PCT WORLD INTELLECTUAL PROPI

International B

INTERNATIONAL APPLICATION PUBLISHED UNDER WO 9606390A2 o

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/06390
GO6F A2 _

(43) International Publication Date: 29 February 1996 (29.02.96)
(21) International Application Number: PCT/US95/09896 | (81) Designated States: AM, AT, AT (Utility model), AU, BB, BG,
BR, BY, CA, CH, CN, CZ, CZ (Utility model), DE, DE
(22) International Filing Date: 4 August 1995 (04.08.95) (Utility model), DK, DK (Utility model), EE, EE (Utility

model), ES, FI, FI (Utility model), GB, GE, HU, IS, JP,

KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG,

(30) Priority Data: MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
08/288,923 11 August 1994 (11.08.94) US SI, SK, SK (Utility model), TJ, TM, TT, UA, UG, UZ, VN,

European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR,

IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,

(71) Applicant: INTEL CORPORATION [US/US]J; 2200 Mission CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO
College Boulevard, Santa Clara, CA 95052 (US). patent (KE, MW, SD, SZ, UG).

(72) Inventors: WANG, Wen-Hann; 745 S.W. Viewmont Drive,
Portland, OR 97225 (US). LAI, Konrad, K.; 20245 S.W. | Published
Sandra Court, Aloha, OR 97006 (US). Without international search report and to be republished

upon receipt of that report.

(74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,
Taylor & Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025-1026 (US).

(54) Title: A TWO-WAY SET-ASSOCIATIVE CACHE MEMORY

/ 201 / 221
SET1|TAG1| STATE1 |) ELEMENT 1
SET2| TAG2| STATE2 ELEMENT 2
SET3| TAG3 | STATE3 ELEMENT 3
SET4| TAG4 | STATE4 \ wayo ELEMENT 4
205
-
[T sermoex |
1 L] [[.
k’ SETn | TAGn | STATEn | j ELEMENT n
SET1|TAG1 | STATE1 |) ELEMENT 1
SET2 | TAG2 | STATE2 ELEMENT 2
SET3| TAG3 | STATE3 ELEMENT 3
SET4| TAG4 | STATES } ELEMENT &
WAY 1
L) [] [] []
» ® [] [
] [] L] *®
SETn | TAGn | STATEn | ELEMENT n

(57) Abstract

A two-way set-associative cache memory includes both a set array and a data array in one embodiment. The data array comprises
multiple elements, each of which can contain a cache line. The set array comprises multiple sets, with each set in the set array comesponding
to an element in the data array. Each set in the set array contains information which indicates whether an address received by the cache
memory matches the cache line contained in its corresponding element of the data array. The information stored in each set includes a
tag and a state. The tag contains a reference to one of the cache lines in the data array. If the tag of a particular set matches the address
received by the cache memory, then the cache line associated with that particular set is the requested cache line. The state of a particular
set indicates the number of cache lines mapped into that particular set.

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

C1 Cee d’Ivoire
CcM Cameroon

CN China

CS Czechoslovakia
cz Czech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

GB
GE
GN
GR
HU
IE

IT

Jp

KE
KG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 96/06390 PCT/US95/09896

-1-

A TWO-WAY SET-ASSOCIATIVE CACHE MEMORY

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention pertains to the field of data storage. More

particularly, this invention relates to cache memory subsystems.

Background

Computer technology is continuously advancing, resulting in
microprocessors which operate at faster and faster speeds. In order to
take full advantage of these higher-speed microprocessors, data storage
capabilities must keep up with the increased speed. High speed
memory, however, is very expensive, with the cost being further
amplified by the large amount of memory which many modern
software programs require. ‘

One solution to the problem of expensive memory is that of a
cache memory subsystem. A cache memory subsystem is a memory
unit which is generally much smaller than the system memory unit
but which operates at a significantly higher speed than the system
memory. The goal of the cache memory is to contain the information
(whether it be data or instructions) that the microprocessor is going to
use next. This information can then be returned to the microprocessor

much more quickly, due to the higher speed of the cache memory.

WO 96/06390 PCT/US95/09896

-2-

The operation of cache memory subsystems varies, however, in
general, data is swapped between the system memory and the cache
memory. When the microprocessor requests information from
memory, for example, either an instruction it is going to execute or
data related to an instruction, it sends the memory address of the
desired information to the cache memory. If the cache memory
contains the information, it issues a signal to the microprocessor
indicating so; this signal is generally termed a "hit." The cache
memory then returns the requested information to the
microprocessor. Thus, the microprocessor receives the requested
information more quickly due to the faster speed of the cache memory.

If, however, the cache memory does not contain the
information requested by the microprocessor, then a signal, generally
termed a "miss," is returned to the microprocessor. The miss indicates
to the microprocessor that it must retrieve the information from the
slower system memory. Alternatively, the cache memory controller
may retrieve the information from the system memory, and return it
to the microprocessor. Regardless of which subsystem retrieves the
information from the system memory, the retrieved information is
also stored in the cache memory. In order to store this information in
the cache memory, however, other data in the cache may need to be
overwritten. That is, other information may be contained in the
location the new information is to be written into. In some systems,
this situation is resolved by transferring the information stored in a
particular location of the cache memory into system memory and
transferring the information stored in system memory into that

particular location of the cache memory.

WO 96/06390 PCT/US95/09896

-3-

Whether the cache memory must transfer the information in a
particular location to the system memory is also dependent on the
cache policy employed. For example, some cache policies transfer the
information to the system memory whenever the information in the
cache is updated. Thus, when retrieving new information from the
system memory, information in the cache need not be transferred to
the system memory.

The cache memory is generally much smaller than the system
memory. Thus, only a portion of the memory address, referred to as
the cache index, is used as an index into the cache memory. A second
portion of the memory address, generally referred to as the “tag
portion”, is used to determine whether the information stored in the
cache memory is the requested information. Thus, multiple system
memory addresses reference the same slot in the cache memory.
When the microprocessor requests a memory address which
corresponds to a slot in the cache memory which is already used by
another cache line, then a conflict occurs.

Cache memory subsystems are frequently divided into multiple
cache lines, with the cache index portion of the memory address
corresponding to one of these cache lines. Each cache line includes
multiple bytes, with the particular byte requested by the microprocessor
being indicated in the memory address as an offset. The system
memory is also often divided into the same line size as the cache
memory. These lines in the system memory are referred to as data
lines.

One type of cache memory subsystem for resolving cache line

conflicts is known in the art as a direct-mapped cache. In a direct-

WO 96/06390 PCT/US95/09896

-4-

mapped cache, when a conflict occurs, the cache line stored in the cache
is transferred to system memory and the data line corresponding to the
request from the microprocessor is transferred to that location in the
cache memory. Such a caching system has several advantages. First,
the hardware complexity for implementing the cache is relatively
simple. The tag of the location is compared to the request, and the
cache line is returned to the microprocessor if they match, or the data is
retrieved from system memory if they do not match.

Second, the cost of the cache memory subsystem is relatively
small. The reasoning for this is two-fold. The reduced logic
complexity discussed above reduces the financial cost of the system. In
addition, the low complexity allows the cache memory to utilize static
random access memory (SRAM) cells. SRAMs are widely available,
and are inexpensive relative to many other types of memory cells.

The direct-mapped cache, however, performs poorly under
certain circumstances. For example, memory address A and memory
address B may both reference the same cache location, location X. If the
microprocessor initially requests memory address A, then the data in
address A is stored in location X. If the microprocessor requests address
B on the next clock cycle, then the data in location X is returned to the
system memory (at address A), and the data in address B is stored in
location X. The next request by the microprocessor may then be for
address A again. Thus, the data in location X is returned to the system
memory (at address B), and the data in address A is again stored in
location X. Therefore, a very poor hit ratio (that is, the number of
cache hits relative to the total number of accesses to the cache) will

occur if the microprocessor makes requests in the following order:

WO 96/06390 PCT/US95/09896

-5-

address A, address B, address A, address B, address A, address B, etc.
Thus, it can be seen that the performance of a direct-mapped cache
suffers when the microprocessor alternately requests addresses A and
B.

A second type of cache memory which resolves this
performance disadvantage is a two-way set-associative cache memory.
A two-way set-associative cache includes two "ways," which can be
thought of as two direct-mapped caches operating together (for this
reason, a direct-mapped cache is sometimes referred to as a one-way
cache). In a two-way cache, if a conflict occurs, then the data stored in
the first way of the cache is transferred to the second way of the cache,
and the new data is retrieved from the system memory into the first
way of the cache. Thus, both data lines are stored in the cache memory.
Therefore, if the microprocessor continuously switches between
requesting address A and address B as described above, each request
will hit the cache, resulting in a higher hit ratio. Both data lines
remain in the cache until a second conflict occurs; that is, a third
request which accesses the same location.

Thus, it can be seen that the two-way cache resolves some of the
performance problems in the direct-mapped cache. However, this
increased performance has several costs. First, the logic complexity to
operate a two-way cache is greater. Additional logic must be included
to monitor both cache lines in both ways, and return the proper data
when a request from the microprocessor hits the cache. Second, two-
way caches generally use customized memory cells, rather than
standard SRAMs. Thus, the financial cost of the cache system is

increased.

WO 96/06390 PCT/US95/09896

-6-

A third cost consideration is that power consumption in a two-
way cache is greater than that of a direct-mapped cache. The direct-
mapped cache accesses only a single cache line to determine if a hit
occurs. However, in a two-way cache, both cache lines are accessed to
determine if a hit occurs, with the proper line being returned to the
microprocessor if a hit does occur. Thus, it can be seen that the two-
way cache utilizes twice the power of the direct-mapped cache, since it
is accessing twice as many cache lines.

Thus, it would be advantageous to provide a cache memory
subsystem which operates quickly to take advantage of the increased
speed of modern microprocessors. The present invention provides
such a solution.

Furthermore, it would be advantageous to provide a cache
memory subsystem which had the advantages of both a direct-mapped
cache and the increased performance of the two-way cache. The
present invention provides a cache memory characterized as being less
complex, having a lower cost, and lower power usage than the 2-way
cache. The present invention also provides higher hit ratios as

compared to conventional direct-mapped caches.

WO 96/06390 PCT/US95/09896

-7-

SUMMARY OF THE INVENTION

A two-way set-associative cache memory is described herein. In
one embodiment, the cache memory includes both a set array and a
data array. The data array comprises multiple elements, each of which
can contain a cache line. The set array comprises multiple sets, each of
which corresponds to an element in the data array. Each set in the set
array contains information which indicates whether an address
received by the cache memory matches the cache line in its
corresponding element of the data array (assuming the element
contains a cache line).

Each set includes tag information and state information. The tag
information is a reference to one of the cache lines in the data array. If
the tag of a particular set matches the tag portion of the address
received by the cache memory, then the cache line associated with that
particular set is the requested cache line. The state information of a
particular set indicates the number of cache lines mapped into that

particular set.

WO 96/06390 PCT/US95/09896

-8-

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawings, in which like
references indicate similar elements and in which:

Figure 1 shows an overview of an example computer system of
the present invention;

Figure 2 shows the set array and corresponding data array of a
cache memory in one embodiment of the present invention;

Figure 3A shows a bit map for determining the most recently
used set information in one embodiment of the present invention;

Figure 3B shows the logic circuitry for determining the most
recently used set information in an alternate embodiment of the
present invention;

Figure 4 is a block diagram of a cache memory subsystem in one
embodiment of the present invention;

Figures 5A and 5B show the steps followed by one embodiment
of the present invention in operating the cache memory subsystem of
Figure 4;.

Figure 6 is a block diagram of a cache memory subsystem in an
alternate embodiment of the present invention;

Figures 7A and 7B show the steps followed by one embodiment
of the present invention in operating the cache memory subsystem of
Figure 6;

Figure 8 is a block diagram of a cache memory subsystem in

another embodiment of the present invention; and

WO 96/06390 PCT/US95/09896

9-
Figures 9A and 9B show the steps followed by one embodiment
of the present invention in operating the cache memory subsystem of

Figure 8.

WO 96/06390 PCT/US95/09896

-10-

DETAILED DESCRIPTION

In the following detailed description numerous specific details
are set forth in order to provide a thorough understanding of the
present invention. However, it will be understood by those skilled in
the art that the present invention may be practiced without these
specific details. In other instances, well known methods, procedures,
components, and circuits have not been described in detail so as not to
obscure aspects of the present invention.

Figure 1 shows an overview of an example computer system of
the present invention. The computer system generally comprises a
system bus or other communication device 100 for communicating
information, and a central processing unit (CPU) 101 coupled with bus
100 for processing information and instructions. In one
implementation, the present invention includes an Intel® architecture
microprocessor as CPU 101; however, the present invention may
utilize any type of microprocessor architecture. In one embodiment,
bus 100 includes address, data and control buses. The computer system
also includes a system memory or random access memory (RAM) 104
coupled with bus 100 for storing information and instructions for CPU
101, a read only memory (ROM) 105 coupled with bus 100 for storing
static information and instructions for CPU 101, a data storage device
106 such as a magnetic disk and disk drive coupled with bus 100 for
storing information and instructions, a display device 107 coupled to
bus 100 for displaying information to the computer user, an
alphanumeric input device 108 including alphanumeric and function

keys coupled to the bus 100 for communicating information and

WO 96/06390 PCT/US95/09896

-11-
command selections to CPU 101, a cursor control device 109 coupled to
bus 100 for communicating user input information and command
selections to CPU 101, and a hard copy device 111, such as a plotter or
printer, coupled to bus 100 for providing a visual representation of the
computer images.

The display device 107 utilized with the computer system of the
present invention may be a liquid crystal device, cathode ray tube, or
other display device suitable for creating graphic images and
alphanumeric characters (and ideographic character sets) recognizable
to the user. The cursor control device 109 allows the computer user to
dynamically signal the two dimensional movement of a visible symbol
(e.g., a cursor or pointer) on a display screen of the display device 107.
Many implementations of the cursor control device are known in the
art including a trackball, mouse, joystick or special keys on the
alphanumeric input device 108 capable of signaling movement of a
given direction or manner of displacement. It is to be appreciated that
the cursor also may be directed and/or activated via input from the
keyboard using special keys and key sequence commands.
Alternatively, the cursor may be directed and/or activated via input
from a number of specially adapted cursor directing devices, inclﬁding
those uniquely developed for the disabled.

CPU 101 includes an internal bus or other communication
device 115 for communicating information between components
within CPU 101, as well as components external to CPU 101. An
instruction execution unit 116 is also included in CPU 101. The
instruction execution unit 116 retrieves and executes instructions, and

retrieves data, from data storage devices within the computer system.

WO 96/06390 PCT/US95/09896

-12-

These data and instructions can be stored in system memory 104, ROM
105, data storage device 106, etc. A level-one (L1) cache 117 is also
included in CPU 101 for storing data and instructions for use by
execution unit 116. It should be noted that CPU 101 contains additional
components, however these have not been shown so as not to clutter
the drawings and obscure the present invention.

CPU 101 is coupled to a level two (L2) cache 118 via L2 bus 119.
L2 cache 118 is an additional cache for storing data and instructions for
use by execution unit 116. In one embodiment of the present
invention, L2 cache 118 is both larger and slower than L1 cache 117. L2
cache 118 includes L2 controller 120 for controlling the operation of L2
cache 118, and also L2 RAM 121 for storing the data and instructions
contained in L2 cache 118. In the embodiment shown, L2 controller
120 is included in L2 cache 118. Alternatively, L2 controller 120 could
be included in CPU 101.

It will be appreciated that the computer system of Figure 1 is
exemplary only. In some implementations of the present invention,
additional processors or other components may be included in the
computer system. Furthermore, certain implementations of the
present invention may not require nor include all of the above
components. For example, display device 107 or hard copy device 111
may not be coupled to bus 100. Furthermore, certain implementations
may couple components in a different manner. For example, L2 cache
118 may be connected directly to system bus 100 rather than to internal
bus 115.

Figure 2 shows a cache index or set array 201 and a

corresponding data array 221 of a cache memory in one embodiment of

WO 96/06390 PCT/US95/09896

-13-

the present invention. Set array 201 includes 2-n data sets, and data
array 221 includes 2-n elements. Each data set of set array 201
corresponds to a single element in data array 221.

Set array 201 as shown is a single, physically contiguous array.
However set array 201 can be treated as a two-way set-associative cache.
This is shown in Figure 2 by way 0 and way 1, with each way
comprising n sets. An address received by the cache memory contains
a portion which is a set index, such as set index 205. Set index 205
uniquely identifies one particular set within set array 201, whether that
set be in way 0 or way 1. Thus, the size (that is, number of bits) of set
index 205 is determined by the number of sets within set array 201.

Given the division of way 0 and way 1 shown in Figure 2, the
difference between a set index which identifies a set in way 0 and a set
index which identifies a set in way 1 is the most significant bit of the set
index. For example, if all the bits of set index 205 are zeroes, including
the most significant bit, then set index 205 maps to set 1 of way 0 of set
array 201. However, if the most significant bit of set index 205 is a one
and all other bits are zeros, then that set index 205 maps indexes into
set 1 of way 1 of set array 201.

Thus, it can be seen that set array 201 can operate essentially as a
direct- mapped cache. That is, each set index into set array 201 maps
into one particular set of set array 201. However, it should be noted
that to access the corresponding set of a different way, the most
significant bit of the set index need only be flipped. Thus, for example,
given the set index for set 4 of way 1, if the user desired to access set 4 of

way 0, the most significant bit of the set index would simply need to be

flipped to 0.

WO 96/06390 PCT/US95/09896

-14-

In one embodiment of the present invention, each set in set
array 201 includes a tag field and a state field. The tag field of a
particular set identifies the cache line stored in the corresponding
element of data array 221. For example, the tag field of set 2 of way 0 in
set array 201 indicates the memory address of element 2 of data array
221. The information stored in the tag field of a particular set is
received as part of the memory address request from the processor.
The state field of a particular set within set array 201 indicates the
number of cache lines that are mapped into the set, as described in
more detail below. In an alternate embodiment of the present
invention, two set arrays are utilized. One set array contains the tag
fields, while the second set array contains the state fields. This
embodiment is discussed in more detail below with reference to Figure
4.

It will be appreciated by those skilled in the art that alternate
embodiments of the present invention can utilize set arrays with
additional information. For example, in one embodiment of the
present invention, set array 201 includes parity bits for each set used for
error checking and also includes status bits which reflect the validity of
the cache line (for example, using the well-known MESI protocol).

In one implementation of the present invention, set array 201
comprises 1,024 sets in total. Thus, each way includes 512 sets, and set
index 205 comprises ten bits. Therefore, data array 221 also includes
1,024 elements. In one embodiment of the present invention, each
element within data array 221 is a single cache line for the computer
system. In one implementation, the size of this cache line is 32 bytes.

It will be appreciated, however, that these sizes for the set array, data

WO 96/06390 PCT/US95/09896

-15-
array, and cache line are exemplary only; these components can be of
any size.

As mentioned above, each set within set array 201 may include a
state field. In one embodiment of the present invention the state field
indicates the number of cache lines which are mapped into this
particular set. Each set index uniquely identifies one set of set array
201. However, since multiple data lines can have the same set index,
when the data lines are transferred to the cache as cache lines, the
present invention allows a set index to map to multiple cache lines. In
this embodiment, three possible states exist for the state field. These
three states are: direct, paired, and borrowed.

The direct state indicates that only a single cache line is mapped
into this set. That is, only one cache line is associated with the set. A
set in direct state can transition to either borrowed state or paired state,
or remain in direct state.

A set in paired state indicates that two cache lines are mapped
into this set. That is, two cache lines are associated with this set. In
this situation, the information associated with one of the cache lines
(that is, the tag, state, data, etc.) is stored in this set and its
corresponding data array elements. This set is then termed the
“primary"” set. The information associated with the second cache line
is stored in the corresponding set and data array element of the other
way, which is termed the "partner” set. The partner set can be accessed
by simply flipping the most significant bit of the set index for the
primary set. For example, if the primary set is set 4 of way 0, then the
partner set is set 4 of way 1. A set which is in paired state can transition

to direct state, or remain in paired state.

WO 96/06390 PCT/US9S5/09896

-16-

If a set is in borrowed state, no cache lines are mapped into this
set. This indicates one of two things; first, this set may be used by the
corresponding set of the other way. That is, the corresponding set of
the other way is in paired state and the second cache line is mapped
into this set. Second, the corresponding set of the other way may also
be in borrowed state, indicating that no cache lines are mapped into
either this set or the corresponding set of the other way (that is, this
set's partner set). A set in borrowed state can either transition to direct
state or remain in borrowed state. At system start-up, all sets in set
array 201 are initialized to the borrowed state.

It should be noted that each pair of corresponding sets (where
the set indexes of a pair of corresponding sets differ only in the most
significant bit) is a primary/partner set combination. Either set can be
the primary set and either set can be the partner set. Which set is the
primary set and which set is the partner set is determined by the set
indexed by the set index. The set indexed by the set index is the
primary set; the corresponding set in the other way is the partner set. It
should also be noted that which set is the primary set may also be
dependent on which of the two sets has been most recently used, as
discussed in more detail below.

It should further be noted that whenever a particular set is in
paired state, that set's partner set is in borrowed state. By using the
paired/borrowed states, a two-way cache is created. That is, if a
particular set is in paired state, then it contains the information for one
cache line and its partner set contains the information for the second

cache line mapped to this set.

WO 96/06390 PCT/US95/09896

-17-

Thus, it can be seen that the cache memory behaves as a direct-
mapped cache until a conflict between two cache lines occurs. When
such a conflict occurs, the cache memory behaves as a two-way set-
associative cache.

By utilizing the state fields within set array 201, a preliminary
determination as to whether a request hits the cache or misses the
cache can be made for some requests. If the request received from the
processor indexes a set which is in borrowed state, then the request is
guaranteed to be a miss. That is, the borrowed state indicates that no
cache lines are mapped into this set. Thus, there is no need to compare
the tag of the request to the tag of either the primary set or the partner
set of set array 201.

If the request from the processor indexes into a set which is in
direct state, then the request may either hit or miss the cache. The tag
field for the indexed set must be compared with the tag field of the
request from the processor to determine whether or not a hit occurs.
However, the partner set need not be checked because direct state
indicates only a single line is mapped into this set. Thus, the tag field
6f only a single set need be compared with the tag field of the address
received from the processor. Thus, it will be understood by those
skilled in the art that when each set of set array 201 is in either direct or
borrowed state the cache behaves as a direct-mapped cache.

If the request from the processor indexes a set within set array
201 which is in paired state, then the request may either hit or miss the
cache. In one implementation of the present invention, the tag field of
the request is first compared to the tag field in the primary set. If the

tag fields match, then the cache line associated with the primary set is

WO 96/06390 PCT/US95/09896

-18-
returned to the processor. However, if the tag field of the primary set
does not match the tag field of the request, then the tag field of the
partner set is compared with the tag field of the request. If the tag of
the partner set and the tag field of the request match, then the cache
line associated with the partner set is returned to the processor.
Otherwise, a miss indication is returned to the processor.

Thus, when a set is in paired state, that set and its partner set
behave much like a two-way cache. However, the two sets do not
operate exactly as a two-way cache because the second set is accessed
only when the first set is a miss.

In one implementation of the present invention, the primary
set is the most recently used (MRU) set. The MRU set is the set which
has been most recently accessed by the processor. Thus, the primary set
could be either set of the primary set-partner set pair, as discussed in
more detail below.

In the embodiments of Figure 4 and Figure 6, MRU logic is
utilized when accessing the L2 cache. The MRU logic (or indicator)
indicates which of the primary set-partner set pair has been most
recently accessed by the processor. In the embodiments of Figures 4
and 6, the MRU set is termed the primary set, and the least recently
used (LRU) set is termed the partner set. When the request from the
processor is a miss, the cache line of either the primary set or the
partner set is transferred to the system memory to provide a free
location for the cache line coming in from system memory. In one
implementation, the cache line which is least recently used (that is, the

partner set) is the one which is swapped with the cache line coming in

WO 96/06390 PCT/US95/09896

-19-

from system memory. Thus, by utilizing the MRU logic, the proper
cache line to transfer to system memory is known.

Figure 3A shows a bit map for determining the most recently
used set information in one embodiment of the present invention.
Figure 3A shows a bit map 310 having ten input lines and one output
line. The ten input lines to bit map 310 are the ten bits of the set index
into set array 201. Thus, with ten inputs, bit map 310 can access 1,024
unique locations. Given these ten inputs, bit map 310 outputs a single
bit, MRU bit 311, which is the MRU indicator for the particular set
which was input to bit map 310. In one implementation, if MRU bit
311 is a "0", then the most recently used set is determined by not
flipping the most significant bit of the set index. However, if MRU bit
311 is a "1" then the most recently used set is indicated by flipping the
most significant bit of the set index. For example, the set index indexes
a set within set array 201. If MRU bit 311 is a “0", then that set index is
the index of the primary set. However, if the MRU bit 311 is a "1", then
that set index is the index of the partner set.

Figure 3B shows the logic circuitry for determining the most
recently used set information in an alternate embodiment of the
present invention. Figure 3B shows a bit map 320 having nine input
lines. These nine input lines are the nine least significant bits of the
set index of the address received from the processor. The most
significant bit of the set index is input into a conventional exclusive-or
gate 322, along with the output from bit map 320. The output of
exclusive-or gate 322 is then used as the most significant bit of the set
index (that is, bit 14), rather than the most significant bit which was

input to gate 322. Thus, the result of the arcuitry in Figure 3B indicates

WO 96/06390 PCT/US95/09896

-20-

the actual most significant bit, rather than whether to flip the most
significant bit as described in Figure 3A.

In one embodiment of the present invention, the MRU logic is
initialized by setting each location in the bit map (either bit map 310 of
Figure 3A or bit map 320 of Figure 3B) to "0" at system start-up. In this
embodiment, the MRU logic can be implemented using the logic
circuitry of either Figure 3A or Figure 3B. The MRU logic is then
updated when a set transitions from direct state to paired state, as
discussed in more detail below.

Figure 4 is block diagram of a cache memory subsystem in one
embodiment of the present invention. In this embodiment, both the
MRU logic and the state information are stored in the same integrated
circuit (IC) package as the CPU, and the level-two (L2) cache is
contained in a separate IC package. Figure 4 shows the logic circuitry
for both CPU 402 and L2 cache 403. The separation between these two
IC packages is shown by boundary line 401.

CPU 402 includes an instruction execution unit 405, a level-one
(L1) cache and controller 406, MRU logic 407, L2 state controller 408,
and state array 409. An internal bus 404 is also included within CPU
402 for communicating information between the various components
of CPU 402. It will be understood by those skilled in the art that
various additional components necessary for the operation of CPU 402,
such as an arithmetic logic unit, are also included within CPU 402.
These additional components, however, have not been shown in
Figure 4 so as not to clutter the drawing and obscure the present

invention.

WO 96/06390 PCT/US95/09896

221-

<

Instruction execution unit 405 executes instructions retrieved
from programs operating in the computer system. This execution
involves retrieving both instructions and data from the computer
system's memory. When execution unit 405 requires additional
instructions or data, it first requests the information from L1 cache and
controller 406. If the request from execution unit 405 hits L1 cache 406,
then the requested information is returned to execution unit 405.
However, if the request from execution unit 405 misses L1 cache 406,
then the address received by L1 cache controller 406 is input to L2 state
controller 408. In one embodiment of the present invention, L1 cache
and controller 406 is a conventional cache memory. In an alternate
embodiment, L1 cache and controller 406 is a cache memory according
to the present invention.

MRU logic 407 is the logic circuitry which provides the MRU
information, such as shown in Figures 3A and 3B. The request from
execution unit 405 is input into MRU logic 407 at the same time it is
input into L1 cache 406, thereby allowing the MRU information for the
particular set within L2 cache 403 to be accessed in parallel with L1
cache 406. Thus, the MRU information, such as MRU bit 311 discussed
above in Figure 3A or bit 14 discussed in Figure 3B, is available to L2
state controller 408 at the same time the L1 cache and controller 406
outputs the address of the request to L2 state controller 408.

L2 state controller 408 receives input from both L1 cache 406 and
MRU logic 407. L2 state controller 408 combines the MRU information
received from MRU logic 407 with the least significant bits of the

requested set index received from L1 cache 406. Thus, L2 state

WO 96/06390 PCT/US95/09896

2.

“—

controller 408 generates the address for the primary set (that is, the
most recently used set of the partner set-primary set pair).

L2 state controller 408 is also coupled to state array 409. State
array 409 includes the state field for each set within the L2 cache. The
state field for a particular set indicates whether that set is in direct,
paired, or borrowed state. Thus, if the request misses the L1 cache then
the L2 state controller 408 determines the state of the primary set for
the request. Thus, preliminary information, such as whether the set is
in borrowed state and therefore guaranteed to be a miss, can be accessed
in the same IC package as the CPU 402, without accessing L2 cache 403.
Therefore, under certain circumstances, a miss indication can be
returned to execution unit 405 without incurring the time delay in
accessing the separate IC package of L2 cache 403.

If the request misses L1 cache 406 and L2 state controller 408
determines that the set is in either direct or paired state, then L2 cache
403 is accessed. The requested address from execution unit 405 is input
to L2 cache 403 from L2 state controller 408. This address is shown as
address 420, comprising 32 bits. The 16 most significant bits of address
420 contain the tag field of the request from execution unit 405. This
tag field is used to determine whether the cache line associated with
the primary set matches the request, as discussed in more detail below.
Bits [14:5) of address 420 are the index into set array 422, as described
above with reference to Figure 2. The five least significant bits of
address 420 are the offset within the cache line of data array 424. That
is, bits [4:0] of address 420 indicate which byte within the requested
cache line should be returned to execution unit 405 first in the event of

a hit.

WO 96/06390 PCT/US95/09896

-23-

The primary set, based on address 420, is accessed and the tag for
that set is input to tag comparison logic 426. The tag for the primary set
is compared with the tag field from address 420 by tag comparison logic
426. The result of this comparison is then input to control logic 428. It
should be noted that bits [14:5] of address 420 are also input to data array
424. Thus, the output of data array 424 is the cache line associated with
the set indexed by address 420. If tag comparison logic 426 indicates that
the tag of the primary set and the tag of address 420 match, then a hit
indication is returned by control logic 428 to CPU 402, along with the
cache line from data array 424.

However, if tag comparison logic 426 indicates that the tags do
not match, then control logic 428 either checks the partner set or
returns a miss, depending on whether the state of the primary set is
direct or paired. The state of the primary set is received as input from
L2 state controller 408. If the state of the primary set is direct, then
control logic 428 returns a miss indication. However, if the state of the
primary set is paired, then control logic 428 accesses both set array 422
and data array 424 us;.ing the set index of the least recently used (LRU)
set. As discussed above, this is done by flipping the most significant bit
of the set index, for example bit [14] of address 420. The tag from set
array 422 of the LRU set is compared by tag comparison logic 426 with
the tag received from address 420. The result of this comparison is
then output to control logic 428. If tag comparison logic 426 indicates a
hit, then the cache line from data array 424 associated with the LRU set
is returned to CPU 402, along with a hit indication. However, if tag
comparison logic 426 indicates a miss, control logic 428 returns a miss

indication to CPU 402.

WO 96/06390 PCT/US95/09896

-24-

In one embodiment of the present invention, control logic 428
retrieves any data lines from system memory which are needed by L2
cache 403. In an alternate embodiment, L1 cache and controller 406
retrieves any needed data lines from the system memory. In another
alternate embodiment, execution unit 405 retrieves any needed data
lines from the system memory.

Figures 5A and 5B show the steps followed by one embodiment
of the present invention in operating the cache memory subsystem of
Figure 4. A request for information is first issued from the execution
unit of the CPU, step 505. In one implementation of the present
invention, this request is in the form of an address, such as address 420
shown in Figure 4. This request from the execution unit is used to
access the L1 cache, step 506, and to access the MRU logic, step 508. As
shown in Figure 5A, steps 506 and 508 are performed in parallel.

Upon receiving the request from the execution unit, the L1
cache and controller determines whether the request hits the L1 cache,
step 510. If the request hits the L1 cache, then the requested cache line
is returned to the execution unit from the L1 cache, step 512, thereby
satisfying the request. However, if the request misses the L1 cache,
then the L2 state controller determines whether the primary set
indexed by the request from the execution unit is in borrowed state,
step 515. The primary set is the set indexed by the set address received
from the execution unit as modified by the MRU information obtained
in step 508. The partner set is the set indexed using the least significant
bits of the primary set address and the most significant bit of the
primary set address flipped. Thus, the primary set is the most recently

used set, and the partner set is the least recently used set.

WO 96/06390 PCT/US95/09896

-25-

If the primary set is in borrowed state, then the L2 state
controller immediately knows that the request from the execution unit
misses the L2 cache. Thus, the requested data line is retrieved from
system memory, step 520. The data line retrieved from system
memory is then returned to the execution unit and also to the L2
cache, step 525. The cache line is then stored in the L2 cache in the data
array line which corresponds to the primary set, and the state of the
primary set and the partner set are both updated to direct state, step 530.
In one implementation of the present invention, the cache line is also
stored in the L1 cache.

Returning to step 515, if the primary set is not in borrowed state,
then the L2 state controller outputs both the primary set address and an
indication of whether the primary set is in direct or paired state to the
L2 cache, step 535. The tag comparison logic in the L2 cache then
determines whether the tag of the primary set and the requested
address match, step 540. If the tags match, then the request hits the L2
cache and the cache line corresponding to the primary set is returned
from the data array in the L2 cache to the execution unit, step 542.

If, however, the tags do not match in step 540, then the control
logic in the L2 cache determines whether the primary set is in direct
state, based on the input received from the L2 state controller, step 544
of Figure 5B. If the primary set is in direct state, then the requested data
line is retrieved from system memory, step 545. This data line is
returned to the execution unit and is also stored in the partner set, step
550. In one implementation of the present invention, the data line is
also stored in the L1 cache. The MRU logic is then updated, step 555, to

indicate that the partner set is the most recently used set. The state of

WO 96/06390 PCT/US95/09896

-26-

the primary set is then updated to paired state, and the partner set is
updated to borrowed state, step 560.

In one embodiment of the present invention, the MRU logic
includes a bit map with ten input lines, as shown in Figure 3A. In this
embodiment, the MRU logic is updated to indicate the partner set is
the MRU set (step 555) by storing a "1" in the bit map at the location
determined by the ten bits of the set index of the primary set and a "0"
in the bit map at the location determined by the ten bits of the set index
of the partner set. In an alternate embodiment of the present
invention, the MRU logic includes a bit map with nine input lines, as
shown in Figure 3B. In this embodiment, the MRU logic is updated to
indicate the partner set is the MRU set by flipping the bit in the bit map
at the location determined by the nine least significant bits of the set
index of the primary set.

Returning to step 544, if the state of the primary set is neither
direct nor borrowed, then the primary set must be in paired state. The
tag of the primary set was already found to not match the tag of the
request in step 540. Thus, the tag comparison logic determines
whether the tag of the partner set matches the tag of the request, step
575. If the request hits the partner set in step 575 (that is, the tags
match), then the cache line associated with the partner set is returned
from the L2 cache to the execution unit, step 580. The MRU logic is
then updated to indicate that the previously least recently used set is
now the most recently used set, step 585. The MRU logic is updated as
discussed above in step 555.

Returning to step 575, if the request misses the partner set (that

is, the tags do not match) then the requested data line is retrieved from

WO 96/06390 PCT/US95/09896

-27-

system memory, step 590. This data line is then returned to both the
execution unit and the L2 cache, step 595. In one implementation, the
data line is also returned to and stored in the L1 cache. The L2 cache
stores this data line in the partner set. The MRU logic is then updated
to indicate that the previously least recently used set is now the most
recently used set, step 585.

Figure 6 is block diagram of a cache memory subsystem in an
alternate embodiment of the present invention. The embodiment
shown in Figure 6 is similar to the embodiment shown in Figure 4,
however, the state information for each set within the set array is
stored in the same IC package as L2 cache 603, rather than in the same
IC package as CPU 602. Figure 6 shows CPU 602 and L2 cache 603,
separated by boundary line 601.

CPU 602 includes an internal bus 604, an instruction execution
unit 605, and an L1 cache and controller 606. The operation of these
components is as discussed above with reference to Figure 4. CPU 602
also includes MRU logic 607, which is similar to MRU logic 407 of
Figure 4. However, MRU logic 607 determines whether to flip the
most significant bit of the set index received from L1 cache 606 and also
flips the most significant bit, if necessary, to obtain the index of the
primary set. Thus, the set index portion of address 620, which is input
to L2 cache 603 from MRU logic 607, contains the set index of the
primary set (that is, the most recently used set). As discussed above
with reference to address 420 of Figure 4, address 620 of Figure 6
comprises 32 bits. Bits [31:15] are the tag field of the address, bits [14:5]

are the set index, and bits [4:0] are the offset into the cache line.

WO 96/06390 PCT/US95/09896

-28-

Each set of set array 622 includes a tag field and a state field. Set
array 622 is indexed by bits [14:5] of address 620, with the tag
information and state information of the indexed set being input to tag
comparison logic 626 and state comparison logic 627, respectively. Tag
comparison logic 626 compares the tag of the indexed set with the tag of
address 620 and outputs the result to control logic 628. Similarly state
comparison logic 627 determines the state of the indexed set, and
outputs this information to control logic 628. State comparison logic
627 indicates that the set is either in direct state, paired state, or
borrowed state.

Control logic 628 receives as input the result of the tag
comparison from tag comparison logic 626, and the state of the indexed
set from state comparison logic 627. Based on this information, control
logic 628 determines whether the request from execution unit 605 hits
or misses L2 cache 603.

Control logic 628 returns either a hit indication or a miss
indication to execution unit 605, depending on the result from tag
comparison logic 626, and the state of the indexed set as received from
state comparison logic 627. It should be noted that if the state of the
indexed set is paired, then both the primary set and partner set may
need to be accessed by control logic 628. Whether both sets are accessed
by control logic 628 and whether a hit or a miss indication is returned
to execution unit 605 is discussed in more detail below with reference
to Figures 7A and 7B.

In one embodiment of the present invention, control logic 628
retrieves any needed data lines from the system memory. In an

alternate embodiment, L1 cache and controller 606 retrieves any

WO 96/06390 PCT/US95/09896

-29.
needed data lines from the system memory. In another alternate
embodiment, execution unit 605 retrieves any needed data lines from
the system memory.

Figures 7A and 7B show the steps followed by one embodiment
of the present invention in operating the cache memory subsystem of
Figure 6. A request from the execution unit on the processor is
initially issued, step 705. This request for information is a request for a
data line, or a cache line, and may comprise instruction information or
data information for the processor's use. In one implementation of
the present invention, this request is an address.

The request from the execution unit is input to both the L1
cache, step 706, and the MRU logic, step 708. The MRU logic accessed
in step 708 indicates the primary set (that is, the most recently used set)
for the indexed set in the L2 cache, which is used by the present
invention if needed as discussed below. Upon receiving the request
from the execution unit, the L1 cache determines whether the request
hits the L1 cache, step 710. If the request hits the L1 cache, then the
requested cache line is returned to the execution unit from the L1
cache, step 712.

If the request misses the L1 cache, then the tag comparison logic
determines whether the tags of the primary set and the request match,
step 715. This is done as discussed above, by comparing the tag field of
the request from the execution unit to the tag field of the primary set
within the set array of the L2 cache. If the tags match, then the
requested cache line is returned to the execution unit from the L2

cache, step 720.

WO 96/06390 PCT/US95/09896

-30-

If, however, the tags do not match, then the control logic within
the L2 cache determines whether the primary set is in borrowed state,
step 725. If the primary set is in borrowed state, then the request misses
the L2 cache. Thus, the requested data line is retrieved from the system
memory of the computer system, step 730. This data line is returned to
both the execution unit and the L2 cache, step 735. The data line
retrieved from system memory is stored in the data array of the L2
cache which corresponds to the set indexed by the original request from
the execution unit (that is, the primary set). The state of the primary
set is then updated to the direct state, and the state of the partner set is
also updated to direct state, step 740. In one implementation of the
present invention, the data line is also stored in the L1 cache and
controller.

Returning to step 725, if the primary set is not in borrowed state,
then a determination is made as to whether the primary set is in direct
state, step 745 of Figure 7B. If the primary set is in direct state, then the
requested data line is retrieved from system memory, step 750. This
data line is then returned to the execution unit and stored in the
partner set in the L2 cache, step 755. In one implementation, the data
line is also stored in the L1 cache. The MRU logic for the primary set is
then updated to indicate that the partner set is the most recently used
set, step 760. The MRU logic is updated as discussed above with
reference to Figures 5A and 5B. The state of the primary set is then
updated to paired state, and the state of the partner set is updated to
borrowed state, step 765.

Returning to step 745, if the partner set is in neither direct nor

borrowed state, then it must be in paired state. Since a determination

WO 96/06390 PCT/US95/09896

-31-
was already made as to whether the request hit the primary set in step
715, the determination is now made as to whether the request hits the
partner set, step 770 (that is, whether the tags of the partner set and the
request match). If the tags do match, then the requested cache line is
returned from the L2 cache to the execution unit, step 775. The MRU
logic is then updated to indicate that the partner set is the most recently
used set, step 780. The MRU logic is updated as discussed above with
reference to Figures 5A and 5B.

However, if the tags do not match, then the requested data line
is retrieved from system memory, step 785. This data line is returned
to both the execution unit and stored in the partner set in the L2 cache,
step 790. In one implementation, the data line is also stored in the L1
cache. The MRU logic is then updated to indicate that the partner set is
the most recently used set, step 780, as discussed above.

Figure 8 is a block diagram of a cache memory subsystem in
another embodiment of the present invention. The cache memory
subsystem of Figure 8 is similar to the system of Figure 6, including a
CPU 802 and an L2 cache 803 separated by boundary line 801. CPU 802
includes an internal bus 804, instruction execution unit 805, and L1
cache and controller 806. The operation of these components is as
discussed above with reference to Figures 4 and 6. It should be noted
however, that CPU 802 does not include MRU logic analogous to MRU
logic 607 of Figure 6. The embodiment of Figure 8 ensures the most
recently used set is the primary set by swapping cache lines when
necessary, as discussed in more detail below.

L2 cache 803 is similar to L2 cache 603 of Figure 6. L2 cache 803

includes a set array 822, data array 824, tag comparison logic 826, state

WO 96/06390 PCT/US95/09896

-32-
comparison logic 827, and control logic 828, analogous to L2 cache 603
of Figure 6. Tag comparison logic 826 compares the tag field of the
request 820 with the tag field of the indexed set from set array 822 and
outputs the result to control logic 828. Similarly, state comparison
logic 827 determines the state of the indexed set in set array 822, and
outputs the result to control logic 828. In the embodiment of Figure 8,
the primary set is the set indexed by the request from execution unit
805, without any modification based on MRU logic.

L2 cache 803 also includes swap logic 830, which is coupled to
control logic 828, set array 822 and data array 824. In the embodiment
of Figure 8, the most recently used set is always maintained in the set
which is in paired state. Thus, no additional MRU indicator such as a
bit map is required to determine which set is the most recently used
set.

Swap logic 830 includes swap control logic 831, set array buffer
832, and data array buffer 833. Set array buffer 832 is a conventional
buffer which is a temporary storage location for the tag field and other
data stored in a set of set array 822. Data array buffer 833 is a
conventional buffer which is a temporary storage location for the cache
line stored in an element of data array 824. Swap control logic 831
controls transferring the information from set array 822 and data array
824 from one set to another set. Swap logic 830 switches two sets when
indicated to do so by control logic 828. This may occur in two
situations. The first is when the indexed set is in direct state but the
request misses the cache. In this situation, the requested line is
retrieved from system memory and stored into the partner set of L2

cache 803. The partner set and the indexed set are then swapped as

WO 96/06390 PCT/US95/09896

-33-

discussed in more detail below with reference to Figures 9A and 9B.
Similarly, if the indexed set is in paired state, and the request misses
the primary set, then either a cache line is retrieved from system
memory into the partner set and a swap must occur, or the request hits
the partner set, in which case the partner set is most recently used and
a swap occurs. This is discussed in more detail below with reference to
Figures 9A and 9B.

Figures 9A and 9B show the steps followed by one embodiment
of the present invention in operating the cache memory subsystem of
Figure 8. A request is originally issued from the execution unit on the
processor, step 905. In one implementation of the present invention,
this request is in the form of an address. Based on this request, the L1
cache is accessed, step 908. If the request hits the L1 cache, step 910, then
the requested cache line is returned to the execution unit from the L1
cache, step 912.

However, if the request misses the L1 cache, then the request is
sent to the L2 cache, and the tag comparison logic determines whether
the tags of the request and the primary set match, step 915. 1f the tags
match, then the request hits the L2 cache and the requested cache line
is returned from the L2 cache to the execution unit, step 917. However,
if the tags do not match, then the L2 cache examines the state of the
primary set.

The state comparison logic determines if the primary set is in
borrowed state, step 920. If the primary set is in borrowed state, then
the data line is retrieved from the system memory, step 925. The data
line is then returned to the execution unit and the L2 cache, step 930.

In one implementation, the data line is also stored in the L1 cache.

WO 96/06390 PCT/US95/09896

-34-
The L2 cache stores this data line in the primary set, and updates the
state of both the primary set and the partner set to direct, step 935.

Returning to step 920, if the primary set is not in borrowed state,
then the state comparison logic determines whether the set is in direct
state, step 940 of Figure 9B. If the primary set is in direct state, then the
data line is retrieved from system memory, step 945. The data line is
then returned to the execution unit and also stored in the partner set
in the L2 cache, step 950. In orie implementation, the data line is also
stored in the L1 cache. The swap logic within the L2 cache then swaps
the lines between the primary set and the partner set, step 955. The
state of the primary set is then updated to paired state and the state of
the partner set is updated to borrowed state, step 960. Thus, it can be
seen that by retrieving the data line from system memory into the
partner set and then swapping the partner set and the primary set, the
primary set contains the most recently used cache line.

Swap control logic swaps the lines of the primary set and the
partner set by switching the two data lines in the data array, as well as
the associated tags (and any other parity bits) of the set array. It should
be noted that the state information stored in the set array is not
switched. This swapping can be performed in any of a wide variety of
conventional manners. For example, in one implementation of the
present invention, the information in the data and set arrays of the
primary set to be swapped is transferred from the two arrays into
buffers within the swap control logic. The information in the data and
set arrays of the partner set to be swapped is then transferred into the

primary set of the arrays. The information stored in the swap buffers is

WO 96/06390 PCT/US95/09896

-35-
then transferred into the partner set of the arrays, thereby switching the
data and information contained in the primary and partner sets.

Returning to step 940, if the primary set is not in direct state,
then the tag comparison logic determines whether the tags of the
request and the partner set match, step 965. If the tags match, then the
requested cache line is returned from the partner set to the execution
unit, step 970. The swap control logic within the L2 cache then swaps
the line in the primary set and the partner set, step 975. Thus, the
primary set remains in paired state and the partner set remains in
borrowed state, with the primary set containing the most recently used
cache line.

Returning to step 965, if the tags do not match, then the
requested data line is retrieved from system memory, step 980. The
requested data line is retrieved from system memory and returned to
the execution unit and stored in the partner set in the L2 cache, step
985. In one implementation, the data line is also stored in the L1 cache.
The swap control logic within the L2 cache then swaps the lines of the
primary set and the partner set, step 975.

Thus, in the embodiment shown in Figures 9A and 9B it can be
seen that when the request misses both the primary set and partner set,
the requested data line is retrieved from system memory, stored in the
partner set of the indexed set, and then the cache lines of the primary
and the partner set are swapped. Thus, the primary set remains in
paired state, the partner set remains in borrowed state, and the primary
set contains the most recently used cache line.

In an alternate embodiment of the present invention, the L2

cache stores data lines from system memory directly into the primary

WO 96/06390 PCT/US95/09896

-36-
set, rather than the partner set as discussed above. By storing the data
lines directly into the primary set, the L2 cache avoids having to swap
the primary and partner sets.

It should be noted that although the descriptions above do not
discuss updating the L1 cache when the request misses the L1 cache but
hits the L2 cache, the cache line hit in the L2 cache may be stored in the
L1 cache in addition to being returned to the instruction execution unit
of the CPU. Whether the L1 cache is updated in this situation is
dependent on the cache policy employed, as is understood by those
skilled in the art.

It should also be noted that the descriptions above discuss a
computer system having both an L1 cache and an L2 cache. It should
be understood, however, that systems having only a single cache can
utilize the cache memory of the present invention.

Similarly, the descriptions above describe the cache memory of
the present invention as implemented in an L2 cache. However, it
will be appreciated that the teachings of the present invention are
applicable to any level cache, and are not specifically limited to L2
caches. For example, a system having only an L1 cache would be
implemented as discussed above, although the request from the
instruction execution unit is checked to hit only one cache rather than
two caches. It will be understood by those skilled in the art that when
utilizing the present invention in an L1 cache, the MRU information
is not available from the MRU indicator simultaneously with the
address being input into the cache.

Furthermore, the descriptions above describe a cache memory

which transfers a cache line to the system memory when a data line

WO 96/06390 PCT/US95/09896

-37-
needs to be brought in from the system memory. Other cache policies,
however, may be employed within the spirit and scope of the present
invention. For example, in one embodiment of the present invention,
whenever a cache line is updated in the cache memory, the cache line
may also be updated in the system memory. Thus, no transfer of the
cache line to system memory occurs when a data line is transferred
into that cache location because the system memory already contains a
copy of the cache line.

Thus, a cache memory subsystem of the present invention
provides the advantages of both a direct-mapped cache and a two-way
set-associative cache. The lower power consumption and logic
complexity of the direct-mapped cache are combined with the better hit
ratios of the two-way set-associative cache. In addition, in one
embodiment of the present invention, certain requests can be
determined to miss the cache without accessing the IC package
containing the cache, thereby increasing the speed of the miss
indication response.

In addition, it will be understood by those skilled in the art that
although the descriptions above discuss a cache which can behave as a
two-way cache, other multiple-way caches are within the spirit and
scope of the present invention. For example, the teachings of the
present invention can be applied to a conventional two-way cache,
thereby creating a four-way cache which combines the advantages of a
two-way cache and a four-way cache.

Whereas many alterations and modifications of the present
invention will be comprehended by a person skilled in the art after

having read the foregoing description, it is to be understood that the

WO 96/06390 PCT/US95/09896

-38-

particular embodiments shown and described by way of illustration are
in no way intended to be considered limiting. Therefore, references to
details of particular embodiments are not intended to limit the scope of
the claims, which in themselves recite only those features regarded as

essential to the invention.

Thus, a two-way set-associative cache memory has been

described.

WO 96/06390 PCT/US95/09896

-39-
CLAIMS
What is claimed is:
1. A cache index for indicating whether an input address is

contained in a data array of a cache memory system, wherein said data
array comprises a plurality of elements, said cache index comprising:
a plurality of data sets, each data set corresponding to an
element of said data array;
a first set of said plurality of data sets having a first tag and
a first state;
said first tag comprising a first plurality of bits indicating
the identity of a first cache line stored in a first element of said
plurality of elements of said data array; and
said first state comprising a first state indicator indicating
a number of cache lines which are mapped into said first set,
wherein each of said cache lines corresponds to an element of

said data array.

2. The cache index of claim 1, wherein said first state being in a

direct state indicates a single line is mapped into said first set.

3. The cache index of claim 1, wherein said first state being in a
paired state indicates both a first line and a second line are mapped into

said first set.

WO 96/06390 PCT/US95/09896

-40-

4. The cache index of claim 1, wherein said first state being in a

borrowed state indicates no lines are mapped into said first set.

5. The cache index of claim 1, further comprising a second set,
wherein said second set is one of said plurality of sets, and said second
set includes a second tag comprising a second plurality of bits and a

second state.

6. The cache index of claim 5, wherein if both a first line and a
second line are mapped into said first set, said first plurality of bits
references said first line and said second plurality of bits references said

second line.

7. The cache index of claim 1, wherein said cache index comprises a

tag array and a state array.

8. A cache memory subsystem for use in a computer system, said
computer system having a central processing unit (CPU), said cache
memory subsystem comprising:
a data array having a plurality of elements;
a set array including,
a plurality of sets, wherein each set of said plurality
of sets corresponds to a single element of said data array, a
first set including a first tag field and a first state field, and
a second set including a second tag field and a second state

field; and

WO 96/06390 PCT/US95/09896

41-
a most recently used set (MRU) indicator corresponding to
said first set indicating whether said first set has been accessed by

said CPU more recently than said second set.

9. The subsystem of claim 8, wherein said MRU indicator is a bit

map.

10. The subsystem of claim 9, wherein said bit map receives as input
from said CPU a second plurality of bits which uniquely identify a third
set of said set array, and outputs a MRU bit indicating whether said first

set or said second set is the most recently used set.

11. The subsystem of claim 9 further comprising an exclusive-or
gate, wherein said bit map receives as input from said CPU a second
plurality of bits, said second plurality of bits being all bits of a third
plurality of bits except the most significant bit of said third plurality of
bits, wherein said third plurality of bits uniquely identifies a third set of
said set array and said bit map outputs a single bit, said single bit and
said most significant bit being input to said exclusive-or gate, said
exclusive-or gate outputting a MRU bit indicating whether said first set

or said second set is the most recently used set.

12. The subsystem of claim 8, wherein said first state field and said
second state field are each in one of three possible states, said three

possible states being a direct state, a borrowed state, and a paired state.

WO 96/06390 PCT/US95/09896

-42-
13. The subsystem of claim 12, wherein said MRU indicator initially
indicates said first set is most recently used and is modified to indicate
said second set is most recently used in response to a request to said
cache subsystem from said CPU when said first state field is in said

paired state.

14. The subsystem of claim 12, wherein said MRU indicator initially
indicates said first set is most recently used and is modified to indicate
said second set is most recently used in response to a request to said
cache subsystem when said first state field is in said direct state and said

request is not located in said first set.

15. The subsystem of claim 8, wherein said MRU indicator and said

CPU are included in the same integrated circuit package.

16. The subsystem of claim 15, wherein said first state field and said

second state field are included in said integrated circuit package.

17. A cache memory subsystem for use in a computer system, said
computer system having a central processing unit (CPU), said cache
memory subsystem comprising;:
a data array having a plurality of elements;
a set array including,
a plurality of sets, wherein each set of said plurality
of sets corresponds to a single element of said data array, a

first set including a first tag field and a first state field, and

WO 96/06390 PCT/US95/09896

-43-

a second set including a second tag field and a second state

field; and

a swap control unit for swapping a first cache line and a
second cache line, said swapping including placing a first cache
line initially located in a first element of said data array into a
second element of said data array, and placing a second cache
line initially located in said second element into said first

element.

18. The subsystem of claim 17, wherein said first state field and said
second state field are each in one of three possible states, said three

possible states being a direct state, a borrowed state, and a paired state.

19. The subsystem of claim 18, wherein said swap control unit
performs said swapping in response to a request to said cache
subsystem from said CPU when said first state field is in said paired

state.

20. The subsystem of claim 18, wherein said swap control unit
performs said swapping in response to a request to said cache
subsystem from said CPU when said first state field is in said direct

state and said request is not located in said first set.

21. A method of returning a data line requested by a central
processing unit (CPU) of a computer system to said CPU, said computer
system including a system memory and a cache memory subsystem,

said cache memory subsystem including a level one (L1) cache and a

WO 96/06390 PCT/US95/09896

-44-
level two (L2) cache, said L2 cache having a plurality of cache lines,
wherein each cache line of said plurality of cache lines is a partner
cache line to another cache line of said plurality of cache lines, said
method comprising the steps of:
(@) determining whether said data line is stored in said L1
cache;
(b) returning said data line to said CPU, provided said cache
line is stored in said L1 cache;
() determining whether the cache line in said L2 cache
corresponding to said data line is in a borrowed state;
(d) retrieving said data line from said system memory and
storing said data line in said L2 cache in the cache line
corresponding to said data line; and

(e) updating the state of said cache line to a direct state.

22. The method of claim 21, further comprising the steps of:
determining whether said cache line in said L2 cache is
the data line requested by said CPU; and
determining whether said cache line in said L2 cache

corresponding to said data line is in a direct state.

23. The method of claim 22, further comprising the step of

returning said cache line from said L2 cache to said CPU.

24. The method of claim 22, further comprising the steps of:

WO 96/06390 PCT/US95/09896

-45-
retrieving said data line from said system memory and
storing said data line in said L2 cache in the cache line
corresponding to said data line;
returning said data line to said CPU;
updating the state of said cache line to a paired state; and
updating the state of said partner set cache line to a

borrowed state.

25. The method of claim 22, further comprising the steps of:
determining whether the cache line in the least recently
used set of the primary set and the partner set is the requested
data line; and
updating said least recently used set to be the most

recently used set.

26. The method of claim 25, further comprising the step of
returning said cache line from said least recently used set of said L2

cache to said CPU.

27. The method of claim 25, further comprising the step of
retrieving said data line from said system memory and storing said
data line in said L2 cache in the cache line corresponding to said data

line.

28. The method of claim 25, wherein said step of updating said least
recently used set comprises swapping said least recently used set and

said most recently used set.

WO 96/06390 PCT/US95/09896

29. A computer system comprising:
a bus;
a central processing unit (CPU) coupled to said bus;
a cache memory subsystem including,

a data array having a plurality of elements,

a set array including a plurality of sets, wherein
each set of said plurality of sets corresponds to a single
element of said data array, a first set including a first tag
field and a first state field, and a second set including a
second tag field and a second state field; and
means for maintaining a most recently used (MRU) set,

said MRU set being either said first set or said second set.

30. The system of claim 29, wherein said means for maintaining
comprises an MRU indicator corresponding to said first set indicating
whether said first set has been accessed by said CPU more recently than

said second set.

31. The system of claim 29, wherein said means for maintaining
comprises a swap control unit for swapping a first cache line and a
second cache line, said swapping including placing a first cache line
initially located in a first element of said data array into a second
element of said data array, and placing a second cache line initially

located in said second element into said first element.

WO 96/06390 PCT/US95/09896

-47-

32. The system of claim 29, wherein said first state field and said
second state field are each in one of three possible states, said three

possible states being a direct state, a borrowed state, and a paired state.

PCT/US95/09896

WO 96/06390

1712

>

[0L 801 601
301A30 301A3Q 30IA3A LNdN] 30I1A3a
AdOD QHVH Avidsia OIHAWNNVHA TV | [1TOHLNOD HOSHND
A A \7 A
) i\l { v 00} SNE WILSAS
A’ -~ A ~
ﬂ Y Y Y.
901 S0t vor
SLLSN8 TVNYILNI t
= = 301A30 (Wvy)
1 0 N 3DVHOIS vivd WoH AHOW3W WILSAS
y Y
9Lt Iy
LINN NOILND3X3 3HOVD
NOILONYLSNI £
6L1L
IH ndo sSng e
AV
H3TTOHLINOD 21
0zt
L 4
WYY 21
1Zr
8l JHOVO 21

PCT/US95/09896

WO 96/06390

2/12

PNN\

U IN3W3T3

v LN3IW3T3
€ LIN3W313
¢ INaW3al3
L LN3W313
U INJW313

v LNIW313
£ INIW3I3
¢ INJW3T3
L INIW3T3

¢ 3HNOIH

LAVM <

o><>>&

-

u3Lvis |uovl

p3LVIS | vOvL

£31VIS | covl

Z3LVIS | zovL

[+3Lvis [rovy

(| u3lvis |uoyl
®

[

[]
pILVIS | b OVL
£31VIS | £ oYL
Z3LvIS | zovL

[+awvis [1oby
oz’

ul3s

v 135S
€ 13S
¢ 13S
L 13S
u13s

v 13S
€ 13S
¢ 13S
L 13S

L

X3AaNI 43S

[

0 50z

WO 96/06390 PCT/US95/09896

3/12
14 ——»
13—
. BIT MRU
MAP > BIT
. 311
310
5 ——»
FIGURE 3A
14
13 ——— 322
12 ——» |
. BIT ﬁD—» BIT 14
MAP y
[]
320
5 —>

FIGURE 3B

PCT/US95/09896

WO 96/06390

4/ 12

v 3HNOI4

124%
AvHHV
viva

L

J10071

€201 3INI

L3N
03NN

TOHLNOD

3
7

A

P A
1214

J1901
NOSIHVdWOD
ovl

A

\ A
9zt

ovl

€201 13S

ovli

L 13S

ovl

013S

AR A A
AVHHY
13S

\LHIMQ WW

ocy

—

[srie]

i
4

eov
3HOVO
(A

£20L 13S
® []
® ®
\
60Y * ¢
31VIS 1 13S
A
31VIS 013S
AVHYHY
31V1S
H3TIOHLNOD |, >
EINAEEA
3 4 ~
80v
N 21901
NHYW SOV
\ Y Y
L0% 1INN
-l NOILND3XT |l—>
HITTOHLNOD »| NOILONHLSNI
aNv
IHOVO L1 [, >
mmﬂ vOb
sng
Zov
N A 4<zmm»z_ﬁ\
LOY

WO 96/06390 PCT/US95/09896

5712

505

L

REQUEST FROM
EXECUTION UNIT

] [' 508
Y 506 Y =4

/
ACCESS MRU
ACCESS L1 CACHE LOGIC

T J

DOES THE YES
REQUEST HIT THE

L1 CACHE?

512
/
RETURN CACHE LINE

TO EXECUTION UNIT
FROM L1 CACHE

515

IS THE

YES PRIMARY SET IN
BORROWED STATE? END
i 520
»

RETRIEVE DATA LINE
FROM SYSTEM MEMORY

v 525
RETURN DATA LINE TO |~

EXECUTION UNIT AND <~
L2 CACHE OUTPUT ADDRESS AND
T 530 | STATE INFORMATION
TO L2 CACHE
UPDATE PRIMARY |}~

SET AND PARTNER
SET TO DIRECT STATE

D 540

DO THE
ves .~ TAGS OF THE
PRIMARY SET AND
542 THE REQUEST
! ~ MATCH?

RETURN CACHE LINE
TO EXECUTION UNIT
FROM L2 CACHE

END FIGURE 5A

PCT/US95/09896

WO 96/06390

6/12

45 3HNOId

SNLVLS NHW OL
mmﬂ 13S NY¥131vadn

A
— »
13S H3NLYvVd
NI 3HOLS aNV
1INN NOILND3X3 0L
e INIT VLVa NHN13Y

3HOVO ¢T WOH4 LINN
NOILNJ3X3 OL 3NIT
JHOVO NHNL13Y

565 } ~
08S
AHOWIW WILSAS S3A
WOH4 3N
viva 3A3iH13Y

LHOLVW
13S H3N1Hvd
3HL NV 1S3N034
3HL 4O SovlL
JHL Oa

g
06S

¢31v1S 1034Id

Y

anN3

09§

31VLS G3MOHHO4
Ol 13S "H3INLYVd
aNV 31V1S a3divd
0Ol 13S AHVWIHd
Jlvadn

L}

SSS

SNLVILIS NHW OL
135S H3INL1Hvd
31lvadn

1

A

08S

13S H3INLHVd

NI 3HOL1S NV
LINN NOILNO3X3 OL
3INIT Viva NHN13Y

1

SbS

AHOW3IW W3 LSAS
WOYH4 3INIA
v1iva 3A3id13d

NI 13S AHVWIHd
3HL sI

S3A

PCT/US95/09896

WO 96/06390

7712

9 34NOIS

$29 1
AVHHY
viva

€201 3NIN

L 3INIT
03NN

[

21901
»| TOHINOD
829 _ _
21907 21901
NOSIHVANOD | | NOSIHVWOD —
3LVIS ovL
\ A \ A
£29 929
aLvis | ovi] ezot 13s
[] ®
[] []
L4 []
3Lvis | ovi| 1 13s
aLvis | ove|oias

4‘
21901
NYW 509
7% Y
£09 LINN
o NoILNO3IXI fe—p
HITIOHLNOD NOILONHLSNI
anv
\g IHOVO L N
909 09
sng
209 TVNUILNI
X, Ndd v
109

WO 96/06390 PCT/US95/09896

8/12

BEGIN
705

,/

REQUEST FROM
EXECUTION UNIT

| L 708
Y

706 Y o
ACCESS ACCESS MRU
L1 CACHE LOGIC

L T

DOES THE
REQUEST HIT THE
L1 CACHE?

YES
712
_/
RETURN CACHE LINE
TO EXECUTION UNIT
FROM L1 CACHE

715

DO THE
TAGS OF THE
PRIMARY SET AND
THE REQUEST
MATCH?

YES

END

y 720

RETURN CACHE LINE |~

TO EXECUTION UNIT
FROM L2 CACHE

725

IS THE

PRIMARY SET
END IN BORROWED ;30
STATE?

RETRIEVE DATA LINE
FROM SYSTEM
MEMORY

735
r/
RETURN DATA LINE
TO EXECUTION UNIT
AND L2 CACHE

740
2
UPDATE PRIMARY SET
AND PARTNER SET TO
DIRECT STATE

END

FIGURE 7A

PCT/US95/09896

WO 96/06390

9/12

g4 34NOId

~(an3 }<

SNLVIS NHW 0L 13S
H3INLHVd 31vadn

~ y
082 —

-

A

IHIOVDI 21 WOHS LINN
NOLLND3X3 OL 3NN
JHOVO NHNL3Y

S8L

CHOLVIN
1S3Nn03Y4 3HL
GNV 13S H3NL1YVvd
JHL 40 S9OVL
3HL Oa

1

13S HINLYVd

NI 3HOLS aNV
1INA NOLLND3X3 OL
3NIT Viva N"ENL3Y

f

AHOW3W
WILSAS WOHA
INI VLIVA 3A3IH13Y

¢31Vv1S 103Hia

S9L

09L

§6.

0S.

31V1S a3moyydosa
Ol L3S H3NLYVd
NV 31LVIS
d3divd Ol 135
AHVWIHC 31vadn

1

SNULVLS
NYW OL 135
HINLHVd 31vadn

X

13S HaNLHvd

NI 3HOLS gNV
1INN NOILND3X3 OL
3NIT V1vd NHNL3Y

F

AHOW3W W3LISAS
WOodd 3NN
Viv3d 3A31413y

A

NI L3S ABYWIHd _~g3A
IHL SI

SvL

PCT/US95/09896

10/ 12

WO 96/06390

01901
TJOHLINOD
—
seze 1 1 1
[]
21901 21901
| NOSIHVAINOD ||| NOSIHVAWOD Tl
128 31VIS oVl VAN
fm———— 3 ———— == 4 \ﬁ
| L _ 928
I ~1 _2I901 “
| Lte8 | 10HLNOD .l_
[| dVMS t 1
€201 3N |! H H “ mbﬁm_ OvL| €201 13S
= |
o ° [| H344ng H344ng (! o o
o . | { AvHHYV AvHYY || o .
. . 1| viva 13s ! . .
! — — _ 508
L3N “ ££8 268 | JLViS | OVvl| 4 138 Yy [~
03NM | o_o%T ! 31V1S | OvL|013S LINO
11 [dvms | ! ¥ 7 NOILNO3X3 >
vZ8 M I | EeA kb B J H3TTOHINOD [NOILDONYILSNI
AVHHY ¢es | anNv
viva AVHHVY JHOVO 171 L N
13s ~ <
— 1 e — 505 mqom
0b | SibL | siiig £08 nd
L 1_’ _ _ JHOVYD 208 ._<me._.2_¢
0z8 21 Nndo
108

WO 96/06390 PCT/US95/09896

11712

BEGIN
905

~

REQUEST FROM
EXECUTION UNIT

v 908

ACCESS T/
L1 CACHE

DOES THE YES

REQUEST HIT THE
L1 CACHE?

912
et
RETURN CACHE LINE

TO EXECUTION UNIT
FROM L1 CACHE

915

TAGS OF THE

REQUEST AND
THE PRIMARY SET
MATCH?

YES

END

4 917

RETURN CACHE LINE -
TO EXECUTION UNIT
FROM L2 CACHE

920

IS THE
PRIMARY SET
IN BORROWED
STATE?

925
/
RETRIEVE DATA LINE

FROM SYSTEM
MEMORY

END

830
7
RETURN DATA LINE

TO EXECUTION UNIT
AND L2 CACHE

935
[-~
UPDATE STATE OF
PRIMARY SET AND
PARTNER SET TO
DIRECT STATE

END

FIGURE 9A

PCT/US95/09896

WO 96/06390

12712

g6 3HNOIA

aN3 ~*
138 H3IN1HVYd
e ANV 13S AHVWIHC
S/6 NI S3NIT dYMS
[X
[
13S H3INLHVd
NI 3HOILS aNV
LINN NOILND3X3 OL LINN NOLLND3X3
(wz_x_ Viva NHNL3Y OL1 3NN
% 0.6 JHOVI NHNL3Y

AHOWIW WILSAS
WOHd 3NIT
V.iva 3A31HL3Y

t_

ON

S96

ove

CHOLVIN
13S H3IN1YvVd

3H1 40 S9vL
3HL1 04

¢31vls 103Hia
NI L3S AHVWIYd
JHL SI

JHL ANV 1S3N03Y

31V1S gamoydog
Ol 13S H3INLYVJ
ANV 31VIS
a3divd O1 13S
AHVWIHC 31vadn

036

1

13S H3aN1HVYd
ANV L3S AHVWIHG
NI SINIT dYMmS

SS6

1

13S HaNlLYvd

NI 3HOLS GNV
1INA NOLLND3X3 OL
3NIA V1iva NHNL3Y

056

f

p

AHOWIW W3LSAS
WOH4 INIM
V1ivad 3A3iHL3Y

Sv6

1

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

