
USOO7636891B2

(12) United States Patent (10) Patent No.: US 7.636,891 B2
Yuan et al. (45) Date of Patent: Dec. 22, 2009

(54) METHOD FOR PAGINATING A DOCUMENT 2003/0236821 A1* 12/2003 Jiau TO9,203
STRUCTURE OF A DOCUMENT FOR 2004/O133854 A1 7, 2004 Black
VIEWING ON A MOBILE COMMUNICATION
DEVICE

(75) Inventors: Jianwei (Oliver) Yuan, Cumming, GA (Continued)
(US); Olav A. Sylthe, Atlanta, GA (US)

FOREIGN PATENT DOCUMENTS
(73) Assignee: Research In Motion Limited, Waterloo,

Ontario (CA) WO O2/44948 6, 2002

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 769 days. (Continued)

(21) Appl. No.: 10/931,290 OTHER PUBLICATIONS

(22) Filed: Aug. 31, 2004 “On-Demand Retrieval of Attached File in Mail System”, IBMTech
nical Disclosure Bulletin, IBM Corp., New York, USA. vol. 41, No.

(65) Prior Publication Data 1, Jan. 1998, p. 623, XP000772234, ISSN: 00 18-8689.

US 2006/0056334 A1 Mar. 16, 2006 (Continued)

(51) Int. Cl. Primary Examiner Dwayne Bost
G06F 3/00 (2006.01) Assistant Examiner Matthew W. Genack

(52) U.S. Cl. 715/744; 370/310: 370/338; (74) Attorney, Agent, or Firm Philip E. Levy; Brij K.
709/203; 709/227; 715/227; 715/234; 715/238; Agarwal; Eckert Seamans Cherin & Mellott, LLC

715/241; 715/776
(58) Field of Classification Search 370/310, (57) ABSTRACT

370/328; 709/203,227; 715/227, 234, 238,
715/241,500,525, 744,776

See application file for complete search history. A process for transmitting a document from a server to a
(56) References Cited mobile device on a per page basis, comprising building a

graph structure within the server representing a map of the
U.S. PATENT DOCUMENTS document, transmitting a page size limit from the mobile

6, 160,554. A 12/2000 Krause device to the server indicative of the size of a single page of
6.256,666 B1 7/2001 Singhal the document to be displayed by the mobile device, traversing
6,300.947 B1 10/2001 Kanevsky and paginating the graph structure into Successive pages
6,360,252 B1 3/2002 Rudy et al. based on the page size limit, caching the pages within the
6,438,585 B2 8/2002 Mousseau et al. server, and transmitting the Successive pages from the server
6,768.999 B2 7/2004 Prager et al. to said the mobile device for display by said the mobile
6,895,550 B2 5/2005 Kanchirayappa et al. device.

2002/01292.77 A1 9, 2002 Caccavale
2002/0161796 A1 10/2002 Sylthe et al.
2003/0023628 A1 1/2003 Girardot et al. 707/513 10 Claims, 6 Drawing Sheets

text
component

H

Ged
-

wo

S
Text color
immand

Crsome)

Name, Text
Walue: “First paragraph

Nati: Text
Walue: string 'Second paragraph with

Nac:Text
Walue: string "bold'

Nissa; Cult
Walue: integer walue to define the textcolor as red

Name:Text
Walue: string “red

Name: Color
Walue: irrigerwahue to define the textcolor as plain

Name:Text
Walue; string text"

US 7,636,891 B2
Page 2

U.S. PATENT DOCUMENTS

2004/O139397 A1
2005/OO39034 A1*
2005/0066037 A1*
2005/0200610 A1
2006.0056334 A1

7/2004 Sylthe et al.
2/2005 Doyle et al. T13, 193
3/2005 Song et al. 709,227
9, 2005 Skantze et al.
3, 2006 Yuan et al.

FOREIGN PATENT DOCUMENTS

WO 2004/042507 5, 2004

OTHER PUBLICATIONS

Borenstein, Net al., “RFC 1521: MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing

the Format of Internet Message Bodies'. Network Working Group
Request for Comments, XX. XX. Sep. 1993, pp. 1-44.
XPOO2260381.
iGilliot Research. White Paper: “Wireless Access to Email Attach
ments and Documents', 2001. 16 pages.
M.G. Schultz, E. Eskin, E. Zadok, M. Bhattachryya, S.J. Stolfo:
“MEF: Malicious Email Filter A UNIX Mail Filter that Detects
Malicious Windows Executables', Jun. 30, 2001, Proceedings of the
Freenix Track: 2001 Usenix Annual Technical Conference, Boston,
Mass., USAXPO02300865.
R. Rivest, “The MD5 Message-Digest Algorithm.” Apr. 1992, IETF
RFC 1321.
Rodriguez et al."New Capabilities in IBM WebSphere Transcoding
Publisher Version 3.5 Extending Web Applications to the Pervasive
World”, IBM Redbooks, May 2001 (available at http://www.
redbooks.ibm.com/redbooks/pdfs/sg246233.pdf).
* cited by examiner

U.S. Patent Dec. 22, 2009 Sheet 1 of 6 US 7.636,891 B2

10-> aroo reorol

24

Fig. 1

U.S. Patent Dec. 22, 2009 Sheet 2 of 6 US 7.636,891 B2

Document root

Figure 3

US 7.636,891 B2 Sheet 5 of 6 Dec. 22, 2009 U.S. Patent

pubuuuuuo qdeuffeueq

pueuuuuuo

U.S. Patent Dec. 22, 2009 Sheet 6 of 6 US 7.636,891 B2

31 Document DOM cache: map with key of Document ID
PageIndex (integer) = 0
PageSize (integer) = 0
Hyperlink map and bookmark map
RequireSize (required response size from the client)

30

32

Calculate the document D based on the document contents

Yes
33 Check the DOM

existence in cache

34 No.

Build document DOM structure

Add the document DOM structure to cache

35

Retrieve the document DOMstructure from cache

Page mark set already
exists in the root

More elements in the
DOM structure

Yes

Get next element (node) and
calculate output size

Add the output size to PageSize

PageSize >=
RequireSize

PageIndex = PageIndex +1

1. Add PageIndex as an attribute to the node to mark the page start
2. Add the node as an attribute to the root node with the string representation of

PageIndex as the attribute name.

44

Send page to device

US 7,636,891 B2
1.

METHOD FOR PAGINATING A DOCUMENT
STRUCTURE OF A DOCUMENT FOR

VIEWING ON A MOBILE COMMUNICATION
DEVICE

FIELD OF THE INVENTION

The following is directed in general to displaying content
on mobile communication devices, and more particularly to a
method for viewing a selected portion of a document on a
mobile communication device without having to retrieve the
full document onto the device.

BACKGROUND OF THE INVENTION

Mobile communication devices are becoming increasingly
popular for business and personal use due to a relatively
recent increase in number of services and features that the
devices and mobile infrastructures support. Handheld mobile
communication devices, sometimes referred to as mobile sta
tions, are essentially portable computers having wireless
capability, and come in various forms. These include Personal
Digital Assistants (PDAs), cellular phones and Smartphones.
While their reduced size is an advantage to portability, band
width and processing constraints of Such devices present
challenges to the downloading and viewing of documents,
Such as word processing documents, tables and images.

Electronic documents are produced using various com
puter programs, such as word processors, spreadsheet pro
grams, financial software, and presentation Software. In addi
tion to text, such documents contain structural and property
information such as paragraph indentation, text color and
table size, etc.

The downloading of an entire document, including struc
tural and property information, to a mobile communication
device consumes a large amount of bandwidth, especially
when the document is very large. In addition, viewing even a
portion of Such a downloaded document on the device con
sumes substantial device CPU/memory/battery resources.

For example, if a user wishes to view only a paragraph in a
section in the middle of a 400-page document, the section that
contains some of the default properties for the paragraph, or
even the entire document, must be transmitted to the mobile
communication device. Yet, the user only views a small por
tion of the document on the mobile communication device.

SUMMARY OF THE INVENTION

According to an aspect of the invention, a method is pro
vided for viewing a selected portion of a document on a
mobile communication device without having to retrieve the
full document onto the device. In one embodiment, a server
pagination function is used for viewing selected portions of a
document on a mobile communication device by retrieving
the document page-by-page based on user requests at the
mobile device. This allows the user to view only a small part
of the document to determine if additional document content
is required, and the user's document viewing experience is
similar to that when using a desktop PC. More importantly,
bandwidth usage and device power consumption are mini
mized by eliminating unnecessary document content trans
mission to the device.

Additional aspects and advantages will be apparent to a
person of ordinary skill in the art, residing in the details of
construction and operation as more fully hereinafter
described and claimed, reference being had to the accompa
nying drawings.

10

15

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description of the preferred embodiment is set
forth in detail below, with reference to the following draw
ings, in which:

FIG. 1 is a block diagram of a network environment in
which the preferred embodiment may be practiced;

FIG. 2 is a tree diagram showing the basic structure of a
Document Object Model (DOM) used in the preferred
embodiment;

FIG.3 shows the top-level of the DOM structure in FIG. 2:
FIG. 4 shows an exemplary DOM structure for a word

processing document;
FIG. 5 shows an exemplary DOM structure for a table

document;
FIG. 6 shows an exemplary DOM structure for a word

processing document containing an image Subdocument; and
FIG. 7 is a flowchart showing document DOM structure

construction and pagination according to the preferred
embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference to FIG.1, network environment 10 is shown
in which the preferred embodiment may be practiced. Net
work environment 10 includes mobile devices 12 communi
cating via a wireless network 14 to a server 28 for download
ing document attachments to the mobile devices 12. While
only one server 28 is shown for illustration purposes, a person
of skill in theart will understand that network environment 10
could have many such servers for hosting web sites or graphic
download sites, providing access to picture files Such as
JPEG, TIFF, BMP, PNG, SGI, MP4, MOV, GIF, SVG, etc. As
would be understood by one of ordinary skill in the art,
wireless networks 14 include GSM/GPRS, CDPD, TDMA,
iDEN Mobitex, DataTAC networks, or future networks such
as EDGE or UMTS, and broadband networks like Bluetooth
and variants of 802.11.
A connection to a fixed service requires special consider

ations, and may require special permission as authorized
through a Network Access Point (NAP) 16. For generic ser
vices, such as web access, a proxy-gateway or Network
Address Translator (NAT) 18 may be provided so that a net
work operator can control and bill for the access. NATs 18
enable management of a limited Supply of public Internet
addresses for large populations of wireless mobile devices.
Solutions offered by a proxy-gateway or NAT 18 often
involve a complex infrastructure, and thus may be managed
by value-added service providers (VASPs), which provide,
for instance, WAP gateways, WAP proxy gateway solutions,
multi-media messaging servers (MMS) and Internet Multi
Media Services (IMS).

Private Intranet services 26 may require an associated Pri
vate Intranet Proxy Gateway 24 for accessing content on
server 28. Such private services include WML access to cor
porate mail systems, HTML access to CRM databases, or any
other services that deliver information as formatted data with
links and URLs embedded. As shown, it is possible that a
private service 26 may be connected directly to the wireless
network 14, as opposed to being connected via Internet 20.

Referred to throughout this document, for the purpose of
describing the preferred embodiment, is the structure of a
Document Object Model (DOM) for a document attachment
to be viewed on a mobile device 12.
The attachment server 28 uses a file-parsing distiller in the

preferred embodiment, for a specific document type, to build

US 7,636,891 B2
3

an in-memory Document Object Model (DOM) structure
representing an attachment of that document type. The docu
ment DOMstructure is stored in a memory cache of server 28,
and can be iterated bi-directionally.
As shown in FIG. 2, the graph-based document DOM

structure consists of nodes and leaves. The nodes serve as the
parents of leaves and nodes, while leaves are end points of a
branch in the graph. Each node and leaf can have a set of
attributes to specify its own characteristics. For example, a
paragraph node can contain attributes to specify its align
ment, style, entry of document TOC, etc. In addition, each of
the nodes and the leaves has a unique identifier, called a DOM
ID, to identify itself in the document DOM structure.
The document DOM structure is divided into three parts:

top-level, component and references. The top level refers to
the document root structure, while the main document is
constructed in the component and the references represent
document references to either internal or external sub-docu
ment parts. The following paragraphs examine each part in
detail.
The root node of a document DOM structure, referred to as

“Document, contains several children nodes, referred to as
“Contents, which represent different aspects of the docu
ment contents. Each “Contents' node contains one or mul
tiple “Container nodes used to store various document glo
bal attributes. The children of the “Container nodes are
components, which store the document structural and navi
gational information. When the attachment server 28 builds
the DOM structure for an attachment file for the first time, the
top-level structure is a single parent-child chain as shown in
FIG.3:

Three types of components are defined by the attachment
server 28: text components, table components and image
components, which represent text, tables and images in a
document, respectively. The text and table components are
described in detail below, and the image component structure
is identical.
A component consists of a hierarchy of command nodes.

Each command represents a physical entity, a property, or a
reference defined in a document. For the text component, the
physical entity commands are page, section, paragraph, text
segments, comments, footnote and endnote commands,
which by name define the corresponding entity contained in a
document. The property commands for the text component
are font, textcolor, text background color, hyperlink start/end
and bookmark commands. The text component has only one
reference command, referred to as the text reference com
mand, which is used to reference a Subdocument defined in
the main body of a document. Usually, the children of a text
component are page or section command nodes that, in turn,
comprise a set of paragraph command nodes. The paragraph
command can contain one or multiple nodes for the remain
ing command types.

Using the following sample text document, the corre
sponding document DOM structure is shown in FIG. 4:

First paragraph.
Second paragraph with bold and red text.
AS FIG. 4 demonstrates, the section command, which is the

child of the text component, consists of two paragraph com
mands. The first paragraph command contains one text seg
ment command and the text content for that paragraph is
added as an attribute to the text segment command. The
second paragraph command has a relatively more complex
structure, as the text properties in the paragraph are much
richer. Each time a text property (font, text color, etc)
changes, a corresponding text property command is created
and the change value is added to that command as an attribute.

10

15

25

30

35

40

45

50

55

60

65

4
The Subsequent text segment command records the text with
the same text property as an attribute. As document structure
gets richer and more complex, more commands of corre
sponding types are created and the document properties are
added as attributes to those commands.
The table component has the same three types of com

mands as the text component, but different command names.
The document DOM structure for the sample table document
below is shown in FIG. 5:

Cell One
Cell Three

Cell. Two
Cell Four

As shown in the FIG. 5, the table component has physical
entity type commands of table, tablerow and tablecell, where
the tablecell command can contain all available commands
for the text component. In the example above, the first child
TableRow command of the table command has an attribute
“Index' defined by value of 0. This indicates that the indi
cated table row is the first one defined in the table. The
attribute of the leftmost table cell command in FIG.5 has the
same meaning.
A document sometimes contains subdocuments, for

example images, tables, text boxes etc. The DOM structure
set forth herein uses a reference command to point to the
graph of Such Subdocuments. Thus, for the following sample
document, the attachment server 28 generates the DOM
structure shown in FIG. 6:

This document has subdocument of images like this one

Second paragraph contains the same image

The structure shown in FIG. 6 is identical to that discussed
above in connection with FIGS. 4 and 5, except for the
attributes of the two reference commands. The attachment
server 28 constructs the image in “Sample Three' as a sepa
rate image component, which contains all of the image data in
its own DOM hierarchy. In the DOM structure for the main
document, the values of the "Ref" attributes of those two
reference commands point to the image component, as indi
cated by the dashed lines, such that the DOM structure con
nects together all parts of the document.

Having described the document DOM structure used to
implement an embodiment of the invention, a detailed dis
cussion will now be provided of a pagination function or
method according to the preferred embodiment.
The pagination function is a client and server side opera

tion. FIG. 7 shows the processing steps, from which it will be
noted that the server 28 uses a map in memory for document
DOM cache storage and the key to the map is the document
ID. Initially, when the user of a mobile communication device
12 sends a request to the server 28 to view a document, the
device 12 sends two attributes and number of bytes it requires
(RequireSize) as a response from the server (e.g. 3K bytes).
The two attributes are whether the device is a color or mono
chrome device, and the screen size (width:xheightxcolor
depth) of the device in pixels. Other information about the

US 7,636,891 B2
5

device 12 can also be transmitted to the server 28 (e.g.
memory size). After the server 28 receives a document-view
ing request, it starts the pagination process (step 30), and
initializes the variables PageIndex and PageSize.
The following terms and variables are initialized, as shown

at step 31 in FIG.7:
The PageIndex variable is defined in the server 28 and used

by the server to record the current page index being paginated
by the server. The page index is initially set to 0 indicating
“Page 1.

PageSize is a variable defined in the server 28 and used by
the server to record the current size for the page being pagi
nated and is reset to 0 when paginating a new page.

Hyperlink map is a variable defined in the server 28, which
is a container consisting of the element type of hyperlink node
in the document DOM structure. The key (ID) for each ele
ment in the container is the hyperlink target string.
Bookmark map is a variable defined in the server 28 which

is a container consisting of the element type of current page
index (PageIndex value) for the bookmark in the document
DOM structure. The key (ID) for each element in the con
tainer is the bookmark String.

The server process constructs a document ID (step 32)
based on the document contents and uses the ID to check the
document DOM cache (step 33) to determine whether the
document DOM structure for that document has been con
structed. If the document DOM structure does not exist in the
cache, the server builds the DOM structure (step 34) for the
document and adds it to the cache (step 35). Otherwise, if the
document DOM structure exists in the cache, it is retrieved
(step 37).
To construct the document ID, the original document file is

opened in read and binary mode. The server 28 creates a MD5
Context structure, hashes the MD5 context structure with raw
binary data byte-by-byte from the file, and finalizes the MD5
context structure and retrieves the 16 byte key for the file. The
MD5 context structure has the following structure in syntax
of C++ language

typedefstruct

unsigned long adwState4); /* state (ABCD) */
unsigned long adwCount2: * number of bits, modulo 264
(1sb first)*/
unsigned charabyBuffero4); /* input buffer */

} tMD5 CTX

Caching the document DOM structure requires consider
able memory, and therefore increases the overall hardware
deployment cost. On the other hand, building the DOM struc
ture for a document is even more time and CPU intensive in
contrast to the document key construction operation, espe
cially for big documents. Since that processing time is more
critical than hardware deployment cost for wireless opera
tion, caching the document DOM is the approach adopted for
the preferred embodiment, rather than building the DOM
structure for the document each time the server receives a
viewing request and then discarding the structure after send
ing the response back to the client device 12.
Once the document DOM structure has been built and

stored in the cache, the server 28 determines whether a page
mark has already been set in the root (step 36). If not, the
server traverses through the DOM structure (steps 38, 39, 40
and 41) and calculates the output size (PageSize) for each
node in the DOM structure based on the number of bytes
(RequireSize) provided by the device 12. The server incre

10

15

25

30

35

40

45

50

55

60

65

6
ments the PageIndex (step 42), adds it as an attribute to each
node in order to mark the start of each page, and adds each
node as an attribute to the root node with the string represen
tation of PageIndex as the attribute name (step 43). Following
this pagination function, the attachment server 28 transmits
the document page-by-page to the requesting mobile device
12 based on client generated requests (step 44).
The page mark attribute name is associated with the device

information and required response size (RequireSize) pro
vided by the device 12, to enable the server to paginate
through the document DOM structure and generate the
response based on the device capability. For example if the
device is a monochrome type, the color information con
tained inside the DOM structure will be ignored during the
server pagination and response generation operations and
therefore optimize the wireless bandwidth utilization.

Since the key to the memory map is the document ID, the
algorithm used to calculate the document ID (step 32) must
guarantee the uniqueness of the key. According to the best
mode, as set forth above, the algorithm used inside the server
28 is the MD5 messaging encryption algorithm invented by
Professor Ronald L. Rivest of MIT Laboratory for Computer
Science and RSA Data Security, Inc. There are several other
hashing options that can be used. However MD5 is the most
efficient and reliable one based on the broad range of different
document content required to be processed by the server 28.
A person skilled in the art, having read this description of

the preferred embodiment, may conceive of variations and
alternative embodiments. For example, generating multiple
sets of page marks for Successive pages requires considerable
time and CPU usage since the server 28 has to re-traverse the
DOM structure. Accordingly, one alternative is for the server
28 to create only one set of page marks in a document DOM
structure and generate the response based on the device infor
mation. However, this approach is likely to create more page
marks than necessary and will introduce extra transactions
between the wireless device 12 and the server 28 if the user
wants to view a large portion of a document. Based on the
understanding that minimizing the wireless bandwidth usage
is more critical than the processing time on the server, creat
ing multiple sets of the page marks and caching them is the
approach adopted in the preferred embodiment.

All Such variations and alternative embodiments are
believed to be within the ambit of the claims appended hereto.
What is claimed is:
1. A process for transmitting a document from a server to a

mobile device on a per page basis, comprising:
building a graph structure within said server representing a
map of said document; transmitting page size limit from
said mobile device to said server indicative of the size of
a single page of said document to be displayed by said
mobile device;

traversing and paginating said graph structure into Succes
sive pages within said server based on said page size
limit;

caching said pages within said server; and
transmitting said Successive pages from said server to said

mobile device for display by said mobile device,
wherein traversing and paginating said graph structure fur

ther comprises:
initializing a page size value;
retrieving and calculating output size of Successive

nodes of the graph structure;
adding the output size of said Successive nodes to said

page size value; and
in the event said page size value exceeds said page size

limit for a given node then marking said graph struc

US 7,636,891 B2
7

ture to identify said node as starting a new page for
transmission to said mobile device, and wherein
marking said graph structure further comprises:

maintaining a page index value that is incremented with
each new page; 5

adding said page index value as an attribute to each said
given node for marking each said new page; and

adding each said given node as an attribute to a root node of
said graph structure with a string representation of said
page index value as attribute name.

2. The process of claim 1, further comprising calculating a
document ID based on contents of said document before
building said graph structure, checking a memory cache of
said server using said document ID for said graph having been
previously built, and in the event said graph structure exists in 15
the memory cache then omitting the building of said graph
Structure.

3. The process of claim 2, wherein calculating said docu
ment ID further comprises performing a hashing function on
the contents of said document and in response generating said 20
document ID as a unique key to said map.

4. The process of claim 3, wherein said hashing function
comprises the MD5 messaging encryption algorithm.

5. The process of any one of claims 1 and 2 to 4, wherein
said graph structure is a Document Object Model (DOM).

6. A server process comprising:
building a graph structure representing a map of a docu

ment;
traversing and paginating said graph structure into Succes

sive pages based on a page size limit; and
caching said pages within said server,
whereintraversing and paginating said graph structure fur

ther comprises:
initializing a page size value;

10

25

30

8
retrieving and calculating output size of Successive

nodes of the graph structure;
adding the output size of said Successive nodes to said

page size value; and
in the event said page size value exceeds said page size

limit for a given node then marking said graph struc
ture to identify said node as starting a new page, and
wherein marking said graph structure further com
prises maintaining a page index value that is incre
mented with each new page; adding said page index
value as an attribute to each said given node for mark
ing each said new page; and adding each said given
node as an attribute to a root node of said graph
structure with a string representation of said page
index value as attribute name.

7. The server process of claim 6, further comprising calcu
lating a document ID based on contents of said document
before building said graph structure, checking a memory
cache of said server using said document ID for said graph
having been previously built, and in the event said graph
structure exists in the memory cache then omitting the build
ing of said graph structure.

8. The server process of claim 7, wherein calculating said
document ID further comprises performing a hashing func
tion on the contents of said document and in response gener
ating said document ID as a unique key to said map.

9. The server process of claim 8, wherein said hashing
function comprises the MD5 messaging encryption algo
rithm.

10. The server process of any one of claims 6 and 7 to 9,
wherein said graph structure is a Document Object Model
(DOM).

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,636,891 B2 Page 1 of 1
APPLICATION NO. : 10/931290
DATED : December 22, 2009
INVENTOR(S) : Yuan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 1284 days.

Signed and Sealed this

Twenty-first Day of December, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,636,891 B2 Page 1 of 1
APPLICATIONNO. : 10/931290
DATED : December 22, 2009
INVENTOR(S) : Jianwei Oliver Yuan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 3, lines 56 and 57,
“First paragraph.
Second paragraph with bold and red text.

First paragraph.
Second paragraph with bold and red text.

should read --

Column 4, line 21, “by value should read --by a value--.

Column 5, line 33, “a MD5 should read--an MD5-.

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office

