(21) 国際出願番号: PCT/JP01/00167
(22) 国際出願日: 2001年1月12日 (12.01.2001)
(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語
(31) 出願人/米国を除く全ての国について: 株式会社ファンケル (PANCL CORPORATION) [JP/PJP]; 〒244-0842 神奈川県横浜市栄区戸塚町109番地1 Kanagawa (JP)

(72) 発明者: および
(75) 発明者/出願人/米国についてのみ: 久光一誠 (HISAMITSU, Isei) [JP/PJP]; 宇田正紀 (UDA, Masanori)

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: LOWLY IRRITANT HIGH-MOLECULAR ANTIMICROBIAL AGENT

(54) 発明の名称: 低刺激性高分子抗菌剤

(57) Abstract: A lowly irritant and lowly skin-penetrant antimicrobial polymer to be added to antimicrobial preparations, external preparations for the skin, detergent compositions, and so on, which polymer comprises an antimicrobial monomer and is substantially free from monomers or oligomers; a process for producing the polymer by anionic polymerization; and antimicrobial preparations, external preparations for the skin, and detergent compositions, containing the polymer.

(57) 要約:

抗菌剤、皮膚外用剤、洗浄組成物等に配合される、皮膚浸透性が低く、低刺激性の抗菌性系合体であって、抗菌性モノマーを重合成分とする、実質的にモノマー及びオリゴマーを含有しない重合体。

アノイオン重合法による前記重合体の製造方法。

該重合体を含有する抗菌剤、皮膚外用剤および洗浄組成物。
明細書
低刺激性高分子抗菌剤

【技術分野】
本発明は、抗菌性重合体、その製造方法、及び該抗菌性重合体を含有する抗菌剤、皮膚外用剤もしくは洗浄剤組成物に関する。

【背景技術】
近年、医薬品、化粧料等の外用剤の皮膚刺激に対する消費者の関心の高まりとともに、より刺激の低い原料の開発が望まれている。皮膚刺激の多くは原料が皮膚表面の角層を透過し、内部に浸透することによって生ずる。抗菌剤は外用剤、洗浄組成物を保存するために必要であるが、抗菌剤が皮膚の内部に浸透する必要はなく、さらに刺激性の観点からも皮膚の内部に浸透しないことが望ましい。その解決法の一つが抗菌剤等の分子サイズを増大させ、皮膚透過性を低減することである。

例えば、紫外線吸収剤に関しては、紫外線吸収基を有するモノマーを重合して高分子化したものが提案されている（特開平3－220213号公報、特開平6－73369号公報、特開平10－231467号公報、特開平10－231468号公報）。

抗菌剤に関しても、低毒性、低刺激性を目指す抗菌活性高分子あるいは高分子抗菌剤と呼ばれるものがあり、従来からポリカチオン型抗菌剤が検討されている（防菌防黴 Vol.23, No.2, p87, 1995）。しかし、カチオン型抗菌剤は、塩の存在によってその効果が消減してしまうことから使用できる製剤が限らされていた問題があった。

また、非イオン性の抗菌性重合体としてポリ p-ビジルフェノールが報告されているが（防菌防黴 vol.8, No.9, p1, 1980）、この研究で用いられている重合方法（熱重合、ラジカル重合）ではモノマーが大量に残り、皮膚刺激の低減は達成できな
い。

[発明の開示]
本発明は、抗菌剤、皮膚外用剤、あるいは洗浄組成物に好適に配合される、皮膚浸透性が低く、低刺激性の抗菌性重合体、及びその製造方法を提供することを課題とする。

本発明者らは上記の問題点を解決すべく鋭意研究を行った結果、抗菌性モノマーを重合成分とする重合体を、分子量分布を制御して合成し、残存モノマー、及びダイマー、トライマーなどのオリゴマーを実質的に含まない程度に排除することで、皮膚透過性が低く、かつ低刺激である原料が得られることを明らかにし、本発明を完成させるに至った。

すなわち本発明は、抗菌性モノマーを重合成分とする、実質的にモノマー及びオリゴマーを含有しない重合体である。

本発明において、抗菌性モノマーは、一般式（I）

\[
\begin{align*}
CH_2 = CH & \quad X \\
\text{环} & \quad (CH_2)_n \\
\text{OH} & \quad (1)
\end{align*}
\]

で表されるヒドロキシステレンまたはヒドロキシアルキルステレン類、あるいは、一般式（II）
\[
\begin{align*}
\text{C}&-\text{R} \\
\text{C}&=\text{O} \\
\text{N}&\text{H} \\
Y & \\
\end{align*}
\]

で表される（メタ）アクリロイルアミン類であることが好ましい。なお、本発明において（メタ）アクリロイルアミン類とは、アクリロイルアミン類及び／またはメタアクリロイルアミン類のことをいう。

また、本発明の上記重合体は、抗菌性モノマー以外の共重合成分を含む重合体であってもよく、共重合成分としてはビニルモノマーが好ましい。

本発明の上記重合体は、アニオン重合法によって製造されることが好ましい。
さらに、本発明は、上記重合体を含有する抗菌剤、皮膚外用剤および洗浄剤組成物にも関する。

本発明では、抗菌性ポリマーが、実質的にモノマー及びオリゴマーを含有しないことにより、低分子抗菌剤の皮膚透過による皮膚刺激を低減することができた。

本発明で実質的にモノマーあるいはオリゴマーを含有しないとは、ゲル浸透クロマトグラフィー（G P C）による分析結果から、モノマー及びオリゴマーの含有量が5重量%以下のことというが、モノマー及びオリゴマーは、G P Cにより検出されないことがより望ましい。

本発明の重合体を構成するモノマーは、抗菌活性を有する分子構造と、重合可能な分子構造を併せ持つ化合物である。抗菌活性を有する分子構造には、例えば、第4アンモニウム塩、ビグアニド、ホスホニウム塩、ビルジニウム塩、フェノール、安息香酸、2-ヒドロキシ-2,4,6-シクロヘプトトリエノン、ステピタト酸、多価アルコールなどからなる官能基が挙げられる。重合可能な分子構造にはエチレングリコール、プロペン、アミノ基およびカルボキシル基などからなる官能基を挙げること
ができる。

前記モノマーの代表例としては、例えば一般式（I）

\[
\begin{align*}
CH_2 &= CH \\
\text{C} & \quad \text{X} \\
\text{O} \quad (\text{CH}_2)_n \quad \text{OH} \\
\end{align*}
\]

（ここで n は 0 〜 2 の整数であり、X は水素原子またはハロゲン原子を示す）で
表わされるヒドロキシステレンまたはヒドロキシアルキルステレン類があげられ
る。この場合、エチレン基に対するヒドロキシアルキル基の結合位置は限定され
ないが、オレオに結合しているのが好ましい。一般式（I）で表されるモノマー
の中で特に好ましいモノマーは、p-ヒドロキシステレンである。

さらにまた、前記モノマーの例としては、例えば一般式（II）

\[
\begin{align*}
CH_2 &= C - R \\
\text{C} & \quad \text{X} \\
\text{C} & \quad \text{O} \\
\text{N} & \quad \text{H} \\
\text{Y} & \quad (\text{II})
\end{align*}
\]

（ここで Y はアルキル鎖と水酸基で構成される多価アルコール構造であり、R は
水素原子またはメチル基を示す）で表される（メタ）アクリロイルアミン類も挙
げることができる。一般式（II）で表されるモノマーとしては、N-(1,3-ジヒド
ロキシプチル)アクリルアミド \((Y=CH_2-CHOH-CH_2-CH_2OH)\)，N-(1,2-ジヒドロ
キシペンチル)アクリルアミド \((Y=(CH_2)_3CHOH-CH_2OH)\) などがあるが、特に、
N-アクリロイルトリス（ヒドロキシメチル）アミノメタン（Y=C(CH₂OH)₃）が好ましい。
実質的にモノマー及びオリゴマーを含有しない重合体は、例えば次のような方法により製造することができる。

製法１：アニオン重合法
アニオン重合開始剤には、例えば、アルキルリチウム、金属ナフタレン、Grignard 試薬、ジアルキルマグネシウム、金属アルコキシド、ビジン等が挙げられ、モノマーの共鳴安定化エネルギーなどの特性との関連で適切な開始剤を選ぶことができる。
開始剤の反応系への添加は、一度に全量を加えて行われる。反応温度は－150～0℃、特に－100～－40℃の範囲が望ましい。アニオン重合は、一般的にプレイシュート法と呼ばれる高真空下で行なうが、アルゴン雰囲気、窒素雰囲気下で行なうこともできる。
得られる高分子の平均分子量は、開始剤の使用量と反応時間によって制御することができる。
反応停止は、活性水素を持つ化合物、例えば、水、メタノールなどを添加することで行なう。
反応終了後、反応混合物から溶剤沈殿法、溶剤抽出法等によって、不純物、副反応物、溶媒などを分離し、目的とする重合体を得ることができる。

製法２：分画法
熱重合、ラジカル重合など任意の重合法で合成した重合体から、分子量によって分別できる装置、例えば GPC（ゲル浸透クロマトグラフィ）等を用いて、特定の分子量の重合体のみを分離する。
製法3：ペプチド合成装置を用いる方法

目的とする高分子原料が、ペプチドの場合は、近年発達の目覚しいペプチド合成装置を用い、たとえば以下のように製造することができる。

9-fluorenylmethyloxy carbonyl (Fmoc)アミノ酸のカルボキシル基末端が結合した樹脂をカラムに充填し、Fmoc保護基を取り除きアミノ基を遊離させ、これにFmocアミノ酸の活性エステルを反応させてペプチド結合を形成させる（カップリング）。

以上の脱保護とカップリングを繰り返すことで目的とするアミノ酸配列を持ったペプチドをカルボキシル基末端からアミノ基末端に向けて合成を行なう。

ペプチド鎖の延長が終了した後に、樹脂から切り出し、ついでFmocならびにアミノ酸側鎖の保護基を取り除くことで目的のペプチドが得られる。

ペプチド結合を形成するステップは99%以上の反応収率で進行するが、最終産物は不純物が混合した混合物となるので高速液体クロマトグラフィ（HPLC）で精製する。

本発明の重合体の分子量は特に限定されないが、皮膚刺激の低減効果が現れるためには数平均分子量1,000以上が好ましく、特に好ましくは2,500以上である。
皮膚刺激性低減の観点から、分子量が高いほうが好ましいが、抗菌活性は分子量の増大とともに低下するので、100,000以下、特に50,000以下が好ましい。例えば、本発明の重合体の分子量は好ましくは1,000～100,000、特に好ましくは2,500～50,000を選択することができる。

また、本発明の重合体の分子量分布は狭いほうが好ましい。分子量分布を重量平均分子量（Mw）と数平均分子量（Mn）との比Mw/Mnで表したとき、Mw/Mnは1.4以下、特に1.2以下、さらに特に1.15以下が好ましい。
また、本発明の重合体は、抗菌性モノマーに、必要に応じて1種またはそれ以上のモノマーを、共重合体成分として、本発明の効果を阻害しない範囲で含むことができる。共重合可能なモノマーは、例えば、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N-ビニルビロリドン、N-イソプロピルアミド、2-メタクリロイルオキシエチルホスホリルコリンなどがある。抗菌性モノマー以外の共重合成分は全体の90重量％以下、好ましくは70重量％以下である。

本発明の重合体は、皮膚刺激の低い成分として、外皮に適用される化粧料、洗浄剤、医薬品、医薬部外品等に広く適用可能であり、その剤型も水溶液系、可溶化系、乳化系、粉末系、油剤系、ゲル系、軟膏系、エアゾール系、水・油2層系、水・油・粉末3層系等、幅広い剤型をとりうる。すなわち、基礎化粧品であれば、洗顔料、化粧水、乳液、クリーム、ジェル、エッセンス（美容液）、パック・マスク、ひげそり用化粧料などの形態に、上記のような剤型において広く適用可能である。さらに医薬品又は医薬部外品であれば、各種の軟膏剤などの形態に広く適用が可能である。そして、これらの剤型及び形態に、本発明の重合体が取りうる剤型および形態が限定されるものではない。

本発明においては、上記の所望する剤型及び形態に応じて通常公知の基剤成分を、その配合により本発明の所期の効果が損なわれない範囲で広く用いて配合することができる。

すなわち、オリーブ油、アボカド油、コメヌカ油、ブドウ種子油、マカデミアナッツ油、トウモロコシ油、ナタネ油、ヒマシ油、ヒマワリ油、ヤシ油、スクワレン、牛脂、馬油、卵黄油等の天然動植物油脂類；ホホバ油、ミツロウ、キャンデリラロウ、カルナウバロウ、ラノリン等のロウ類；ポリブレン、スクワラン、
流動パラフィン、パラフィン、ワセリン等の炭化水素類；ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ヘキサード酸、オレイン酸、イソステアリン酸、リノール酸、リノレン酸、ヒドロキシステアリン酸等の脂肪酸類；セタノール、ステアリアルコール、ヘキサノールアルコール、オクチルデカノール、コレステロール、フィトステロール等の高級アルコール類；イソノナン酸イソノニール、オクタノ酸イソセチル、ミリスチン酸オクチルデシル、パルミチン酸イソプロピル、ステアリン酸イソセチル、トリ-2-エチルヘキサングリセリル等のエステル類；メチルポリシロキサン、メチルハイドロジェンポリシロキサン、デカメチルシクロペンタシロキサン、メチルフェニルポリシロキサン等のシリコン油；エチレングリコール、グリセリン、ジグリセリン、1,3-プロピレングリコール、1,2-ペンタンジオール等の多価アルコール；ソルビトール、マンニトール、ブドウ糖、マルクトール等の糖類；アラビアガム、カラギーナン、キサンタンガム、グァガム、カルボキシビニルポリマー、アルキル変性カルボキシビニルポリマー等の水溶性高分子；エタノール等の有機溶剤；二酸化チタン、マイカ、タルク、カオリソ、二酸化チタン被覆雲母等の粉体；ポリオキシエチレンオクチルデシルエーテル、ポリオキシエチレンポリオキシプロピレンラウリルエーテル、モノステアリン酸エチレングリコール、トリステアリン酸ポリオキシエチレンソルビタン、ポリオキシエチレン硬化ヒマシ油等の非イオン性界面活性剤；ステアリルトリメチルアンモニウムクロライド、塩化ベンザルコニウム、ラウリルアミノキサイド等のカチオン系界面活性剤；パルミチン酸ナトリウム、ラウリン酸ナトリウム、ラウリル硫酸カリウム、アルキル硫酸トリエタノールアミンエーテル、アシルメチルタウリン酸等のアニオン系界面活性剤；トコフェロール、没食子酸プロピル、アスコルビン酸、クエン酸等の酸化防止剤又は酸化防止助剤；メトキシル、ハッカ油、サリチル酸メチル等の清涼剤；色素；香料；又は精製水等を所望する剤型に応じた処方に従い、適宜組み合わせて使用することができる。本発明の具体的
な処方例については、後述する実施例において記載する。

【図面の簡単な説明】
図1は、合成例1で得たポリ(p-ヒドロキシステレン)のNMRスペクトルを示す。
図2は、合成例1で得たポリ(p-ヒドロキシステレン)のゲル浸透クロマトグラフィーを示す。
図3は、合成例1で得たポリ(p-ヒドロキシステレン)と市販のポリ(p-ヒドロキシステレン)との分子量・分子量分布の比較を示す。

【発明を実施するための最良の形態】
＜実施例＞
以下に実施例を挙げ、本発明をさらに詳細に説明するが、本発明はこれによりなんら限定されるものではない。

合成例1
p-ヒドロキシステレンの合成
p-アセトキシステレン0.1molに1.5mol/1水酸化カリウム水溶液200mlを加え、3時間加水分解を行った。反応後の溶液に二酸化炭素をブリッキングし、白色沈殿物を得た。白色沈殿物をn-ヘキサンによる再結晶法で精製して、p-ヒドロキシステレン0.067molを得た（収率67%）。

tert-プチルジメチルシリルオキシステレンの合成
上記で得たp-ヒドロキシステレン0.037molをトリエチルアミン0.08molへ溶解させ、これにtert-プチルジメチルクロロシン0.04molのテトラヒドロフラン溶液を、-45℃で加え、24時間反応させた。反応終了後、蒸留水を加えて激しく
振盪した後、静置して水相を捨て、その後、減圧蒸留によって tert-ブチルジメチルシリルオキシスピチレンを得た。

ポリ(tert-ブチルジメチルシリルオキシスピチレン)の合成

上記で得た tert-ブチルジメチルシリルオキシスピチレン 5mmol をアルゴン雰囲気下でテトラヒドロフラン 10ml に溶解し、トリエチルアミン 20mmol を加え、重合開始剤 n-ブチルリチウム 10mmol を添加して、－74℃、15 分間反応させ、メタノールを加えて反応を停止させた。反応混合物からポリ(tert-ブチルジメチルシリルオキシスピチレン)を回収した。

ポリ(p-ヒドロキシスピチレン)の合成

上記で得たポリ(tert-ブチルジメチルシリルオキシスピチレン)0.5g をアセトン 10ml に溶解し、臭水素水 1ml を加え、50℃下 3 時間還流し、得られた反応混合物を蒸留中に滴下して沈殿物としてポリ(p-ヒドロキシスピチレン)を得た。

合成例 2

ポリ(tert-ブチルジメチルシリルオキシスピチレン-トリメチルシリルオキシエチルメタクリレート)ブロックポリマーの合成

合成例 1 で得た tert-ブチルジメチルシリルオキシスピチレン 5mmol をアルゴン雰囲気下でテトラヒドロフラン 10ml に溶解し、トリエチルアミン 20mmol を加え、重合開始剤 n-ブチルリチウム 13mmol を添加して、－74℃、15 分間反応させた。次いでジェフェニルエチレン 13mmol をシリジンで加えてさらに 10 分間反応させた後、トリメチルシリルオキシエチルメタクリレート 5mmol をシリジンで加え 10 分間反応させ、メタノールを加えて反応を停止させた。

ポリ(p-ヒドロキシスピチレン-ヒドロキシエチルメタクリレート)ブロックポリマーの合成

上記で得たポリ(tert-ブチルジメチルシリルオキシスピチレン-トリメチルシリル
合成例3

N-アクリロイルトリス(トリメチルシリルオキシメチル)アミノメタンの合成

N-アクリロイルトリス(ヒドロキシメチル)アミノメタン 0.05mol をトリチュールアミン 0.1mol で溶解させ、これにトリメチルクロロシラン 0.055mol のテトラヒドロフラン溶液を、-45℃で加え、12時間反応させた。反応終了後、蒸留水を加えて激しく振盪した後、静置して水相を捨て、その後、減圧蒸留によって N-アクリロイルトリス(トリメチルシリルオキシメチル)アミノメタンを得た。

ポリ(N-アクリロイルトリス(トリメチルシリルオキシメチル)アミノメタン)の合成

上記で得た N-アクリロイルトリス(トリメチルシリルオキシメチル)アミノメタン 5mmol をアルゴン雰囲気でテトラヒドロフラン 10ml に溶解し、トリチュールアミン 20mmol を加え、重合開始剤 n-ブチルリチウム 10mmol を添加して、-74℃で20分間反応させ、メタノールを加えて反応を停止させた。反応混合物からポリ(N-アクリロイルトリス(トリメチルシリルオキシメチル)アミノメタン)を回収した。

ポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン)の合成

上記で得たポリ(N-アクリロイルトリス(トリメチルシリルオキシメチル)アミノメタン)を 0.4g アセトン 10ml に溶解し、塩酸 2ml を加え、50℃下で3時間還流し、得られた反応混合物をジェチルエーテル中に滴下して沈殿物としてポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン)を得た。
物性測定

上記合成例1で得たポリ(p-ヒドロキシスチレン)は淡黄色の粉末で、400MHz
1H-NMR (JXM-EX400 日本電子(株)製) によって構造確認を行なった（図1。 0ppm=標準物質、0.8～2.4ppm=CH2-CH、3.3 および 4.9ppm=溶媒、6.3～ 6.8ppm=芳香環）。分子量および分子量分布の測定は GPC（カラム
GPC806,804,802 直列 (株)島津製作所製）によって行なった（図2）。測定の結果から、数平均分子量2945、重量平均分子量3377、分子量分布1.15であり、分子量分布が狭く、残存モノマー及びダイマー、トライマーなどが存在しない重合体が合成できたことが確認された。分子量分布を市販のポリ(p-ヒドロキシスチレン)と対比して図3に示した。図3のCが合成例によるポリ(p-ヒドロキシスチレン)で、Aが市販品A（丸善石油化学（株）製 マルカリンカーMS-1）、Bが市販品B（丸善石油化学（株）製 マルカリンカーMS-2）である。本発明品ではモノマー、ダイマー、あるいはトライマーに同定されるピークは検出されないのでに対して、市販品では、モノマー、ダイマー、トライマーに同定されるピークが出現している。面積比からモノマー及びオリゴマーの含有量を算出すると、Aでは23.4%、Bでは6.0%であることがわかった。

合成例2で得たポリ(p-ヒドロキシスチレン-ヒドロキシエチルメタクリレート) ブロックポリマーおよび合成例3で得たポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン)に関しても、合成例1と同様に、400MHz 1H-NMR によって構造確認を、GPCによって分子量および分子量分布の測定を行ない、分子量分布が狭く、残存モノマーおよびダイマー、トライマーなどが存在しない重合体が合成できたことが確認された。

抗菌力測定

前記合成例1で得たポリ(p-ヒドロキシスチレン)，合成例2で得たポリ(p-ヒド
ロキシスチレン-ヒドロキシエチルメタクリレート)ブロックポリマー（以下、ポリ(p-ヒドロキシスチレン-block-ヒドロキシエチルメタクリレート)ということがある。）および合成例3で得たポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン)の黄色ブドウ球菌、緑膿菌、大腸菌、カンジダ、カビに対する抗菌活性をUSP XXIIに基づくチャレンジテスト法により評価した。また、比較例として抗菌剤を含まない溶液、抗菌剤として知られているメチルパラベン、モノマーであるp-ヒドロキシスチレン、N-アクリロイルトリス(ヒドロキシメチル)アミノメタンおよびポリ(p-ピニルフェノール)の市販品AおよびBの抗菌活性も測定した（表1）。判定はUSP XXIIに基づき、細菌は14日以内に接種菌数の0.1%以下に減少し、以後28日まで0.1%以下、真菌は14日以内に接種菌数と同じまではそれ以下、以後28日まで同じだった場合に合格（○）とした。

表1

抗菌力評価結果

<table>
<thead>
<tr>
<th></th>
<th>抗菌剤</th>
<th>黄色ブドウ球菌</th>
<th>緑膿菌</th>
<th>大腸菌</th>
<th>カンジダ</th>
<th>カビ</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較例1</td>
<td>なし</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>比較例2</td>
<td>メチルパラベン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例3</td>
<td>p-ヒドロキシスチレン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例4</td>
<td>N-アクリロイルトリス(ヒドロキシメチル)アミノメタン</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例5</td>
<td>ポリ(p-ヒドロキシスチレン) [市販品A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較例6</td>
<td>ポリ(p-ヒドロキシスチレン) [市販品B]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例1</td>
<td>ポリ(p-ヒドロキシスチレン) [合成例1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例2</td>
<td>ポリ(p-ヒドロキシスチレン-block-ヒドロキシエチルメタクリレート) [合成例2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例3</td>
<td>ポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン) [合成例3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

○：菌生存率が基準値以下
×：菌生存率が基準値以上
結果から、本発明の化合物が、従来の抗菌剤と同様に、細菌類、カジダ、カビと広い菌種に対して十分な抗菌力を示していることが分かった。

皮膚透過性の測定

三次元培養皮膚モデル（LSE-High、東洋紡(株)製）を横型2チャンバー拡散セルで挾み、ドナー側に抗菌剤のリン酸緩衝塩溶液、レシーバー側にリン酸緩衝塩溶液を入れた。系を37℃に保ち、所定時間後にドナー側、レシーバー側をサンプリングし、HPLCによりドナー側とレシーバー側の薬物量比を測定し、透過率を算出した（表2）。

表2

<table>
<thead>
<tr>
<th>三次元培養皮膚モデル透過率</th>
<th>抗菌剤</th>
<th>透過率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較例1</td>
<td>メチルパラペン</td>
<td>27%</td>
</tr>
<tr>
<td>比較例2</td>
<td>p-ヒドロキシステレル</td>
<td>35%</td>
</tr>
<tr>
<td>比較例3</td>
<td>N-アクリロイルトリス(ヒドロキシメチル)アミノメタン</td>
<td>32%</td>
</tr>
<tr>
<td>実施例1</td>
<td>ポリ(p-ヒドロキシステレン) (合成例1)</td>
<td>5%</td>
</tr>
<tr>
<td>実施例2</td>
<td>ポリ(p-ヒドロキシステレン-block-ヒドロキシエチルメタクリレート) (合成例2)</td>
<td>7%</td>
</tr>
<tr>
<td>実施例3</td>
<td>ポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン) (合成例3)</td>
<td>6%</td>
</tr>
</tbody>
</table>

結果から、本発明の化合物は、高分子化によって皮膚透過率が大きく低下したことが確認された。

刺激の測定

三次元培養皮膚モデル（LSE-high、東洋紡(株)製）を用いて、ヒト線維芽細胞に対する毒性試験を行なった。試験は無刺激が確認されている適切な溶媒へ溶解させた被検物質をLSE-highに所定時間適用した。その後、生細胞がMTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)を吸収分解し
た際の生成物が発する青紫色の強度から細胞生存率を求める MTT アッセイ法を用いて、細胞の 50%生存率を示す濃度（EC₅₀値）を算出した（表3）。

表3

人工皮膚を介したヒト繊維芽細胞に対する毒性試験

<table>
<thead>
<tr>
<th>比較例</th>
<th>抗菌剤</th>
<th>EC₅₀値</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較例1</td>
<td>メチルパラベン</td>
<td>0.17%</td>
</tr>
<tr>
<td>比較例2</td>
<td>p-ヒドロキシスチレン</td>
<td>0.3%</td>
</tr>
<tr>
<td>比較例3</td>
<td>N-アクリロイルトリス(ヒドロキシメチル)アミノメタン</td>
<td>5.0%</td>
</tr>
<tr>
<td>比較例4</td>
<td>ポリ(p-ヒドロキシスチレン)（市販品A）</td>
<td>0.45%</td>
</tr>
<tr>
<td>比較例5</td>
<td>ポリ(p-ヒドロキシスチレン)（市販品B）</td>
<td>1.08%</td>
</tr>
<tr>
<td>実施例1</td>
<td>ポリ(p-ヒドロキシスチレン)（合成例1）</td>
<td>42.3%</td>
</tr>
<tr>
<td>実施例2</td>
<td>ポリ(p-ヒドロキシスチレン-block-p-ヒドロキシエチルメタクリレート)（合成例2）</td>
<td>30.2%</td>
</tr>
<tr>
<td>実施例3</td>
<td>ポリ(N-アクリロイルトリス(ヒドロキシメチル)アミノメタン)（合成例3）</td>
<td>49.9%</td>
</tr>
</tbody>
</table>

結果から、本発明の化合物はメチルパラベンやモノマーである p-ヒドロキシスチレン、N-アクリロイルトリス(ヒドロキシメチル)アミノメタン、そしてモノマー、ダイマーあるいはトライマーが残存している市販品に比べ、皮膚内部への刺激が顕著に低減していることが確認された。

次に本発明の低刺激高分子抗菌剤を配合した皮膚外用剤、洗浄組成物の配合例を示す。いずれの皮膚外用剤、洗浄組成物も常温 3ヶ月放置後においても低刺激高分子抗菌剤の析出は認められず、安定した皮膚外用剤、洗浄組成物が製造できた。

配合例1「O/W型乳液」
（配合成分）（重量％）
マイクロクリスタリンワックス 1.0
ミツロウ 2.0
吸着精製ラノリン 2.0
流動イソパラフィン 30.0
ソルビタンセスキオレイン酸エステル 4.0
ポリオキシエチレングルリシモンオレイン酸エステル(20E.O.) 1.0
ステアリン酸アルミニウム 0.2
合成例1で得た低刺激高分子抗菌剤 0.4
グリセリン 8.0
精製水 残部
（製法）精製水にグリセリンを加え、混合加熱して70℃とする。他の成分を加熱溶解して70℃とする。この油相成分に、前述した水相成分を徐々にかき混ぜながら加えた後ホモジナイザーにより均一に乳化する。乳化後、熱交換器により30℃まで冷却する。

配合例2「洗顔クリーム」
（配合成分）（重量％）
N-アシル-L-グルタミン酸ナトリウム 25.0
パルミチン酸 3.0
ポリオキシエチレングリコールポリオキシプロピレングリコール 5.0
グリセリン 20.0
マルチトール 15.0
合成例1で得た低刺激高分子抗菌剤 0.4
精製水 残部
（製法）精製水にグリセリン、マルチトールを加え70℃に加熱する。これにN-アシル-L-グルタミン酸ナトリウムを添加し溶解する（水相）。一方、あらかじめ
加熱溶解したパルミチン酸、ポリオキシエチレンポリオキシプロピレングリコールを前述の水相に加え混合攪拌し、脱気後熱交換器により30℃まで攪拌冷却する。

パッチテスト

上記配合例1及び配合例2の組成物に関して、50名の被験者に対して24時間ヒトパッチテストを実施し、本邦基準により以上の反応を一次刺激による陽性と判定する安全性の評価を行なった（表4）。

表4

<table>
<thead>
<tr>
<th></th>
<th>判定（人数）</th>
<th>合否</th>
</tr>
</thead>
<tbody>
<tr>
<td>配合例1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>配合例2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

結果から、本発明の化合物を用いた皮膚外用剤および洗浄組成物には皮膚刺激がないことが確認された。

[産業上の利用の可能性]

本発明の重合体は、実質的にモノマー及びオリゴマーを含有しないことにより、各種菌種に対する抗菌活性を抗菌性低分子化合物あるいは抗菌性モノマーと同様に保ちながら、且つ、抗菌性低分子化合物あるいは抗菌性モノマーに比べて格段に皮膚透過が低く、皮膚に対する安全性に優れるという顕著な効果を奏することができるものである。したがって、本発明の重合体は、抗菌剤、とくに皮膚外用剤及び洗浄組成物の抗菌剤、防腐剤として極めて有用である。
請求の範囲

1. 抗菌性モノマーを重合成分とする、実質的にモノマー及びオリゴマーを含有しない重合体。

2. 抗菌性モノマーが、次の一般式（I）

\[
\text{CH}_2 = \text{CH} \\
\text{(CH}_2\text{n)} \\
\text{OH}
\]

（ここで n は 0 〜 2 の整数であり、X は水素原子またはハロゲン原子を示す）で表わされるヒドロキシステレンまたはヒドロキシアルキルステレン類である請求項1記載の重合体。

3. 抗菌性モノマーが、次の一般式（II）

\[
\text{CH}_2 = \text{C} - \text{R} \\
\text{C=O} \\
\text{NH} \\
\text{Y}
\]

（ここで Y はアルキル鎖と水酸基で構成される多価アルコール構造であり、R は水素原子またはメチル基を示す）で表される（メタ）アクリロイルアミン類である請求項1記載の重合体。

4. 抗菌性モノマー以外の共重合成分を重合成分として含む請求項1〜3のいずれかに記載の重合体。

5. 共重合成分としてビニルモノマーを含む請求項4に記載の重合体。
6. アニオン重合法によって製造されることを特徴とする請求項1～5のいずれかに記載の重合体の製造方法。

7. 請求項1～5のいずれかに記載された重合体を含有する抗菌剤。

8. 請求項1～5のいずれかに記載された重合体を含有する皮膚外用剤。

9. 請求項1～5のいずれかに記載された重合体を含有する洗浄剤組成物。
合成例1のポリ（p-ヒドロキシステレン）のNMRスペクトル
合成例1のポリ（p-ヒドロキシチレン）のGPC

差替え用紙（規則26）
合成例1と市販のポリ（p-ヒドロキシステレン）の分子量、分子量分布
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl7 C08F12/22, C08F20/58, C11D3/37, C11D3/48, A01N61/00, A01N31/04, A01N31/08, A01N37/18, A61K31/765, A61K31/78, A61P31/02, A61K7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl7 C08F12/22, C08F20/58, C11D3/37, C11D3/48, A01N61/00, A01N31/04, A01N31/08, A01N37/18, A61K31/765, A61K31/78, A61P31/02, A61K7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CA (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP, 3-277608, A (Nippon Soda Co., Ltd.), 09 December, 1991 (09.12.91), Claims; page 3, upper left column, line 16 to upper right column, line 9 (Family: none)</td>
<td>1,2, 4-6</td>
</tr>
<tr>
<td>X</td>
<td>JP, 62-179508, A (Mitsui Toatsu Chemicals Inc.), 06 August, 1987 (06.08.87), Claims; page 1, left column, lines 13 to 16; page 2, lower right column, line 14 to page 3, upper right column, line 6 (Family: none)</td>
<td>1,2,4,5</td>
</tr>
<tr>
<td></td>
<td>JP, 2000-229813, A (L'Oreal), 22 August, 2000 (22.08.00), Claims; Par. Nos. [0017], [0070] to [0074] & EP, 1025831, Al & FR, 2789305, Al</td>
<td>1,2,4,5,8,9</td>
</tr>
<tr>
<td>FX</td>
<td>Claims; Par. Nos. [0017], [0070] to [0074] & EP, 1025831, Al & FR, 2789305, Al</td>
<td>3,6,7</td>
</tr>
<tr>
<td>PA</td>
<td>US, 4729834, A (MITSUI TOATSU CHEM INC), 08 March, 1988 (08.03.88), Claims & JP, 60-233109, A, Claims</td>
<td>1-9</td>
</tr>
</tbody>
</table>

□ Further documents are listed in the continuation of Box C. □ See patent family annex.

* Special categories of cited documents:
“A” document defining the general state of the art which is not considered to be of particular relevance
“E” earlier document but published on or after the international filing date
“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
“O” document referring to an oral disclosure, use, exhibition or other means
“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
“&” document member of the same patent family

Date of the actual completion of the international search:
06 April, 2001 (06.04.01)

Date of mailing of the international search report:
17 April, 2001 (17.04.01)

Name and mailing address of the ISA/Japanese Patent Office
Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際出願番号 PCT／JP01／00167

A. 発明の属する分野の分類（国際特許分類（I．P．C．））

Int．Cl ’ C08F12/22, C08F32/58, C11D3/37, C11D3/48, A01N61/00, A01N31/04, A01N31/08, A01N37/18, A61K31/765, A61K31/78, A61P31/02, A61K7/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（I．P．C．））

Int．Cl ’ C08F12/22, C08F20/58, C11D3/37, C11D3/48, A01N61/00, A01N31/04, A01N31/08, A01N37/18, A61K31/765, A61K31/78, A61P31/02, A61K7/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

CA（STN）

C. 関連すると認められる文献

引用文献のカテゴリー＊ 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する 請求の範囲の番号

X J.P., 3-277608, A（日本鶴田株式会社）9.12月.1991（09.12.91），特許請求の範囲，第3頁左上欄第16行—右上欄第19行（ファミリーなし） 1, 2, 4-6

X J.P., 62-179508, A（三井合労化学株式会社）6.8月.1987（06.08.87）特許請求の範囲，第1頁左欄第13行—16行，第2頁右下欄第14行—第3頁右上欄第6行（ファミリーなし） 1, 2, 4, 5

C 著の続きにても文献が列挙されている。

＊ 引用文献のカテゴリー

「A」に関連のある文献ではなく、一般的技術水準を示すものの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日で、かつ優先権の主張の基礎となる出願の日後に公表された文献

「T」国際出願日又は特許日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文書

国際調査を完了した日 06.04.01

国際調査報告の発送日 17.04.01

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 4J 9739
原田 隆美 印
電話番号 03－3581－1101 内線 3495

様式PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>JP, 2000-229813, A（ロレアル）22.8月.2000（22.08.00）</td>
<td>1, 2, 4, 5, 8, 9</td>
</tr>
<tr>
<td>PA</td>
<td>特許請求の範囲，【0017】，【0070】-【0074】</td>
<td>3, 6, 7</td>
</tr>
<tr>
<td></td>
<td>US, 4729834, A (MITSUI TOATSU CHEM INC) 8.3月.1988（08.03.88）, 特許請求の範囲& JP, 60-233109, A, 特許請求の範囲</td>
<td>1-9</td>
</tr>
</tbody>
</table>