WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

F23G 5/027, G21F 9/32

(11) International Publication Number:

WO 94/07088

(43) International Publication Date:

31 March 1994 (31.03.94)

(21) International Application Number:

PCT/SE93/00653

A1

(22) International Filing Date:

4 August 1993 (04.08.93)

(30) Priority data:

9202690-5

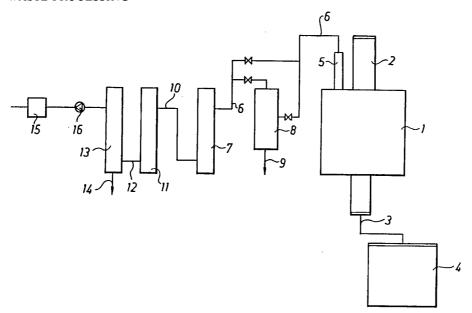
17 September 1992 (17.09.92) SE

(71) Applicant (for all designated States except US): STUDSVIK

RADWASTE AB [SE/SE]; S-611 82 Nyköping (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HESBÖL, Rolf [NO/ SE]; Sagostigen 4, S-611 45 Nyköping (SE). HOLST, Lars, Evert [SE/DE]; Gehrberg 101, D-4300 Essen 1


(74) Agent: AWAPATENT AB; P.O. Box 45086, S-104 30 Stockholm (SE).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: WASTE PROCESSING

(57) Abstract

A method for the processing of solid organic sulphur-containing waste, in particular ion exchange media, from nuclear facilities, which method comprises that in a first step a) the waste is subjected to pyrolysis at the most at 700 °C, in a step b) the gas resulting from step a) is subjected to pyrolysis, in an optional step c) the gas resulting from step b) is exposed to a reductant bed, and in a step d) the gas from step b) or alternatively step c) is exposed to a bed of sulphide-forming metal to form metal sulphides and easily manageable harmless gases. Apparatus for carrying out the method comprises A) a pyrolysis reactor for the solid waste, B) a pyrolysis reactor for the gas from A), C) optionally, a reductant bed, and D) a bed of a sulphur-forming metal for the gas from B) or C).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	1E	Ireland	PL	Poland
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA.	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	ΚZ	Kazakhstan	SI	Slovenia
Ci	Côte d'Ivoire	Li	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	ĹV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
	•	MG	Madagascar	US	United States of America
DE	Germany	ML	Mali	UZ	Uzbekistan
DK	Denmark	MN	Mongolia	VN	Viet Nam
ES	Spain	14114	turn Parin		
FI	Finland				

1

WASTE PROCESSING

Technical Field

5

The present invention relates to the field of processing organic waste, "processing" in the present case referring to the breaking down of said waste via the thermal route with the primary aim of affording opportunities for 10 reducing its volume to thereby lessen handling and storage problems. More particularly, it concerns a new method and new apparatus for processing solid organic sulphurcontaining waste in which the thermal breakdown embraces pyrolysis of the waste. The new method of the invention 15 not only achieves the aim of volume reduction, but also provides, for example, such benefits as the elimination of the sulphur content from the exhaust gases, and similarly any radioactive content, in an effective and straight forward manner. The invention is therefore especially 20 useful for the processing of ionic exchange media from nuclear facilities, which media display a certain degree of radioactivity and therefore would otherwise require conventional measures in relation to ultimate waste disposal and deposition.

25

Background to the Invention

The nuclear industry annually produces a significant amount of waste which is classified as radioactively

30 contaminated ion exchange media. In Sweden, such waste is managed in various fashions in the individual nuclear facilities prior to ultimate disposal in bedrock chambers. This management is technically complex and as a rule leads to increased volumes which influences storage costs. A

35 process resulting in diminished volume at reasonable cost should therefore be commercially interesting.

2

Ion exchange medium is an organic material. The base is usually a styrene polymer with grafted sulphonic acid and amine groups. The material is therefore burnable, but air is supplied during combustion and sulphur and nitrogen oxides are formed which in turn must be separated in some manner. Additionally, during combustion the temperature becomes sufficiently high for radioactive caesium to be partially vapourised. The residual radioactivity will also accompany the resulting fly ash to some extent. This necessitates a very high performance filter system. Accordingly, both technical and economic problems are associated with the combustion technique.

An alternative to combustion is pyrolysis. However,

15 previously known pyrolysis methods in this technical field
are deficient in several aspects and in particular
no one has earlier succeeded in devising a pyrolysis
process which provides a comprehensive solution to the
problem of sulphur and nitrogen-containing radioactive

20 waste, and to do so under acceptable economic
stipulations. The following can be mentioned as examples
of the known technology in this respect:

SE-B 8405113-5 which describes single stage pyrolysis 25 in a fluidised bed followed by conversion of tars in the resulting gas to non-condensable gas using limestone as catalyst.

US 4,628,837, US 4,636,635 and US 4,654,172 which all describe pyrolysis of ion exchange resins where the pyrolysis is certainly carried out in two stages but where both of these stages are directed towards pyrolysis of the ion exchange media itself i.e. the solid product. Speaking generally, both stages moreover are carried out at relatively low temperatures. Furthermore, none of these specifications recites any comprehensive solution to the problem of solid organic sulphur-containing waste such as

3

is the case with the method of the present invention.

Description of the invention

5 The principal objective of the present invention is to provide a method for processing solid wastes of the abovementioned type, which method results in a "dead" (to use a biological term), compactable pyrolysis residue and thereby an effective reduction in the volume of the waste.

10

Another objective of the invention is to provide a method which, in addition to the abovementioned volume reduction, affords effective processing of the resulting exhaust gases.

15

A further objective of the invention is to provide a method which also affords an extremely high retention of the radioactivity present in the pyrolysis residue.

20 A still further objective of the invention is to provide a method which is straight forward in technical respects and which is therefore also cost effective taking everything into account as regards volume reduction of the solid waste and management of the resulting exhaust gases.

25

The abovementioned objectives are attained via a method which in general terms can be thought of as a two step pyrolysis, in which it is essential that the first pyrolysis step is carried out on the solid waste and at a relatively low temperature while the second pyrolysis step is carried out on the resulting gases and at a higher temperature, these two pyrolysis steps being followed by a step in which the gas is exposed to a sulphide-forming metal, optionally after an intermediate step in which the gas is first subjected to reducing conditions.

4

More particularly, the method of the invention is distinctive in that

- a) the waste is subjected to pyrolysis at a temperature of at the most 700°C, preferably 600°C at the most, to
 5 form a gas which contains organic sulphur compounds, and a solid pyrolysis residue which contains radioactive material from the waste,
- b) the gas is separated from the pyrolysis residue and subjected to a pyrolysis, which can alternatively be
 10 designated as cracking, for breaking down the organic sulphur compounds in the gas to carbonaceous compounds with a lower or low number of carbons and inorganic sulphur compounds,
- c) optionally exposing the gas from step b) to a bed of a 15 solid reductant under reducing conditions so that any sulphur oxides present are reduced to hydrogen sulphide, and
 - d) exposing the gas from step b), or alternatively step
- c) if this was carried out, to a bed of a sulphide-forming 20 metal under conditions in which the sulphur compounds from the preceding step form metal sulphides with said metal.

In other words, the initial step involves subjecting the solid waste to pyrolysis at a temperature of 700°C at the most, preferably 600°C at the most, the term "pyrolysis" being used in its conventional sense, i.e. chemical decomposition or breakdown of a substance by the action of heat and without any real supply of oxygen or at least so little oxygen supply that no real combustion is effected.

- 30 The pyrolysis thereby leads to breaking down of the carbonaceous waste to a relatively fluffy pyrolysis residue which can be drawn off from the bottom of the pyrolysis reactor employed and can thereafter be imparted a significantly smaller volume by compression.
- 35 Additionally, by keeping the temperatures no higher than those recited above, practically speaking all of the radioactive materials, in particular 137 Cs, are retained

5

in the pyrolysis residue and therefore measures and
consequent costs to remove additional radioactivity can be
minimized. Any fly ash formed can, however, be removed
from the resulting gas in a per se known manner,
preferably in a ceramic filter in the pyrolysis reactor.
In this way, the radioactive material in the fly ash
caught in the filter can be returned to the pyrolysis

In this way, the radioactive material in the fly ash caught in the filter can be returned to the pyrolysis residue.

10 In the practice of the invention, it has proven possible in this fashion to attain very high retention of the radioactivity in the pyrolysis residue. In this regard, trials carried out on ion exchange media from a nuclear power station show a retention of almost 10⁶: 1, i.e. the decontamination factor DF is of the order 10⁶. Aside from said radioactive material, the pyrolysis residue contains carbon and possibly iron compounds such as iron oxides and iron sulphides. Trials in this connection, show the retention of sulphur in the pyrolysis residue to be > 90%.

20

No immediately critical lower limit is apparent for the pyrolysis in step a) but rather this limit is dictated, if anything, by effectiveness and/or cost. However, for practical purposes, a lower limit can generally be set at 400°C and therefore a preferred embodiment of the method of the invention involves stage a) being carried out at a temperature in the range 400 - 700°C, preferably 400 - 600°C, especially 450 - 600°C, e.g 450 - 550°C.

30 Additionally, as the method of the invention as a whole has proven to be extremely effective both as regards the solids content and the evolved gases, step a) is preferably carried out without any catalyst for the breakdown of the carbon compounds in the waste which, of course, means that the method of the invention is very cost effective as the catalyst costs in comparable contexts often represent a large part of the total costs.

6

Pyrolysis step a) can be carried out in per se known fashion as regards the type of pyrolysis reactor, e.g. in a fluidized bed, but in the overall set-up of the method in the context of the invention, "flash pyrolysis" has 5 proven to give exceptionally good results. The expression flash pyrolysis is used herein in its conventional sense, i.e. with a relatively rapid flow-through of material. In other words, it is a matter of a short residence time, normally less than 30 seconds and even more usually a 10 significantly shorter time, e.g. less than 15 seconds. An especially preferred flash pyrolysis is carried out in a gravity or flash reactor for which a suitable residence time can be 3 - 15 seconds, even better 4 - 10 seconds, 5 - 8 seconds such as around 6 seconds. Suitable 15 residence times are, however, easily determined by the man skilled in the art in each individual case.

In the present case, it will be understood that "solid waste" does not concern a solution of the material in question. It need not however necessarily concern a dry material but also material with a certain degree of moisture content, e.g. up to 50%, usually 10 - 30% such as is often the case when using ion exchange media. However, for flash pyrolysis, for example, it can be convenient to condition the material prior to pyrolysis a), which means a certain degree of drying and optionally, comminution. In this regard, a material in powder form has proven to give very good results in the initial pyrolysis a).

The gas which is formed during pyrolysis in step a) contains decomposition products from the organic waste referred to as "tars". These tars principally contain pure hydrocarbons and water vapour, and organic sulphur compounds and amines when the waste is of the sulphur and nitrogen-containing ion exchange media type. The gas is separated from the pyrolysis residue and subjected to pyrolysis in a second step b) for which the temperature is

7

selected in such a manner that, while paying attention to the other conditions, the organic sulphur-containing compounds therein with a moderately high number of carbons are cracked to compounds with a low or lower number of 5 carbons and inorganic sulphur compounds. If the waste is nitrogen-containing, inorganic nitrogen compounds are formed as well. The temperature for step b) is selected, in other words, generally in accordance with the composition of the gas resulting from step a). Usually 10 this means that the temperature of step b) is higher than that of step a), at least if a cracking catalyst is not used. If the temperature of step a) is high, this can, for example, mean that the temperature of step b) is higher than 700°C. However, especially when a cracking catalyst 15 is used as is further described below, the temperature of step b) can lie somewhat below the temperature of step a), or at least lower than the upper limit for step a). This can mean a temperature in excess of 600°C or more preferably in excess of 650°C. The upper temperature limit 20 is not especially critical as regards the desired breakdown but rather it is processing technology (materials science) or economic factors which set this upper limit. For example, it can thus be difficult from a cost effectiveness viewpoint to utilize materials which 25 withstand a higher temperature than around 1500°C. A preferred temperature is therefore up to 1500°C. However, a more optimal upper temperature limit is 1300°C and therefore a convenient temperature range, especially without a catalyst, is above 700°C and up to 1300°C. A 30 particularly preferred temperature range for step b) is, however, above 700°C and up to 1000°C and best of all

Corresponding preferred temperatures when using a catalyst are 600 - 1300°C, especially 650 - 1300°C or better still 650 - 1000°C, e.g 650 - 850°C.

above 700°C and up to 850°C.

8

The pyrolysis conditions for step b) are, however, not nearly as critical as for step a), in that it is primarily a matter of a complete breakdown of the sulphur content and any nitrogen containing carbon compounds with a 5 moderate number of carbons to carbon compounds with a lower number of carbons, without any immediately interfering side-reactions or biproducts. Therefore, the pyrolysis in step b) can alternatively also be denoted as cracking in accordance with generally accepted 10 terminology. Cracking leads to a high production of soot. The higher the temperature, the more soot is formed. The soot production will probably require high temperature filtration of the cracking gases, for which conventional techniques are available. A simpler and more timesaving 15 methodology, however, is the previously described tar condensation prior to cracking. The condensation alternative additionally leads to good separation of the organic sulphur compounds.

20 By analogy with the above, step b) can therefore also be conveniently carried out, in certain cases as touched on above, in the presence of a cracking catalyst known in the past in similar contexts. Lime, e.g. dolomite lime, can be mentioned as such a catalyst in connection with step b).

25

When the gases from step a) contain tar products and water, a preferred embodiment of the method of the invention thus involves the gas, prior to step b), being subjected to condensation conditions such that tar products therein condense out and are separated before the gas is conducted to said step b). In this context, "tar products" will be understood to include carbonaceous compounds which are, of course, in gaseous form after pyrolysis in step a) but which drop out in the form of a more or less viscous tar mixed with water. The condensate can be separated by fractionated condensation into a low viscosity tar of high calorific value, water and a viscous

9

sulphur-rich tar. Greater refinement of the pyrolytic or cracking process in step b) is brought about through said tar separation and thereby more cost effective execution.

If sulphur oxides, especially SO₂, are present in the gases emanating from the pyrolysis step, they must be attended to in an appropriate manner bearing in mind the strict requirements which now apply to the release of sulphur oxides and other sulphur compounds.

10

This is attained in a simple and effective fashion in the method of the invention directly in the integregated process by virtue of the gas from stage b) being exposed in a stage c) to a bed of a solid reductant under reducing conditions so that the sulphur oxides are reduced, principally to hydrogen sulphide and carbon disulphide. Carbon, in particular, has proven to work extremely well as a reductant in relation to the method of the invention. Additionally, carbon results in the sort of end products, especially carbon dioxide, which are harmless and in principle can be released direct to the atmosphere.

The temperature for the step c) reduction is selected by the man skilled in the art in this field in such a fashion that the sought after reactions are attained. This preferably means that the reduction is carried out at a temperature in the range 700 - 900°C, the approximately 800°C temperature level probably lying near the optimum.

30 Step c) additionally leads to a reduction in nitrogen oxides in the event that these are present in the gas after the pyrolysis steps. In the event that a high temperature filter of the carbonaceous filter type or similar is utilized for filtering out the soot in the post step b) gas, this filter can be regarded as a reduction means for use in the optional step c) of the invention.

10

Finally, the gas in a step d) is exposed to a bed of a sulphide-forming metal under conditions in which the remaining sulphur compounds form metal sulphides with said . metal. In this context, it is the gas from reduction step 5 c), if present, or the gas from the second pyrolysis step b). In each case it is primarily a matter of transforming hydrogen sulphide to metal sulphide. Preferably, iron is used as sulphide-forming metal as iron is a cheap material and results in a harmless product, principally in the form 10 of the iron disulphide, pyrite. Other metals, however, are also conceivable of which nickel can be mentioned as an example. The temperature for this step d) is also selected by the man skilled in the art in this field so that the sought after reactions are attained. An especially 15 preferred temperature range, however, is 400 - 600°C, the approximately 500°C level being especially suitable in many cases.

Very volatile organic gases which do not condense out in
the condensation step and which form during cracking also
penetrate the reductants used in step c) and the sulphide
forming reactor used in step d). Effluent requirements for
these materials in Sweden are such that conversion or
separation is required. When the gases are oxidizable,
they can be destroyed by oxidation (combustion), e.g.
catalytic oxidation. Oxidation is suitable for the
pyrolysis of ion exchange media because the exhaust gases
are chlorine-free and therefore no dioxins are formed.

30 As has been touched upon earlier, both the solid endproduct and the gaseous end-products of the method of the
invention are amenable to handling. The resulting ash, for
example, is thus particularly suitable for post-treatment
in the form of simple compression, where the practice of
35 the invention has proven that the volume can be reduced by
as much as up to 75%. Furthermore, the resulting gases are
rich in light organic compounds which implies a gas with a

11

high heat content which can be burnt. Additionally, the sort of gases being referred to are non-injurious to the surroundings, e.g. carbon dioxide, gaseous nitrogen, gaseous hydrogen and water vapour, and therefore the method of the invention, as a whole, represents unparalleled advantages in relation to the known technique.

In order that the mehtod should proceed in an effective

10 fashion and especially in order that the release of
radioactive or unpleasant or dangerous gases through
system leakage should be avoided, with consequent risks to
working personnel, a further preferred embodiment involves
carrying out the method under a certain degree of vacuum

15 or negative pressure, conveniently by arranging a suction
pump or gas evacuation pump downstream of step d).

The invention additionally relates to apparatus for carrying out the method of the invention, which apparatus 20 comprises:

- A) a pyrolysis reactor for carrying out pyrolysis on the solid waste, preferably at a temperature in the range 400 700°C, especially 400 600°C,
- B) a pyrolysis or cracking reactor for carrying out
 25 pyrolysis on the gases emanating from reactor A),
 preferably at a temperature in the range above 700°C and
 up to 1300°C when a catalyst is not used and 600 1300°C
 when a catalyst is present,
- C) optionally, a bed of a solid reductant for the 30 reduction of any sulphur dioxide present in the gas, and
 - D) a bed of a sulphide-forming metal for the formation of metal sulphide with the gas from step B) or alternatively with the gas from step C).
- 35 Additionally, as regards the apparatus of the invention, all of the features and preferred embodiments of the method described above are also suitable in connection

12

therewith. These details therefore need not be repeated.

However, the following especially preferred embodiments of the apparatus can be mentioned.

5 Specifically, the pyrolysis reactor A) is a gravity reactor.

Preferably, a condenser for the condensation of tar products in the gas is located prior to reactor B).

A filter for the separation of any fly ash from the 10 gas is preferably located in reactor A).

The apparatus preferably includes a filter for the separation of soot from the gas from reactor B).

Preferably a compactor is included for compression of the pyrolysis residue resulting from reactor A).

15 Conveniently, an afterburner is present after bed D) for combustion of said gas.

Description of the drawing

20 An embodiment of apparatus in accordance with the invention is schematically depicted in the accompanying drawing.

The depicted apparatus comprises the following units and
25 works in the following fashion. Solid waste is fed to a
first pyrolysis reactor 1 of the gravity type via a feed
2. After pyrolysis of the solid waste in said reactor 1,
the solid pyrolysis residue (ash) is drawn off via a screw
3 to a container 4, which optionally contains a
30 compressing device for said residue.

The gas formed during pyrolysis in reactor 1 is afterwards conducted via a ceramic filter 5 and a conduit 6 to a second pyrolysis reactor 7, where it is subjected to pyrolysis under the earlier stated conditions. In the

pyrolysis under the earlier stated conditions. In the depicted embodiment of the apparatus of the invention, a condenser 8 is additionally present, which is connected up

13

as necessary if the gas contains tar products which need to be condensed out before pyrolysis reactor 7. In such a case, these tar products are drawn off from the condenser 8 via a withdrawal conduit 9.

5

The gas pyrolysed in reactor 7 is conducted via conduit 10 to a reductant bed of carbon 11 where sulphur oxides present are reduced to hydrogen sulphide and carbon disulphide.

10

The reduced gas from bed 11 is then transferred via conduit 12 to a bed 13 of sulphur-forming metal, e.g. iron. The metal sulphide formed can then be drawn off via conduit 14 from the bottom of said bed 13. If iron is used as a metal in the bed, this means that the withdrawn metal sulphide principally comprises pyrite.

The depicted embodiment of the apparatus of the invention additionally comprises a burner 15 for the final oxidation or combustion of the exhaust gases and a pump 16, which in this embodiment is placed between bed 13 and burner 15 and which is intended to provide negative pressure in the apparatus.

25

14 CLAIMS

- A method for the processing of solid organic sulphur
 -containing waste, in particular ion exchange media, from nuclear facilities comprising the pyrolysis of said waste with the primary aim of reducing its volume, characterized in that
- 10 a) the waste is subjected to pyrolysis at a temperature of at the most 700°C, preferably 600°C at the most, to form a gas which contains organic sulphur compounds, and a solid pyrolysis residue which contains radioactive material from the waste,
- b) the gas is separated from the pyrolysis residue and subjected to pyrolysis, alternatively cracking, for breaking down the organic sulphur compounds in the gas to carbonaceous compounds with a lower number of carbons and

20 inorganic sulphur compounds,

- c) optionally exposing the gas from step b) to a bed of a solid reductant, preferably carbon, under reducing conditions so that any sulphur oxides present are reduced to hydrogen sulphide, and
- d) exposing the gas from step b), or alternatively step
 c), to a bed of a sulphide-forming metal under conditions in which the sulphur compounds from the preceding step
 form metal sulphides with said metal.
- A method according to claim 1, characterized in that prior to step b), the gas is subjected to condensation conditions in which tar products therein condense out and are separated before the gas is conducted to said step b).

WO 94/07088

- 3. A method according to claim 1 or 2, characterized in that after step a) any fly ash is separated from the gas, preferably in a ceramic filter.
- 5 4. A method according to any one of the preceding claims, characterized in that the pyrolysis in step a) is carried out at a temperature in the range of 400 700°C, preferably 400 600°C, especially 450 550°C.
- 5. A method according to any one of the preceding claims, characterized in that the pyrolysis in step a) is carried out without a catalyst for the breaking down of carbon compounds in the waste.
- 6. A method according to any one of the preceding claims, characterized in that the pyrolysis in step a) is carried out in a gravity or flash reactor, preferably with a residence time less than 10 seconds, especially 5 - 8 seconds.

- 7. A method according to any one of the preceding claims, characterized in that the pyrolysis or cracking in step b) is carried out in the absence of a cracking catalyst and at a higher temperature than the pyrolysis in step a),
- preferably above 700°C, more preferably above 700°C and up to 1300°C, especially above 700°C and up to 1000°C, e.g. above 700°C and up to 850°C.
- 8. A method according to any one of claims 1 to 7,
 30 characterized in that the pyrolysis or cracking in step b)
 is carried out in the presence of a cracking catalyst and
 at a temperture above 600°C, especially in the range of
 600 1300°C, preferably 650 1300°C.
- 9. A method according to claim 8, characterized in that the pyrolysis or cracking in step b) is carried out in the presence of dolomite lime.

PCT/SE93/00653

- 10. A method according to any one of the preceding claims, characterized in that the reduction in step c) is carried out at a temperature in the range of 700 900°C, especially around 800°C.
- 11. A method according to any one of the preceding claims, characterized in that the sulphide formation in step d) is performed at a temperature in the range of 400 600°C, 10 especially around 500°C.
 - 12 A method according to any one of the preceding claims, characterized in that the volume of the residue resulting from step a) is reduced by compression.
 - 13 A method according to any one of the preceding claims, characterized by being carried out at a negative pressure.
- 14. A method according to any one of the preceding claims,20 characterized in that after step b), the gas is subjected to filtration, preferably in a carbon filter.
- 15. A method according to any one of the preceding claims, characerized in that after step d), the exhaust gases are subjected to oxidation.
- 16. Apparatus for the processing of solid organic sulphur-containing waste, in particular exchange media, from nuclear facilities comprising pyrolysis of the waste, 30 characterized in that it comprises:
 - A) a pyrolysis reactor (1) for carrying out pyrolysis on the solid waste, preferably at a temperature in the range of 400 700°C, especially 400 600°C,
- B) a pyrolysis or cracking reactor (7) for carrying out pyrolysis on the gas emanating from reactor A), preferably at a temperature in the range above 700°C and up to 1300°C without a catalyst and in the range of 600 -

17

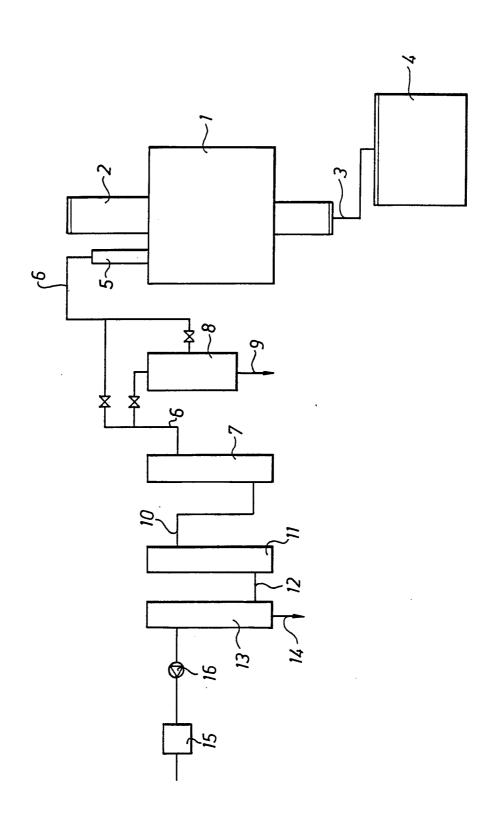
1300°C with a catalyst,

- C) optionally, a bed (11) of a solid reductant for the reduction of any sulphur dioxide present in the gas, and
- D) a bed (13) of a sulphide-forming metal for the formation of metal sulphide with the gas from step B) or alternatively step C).
- 17. Apparatus according to claim 16, characterized in that the pyrolysis reactor A) (1) is a gravity or flash 10 reactor.
 - 18. Apparatus according to claim 16 or 17, characterized by comprising, prior to reactor B), a condenser (8) for the condensation of tar products in the gas.

15
19. Apparatus according to any one of claims 16 - 18,
 characterized by comprising a filter (5) in reactor A)
 (1), preferably a ceramic filter, for the separation of
 any fly ash from the gas.

20. Apparatus according to any one of claims 16 - 19, characterized by comprising a filter, preferably a carbon filter, for the separation of soot from the gas from reactor B)

21. Apparatus according to any one of claims 16 - 20, characterized by comprising a compactor for the compression of pyrolysis residue resulting from reactor A).


22. Apparatus according to any one of claims 16 - 21, characterized by comprising an afterburner (15) after bed D.

35

30

20

1/1

INTERNATIONAL SEARCH REPORT

International application No. PCT/SE 93/00653

A. CLASSIFICATION OF SUBJECT MATTER IPC5: F23G 5/027, G21F 9/32 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC5: F23G, G21F, C10B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A US, A, 4654172 (MASAMI MATSUDA ET AL), 1-22 31 March 1987 (31.03.87), abstract A US, A, 4762647 (EUGENE E. SMELTZER ET AL), 1-22 9 August 1988 (09.08.88), claim 1 Α US, A, 4053432 (ERICH W. TIEPEL ET AL), 1-22 11 October 1977 (11.10.77), column 3, line 1 - line 49 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" erlier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 0 4 -01- 1994 <u>20 December 1993</u> Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Inger Löfgren Telephone No. +46 8 782 25 00 Facsimile No. +46 8 666 02 86

INTERNATIONAL SEARCH REPORT

Information on patent family members

27/11/93

International application No. PCT/SE 93/00653

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US-A-	4654172	31/03/87	EP-A,B-	0136401	10/04/85
JS-A-	4762647	09/08/88	EP-A-	0262823	06/04/88
JS-A-	4053432	11/10/77	BE-A-	851748	23/08/77
			FR-A,B-	2343317	30/09/77
			GB-A-	1536993	29/12/78
			JP-C-	973286	28/09/79
			JP-A-	52106100	06/09/77
			JP-B-	54005469	16/03/79
			SE-B,C-	414845	18/08/80
			SE-A-	7702275	03/09/77

Form PCT/ISA/210 (patent family annex) (July 1992)