22.06.2017)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(51) International Patent Classification:

G02F 1/1335 (2006.01)

(21) International Application Number:

PCT/US2016/065183

(22) International Filing Date:

6 December 2016 (06.12.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/268,908 17 December 2015 (17.12.2015) US

(71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(72) Inventor: TOYOOKA, Kazuhiko; 6-7-29 Kitashinagawa, Shinagawa-ku, Tokyo 141-8684 (JP).

(74) Agents: IDEN, Daniel J. et al.; 3M Center, Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

(54) Title: MIRROR INCLUDING REFLECTIVE BACKLIT DISPLAY



FIG. 1

(57) Abstract: Mirrors including reflective backlit displays are described. In particular, mirrors including backlit displays with a backlight, a liquid crystal cell including a liquid crystal layer disposed between two opposing transparent substrate layers, a first reflective polarizer, and a second reflective polarizer are described. The first and second reflective polarizers are each directly laminated to one of the opposing transparent substrate layers. Mirrors described herein may be configured as vehicle rear-view mirrors.

MIRROR INCLUDING REFLECTIVE BACKLIT DISPLAY

Background

5 Mirrors are used for many purposes, including for safety, aesthetics, and sartorial functions.

Mirrors are commonly used in vehicles to view ambient road and traffic conditions generally behind the vehicle without needing to turn the head. Backlit displays utilize a spatial light modulator to selectively transmit and absorb light. Backlit displays may display in color or in monochrome.

Summary

In one aspect, the present description relates to reflective backlit displays. In particular, the present description relates to reflective backlit displays including a backlight, a liquid crystal cell including a liquid crystal layer disposed between two opposing transparent substrate layers, a first reflective polarizer, and a second reflective polarizer. The first and second reflective polarizers are each directly adjacent to one of the opposing transparent substrate layers.

Brief Description of the Drawings

FIG. 1 is a front elevation view of a rear-view mirror including a reflective backlit display.

FIG. 2 is a side elevation view of a reflective backlit display stack.

Detailed Description

Rear view mirrors in vehicles, and in particular center (or inside) rear view mirrors may include display elements in order to provide navigational, status, safety, or other information to a driver. The inclusion of this information in a center rear view mirror may be particularly useful because a driver can glance at such information without losing sight of the road and traffic in front of the vehicle. Further, a driver routinely scans the mirrors instinctively, and so important information displayed on the mirror will be reliably seen by the driver without having to get accustomed to looking in a new or unusual location.

Conventional center rear view mirror displays adapt a conventional display stack by simply adding a vapor coated mirror (sometimes described as a half- or partial- mirror or reflector) on the front of the display. Such an adaptation reflects some portion of the ambient light, creating a mirror-like appearance, but also reflects the same portion of the light from the convention display stack back away from the emission surface (the viewing surface) of the rear view mirror because the vapor coated mirror is a non-polarization-dependent reflector. This reflection loss is on top of the conventional losses in a display stack: from both the front and back absorbing polarizers and also the liquid crystal layer. Having the mirror-like appearance allows for the full surface of the mirror to be useful or viewable when the display is not displaying information. Further, the mirror-like appearance may be aesthetically preferable by having uniformly appearing rear view mirror.

By replacing at least the front absorbing polarizer with a reflective polarizer, and in some embodiments both the front and the back absorbing polarizer with two reflective polarizers, the display stack can incorporate the ambient light reflection functionality of a partial mirror without the need for additional layers. Further, the replacement of at least one absorbing polarizer with reflective polarizers eliminates at least some of the absorbing elements from the stack. These modifications may provide for a reflective backlight display with higher brightness and efficiency than a reflective backlight using a conventional display stack.

FIG. 1 is a front elevation view of a rear-view mirror including a reflective backlit display. Rear-view mirror **100** includes mirror portion **110** and reflective backlit display portion **120** displaying information. Mirror portion **110** and reflective backlit display portion **120** may have similar appearances. However, reflective backlit display portion **120** may be capable of directly displaying generated information or images, while mirror **110** is not. In some embodiments, mirror portion **110** may be a small portion of rear-view mirror **100**, such as 40%, 30%, or 20% of the surface area. In some embodiments, mirror portion **110** may be a larger part of rear-view mirror **100**, such as 50%, 60%, 70%, 80%, 90% or more. In some embodiments, the mirror portion may be between 50% and 90% of the rear-view mirror. In some embodiments, the display portion may be 100% of the mirror portion; in other words, the mirror portion and the display portion may be the same and fill the entire reflective surface of the rear-view mirror. Rear-view mirror **100** may include other elements, controls, or indicators on the border of the mirror or on attached parts.

FIG. 2 is a side elevation view of a reflective backlit display stack. Reflective backlit display stack **200** includes light source **210**, lightguide **220**, prism film **230**, first reflective polarizer **240**, liquid crystal cell **250**, and second reflective polarizer **260**.

Light source **210** may be any suitable light source or combination of light sources. Conventional light sources such as light emitting diodes (LEDs), cold cathode fluorescent lamps (CCFLs), and even incandescent bulbs may be used. In some embodiments, although each light source **210** is depicted as a single object in FIG. 2, combinations of LEDs (for example) may be used to provide a sufficiently white input light, but, depending on the application, any suitable spectrum or combination of spectra may be utilized. Light source **210** may include suitable injection or collimation optics to aid in coupling light into the structured lightguide or to help shape the light input for the structured lightguide. Light source **210** is disposed on either or both sides of the lightguide. Light source **210** on either side may be the same or similar light sources, or they may be different.

Lightguide **220** may be any suitable size and shape, and may be formed from any suitable material by any suitable process. For example, lightguide **220** may be acrylic or polycarbonate. Lightguide **120** may be formed from a process such as injection molding. Lightguide **120** has at least one input edge. The input edge is typically disposed on the surface of the lightguide closest to the light source(s). The input edge may have any suitable shape or structure, including structures to improve coupling of light from the light source into the structured lightguide. Lightguide **220** also has one or more features for extracting light. These extraction features may be arranged in any suitable configuration,

including a periodic pattern, a non-periodic pattern, or a gradient. The extraction features may be arranged in a pattern that increases the areal uniformity of light output from lightguide 220.

Prism film 230 is optional in constructions described herein but may increase the overall on-axis brightness through light recycling. In this case, a reflector (not shown) may be used to redirect once again toward the front of reflective backlit stack 200 light that was reflected back from prism film 230 through total internal reflection at the interface between the prism film facets and air. The reflector may be coated on to lightguide 220 or may not be present, where the reflective backlit stack simply relies on Fresnel reflections off the interfaces of the prism films and lightguides. In some embodiments, the reflector is a multilayer optical film, such as Enhanced Specular Reflector (ESR) (available from 3M Company, St. Paul, Minn.).

Prism film 230 has a plurality of prisms extending in a same first direction. In some embodiments, prism film 230 may instead have multiple films, with at least one film having prisms extending in a first direction and at least one film having prisms extending in a second direction orthogonal to the first direction. For multiple prism films, they may be laminated to one another or may simply rest on one another. The prism films may be formed by any suitable process, including microreplication, for example through a continuous-cast-and-cure process or the like.

The prisms of prism film 230 may have any suitable geometry, including included angle, base angle, height, pitch, width, and rotation—and one or more of these parameters may vary either along a prism or across prisms. Prism film 230 may be, for example, Brightness Enhancing Film (BEF) (available from 3M Company, St. Paul, Minn.).

First reflective polarizer 240 and second reflective polarizer 260 are disposed on either side of liquid crystal layer 250. Liquid crystal cell 250 typically includes a layer of liquid crystal sandwiched by two layers of glass or another transparent substrate. The reflective polarizers may both be adjacent to the transparent substrate or one or both may be laminated directly to the glass or transparent substrate of the liquid crystal cell. The lamination may be performed using. Alternatively, only one or even neither of the reflective polarizers may be laminated directly to the glass or transparent substrate of the liquid crystal cell.

First reflective polarizer 240 may be any suitable reflective type polarizer. In some embodiments, the reflective polarizer may be an oriented multilayer polymeric optical film, such as DBEF or APF reflective polarizers (available from 3M Company, St. Paul., Minn.). In some embodiments, the reflective polarizer may be a wire-grid or cholesteric reflective polarizer. In some of these embodiments, the reflective polarizer may include one or more retardation or compensation layers, such as a quarter-wave plate, to convert between linear polarizations and circular or elliptical polarizations. First reflective polarizer 240 may have any suitable thickness; in the case of a multilayer optical film, the reflective polarizer may be a thicker multi-packet or laminated construction or a relatively thinner single packet construction. Second reflective polarizer 260 may be identical to first reflective polarizer 240 or they may be similar. In some embodiments, first reflective polarizer 240 and second reflective polarizer 260 may have some or many different characteristics. In some embodiments, an additional reflective polarizer or

reflective polarizers may be disposed on either or both of the first and second reflective polarizers. In other words, there may be two or more reflective polarizers on each side of the

First reflective polarizer **240** and second reflective polarizer **260** are configured to allow liquid crystal cell **250** to operate by selectively gating light. Depending on the type of liquid crystal material used in liquid crystal cell **250** (e.g., twisted nematic, super twisted nematic, etc.) and how the liquid crystal cell is electrically driven, the pass axes of the reflective polarizers should be configured such that for a pixel in an “on” state—i.e., in a state where a voltage differential is generated across a pixel of the liquid crystal cell, the light from the light source either substantially passes through the second reflective polarizer or it is substantially not transmitted through the second reflective polarizer, and for a pixel in an “off” state—i.e., in a state where there is no voltage differential across the pixel of the liquid crystal cell, the light from the light source is treated oppositely. Intermediate states are possible for certain types of liquid crystal cells. This may be a parallel arrangement of the pass axes of the reflective polarizers in some embodiments, or an orthogonal arrangement of the pass axes of the reflective polarizers. Any suitable driving electronics, conductive layers, or thin film transistors (TFTs) may be included or integrated into or included with liquid crystal cell **250**.

Example

The liquid crystal display for a SONY VAIO PCG-572N (available from Sony Corp., Tokyo, Japan) notebook computer was modified by removing, on one half only, the absorbing polarizers laminated to either side of the glass of the liquid crystal cell. After removing the absorbing polarizers on half of the display, the absorbing polarizers were replaced by laminating 3M APF-T35 reflective polarizers (available from 3M Company, St. Paul, Minn.) to the glass. The liquid crystal display was replaced and observed in both an “ON” (displaying an image) and “OFF” (displaying no image) state. The modified portion of the liquid crystal display functioned as a reflective backlit display, functioning as a mirror when the display was OFF and showing a viewable image when the display was ON. Performance was acceptable when compared to the reference half of the display, especially considering the reference display would further require a vapor-coated partial mirror to function as a reflective backlit display.

The following are exemplary embodiments according to the present disclosure:

Item 1. A reflective backlit display, comprising:

a backlight;

a liquid crystal cell including a liquid crystal layer disposed between two opposing transparent substrate layers;

a first reflective polarizer; and

a second reflective polarizer;

wherein the first and second reflective polarizers are each directly adjacent to one of the opposing transparent substrate layers.

Item 2. The reflective backlit display of item 1, wherein at least one of the first or second reflective polarizers is a multilayer reflective polarizer.

5 Item 3. The reflective backlit display of item 1, wherein each of the first or second reflective polarizers is a multilayer reflective polarizer.

Item 4. The reflective backlit display of item 3, wherein the two transparent substrate layers are glass.

10 Item 5. The reflective backlit display of item 1, wherein the first and second reflective polarizers are each directly laminated to one of the opposing transparent substrate layers.

Item 6. The reflective backlit display of item 1, wherein the backlight includes a lightguide, a reflector disposed on the light guide, and a light source configured to inject light into the lightguide.

15 Item 7. The reflective backlit display of item 1, further comprising a third reflective polarizer, wherein the third reflective polarizer is disposed on either the first or the second reflective polarizer.

Item 8. A mirror, comprising:

20 a mirror portion; and
a reflective backlit display portion comprising the reflective backlit display of
item 1;
wherein the reflective backlit display is capable of directly
displaying images, and the mirror portion is not.

25 Item 9. A vehicle, comprising the mirror of item 8, the mirror being configured as a rear-view mirror.

Item 10. The mirror of item 9, wherein the reflective backlit display portion is greater than 10% but less than 50% of an area of the mirror.

30 Item 11. The reflective backlit display of item 1, wherein the reflective backlit display includes no absorbing polarizers.

35 Item 12. The reflective backlit display of item 1, wherein the reflective backlit display includes no non-polarization-dependent partial reflector.

What is claimed is:

1. A reflective backlit display, comprising:
 - a backlight;
 - 5 a liquid crystal cell including a liquid crystal layer disposed between two opposing transparent substrate layers;
 - a first reflective polarizer; and
 - a second reflective polarizer;
 - wherein the first and second reflective polarizers are each directly adjacent to one
 - 10 of the opposing transparent substrate layers.
2. The reflective backlit display of claim 1, wherein at least one of the first or second reflective polarizers is a multilayer reflective polarizer.
- 15 3. The reflective backlit display of claim 1, wherein each of the first or second reflective polarizers is a multilayer reflective polarizer.
4. The reflective backlit display of claim 3, wherein the two transparent substrate layers are glass.
- 20 5. The reflective backlit display of claim 1, wherein the first and second reflective polarizers are each directly laminated to one of the opposing transparent substrate layers.
6. The reflective backlit display of claim 1, wherein the backlight includes a lightguide, a reflector disposed on the light guide, and a light source configured to inject light into the lightguide.
- 25 7. The reflective backlit display of claim 1, further comprising a third reflective polarizer, wherein the third reflective polarizer is disposed on either the first or the second reflective polarizer.
- 30 8. A mirror, comprising:
 - a mirror portion; and
 - a reflective backlit display portion comprising the reflective backlit display of
 - claim 1;
 - wherein the reflective backlit display is capable of directly
 - 35 displaying images, and the mirror portion is not.
9. A vehicle, comprising the mirror of claim 8, the mirror being configured as a rear-view mirror.

10. The mirror of claim 9, wherein the reflective backlit display portion is greater than 10% but less than 50% of an area of the mirror.

5 11. The reflective backlit display of claim 1, wherein the reflective backlit display includes no absorbing polarizers.

12. The reflective backlit display of claim 1, wherein the reflective backlit display includes no non-polarization-dependent partial reflector.

10

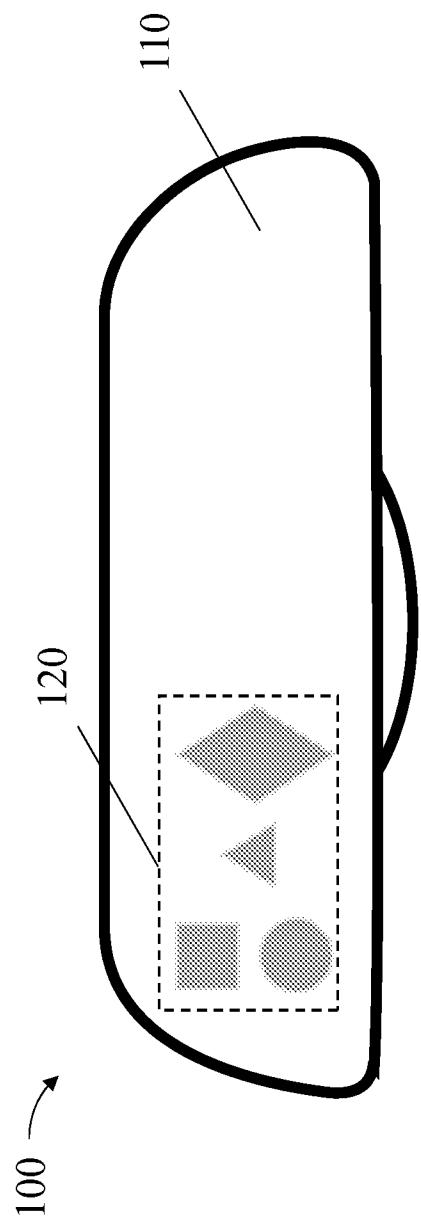


FIG. 1

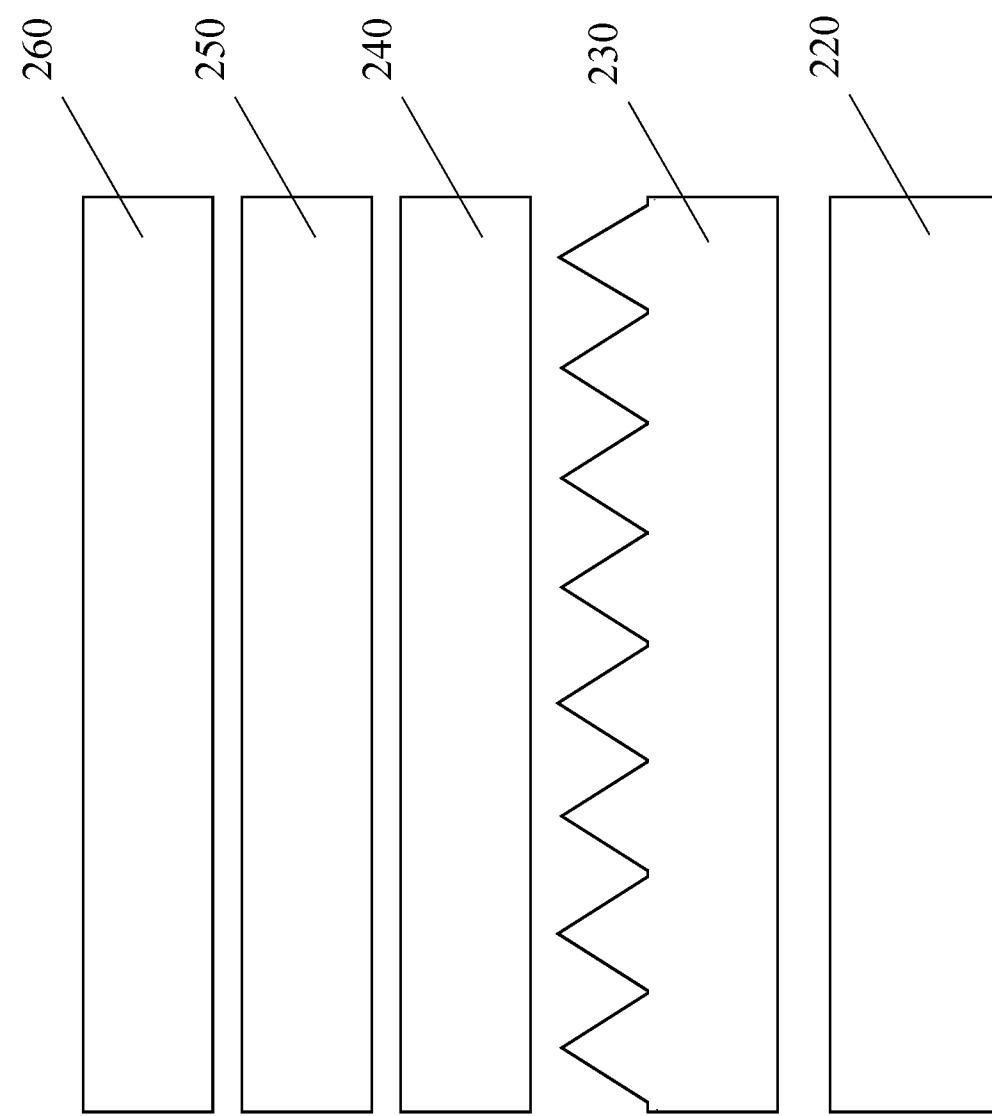


FIG. 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/065183

A. CLASSIFICATION OF SUBJECT MATTER

G02F 1/1335(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G02F 1/1335; G02B 5/08; G02B 17/00; G02B 7/18; G02B 5/30Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: rear-view mirror, image display device, two reflective polarizer, liquid crystal cell

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2008-0068520 A1 (DANNY L. MINIKEY JR. et al.) 20 March 2008 See paragraphs [0056]–[0060], [0084]–[0099]; claim 1; and figures 1A–3F.	1–12
Y	US 2008-0151147 A1 (MICHAEL F. WEBER et al.) 26 June 2008 See paragraphs [0032]–[0036], [0055]; claim 4; and figure 1.	1–12
A	US 2006-0007550 A1 (WILLIAM L. TONAR et al.) 12 January 2006 See paragraphs [0076]–[0086]; claims 1–3; and figures 1–3A.	1–12
A	US 2003-0043480 A1 (LORI L. BURGNER) 06 March 2003 See paragraphs [0020]–[0027]; and figure 2.	1–12
A	KR 10-2006-0120076 A (KONINKLIJKE PHILIPS ELECTRONICS N.V.) 24 November 2006 See paragraphs [0023]–[0036]; claim 1; and figures 1–3.	1–12

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 20 March 2017 (20.03.2017)	Date of mailing of the international search report 20 March 2017 (20.03.2017)
Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea Facsimile No. +82-42-481-8578	Authorized officer LEE, Dong Yun Telephone No. +82-42-481-8734

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2016/065183

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2008-0068520 A1	20/03/2008	AT 509296 T CA 02644710 A1 CA 2644710 C CN 101401024 A CN 101401024 B EP 1991905 A2 EP 1991905 A4 EP 1991905 B1 EP 2378350 A1 EP 2378350 B1 JP 2009-529452 A JP 5577038 B2 KR 10-1011507 B1 KR 10-2009-0007557 A MX 2008011219 A US 8339526 B2 WO 2007-103573 A2 WO 2007-103573 A3	15/05/2011 13/09/2007 28/05/2013 01/04/2009 16/03/2016 19/11/2008 24/03/2010 11/05/2011 19/10/2011 11/12/2013 20/08/2009 20/08/2014 31/01/2011 19/01/2009 11/09/2008 25/12/2012 13/09/2007 21/08/2008
US 2008-0151147 A1	26/06/2008	TW 200837405 A US 7791687 B2	16/09/2008 07/09/2010
US 2006-0007550 A1	12/01/2006	AU 2003-287241 A1 AU 2003-288962 A1 CN 101188627 A CN 101188627 B CN 101599091 A CN 101599091 B CN 102216843 A CN 102216843 B CN 1735874 A CN 1735874 C CN 1736030 A CN 1736030 B EP 1570365 A2 EP 1570365 B1 EP 1584139 A2 EP 1584139 B1 EP 2093885 A1 EP 2294480 A1 EP 2294480 B1 IL 168273 B IL 168274 B JP 04512893 B2 JP 04533454 B2 JP 05591801 B2 JP 2006-505215 A JP 2006-505217 A JP 2009-171635 A	07/06/2004 07/06/2004 28/05/2008 21/11/2012 09/12/2009 28/11/2012 12/10/2011 27/08/2014 15/02/2006 13/02/2008 15/02/2006 14/07/2010 07/09/2005 02/01/2013 12/10/2005 22/07/2009 26/08/2009 16/03/2011 20/05/2015 29/11/2012 15/04/2010 28/07/2010 01/09/2010 17/09/2014 09/02/2006 09/02/2006 30/07/2009

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2016/065183

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
		JP 2009-171636 A	30/07/2009
		JP 2010-244571 A	28/10/2010
		JP 2011-527773 A	04/11/2011
		KR 10-1405570 B1	10/06/2014
		TW 201008813 A	01/03/2010
		TW I523775 B	01/03/2016
		US 2004-0088376 A1	06/05/2004
		US 2004-0174276 A1	09/09/2004
		US 2005-0162288 A1	28/07/2005
		US 2006-0061495 A1	23/03/2006
		US 2006-0069719 A1	30/03/2006
		US 2007-0018858 A1	25/01/2007
		US 2008-0320106 A1	25/12/2008
		US 2009-0002822 A1	01/01/2009
		US 2009-0079597 A1	26/03/2009
		US 2009-0296190 A1	03/12/2009
		US 2010-0110553 A1	06/05/2010
		US 2010-0165437 A1	01/07/2010
		US 2010-0277786 A1	04/11/2010
		US 2011-0047295 A1	24/02/2011
		US 6667700 B1	23/12/2003
		US 6828925 B2	07/12/2004
		US 6961009 B2	01/11/2005
		US 7116249 B2	03/10/2006
		US 7120666 B2	10/10/2006
		US 7428573 B2	23/09/2008
		US 7433112 B2	07/10/2008
		US 7477166 B2	13/01/2009
		US 7502156 B2	10/03/2009
		US 7679809 B2	16/03/2010
		US 7849134 B2	07/12/2010
		US 7852237 B2	14/12/2010
		US 7916380 B2	29/03/2011
		US 8271688 B2	18/09/2012
		US 8282224 B2	09/10/2012
		US 8545030 B2	01/10/2013
		US 9254789 B2	09/02/2016
		WO 2004-042508 A2	21/05/2004
		WO 2004-042930 A2	21/05/2004
		WO 2004-042930 A3	18/08/2005
		WO 2010-005853 A1	14/01/2010
		WO 2011-068852 A1	09/06/2011
US 2003-0043480 A1	06/03/2003	US 2005-0134966 A1	23/06/2005
		US 6847487 B2	25/01/2005
		US 7046448 B2	16/05/2006
KR 10-2006-0120076 A	24/11/2006	EP 1685433 A1	02/08/2006
		JP 2007-511792 A	10/05/2007
		TW 200523583 A	16/07/2005

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2016/065183Patent document
cited in search reportPublication
datePatent family
member(s)Publication
date

TW I377371 B	21/11/2012
US 2007-0041096 A1	22/02/2007
US 7903335 B2	08/03/2011
WO 2005-045481 A1	19/05/2005