水力发电设备

安排水力发电设备中之发电机之磁路，以直接供应 20 - 800kV，宜高于 36kV 之高压。发电机设有固体绝缘体，且其绕组包含电缆 (6)，含有一或更多之载流导线 (31)，具有若干股 (36)，由至少一外及一内半导体层 (34, 32) 及中间绝缘层 (33) 包围。外半导体层 (34) 处于地电位。定子绕组可由整数或分数槽绕组产生，绕组之各相为 Y 连接。Y 点可绝缘并与电枢放电器防护过电压，或 Y 点可经由抑制滤波器接地。本发明亦涉及水力发电设备，设备中所含之发电机，及建造此设备之方法。
1. 一种水力发电设备，包含至少一高压旋转电机（100），其中，发电机经由轴装置（101）连接至涡轮机（102），发电机（100）包含至少一绕组，其特征在于：绕组包含一高压电缆，该电缆具有一绝缘系统，该绝缘系统含有至少二半导体层，每层基本上构成一等电位表面，还包括中间固体绝缘体，且每一绕组被安排成经由连接元件（109）直接连接至具有电压在 20 及 800kV 之间，最好高于 36kV 的输电或配电网络（110）。

2. 如权利要求 1 所述的设备，其特征在于：诸层之至少之一具有与固体绝缘体大致相同的热膨胀系数。

3. 如权利要求 1 或 2 所述的设备，其特征在于：该发电机包含一磁路，具有一磁铁心。

4. 如权利要求 3 所述的设备，其特征在于：磁路之铁心的磁通路径系由叠片及/或铸铁及/或钢基铁及/或钢铸铁构成。

5. 如权利要求 1 或 2 所述的设备，其特征在于：固体绝缘体用于高压电缆（6），电缆包含一或多之导流导线（31），由至少二半导体层（32，34）及固体绝缘体的中间绝缘层（33）包围。

6. 如权利要求 5 所述的设备，其特征在于：最内之半导体层（32）处于与导线（31）大致相同之电位上。

7. 如权利要求 5 所述的设备，其特征在于：外半导体层（34）之一被安排为基本上形成一包围导线（31）之等电位表面。

8. 如权利要求 7 所述的设备，其特征在于：该外半导体层（34）连接至预定之电位。

9. 如权利要求 8 所述的设备，其特征在于：该预定之电位为地电位。

10. 如权利要求 5 所述的设备，其特征在于：所述诸层之至少两个具有大致相同的热膨胀系数。
11. 如权利要求 5 所述的设备，其特征在于：载流导线包含多股，仅有少数股不相互绝缘。

12. 如权利要求 1 或 2 所述的设备，其特征在于：绕组由一电缆构成，电缆包含一个或多个载流导线（2），每一导线由若干股构成，一内半导体层（3）被安排成包围每一导线，固体绝缘体之一绝缘层（4）被安排成包围每一内半导体层（3），及一外半导体层（5）被安排成包围每一绝缘层（4）。

13. 如权利要求 12 所述的设备，其特征在于：电缆还包含一金属屏蔽层及一护套。

14. 如上述权利要求 1 或 2 所述的设备，其特征在于：其定子由气体流及/或液体流在地电位上冷却。

15. 如上述权利要求 1 或 2 所述的设备，其特征在于：最外半导体（34）连接至地电位。

16. 如上述权利要求 1 或 2 所述的设备，其特征在于：转子（2）电感性连接至高电压。

17. 如权利要求 16 所述的设备，其特征在于：转子（2）为圆筒形，具有凸极，并具有恒定空气隙。

18. 如权利要求 17 所述的设备，其特征在于：定子绕组由整数槽绕组实施。

19. 如权利要求 17 所述的设备，其特征在于：定子绕组由分数槽绕组实施。

20. 如权利要求 18 或 19 所述的设备，其特征在于：定子具有集中绕组，及绕组线圈具有之线圈跨度等于极距。

21. 如权利要求 18 或 19 所述的设备，其特征在于：定子绕组中的线圈为分布式，且具有之一线圈跨度与极距不同。

22. 如权利要求 5 所述的设备，其特征在于：具有固态绝缘体的电缆（6）具有之导线面积在 40 及 3000mm²之间，并具有之外电缆直径在 20 及 250mm 之间。

23. 如权利要求 22 所述的设备，其特征在于：电缆（6）由载流导线
（31）内的气体或液体冷却。

24. 如上述权利要求1或2所述的设备，其特征在于：该发电机（100）用于高电压，并被安排成直接向输出电力网络（110）供电，而无中间连接的变压器。

25. 如上述权利要求1或2所述的设备，其特征在于：所述设备包含若干发电机，各发电机皆无单独升压变压器，但经由各发电机公用的系统变压器，连接至输电或配电网络。

26. 如权利要求24所述的设备，其特征在于：至少一发电机（100）经由一阻抗（103）接地。

27. 如权利要求24所述的设备，其特征在于：至少一发电机（100）直接接地。

28. 如权利要求24所述的设备，其特征在于：所述设备被设计成另作为泵及涡轮机站而驱动，电机（100）安排用作电动机，由电力网络（110）直接驱动，或用作发电机，产生电压给电力网络。

29. 如权利要求24所述的设备，其特征在于：该发电机被安排成产生各种电压等级之电力。

30. 如权利要求29所述的设备，其特征在于：所述电压等级之一被安排成产生辅助电力，及该辅助电力被安排成由发电机（100）中之一分离绕组（119，113）产生。

31. 如权利要求1或2所述的设备，其特征在于：所有组件接地于同一接地系统。

32. 如上述权利要求1或2所述的设备，其特征在于：发电机之绕组被安排成自调整磁场控制式，且无需辅助装置来控制磁场。

33. 如权利要求1或2所述之设备之制造方法，其特征在于：发电机之定子以零件运送至设备现场，所述零件包含分离的定子叠片及/或定子叠片之联合叠件，其后，各零件在现场组合，及绕组之穿线及所需之任何编接均在现场执行。

34. 一种高压发电机（100），包含于一水力发电设备中，其中，发电机经由轴装置（101）连接至涡轮机（102），及发电机（100）包含至
少一绕组，其特征在于：绕组包含一高压电缆，该电缆具有一绝缘系统，该绝缘系统含有至少二半导体层，每层基本上构成一等电位表面，还包括中间固体绝缘体，及每一绕组被安排成经由连接元件（109）直接连接至其电压在20及800kV之间，最好高于36kV之输电或配电网（110）。

35.如权利要求34所述的发电机，其特征在于：它含有如权利要求2-32中任一项所述的设备中所含的发电机所限定的特征。

36.如权利要求34或35所述的发电机的制造方法，其特征在于：所述制造包含用于组装权利要求第33项所述之发电机之措施。
水力发电设备

本发明涉及一种在权利要求书前序部分中所述型式的水力发电设备，用于连接至配电或输电网络，此后称为电力网络。本发明还涉及一种水力发电设备中用于上述用途的高压发电机。本发明另涉及一种用于组合此设备及制此发电机的方法。

发电机中的磁路通常包含多片铁心，例如钢片铁心，具有熔接的构造。为提供通风及冷却，铁心通常由径向及/或轴向通风导管分隔为叠件。对较大的机器，叠片冲制为节段，各节段固定于机器之框中，叠片铁心由压力指及压力环保持一起。磁路的绕组置于铁心之槽中，槽大体具有长方形或梯形之横断面。

在多相发电机，绕组为单层或双层绕组所构成。在单层绕组，每槽中仅有一线圈边，而在双层绕组，每槽有二线圈边。线圈边意为垂直或水平地合并一个或多个导线，并设有公共线圈绝缘体，即绝缘体旨在抵抗发电机至地之额定电压。

双层绕组通常制成菱形绕组，而单层绕组在本文中可制成菱形或平坦形绕组。在菱形绕组中仅有一（可能二）线圈宽度，而平坦形绕组则制成同心绕组，即具有变化大之线圈宽度。线圈宽度意为属于同一线圈的两线圈边间的弧形幅度中的距离。

通常所有大型机器均由同尺寸的双层绕组及线圈构成。每一线圈皆以一边置于一层中，及另一边置于另一层中。此意为所有线圈皆在线圈端中相互交叉。如有二层以上，则此交叉使绕组工作复杂，且线圈端较难满意。

估计旋转发电机之线圈可制成在3 - 20kV之电压范围内具有良好之结果。

且一般知道，同步电机至电力网络之连接需经由一△/Y形连接或升压之变压器，因为电力网络之电压通常高于电机前此能达的电压。故
此，变压器及同步电机构成发电设备于一体化部分。变压器引起额外成本，并具有缺点，即系统之总效率降低。故此，如能制造电压高得多之发电机，则升压变压器可省除。


然而，以上专利之机器设计不能最佳利用定子中的电磁材料。

本发明的目的故此在于提供一种发电机，此可应用于水力发电设备中，其电压高，故可省除上述之A/V 形连接升压变压器，即发电设备之发电机预定具有远较对应型式的普通发电机为高之电压，以能直接连接至各种高压下的电力网络。

此目的已依据本发明实现，因为权利要求第 1 项的前序部分中所述的该发电设备具有此项之特征部分所述的特征，因为权利要求第 34 项的前序部分中所述的该发电机具有该项的特征部分中所述的特征，且因为权利要求第 33 及 36 项的前序部分中所述的该方法包含各该项的特征部分中所述之特殊措施。

由于固体绝缘体与所述之其他特色结合，故能给网络供电，而无需用中间的升压变压器，即使网络电压远超过 36kV 亦然。

固体绝缘体使绕组被安排成直接连接至高压网络，故此省除升压变压器，提供已知技术所没有的重大优点。

例如，变压器本身的省除导致重大节省，及变压器的不用亦导致若干其他之简化及因而节省。

此发电设备通常安排于岩洞中，在此，在普通技术中，变压器被安排成直接连接至岩洞中的发电机，或距数百米处之地面上，并由母线系统连接至发电机。与第一选择相比较，变压器的省除可大为减小岩洞之体积。亦消除油绝缘变压器引起火灾的危险，故此，降低许多防火措施的需要，诸如人员的特殊撤退路线。

在变压器置于地面上的选择中，由于发电机及变压器间之距离加
大，故母线系统加长。由于母线（通常为铝导线）中之电流相当大，约在 10 – 20kA，故功率损耗大。而且，母线系统引来 2 及 3 相失效的危险，在此期间，电流相当大。

本发明可达到两个主要目的：

由于电压高，故母线运行损失减少。

由于使用绝缘 HV 电缆，故 2 及 3 相故障的危险大为降低。

由于本发明所达成之电气部件数减少，此意为可省去对应的安全装备。

而且，无需炸开岩洞，以布设母线系统，此导致节省数千立方米之岩洞空间。

本发明之发电设备亦可按若干不同的电压等级连接，即本发明可应用于发电厂中的所有辅助电源。

总而言之，上述优点导致根本改善发电设备的整个经济效率。设备成本（普通在数亿 SEK）降低 30 – 50 %。由减少维护需要，及由增加效率 1 – 1.5%，改善运行效率。在运转时间为 8000h/年，输出程度相当于 150MVA，一 kWh 价格为 SEK0.20，及可用寿命为 30 年之情形，获益约为每一发电机 SEK75 – 100 百万。

在发电设备及发电机之一特别优选实施例中，固体绝缘系统包含至少二层，每层基本上构成一等电位表面，在其间有中间固体绝缘体，至少所述层之一具有与固体绝缘体大致相同之热膨胀系数。

此实施例构成固体绝缘体的有利实施例，在最佳的方式中，使绕组能直接连接至高压网络，且在此，热膨胀系数之一致可消除绕组热移动时所引起之故障，破裂等的危险。

显然，绕组及绝缘层应为可挠性，从而可弯曲。

应指出的是，本发明之发电设备可使用水平或垂直发电机构成，此可为地下或地上式。

本发明之以上及其他实施例说明于后附之权利要求书中。

现有技术及本发明的实施例间的主要及基本不同在于，本发明实施例由发电机中所含之磁路实现，它被安排成仅经由断路器及隔离器直接连接至 20 及 800kV 间，宜高于 36kV 部近的高供电电压。故此磁路包含
一叠片铁心，具有由穿入的电缆所构成的至少一组绕组，电缆具有一或更
的永久绝缘导线，在导线上及绝缘体外部具有半导体层，外半导体层连
接至地电位。

为解决直接连接电机至所有各高压电力网络上所引起的问题，本发
明的设备中的发电机具有上述若干特征。此等特征与现有技术明显不
同，另外的特征及另外的实施例说明于从属权利要求书中，并讨论于下。
上述特征及本发明的发电机及水力发电设备的其他基本特征包含如
下：

磁路之绕组由电缆构成，电缆具有一个或多个永久绝缘导线，在导
线及护套处具有半导体层。其一些普通导线为PEX电缆或具有EP橡胶
绝缘的电缆，然而，在本用途中，此等电缆在导线的端及外护套的性质
方面经进一步发展。

例如，电缆宜具有圆形横断面，但具有其他横断面的电缆亦可使用，
以获得较佳的包装密度。

此一电缆使叠片铁心在槽及齿方面可依本发明以断及最佳方式设
计。

绕组宜制成具有台阶形的绝缘体，以最佳地利用叠片铁心。

绕组宜制成多层，同心的电缆绕组，如此可减少线圈端的交叉数。

槽设计宜配合绕组电缆的横断面，使槽为若干圆筒形开口的形状，
沿轴向及/或径向在相互外面上延伸，并有一开放腰部延伸于定子绕组层
之间。

槽的设计宜配合有关的电缆横断面及绕组的台阶形绝缘体。台阶形
绝缘体使磁铁心具有大致恒定的齿宽度，而不管径向延伸如何。

上述有关线的进一步发展导致绕组导线由若干压制层构成，即
是，自电机之观点上，绝缘的股线并不需相互恰当换位，不绝缘，及/或
绝缘。

上述有关外护套的进一步发展导致沿导线之长度上的适当点处，外
护套被切去，每一切开部分长度直接连接至地电位。

上述电缆的使用使绕组之外护套的整个长度以及该发电设备之其他
部分保持于地电位。一重要优点为电场在外半导体层外的线圈端区内接
近于零。由于地电位在外护套上，故电场无需控制。此意为在铁心中，
线圈端区中，或其间的过渡区中，不发生电场集中。
绝缘及/或不绝缘的压紧铁线，或换位铁线之混合导致杂散损耗低。
用于磁路绕组的高压电缆系由内芯/多个铁线，至少二半导体层构
成，最内者由绝缘层包围，此又由一外半导体层包围，具有外直径在20
- 200mm，及导线面积在40 - 3000mm²。

当构成水力发电设备时，本发明之发电机中的固体绝缘亦具有大优
点。没有湿绝缘体，此意为发电机的定子无需在工厂完成，而代之者，
可运送零件，并在现场组合。在此考虑下的定子的体积大且重，此在普
通设计上有运输问题，其中，道路需加强及加大，供大重量运送之用。
由于发电机的定子可以零件运送，故消去此问题。

本发明亦涉及权利要求第30及33项所述的方法，其中，当分别建
造水力发电设备及制造发电机时，可利用此可能性。

在以下建造水力发电设备之发电机之磁路之较宜实施例之详细说明
中，参考附图，更详细说明本发明，在附图中
图1显示本发明之水力发电设备中之发电机之定子之一扇区之概要
轴向端视图，
图2显示图1之定子之绕组中所用之电缆之部份剖开之端视图，
图3显示本发明之水力发电安排之简单，部分断面图，
图4显示本发明之水力发电设备之电路图，
图5显示通过普通水力发电设备之断面图，
图6显示水力设备之辅助电源之传统方法，及
图7显示具有本发明之辅助电源产生用之内绕组之发电机。

为明确本发明优点的一些方面，参考图5，显示普通水力发电设备
之一实例。此属于变压器室501置于距发电机室502之一段距离处的型
式，后者为岩洞之形状，装设发电机503。发电机503经由安排于数百
米长之隧道系统504中之母线系统505连接至变压器室501中的变压器。
本发明之发电设备整个消除图5中线A-A之右方部分，且大致保
留发电机室502中相同之规模。无图5所示置于地面上之变压器之普通
发电设备可代之以需要远较为大的发电机室502，以有空间供变压器及
其辅助及安全装备使用。

发电机之转子 2 亦以通过图 1 的定子 1 之一扇区的各要轴向图显示，属于水力发电设备中所含的发电机 100（图 3）。定子 1 依普通方式由叠片铁心构成。图 1 显示发电机中相当于一极距的一个扇区。自位于径向最外部之铁心的轮部分 3 起，若干齿 4 沿径向向转子 2 延伸，并由槽 5 隔开，槽中置定子绕组。构成此定子绕组的电缆 6 为高压电缆，此可为与电力配电所用大致相同的型式，即 PEX 电缆。PEX = 交联聚乙烯（XLPE）。一个不同为消除通常包围此电力配电电缆的外机械护套及金属屏蔽层。故本申请书中之电缆仅包含导线在绝缘层的每一面上之至少一导体层。如此，易受机械损坏之半导体层裸露于电缆之表面上。

电缆 6 概要显示于图 1，其中仅绘出每一电缆部分或线圈边之导电中心部分。如可见及，每一槽 5 具有变化之横断面，具有交替之宽部分 7 及窄部分 8。宽部分 7 大致为圆形，并包围电缆，其间之腰部形成窄部分 8。腰部用以在径向上固定每一电缆的位置。槽 5 的横断面亦沿径向向内渐渐变窄。此乃由于电缆部分上之电压在愈近定子 1 之径向内部处愈低。故较细之电缆可用于此处，而较粗之电缆则需用于较外侧处。在图示之例中，使用不同大小的三电缆，安排于槽 5 中三对应大小之节段 51，52，53 中。一辅助电力绕组 9 安排于槽 5 之最外侧。

图 2 显示用于本发明之电机中之高压电缆之阶梯形剖开端视图。高压电缆 6 包含一个或多个导线 31，各包含若干股 36，此等一起提供铜（Cu）之例如圆形横断面。导线 31 安排于高压电缆 6 之中心，且在所示之实施例中，各由一部分绝缘体 35 包围。然而，导线 31 之一上之部分绝缘体 35 可省略。在本发明之实施例中，导线 31 一起由一第一半导体层 32 包围。一绝缘层 33，例如 PEX 绝缘体包围此第一半导体层 32，此又由一第二半导体层 34 包围。如此，本申请书中之“高压电缆”无需包含通常包围此电力配电动缆的金属屏蔽层或外护套。

具有上述型式的磁路的水力发电机显示于图 3，其中，发电机 100 由一涡轮机 102 经一公共轴 101 驱动。

发电机 100 的定子 1 故此携带定子绕组 10，此由上述之电缆 6 构成。电缆 6 无屏蔽，并在电缆编接盒 9 处改变为有屏蔽的电缆 11。
本发明之水力发电机 100，如此可产生高至约 800kV 的极高电压。如此可直接把水力发电机 100 电连接至配电或输电网络 110，此在普通发电设备的情形，具有中间升压变压器或类似之电机，其中，相等的发电机最多能产生 25～30kV 范围之电压。

图 4 显示本发明之水力发电设备。发电机 100 通常具有励磁绕组 112 及一（或更多）辅助电源绕组 113。在所示之本发明之发电设备之实施例中，发电机 100 经由阻抗 103 接地。

且自图 4 可见，发电机 100 经电缆接线盒 9 电连接至有屏蔽之电缆 11（见图 3）。电缆 11 设有普通之电流互感器，并终接于 105 处。在此点 105 后，所示实施例之发电设备由母线 106 继续，分支有电压互感器 107 及电涌放电器 108。然而，主电力经母线 106 直接供应，经隔离器 109 及断路器 111 至配电及输电网络 110。

本发明的水力发电设备用于产生给电力网络之电压，已如上述，亦可用于泵厂，即由电力网络 110 驱动。发电机 110 故此用作电动机，以驱动泵之涡轮机 102。

如此，使用水力发电机 100，无需升压变压器之中间连接。故此，使用本发明之水力发电设备，省去先前需要的若干变压器及断路器单元，此显然为一优点，不仅在成本方面，而且在操作可靠性方面。

虽以实施例说明及显示水力发电机及含有此发电机之设备，但本领域技术人员显然知道可作若干修改，而不脱离本发明构思。例如，电机可直接接地，而不用任何阻抗。辅助绕组可省略，所有其他组件亦然。虽本发明由三相设备示出，但相数可多可少。