PORTABLE WORK TABLE

A portable work table adapted for being removably positioned within a storage compartment of a vehicle includes a frame having an upper wall with a generally planar top surface, a bottom wall, and storage units connecting the upper and bottom walls. A plurality of legs are movably mounted on the frame and movable between a first position such that the legs extend from the bottom surface for being engaged with a support surface such that the frame is positioned above the support surface to permit work to be readily carried out on the top surface and a second position such that the legs are retracted from the first position toward the bottom surface such that the frame is positionable within the storage compartment of the vehicle. The portable work table also includes a plurality of objects movably mounted on the frame via insert panels.
PORTABLE WORK TABLE

BACKGROUND OF THE INVENTION

[0001] The present invention is directed to a portable work table and, more particularly, to a portable work table adapted for being removably positioned within a storage compartment of a vehicle.

[0002] It is common for construction workers working on a particular job site to require a work table for performing various tasks associated with the construction. Many times, the worker prefers or is required to use his own tools when working at a particular site. Since a worker may have to work at multiple sites which are located in different geographical areas, a worker's tools and work table must be transportable so that the worker can move equipment from location to location.

[0003] Many prior art work tables are designed to be carried in a storage compartment of a vehicle, such as a bed of a pickup truck. The table typically includes a generally planar horizontal surface from which extends two pairs of legs, each pair of legs being located on opposite ends of the table. Typically, the legs are constructed to fold beneath the table so that the table can be placed into the storage compartment of the vehicle and take up a minimum amount of space. Such a table is deficient, however, in that there is no place in which to store tools. Therefore, the table is typically first positioned within the storage compartment or truck bed and then the tools, supplies, etc. are positioned on top of the table during travel. Upon reaching a work site, all of the individual tools, supplies and the like must first be removed from the table top to access the table. This increases the time to set up and break down at each work site. Furthermore, since electrical outlets are typically inaccessible at construction sites, a worker may be unable to use power tools on the site.

[0004] Other conventional work tables which are to be stored in a storage compartment of a vehicle are problematic in that they only include one pair of legs to support one end of the work table. That is, one end of the work table is typically fixed to the vehicle on sliding tracks or the like, and the other end of the table can be pulled from the storage area to a position externally of the vehicle to be supported by a combination of the vehicle and the single pair of legs. This type of conventional work table has a drawback in that the vehicle is secured to the table and cannot be used for any other purpose while work is being carried out on the table. Moreover, this type of table also suffers from the same drawback of not being able to store tools.

[0005] Some prior art work tables often contain drawers for storing various tools and supplies. However, such tables, like the above-discussed tables, are deficient in that they must be placed proximate to an electrical source in order to allow a worker to use power tools. Furthermore, the drawers do not provide any way of securing the tools from movement during travel. If the tools are not properly secured, the tools or work table drawers can be damaged thereby causing the worker additional expense and aggravation.

[0006] Conventional work tables also suffer from being bulky and difficult to load and unload from vehicle storage compartments. In addition, conventional work tables fail to provide a means to easily set up and store tools in a ready-to-use configuration, such as a flat surface with sufficient clearance space.

[0007] Therefore, there is still a need for a work table which is portable and easily carried in the storage compartment of the vehicle. The work table should have multiple compartments for carrying and securing various tools and other supplies. There is also a need for a work table which is completely removable from the vehicle to permit the vehicle to be used for other functions while the work table is in use. It would also be useful for the work table to have retractable legs such that when the work table is positioned within the storage compartment of the vehicle, the legs could extend from the top surface thereof in order to allow additional articles to be carried and secured on top of the work table. Such a work table should be easily transportable from location to location and should contain all the tools and supplies necessary for a worker to efficiently perform a job.

BRIEF SUMMARY OF THE INVENTION

[0008] In a portable work table embodying the principles of the invention, the portable work table is loaded and unloaded onto the storage compartment of a vehicle by a configuration of rollers. Such rollers avoids the problems of conventional portable work tables that can be difficult to load and unload off of vehicles due to the configuration of the vehicle's storage compartment or due to, for example, uneven surfaces of the storage compartment such as that resulting from a tailgate of a pickup truck.

[0009] The present invention relates to a portable work table comprising: a frame that includes; an upper wall having at least one opening, a bottom wall, and storage units connecting the upper and bottom walls; a plurality of legs moveably connected to the frame, the legs being movable from a first position wherein the legs extend from the bottom wall and a second position wherein the legs are retracted from the first position such that the frame is positionable within a storage compartment of a vehicle; an insert panel connectable to the upper wall; at least one object connectable to the insert panel to allow the object to move with respect to the upper wall between a first position wherein the object is positioned within the interior of the storage unit below the upper wall and a second position wherein the object is positioned at least partially above the upper wall; and a plurality of rollers connected to an outside surface of the bottom wall.

[0010] The present invention also relates to a portable work table comprising: a frame that includes; an upper wall having at least one opening, a bottom wall, and storage units connecting the upper and bottom walls; a plurality of legs moveably connected to the frame, the legs being movable from a first position wherein the legs extend from the bottom wall and a second position wherein the legs are retracted from the first position such that the frame is positionable within a storage compartment of a vehicle; an insert panel connectable to the upper wall by an insert rod, such that the insert panel swivels about the insert rod, the insert panel including a connector for connecting an object to a surface of the insert panel; and at least one support lock connected to the upper wall for supporting and locking the insert panel to the upper wall.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0011] The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred.
It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:

[0012] FIG. 1 is a perspective view of a portable work table located within a storage compartment of a vehicle in accordance with a preferred embodiment of the present invention;

[0013] FIG. 2 is a perspective view of the portable work table of FIG. 1 in which the portable work table is partially removed from the storage compartment of the vehicle;

[0014] FIG. 3 is a perspective view of the portable work table of FIG. 1 entirely removed from the storage compartment of the vehicle;

[0015] FIG. 4 is a front perspective view of the portable work table of FIG. 1 without a cover and legs;

[0016] FIG. 5 is a top perspective view of two storage units assembled within the portable work table of FIG. 1;

[0017] FIG. 6 is a top perspective view of the two storage units of FIG. 5 assembled to the bottom wall of the portable work table of FIG. 1;

[0018] FIG. 7 is a top perspective view of the bottom wall of FIG. 6;

[0019] FIG. 8 is a top perspective view of the upper wall of the portable work table of FIG. 1;

[0020] FIG. 9 is a front perspective view of the portable work table of FIG. 1 with a partially broken view of the front side;

[0021] FIG. 10 is an enlarged partial top perspective view of the portable work table of FIG. 1;

[0022] FIG. 11 is a side cross-sectional view of the portable work table of FIG. 1 with an object assembled to the work table;

[0023] FIG. 12 is an enlarged partial top perspective view of a portion of the portable work table of FIG. 1;

[0024] FIG. 13 is a bottom perspective view of an insert panel connectable to the portable work table of FIG. 1 in accordance with a preferred embodiment of the present invention;

[0025] FIG. 14 is a bottom perspective view of the portable work table of FIG. 1;

[0026] FIG. 15 is a top perspective view of a cover of the portable work table of FIG. 1;

[0027] FIG. 16 is a top perspective view of a work tray of the portable work table of FIG. 1;

[0028] FIG. 17 is a bottom perspective view of the work tray of FIG. 16; and

[0029] FIG. 18 is a partial side cross-sectional view of the portable work table of FIG. 1 showing a rack and pinion mechanism.

DETAILED DESCRIPTION OF THE INVENTION

[0030] Referring to the drawings, wherein like reference numerals indicate like elements throughout, there is shown in FIGS. 1-3 a work table 10 adapted for being removably positioned within a storage compartment 12 of a vehicle 14. In the preferred embodiment, the vehicle 14 is a pickup truck and the storage compartment 12 is the bed of the pickup truck 14. However, it is understood that those skilled in the art, that the vehicle 14 may be any suitable transport device such as, but not limited to, a car, a trailer, a van or other type of freight truck.

[0031] Referring now to FIGS. 1 and 4, the work table 10 is preferably portable and includes a frame 16 having storage units 18a, 18b, a bottom wall 20, an upper wall 22 which has a generally planar top surface 28, a front panel 24, a back panel 26, and a plurality of legs 61 for supporting the work table 10. The upper wall 22 is preferably constructed of steel, plastic (e.g., structural foam plastic), or wood, such as plywood. However, it is to be understood by those skilled in the art that any suitable material may be used such as, but not limited to, plastics or metals without departing from the scope and spirit of the present invention. When the work table 10 is placed within the storage compartment 12 of the vehicle 14, the top surface 28 of the frame 16 is visible when the cover 48 is removed.

[0032] Referring now to FIGS. 5-7, the storage units 18a, 18b are assembled into the frame’s bottom wall 20. Preferably the work table 10 includes two storage units 18a, 18b that are generally configured as shown in FIG. 5 with an open bottom and open top and vertical side surfaces, thus forming sleeve-like storage units 18a, 18b. Although the work table 10 preferably includes two storage units, the present inventive work table 10 can be configured with more than two or less than two storage units. The storage units 18a, 18b are preferably configured to complement and be inserted into the bottom wall 20 as shown in FIG. 6. The storage units 18a, 18b are preferably constructed of structural foam plastic. However, it is understood by those skilled in the art that the storage units 18a, 18b can be constructed of other materials, such as metals, polymers, composites, alloys and the like. In the present embodiment, the storage units 18a, 18b are preferably secured to the frame 16 by various connections or standard fasteners (not shown), such as screws. Moreover, it is also understood by those skilled in the art that the storage units 18a, 18b can alternatively be formed as an integral part of the frame 16. In such an event, the storage units 18a, 18b would be molded as one piece with the bottom wall 20.

[0033] The bottom wall 20 is generally configured as a planar wall with a raised lip 30 as shown in FIG. 7. The raised lip 30 facilitates in structurally supporting and seating the storage units 18a, 18b and forming the overall frame 16. The bottom wall 20 can be constructed out of the same materials as that of the storage units 18a, 18b. The bottom wall 20 also includes through holes 32a-d for the passage of legs 61 as further described below.

[0034] The upper wall 22 is sized and shaped as shown in FIG. 8 and includes a plurality of openings 34. Preferably, the upper wall 22 includes 10 openings 34a-f. As shown in FIG. 4, openings 34a-d are positioned above storage unit 18a while openings 34e-f are positioned above storage unit 18b. Openings 34a-c and 34e-f provide access to a generally hollow interior of the frame 16 that is not within storage units 18a, 18b. The upper wall 22 also includes through holes 35a-d that align with through holes 32a-d on the bottom wall 20.

[0035] Each opening 34 is assembled with an insert panel 36 as shown in FIGS. 10, 12, and 13. Each insert panel 36 is preferably connected to the upper wall 22 by an insert rod 37, is generally configured to have the same thickness as the upper wall 22, and is sized to complement the respective openings 34. Each insert panel 36 is preferably made from the same material as the upper wall 22. The insert rod 37 can be connected to the upper wall 22 along an edge of the openings 34 on each lateral side of the upper wall 22 via a slot or groove fit. Each insert panel 36 is connectable to the insert rod 37, preferably by a snap-fit configuration (not shown), such that the insert panel 36 is pivotable (or swivels) about the longitudinal axis of the insert rod 37. That is, the insert panel 36 can pivot about the insert rod 37 from a fully stowed or second generally vertical position (see FIG. 11 insert panel 36 in...
stowed position below upper wall 22 and shown in phantom) where the insert panel 36 is substantially below the upper wall 22 to a third position (see FIG. 11 insert panel 36 shown in phantom above the upper wall 22) beyond a first position where the insert panel 36 is substantially parallel with the upper wall 22. The insert panel 36 can be configured to either hang in the second position or be locked in the second position by any conventional fastening means, such as latches, hooks, fasteners, and the like. While the present embodiment has been described with reference to an insert rod 37, it is within the intent and scope of the present invention that any hinged or support mechanism suitable for pivotably supporting the insert panel 36 can be used.

[0036] The insert panel 36 is also configured with a connector 39 (FIG. 10) that can securely connect an object 38 to the top surface 28 of the insert panel 36. The present invention is not limited to the use of any particular type of connector 39 for securing the objects 38 to the insert panel 36. However, exemplary connectors 39 for securing objects 38 to the insert panel 36 include latches, hooks, connectors, screws, nails, clamps, jigs, adhesives, and the like. The connectors 39 are preferably reusable connectors or quick-connect connectors such that a user can easily interchange objects on the insert panel 36. Each insert panel 36 is also preferably configured with a through hole 40 (FIG. 12) to allow for the passage of wiring or power cords so that such cords lay flat on the upper wall 22 and to allow for a finger-hole access, such that a user can grasp and lift the insert panel 36. The object 38 can be any object or a plurality of objects. Preferably, the object 38 is a tool or device such as, but not limited to, electrically powered tools, air powered tools, manually operated tools, or any other supplies necessary to perform a given task.

[0037] Referring to FIG. 13, the insert panel 36 is generally configured as an open rectangular or square structure with a thickness comparable to that of the upper wall 22. The insert panel 36 has a planar top surface 36a, an open bottom surface 36b, and side surfaces 36c that define the thickness of the insert panel 36. Along the front of the insert panel 36, the side surface 36c includes a recess 33 along its bottom half. The recess 33 advantageously allows for the insert panel 36, when removed from the work table 10, to lay flat on a support surface when connected to a power cord, air supply, or the like. That is, the insert panel’s recess 33 and through hole 40 provide a channel for a cord to lay in such that the insert panel 36 connected to the cord can lay flat on a support surface without interference from such cords. The insert panel 36 also includes a support lock recess 31 configured to receive a support lock 42 as further discussed below. Preferably, the insert panel 36 includes two support lock recesses 31 as shown in FIG. 13.

[0038] The upper wall 22 also includes a support lock 42 as shown in FIG. 12. The support lock 42 is pivotally connected to the bottom surface of the upper wall 22 such that the support lock 42 can be rotated from a closed position (wherein the support lock is completely beneath the upper wall 22) to an open position (as shown in FIG. 12). When in the open position, the support lock 42 extends into the opening 34, such that the now connected portion of the insert panel 36 can rest on the support lock 42 and sit flush with the top surface 38 of the upper wall 22. Preferably, two or more support locks 42 are provided for each insert panel 36.

[0039] To place an insert panel 36 in the first position, the insert panel 36 is lifted past the horizontal plane of the upper wall 22 and then the support locks 42 are pivoted to extend into the opening 34 as shown in FIG. 12. Thereafter, the insert panel 36 is lowered to rest on the support locks 42. To place insert panel 36 back into the second position as shown in FIG. 12, the same procedure is followed except in reverse order.

[0040] In sum, each insert panel 36 for openings 34a-d and 34e-f is configured to support an object 38 for stowing in the second position or in the first position (or ready-to-use position), and for providing access to their respective storage units 18a, 18b. Insert panel 36 for openings 34e and 34f provide access to the remaining interior cavity of the frame 16.

[0041] Referring to FIG. 14, the work table 10 further includes a plurality of rollers 44. The rollers 44 can be any conventional roller capable of supporting the work table 10. The rollers 44 are preferably as long as about one half of the width or more of the overall work table 10. Preferably, the rollers 44 extend in the width direction (i.e., substantially parallel to the front and back panels 24, 26) of the work table 10 and spaced about 14 to 18 inches apart in the longitudinal direction (i.e., lengthwise direction of the lateral side walls). In a preferred embodiment, the work table 10 is configured with five (5) rollers 44a-c. The rollers 44 can be attached to the work table 10 by any conventional means readily known in the art and a detailed description of such means is not necessary for a complete understanding of the present invention. However, exemplary attachments can include an axle that extends the length of the roller and attaches to bottom wall 20 of the work table 10. Due to the functionality and spacing configuration of the rollers 44, the present invention advantageously allows the work table 10 to be easily loaded and unloaded from a vehicle’s storage compartment 12 by allowing the work table 10 to easily roll over, for example, the typical 3 inch gap formed by the tail gate and flat bed of a conventional pickup truck.

[0042] The work table 10 can also include a pair of retractable handles 46a, 46b along the front side of the frame 16 to facilitate in the grasping of the work table 10 by a user. The retractable handles 46a, 46b are preferably configured to retract within the bottom wall 20. The retractable handles 46a, 46b can also be configured to lock in the extended position (as best shown in FIG. 9) and is preferably configured to lock in a plurality of partially extended positions. The retractable handles 46a, 46b can be locked in position by any conventional locking means such as locking pins, latches, detents, catches, and the like. The work table’s retractable handles 46a, 46b advantageously allows for a user to extend and lock the retractable handles 46a, 46b in a position such that the handles 46a, 46b abut against one side of the storage compartment 12, such as the tail gate of a pickup truck, to inhibit movement of the work table 10 during transportation.

[0043] The work table 10 also includes a cover 48 as shown in FIG. 15, that functions as a cover or lid that is to be laid over the upper wall 22. The cover 48 is generally configured to complement the dimensions of the upper wall 22 and can be configured to lay on top of the upper wall 22, be snap-fitted onto the upper wall 22, or be otherwise fastened to the upper wall 22 with conventional fastening means, such as screws, latches, hooks, catches, and the like. The cover 48 can, if applicable, be configured with through holes 50a-d that align with the through holes in the upper wall 22 and bottom wall 20 to allow the legs 61 to pass therethrough. In addition, the cover 48 can be used as a secondary table surface, such as when in combination with a pair of saw horses.
Referring now to FIGS. 9, 16, and 17 the work table 10 can further include a work tray 52 that is configured to fit within the work table 10 as shown in FIG. 9. The work tray 52 is generally configured with a bottom surface 54 and vertical side surfaces 56. The work tray 52 also includes four inset holes 56a-d along the four corners of the work tray 52 with an open end facing downwardly. The inset holes 56a-d are preferably configured with dimensions of 2 inches wide & 4 inches length, such that the inset holes 56a-d can receive standard 2"-14" hanger for use as free standing legs (not shown) to support the work tray 52. In addition, the work tray 52 can optionally include handles 58a, 58b to facilitate in the handling and loading of the work tray 52. To unload the work tray 52 from the work table 10, the front panel 24 is removed to provide access to the work tray 52 and to slide the work tray 52 out of the work table 10 for assembly.

Referring now back to FIGS. 1-3, the work table 10 also includes a plurality of legs 61. In a preferred embodiment, the work table 10 includes four legs that are arranged in a first set or pair of legs 60 and a second set or pair of legs 62, that are movable mounted within the frame 16. In the preferred embodiment, each leg 61 is slidably received through a suitably sized opening 64, within the frame 16 of the work table 10, that corresponds to through holes 50, 52, and 32 of the cover 48, upper wall 22, and bottom wall 20. Each opening 64 can optionally include a plug 66 (as shown best in FIG. 4) for covering the opening 64 so as to, for example, keep the openings water tight and free from water runoff, such as rain water.

Each leg 61 is independently and separately moveable between first (FIG. 3) and second (FIG. 1) positions on the frame 16. In the first position, the legs 61 extend from the bottom wall 20 of the frame 16 for being engaged with a support surface (not shown), such as the ground, such that the frame 16 is positioned above the support surface to permit the work to be readily carried out on the top surface 28. That is, each leg 61 is placed in the first position when the work table 10 is removed from the storage compartment 12 so that the work table 10 is self-supported. In the second position each leg 61 is retracted from the first position toward the bottom wall 20 until each leg 61 extends from the top surface 28 of the work table 10 such that the work table 10 is positionable within the storage compartment 12 of the vehicle 14 with the bottom wall 20 in close facing relationship with the floor of the storage compartment 12. While it is preferred that the legs 61 extend above the top surface 28 of the frame 16 in the second position, it is understood those skilled in the art that legs 61 could merely retract into the interior of the work table 10 in the second position. Such a function could be accomplished, for example, by telescoping legs (not shown).

Referring now to FIG. 18, there is shown an apparatus for independently moving each leg 61 between the first and second positions. In the present embodiment, the apparatus for moving is preferably a rack and pinion mechanism 68 which is used to raise and lower each leg 61 within the frame 16 of the work table 10. A crank arm 70 is inserted through an opening 72 located in the corresponding side wall of the frame 16. The crank arm 70 has a worm gear 74 rotatably mounted within the interior of the frame 16. The worm gear 74 is threadably engaged with a complementary spur gear 76 having a plurality of gear teeth 78. The gear teeth 78 of the spur gear 76 are threadably engaged with a series of teeth 80 located on a rack 82 which is directly secured to the leg 61. As the crank 70 is turned in a given direction, the worm gear 74 engages the gear teeth 78 and causes the gear 76 to rotate. The gear teeth 78 in turn engage the rack teeth 80 thereby causing the rack 82 and associated leg 61 to move in a vertical direction. The direction in which the crank arm 70 is rotated, i.e., clockwise or counterclockwise, determines the direction of movement of the leg 61, i.e., up or down. When the leg 61 is placed in the desired position, the leg 61 remains locked in the desired position since the rack and pinion mechanism 68 is self locking. The rack and pinion mechanism 68 can also be configured to be independently operable for each leg 61 (or four such rack and pinion mechanisms can be provided, one for each leg 61) thus advantageously allowing the work table 10 to be leveled when placed on uneven ground.

While in the present embodiment it is preferred that each leg 61 be moved by a rack and pinion mechanism 68, it is understood by those skilled in the art that other devices could be used to move each leg 61 between the first and second positions, without departing from the spirit and scope of the invention. For instance, the legs 61 could manually be lifted and locked in place with lock pins (not shown), a crank and chain drive mechanism could be used in combination with the lock pins (not shown), or a hydraulic lift system could be used (not shown). Alternatively, the apparatus for independently moving the legs can be automated via electromechanical means, such as electromechanical drive systems. Such electromechanical drive systems are well known in the art and a detailed description of the structure, function, and operation of such electromechanical drive systems to automatically retract and extend the legs 61 is not necessary for a complete understanding of the present invention.

In the present embodiment, wheels 84 are located on the lower portion of each leg 61. When the legs 61 are in the first position, the wheels 84 can protrude from the bottom wall 20 of the frame 16. The wheels 84 promote the portability of the work table 10 when the legs 61 are in the first position. Alternatively, the wheels 84 can be removed from the legs 61 or stored from the frame 16 when attached to the legs 61.

To remove the work table 10 from the storage compartment 12, of for example a pickup truck, the tailgate is folded down and the worker grasps the handles 46a, 46b and pulls the work table 10 outwardly until a portion of the work table 10 has been removed from the storage compartment 12 of the vehicle 14. That is, when the second pair of legs 62 clear the leading edge of the tailgate, the legs 61 are repositioned by the rack and pinion mechanism 68 from the second position in which the legs 61 extend from the top surface 28 of the frame 16 to the first position so that the second set of legs 62 extend from the bottom surface 20 of the frame 16. The work table 10 at this point is partially supported by the storage compartment 12 and partially supported by the second pair of legs 62, as shown in FIG. 2.

Referring to FIG. 3, the work table 10 is then further removed from the storage compartment 12 of the vehicle 14 until only a small portion of the bottom wall 20 of the work table 10 is supported by the tailgate of the vehicle. The first set of legs 60 is then slideably repositioned by the rack and pinion mechanism 68 from the second position to the first position such that the first set of legs 60 extend from the bottom surface 20 of the frame 16. The work table 10 is then completely removed from the storage compartment 12 and moved to the work area. As mentioned above, each leg 61 can include a wheel 84 for allowing easy movement of the work table 10.
In addition to storing objects 38 within the work table 10, the work table 10 can also be configured with a power source (such as a generator) and extension cords, a vacuum or compressed air source and associated hoses and connections, and the like. Such configurations are well known in the art and a detailed description of them is not necessary for a complete understanding of the present invention. However, exemplary assemblies of such configurations is described in U.S. Pat. No. 5,238,934, the disclosure of which is hereby incorporated by reference in its entirety.

From the foregoing description, it can be seen that the present invention comprises a portable work table adapted for being removably positioned within a storage compartment of a vehicle. It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concepts thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover all modifications which are within the scope and spirit of the invention as defined by the appended claims.

I claim:

1. A portable work table comprising:
 a frame that includes;
 - an upper wall having at least one opening,
 - a bottom wall, and
 - storage units connecting the upper and bottom walls;
 - a plurality of legs movably connected to the frame, the legs being moveable from a first position wherein the legs extend from the bottom wall and a second position wherein the legs are retracted from the first position such that the frame is positionable within a storage compartment of a vehicle;
 - an insert panel connectable to the upper wall;
 - at least one object connectable to the insert panel to allow the object to move with respect to the upper wall between a first position wherein the object is positioned within the interior of the storage unit below the upper wall and a second position wherein the object is positioned at least partially above the upper wall; and
 - a plurality of rollers connected to an outside surface of the bottom wall.
2. The portable work table of claim 1, wherein each of the plurality of rollers are spaced at least 14 inches apart.
3. A portable work table comprising:
 a frame that includes;
 - an upper wall having at least one opening,
 - a bottom wall, and
 - storage units connecting the upper and bottom walls;
 - a plurality of legs movably connected to the frame, the legs being moveable from a first position wherein the legs extend from the bottom wall and a second position wherein the legs are retracted from the first position such that the frame is positionable within a storage compartment of a vehicle;
 - an insert panel connectable to the upper wall by an insert rod, such that the insert panel swivels about the insert rod, the insert panel including a connector for connecting an object to a surface of the insert panel; and
 - at least one support lock connected to the upper wall for supporting and locking the insert panel to the upper wall.
4. The portable work table of claim 3, wherein the insert panel pivots from a first position wherein the insert panel is substantially parallel with the upper wall and a second position wherein the insert panel is substantially below the upper wall.
5. The portable work table of claim 3, wherein the support lock is connected to the upper wall and pivots about an axis substantially perpendicular to the upper wall.
6. The portable work table of claim 3, wherein the insert panel includes at least one opening.
7. The portable work table of claim 3, wherein the insert panel is connected to the insert rod by a snap-fit.
8. The portable work table of claim 3, wherein the insert panel includes a recess along a side wall in communication with an opening along a top surface of the insert panel.
9. The portable work table of claim 3, wherein the portable work table includes at least two support locks.
10. The portable work table of claim 3, further comprising an opening in the upper wall for allowing access to a generally hollow interior.
11. The portable work table of claim 3, further comprising a removable cover.
12. The portable work table of claim 3, further comprising lockable retractable handles.
13. A portable work table kit comprising:
 - the portable work table of claim 3; and
 - a work tray that includes four inset holes.

* * * * *