wo 2015/179705 A1 | N0 0000 OO 0 A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/17970S5 A1l

26 November 2015 (26.11.2015) WIPO | PCT
(51) International Patent Classification: (72) Inventor: ZUNIGA-HERNANDEZ, Maria, Eugenia;
GO6F 9/44 (2006.01) GO6F 15/16 (2006.01) 25242 Artic Ocean Drive, Lake Forest, CA 92630 (US).

(21) International Application Number: (74) Agent: KRIETZMAN, Mark, H.; Washington Square,
PCT/US2015/032065 1050 Connecticut Avenue, N.W., Suite 1100, Washington,

DC 20036 .

(22) International Filing Date: c (Us)
21 May 2015 (21.05.2015) (81) Designated States (uniess otherwise indicated, for every
.] . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
62/001,514 21 May 2014 (21.05.2014) UsS KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(71) Applicant: QUANTUM FUEL SYSTEMS TECHNO- MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

LOGIES WORLDWIDE, INC. [US/US]; 25242 Artic
Ocean Drive, Lake Forest, CA 92630 (US).

PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

[Continued on next page]

(54) Title: ENHANCED COMPLIANCE VERIFICATION SYSTEM

(57) Abstract: Methods and systems for developing and deploying software applica-

Start
1750

A

Present user interface
1752

A

Receive inputs to software
development project
1754

A

Access process and standard data
1756

A

Generate flows
1758

A

Provide status and data to users
1760

FIG. 17

tions in a computing environment hosted by multi-user computing services platforms.
Web-based user interfaces providing one or more options for accessing a software de-
velopment project hosted by multi-user computing services platforms for presentation
to users. Multi-user computing and network services platforms configured to receive,
via the user interface, inputs to software development projects, which may include
change requests or work items.

WO 2015/179705 A1 WK 00T VT 00

84)

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2015/179705 PCT/US2015/032065

ENHANCED COMPLIANCE VERIFICATION SYSTEM

BACKGROUND

[0001] Many software development projects must comply with multiple requirements.
For example, a software development project may need to comply with an industry standard such
as ISO 26262, a functional safety standard. Another example of a standard is ISO/IEC 15504,
also known as SPICE (Software Process Improvement and Capability Determination), which is a
set of standards for computer software development. Additional processes may also be

implemented, such as Agile Scrum.

DISCLOSURE

[0002] Disclosed herein are methods and systems for developing and deploying
software applications in a computing environment hosted by a multi-user computing services
platform. In some embodiments, a web-based user interface providing one or more options for
accessing a software development project hosted by the multi-user computing services platform
is presented to a developer user. The multi-user computing and network services platform
receives, via the user interface, inputs to the software development project. The inputs may
include a change request or a work item.

[0003] In response to receiving the inputs, data available within the multi-user
computing services platform is accessed and used to verify compliance of the change request or
the work item to applicable standards and development processes. A plurality of requests from
the various users and developers may be processed.

[0004] The present disclosure provides aspects of computer-implemented methods for
developing and deploying software applications comprising presenting, to a developer user of a
multi-user computing platform, a user interface providing one or more options for accessing a
software development project hosted by the multi-user computing services platform; receiving,
by the multi-user computing services platform via the user interface, inputs to the software
development project, wherein the inputs comprise at least one of a change request and a work
item; in response to receiving the inputs, accessing data associated with at least one industry
standard and at least one software development process; automatically generating, based on the
data, one or more user actions consistent with conformance to the at least one industry standard
and at least one software development process; and providing, by the multi-user computing

services platform, a user interface indicative of the one or more user actions.

S1-

WO 2015/179705 PCT/US2015/032065

[0005] The present disclosure provides aspects of systems configured to develop and
deploy software applications hosted by a multi-user computing services platform comprising at
least one memory having stored therein computer instructions that, upon execution by one or
more processors of the system, cause the system to (i) present, to a developer user of a multi-user
computing platform, a user interface providing one or more options for accessing a software
development project hosted by the multi-user computing services platform, (ii) receive, by the
multi-user computing services platform via the user interface, inputs to the software development
project, wherein the inputs comprise at least one of a change request and a work item, (iii) in
response to receiving the inputs, access data associated with at least one industry standard and at
least one software development process, (iv) automatically generate, based on the data, one or
more user actions consistent with conformance to the at least one industry standard and at least
one software development process, and (v) provide, by the multi-user computing services
platform, a user interface indicative of the one or more user actions. The present disclosure
provides aspects of such systems, wherein the at least one memory further comprises computer
instructions that, upon execution by one or more processors of the system, cause the system to
implement a developer editor configured to present a web-based user interface and a
development environment.

[0006] The foregoing summary is illustrative only and is not intended to be in any way
limiting. In addition to the illustrative aspects, embodiments, and features described above,
further aspects, embodiments, and features will become apparent by reference to the drawings

and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The accompanying drawings, which are included to provide a further
understanding of the disclosure, are incorporated in and constitute a part of this specification,
illustrate embodiments of the disclosure and together with the detailed description serve to
explain the principles of the disclosure. No attempt is made to show structural details of the
disclosure in more detail than may be necessary for a fundamental understanding of the
disclosure and the various ways in which it may be practiced. All reference numerals,
designators, and call-outs in the figures are hereby incorporated by this reference as fully set
forth herein. The failure to number an element in a figure is not intended to waive any rights, and
unnumbered references may also be identified by alpha characters in the figures.

[0008] FIG 1 illustrates a high-level system diagram in accordance with some aspects

of the disclosure;

WO 2015/179705 PCT/US2015/032065

[0009] FIG 2 illustrates a functional block diagram depicting an application
development environment in accordance with some aspects of the disclosure;

[0010] FIG 3 illustrates aspects of a software development process in accordance with
some aspects of the disclosure;

[0011] FIG 4 illustrates aspects of a scrum construction life cycle in accordance with
some aspects of the disclosure;

[0012] FIG 5 illustrates aspects of a software development workflow in accordance
with some aspects of the disclosure;

[0013] FIG 6 illustrates aspects of a user interface in accordance with some aspects of
the disclosure;

[0014] FIG 7 illustrates aspects of a change request workflow for a developer user in
accordance with some aspects of the disclosure;

[0015] FIG 8 illustrates aspects of a change request workflow for a supervisor or
approver in accordance with some aspects of the disclosure;

[0016] FIG 9 illustrates aspects of a user interface showing creation of a work item or a
sub-work item in accordance with some aspects of the disclosure;

[0017] FIG 10 illustrates aspects of a user interface showing manual creation of link
associations in accordance with some aspects of the disclosure;

[0018] FIG 11 illustrates aspects of a flow for a work item or a change request in
accordance with some aspects of the disclosure;

[0019] FIG 12 illustrates aspects of a user interface showing creation of a sub work
item in accordance with some aspects of the disclosure;

[0020] FIG 13 illustrates aspects of a requirements workflow in accordance with some
aspects of the disclosure;

[0021] FIG 14 illustrates aspects of a test case work flow in accordance with some
aspects of the disclosure;

[0022] FIG 15 illustrates aspects of a coding, calibration, defect and supporting task
work flow in accordance with some aspects of the disclosure;

[0023] FIG 16 illustrates a flowchart depicting aspects of a method for providing a
software development environment in accordance with some aspects of the disclosure;

[0024] FIG 17 illustrates aspects of an operational procedure for developing and
deploying software applications in accordance with some aspects of the disclosure; and

[0025] FIG 18 illustrates aspects of computing devices and networks in accordance

with some aspects of the disclosure.
_3-

WO 2015/179705 PCT/US2015/032065

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0026] Aspects of the exemplary implementations of the disclosure and the various
features and advantageous details thereof are explained more fully with reference to the non-
limiting embodiments and examples that are described and/or illustrated in the accompanying
drawings and detailed in the following description. It should be noted that the features illustrated
in the drawings are not necessarily drawn to scale, and features of one embodiment may be
employed with other embodiments as the skilled artisan would recognize, even if not explicitly
stated herein. Descriptions of well-known components and processing techniques may be
omitted so as to not unnecessarily obscure the embodiments of the disclosure. The examples
used herein are intended merely to facilitate an understanding of ways in which the disclosure
may be practiced and to further enable those of skill in the art to practice the embodiments of the
disclosure. Accordingly, the examples and embodiments herein should not be construed as
limiting the scope of the disclosure, which may further be defined by appended claims and
applicable law.

[0027] Software development is a complex and labor intensive activity that requires
rigorous processes to ensure compliance to requirements. As the scale of software development
increases and because software development teams need to coordinate activities related to
software projects, some parts of the software development process may be performed in a
network environment to enable the use of a network of computational resources to process and
coordinate the activities of multiple developers and teams. Software development solutions that
focus on a typical integrated development environment provide limited direct support for
coordinating software development activity. As a result, much of the software development work
is implemented in an ad hoc manner with each team recreating its own process, and tools, which
can lead to inefficiencies, security issues, and errors. For example, the process of bringing
together various components of a software application project developed on different computers
or on the same computer but at different times also can be error prone and require an inordinate
amount of effort by the developers. Correct builds require complex build environments to be
replicated as closely as possible on many different desktops.

[0028] Many software development projects are large and complex and can include a
large number of interconnected devices with a mix of various types of data flowing through both
virtual and physical components. Computing devices, such as servers and routers, may have
complex interactions, and behaviors in one area can affect the performance of the entire

computing environment.

WO 2015/179705 PCT/US2015/032065

[0029] Furthermore, many software development projects require compliance to one or
more sets of requirements such as a software development process. For example, one process is
the ISO/IEC 15504, also referred to as SPICE (Software Process Improvement and Capability
Determination), which is a set of technical standards for the software development process.
Another set of requirements is Agile Scrum which is an iterative and incremental agile software
development framework for managing software projects and product or application development.
Software development projects may also require compliance to one or more industry standards
such as ISO 26262 which is a functional safety standard. A software development project may
require compliance to any number of such standards and processes. Such standards and processes
can be complex and verification of compliance may be difficult and require significant effort.
This effort can grow significantly when multiple standards and processes are involved.

[0030] Thus, there is a need for an improved software development system where
verification of software development activities to one or more standards and processes can be
provided in an efficient and secure manner. While the examples provided herein are described in
the context of software development in an automotive context, the same concerns exist for any
development in an industry where a software product is developed.

[0031] To address these issues, the present disclosure describes a development
environment where the process of developing and deploying a software application may be
provided by an integrated development and deployment environment that is configured to
facilitate the verification of compliance to one or more standards and processes.

[0032] In at least some embodiments, software applications may be developed and
deployed in a computing environment hosted by a multi-user computing and network services
platform. Turning now to Figure 1, a high-level system diagram of a system 100 is illustrated
where one or more aspects of the disclosure may be implemented. System 100 may comprise one
or more user devices 110 for viewing, editing, or otherwise accessing content developed via
components of system 100, such as, for example, source code files and documentation. The user
devices 110 may include a computer. The user devices 110 may communicate via one or more
communication links with an application development environment 150 over a network 130. The
network 130 may include a computer. Each developer or user may create different types of
content if desired. The user devices 110 may be configured to reproduce the content in the form
of displayed images and text. As used herein, users of the system may be referred to as users,
developers, or developer users.

[0033] Figure 2 is a functional block diagram depicting application development

environment 150 in greater detail. In some aspects, one or more of the components depicted in
-5-

WO 2015/179705 PCT/US2015/032065

Figure 2 may be cloud-based. Application development environment 150 may include a user
interface component 202. User interface component 202 may be configured to present one or
more user interfaces enabling users, such as developers, to create content, view content, interact
with content, and/or other actions.

[0034] User interface component 202 may also include a developer component
configured to provide an editing interface control, which may facilitate the construction of
application data, logic, or any other editing related task. In some aspects, the developer
component of the user interface component 202 may provide a default editor that provides a core
set of action objects that can be extended, modified, and used together to define a project. For
example, the developer component of the user interface component may provide an interface for
developer devices 120 to create content. For example, a developer component of the user
interface component 202 may be configured to present options for uploading content to be edited
and to add one or more components to the content.

[0035] An analysis component 206 may also be provided for analyzing change requests
and work items for compliance to a standard or development process. A storage component 208
may also be provided for storing content both during the development process and after the
development is complete.

[0036] In one example of an application development environment 150, application
development environment 300 may include a server application cluster and set of development
modules that may provide a centralized project environment where applications can be
constructed/created/programmed/edited. Application development environment 300 may include
server applications which may include, for example, a cluster of application images running as
instances on a virtualized infrastructure. The instances may utilize default and developer specific
configuration data which may be stored on digital media available to the applications.

[0037] Environment 300 may include development tools that, in some embodiments,
may include a set of software libraries and tools that a software developer may use to construct
additional configuration data that defines an application as well as additional tools that might be
configured to allow editing of the application’s data.

[0038] In one embodiment, application development environment 300 may include an
editor, which may be, for example, an editing interface configured to facilitate the construction
of application data, logic, and other programming or editing related tasks.

[0039] In one embodiment, application development environment 300 may include
application input/output data and source code which may comprise developer unique data and

source code constructed from libraries provided by the development tools.
-6 -

WO 2015/179705 PCT/US2015/032065

[0040] In one embodiment, application development environment 300 may include a
web based tool for tracking and controlling software changes to ensure compliance to one or
more standards and processes. For example, software changes may be controlled via change
requests initiated by the web based tool. The web based tool may be referred to herein as
verification tool or verification function. Each change request may generally include a general
description of the requested change and links to work items. The work items type may include a
failure modes and effects analysis (FMEA), safety goal, requirement, test case, coding task,
calibration task, defect task, supporting task, and quality audit task.

[0041] The verification tool may be a web based platform with a database set up on a
server. The bundled applications in one embodiment may include a web interface or
configuration management tool, Apache server repository, and Sub Version as the revision
control tool. Suitable web interfaces or configuration management tools include Polarion®
WebClient for SVN, or other commercially available and open-source tools. Users of the
verification tool may access the tool with a user ID and a password to access the tool. A user
may be provided a user interface to open a project by selecting a project or opening a new
project.

[0042] In one example implementation, a wiki page may be provided with at least two
user visualizations. A “Home” user assignments page may display work items assigned to the
current logged user. A software development page may display the project links to the software
process development such as “Planning”, "Requirements”, “Implementation”, “Testing” and
“Releases.” A “Software Process and Guidelines” link may be provided in case a consultation is
needed.

[0043] Referring to Figure 3, in one embodiment the software development process
may be a combination of the Automotive SPICE V process, 1SO26262 frame work, and Agile
Scrum development. Working items such as change requests, FMEA, safety goals, requirements,
and test cases may belong to the Automotive SPICE V process and ISO 26262 frame work.
Working items such as coding tasks, calibration tasks, defect tasks, and supporting tasks may
belong to the Agile Scrum development. In various embodiments, linking between the working
items may be used to facilitate development in compliance to the software development
processes and standards. In one example embodiment described herein, Automotive SPICE and
ISO 26262 are used as standards and Agile Scrum is used as the organizational and
developmental methodology to prioritize what needs to be done in each of the software

development phases. It should be understood that the aforementioned standards and processes

-7-

WO 2015/179705 PCT/US2015/032065

are used to illustrate embodiments of this disclosure, and other standards and processes or
combinations thereof may be implemented.

[0044] Agile software development is a methodology that is followed to overcome
issues associated with traditional waterfall development. In Agile development, an iterative
approach is used where the software project is completed in iterative phases. Each iteration
delivers an incremental working version of the application. Users continually evaluate each
working version / iteration of the product, and provide feedback to the development team which
the developers incorporate into subsequent versions of the product. This approach provides the
opportunity to account for changing business realities and also minimize large scale
project/product-failure risk that can sometimes happen when using the waterfall approach to
product development. Agile still uses some of the keys steps associated with waterfall
development in each iteration, such as analyze, build, and test.

[0045] The Agile methodology is typically used in scenarios where the requirements or
details of outcomes are not clear at the outset, business needs are changing rapidly, and /or are
continually evolving, where testing the feasibility of an available technology to solve a problem
is important, where funds to develop the product may be made available incrementally based on
the proven feasibility of the product, where bringing a version of the product to market as soon
as possible is more critical than having all of the bells and whistles. Self-organizing teams are
typically used.

[0046] Scrum is a series of “sprints.” Each sprint can last typically from 2 to 4 weeks.
A sprint is a complete mini-software development cycle (analyze, build, and test phase). At the
end of each sprint, the customer may receive a working version of the product with
new/additional functionality as compared to the previous sprint. The customer / users may test
the product and provide feedback to the team.

[0047] Steps in a “sprint” (i.e., the single basic unit/cycle of development in Scrum)
may include:

STEP 1: Sprint Planning Session

e Product Owner informs the Team what is to be included in the Sprint, which may
be selected from a Product Backlog.

e The Product Backlog may include a list of high level requirements.

e The Team may determine what can be committed.

e Committed items become the Sprint Backlog and does change during the Sprint.

STEP 2: Sprint

WO 2015/179705 PCT/US2015/032065

e The sprint is the period during which the team works on building the features
identified in the Sprint Backlog for the sprint.

e Daily or weekly Scrum sessions may be held to review issues / problems /
roadblocks / progress / commitments.

e A Sprint Burn Down chart may be updated each day to indicate progress /
completion of items. The team may review the chart to determine where and how
effort should to be expended.

e The Sprint ends per the schedule regardless of whether all items/tasks are
completed.

STEP 3: Product Release (Or Incremental Release)

e A working version of the product is released with the features committed to as
part of the Sprint.

STEP 4: Sprint Review Meeting

s Completed work is reviewed and not completed versus committed items for the
Sprint.

s Work is presented to stakeholders as a demo.

STEP 5: Sprint Retrospective

e Team members may review the sprint.

e What worked well and what needs improvement are noted.

s A self-corrective session (lessons learned) is conducted to incorporate process
improvements in preparation for the next Sprint.

[0048] Working items may have their own life cycle and the transition between steps of
the life cycle may be performed by a user role in the verification tool. A change request is a
working item that may initiate an individual software development and may require an approval
with the role “approver” in the verification tool to initiate the life cycle Approved -->
Development --> Testing. Typically a software supervisor or a software lead may be assigned
this role, with authorization set up by a verification tool administrator.

[0049] A FMEA working item may be initiated, followed by requirements and related
test cases. The coding tasks, calibration tasks, and defect tasks may be created from the change
request or from a requirement. A traceability function provided by the verification tool may
facilitate tracking of working items and tasks. When a change request is approved, the applicable
FMEAs, requirements, test cases, coding tasks, calibration tasks, and defects can also be

approved and assigned according to agreements between the team members in the “backlog

-9._

WO 2015/179705 PCT/US2015/032065

meeting.” Figure 4 illustrates an example of a scrum construction life cycle. Figure 5 illustrates
an example of a software development workflow. During a backlog software team meeting, the
team may review the work items and define the priority, severity, time point, and the assignee for
resolution. The selection of the work items may follow Agile Scrum guidelines, where the
highest priority work items are selected from the backlog. The selected items become “iteration
work items” to be implemented at a time point (sprint). The subtasks of the change request may
be created by the assignee once the work item has been assigned to an individual with role
“developer.”

[0050] Referring to Figure 6, an initiator of the change request may create a new
working item in the project. The user can create a new work item link in the main wiki page or in
the user shortcuts in the left panel. A user with access to the verification tool and to the specific
project can be authorized to create a change request work item. A user interface may be provided
to display the work item to highlight the fields required in each status. The allowed next status
may depend on the individual role setup in the verification tool.

[0051] The initiator of a FMEA work item can create a change request by selecting a
new work item in the main wiki page or in the user shortcuts, thereby allowing for approvals and
transitions with all the work items associated with the FMEA work item. A user with access to
the verification tool and to the specific project can create a FMEA work item.

[0052] A user may also initiate a safety goal, requirement, or test case and create or link
to a change request to allow approvals and planning through a software development process
such as Agile Scrum. A safety goal, requirement, or test case work item may also be created.

[0053] A user may be designed with the role “approver” and is provided the ability to
verify change requests in status “implemented” and change the approval field with the decision
taken. Once the software implementation is complete, a user with role “build manager” may
proceed to check-in the final software source code to a secured repository. A user with role
“quality” may collect traceability data from the working items and, if applicable, from the
product software drawings. Once collected and reviewed, a baseline may be created.

[0054] A user with role “quality” may create a “quality” work item and perform an
analysis audit by collecting data pertaining to risks and process violations, a quality score chart,
and a work items trend analysis to generate an assessment of the SPICE Level.

[0055] When a software delivery is to be provided to a customer, the individual with
role “quality” may review the change requests, tasks, defects, and traceability data from the
baseline and release the software with a “Software Delivery Letter” along with executable files at

a specified time point to the customer.
- 10 -

WO 2015/179705 PCT/US2015/032065

[0056] FIG. 7 illustrates an example of a change request workflow for a developer user.
FIG. 8 illustrates an example of a change request workflow for a supervisor or approver.

[0057] The fields of a working item that is in backlog status can be modified by a user
with access to the project in the verification tool. The team members of the backlog meeting may
review all the change requests that are in “backlog” status. A user with role “approver” may
transition the work item to “approved” status and set the new assignee, time point, and priority.
The work item may be placed back into backlog status if the software development for the item
has been delayed to sprint iteration.

[0058] An assignee may change the status of an item from “approved” to “under
development” when the software development begins for that specific work item. The assignee
may create links associated with the change request to tasks such as requirements, coding,
calibration, and supporting tasks, or link a defect found in a previous software iteration.

[0059] In one embodiment, a change request may continue to be in “under
development” status until the approved sub working items for the current sprint iteration are
completed. When the sub-work items are completed, the current assignee of the change request
may transition the status to “Done” and change the assignee to the individual with “approver”
role in the verification tool.

[0060] An assignee with role “approver” may review the comments of the change
request and the sub-work items associated with the change request that are applicable to the
current sprint iteration. If satisfied with the implementation the assignee may set the field
“approvals” to “approved”. Otherwise the user may set the status to “unapproved,” send back
the change request status to “under development,” and set the assignee back to the developer.

[0061] A user with role “quality” may review the change requests with status “done”
with the approvals field set either to “approved” or “unapproved” to receive or collect
information that will be baselined or released to the customer. If the change request indicates
“unapproved,” then the reason may be provided in a comments field.

[0062] A user with role “quality” may collect all the sub-work items associated with the
current sprint, set a baseline in the verification tool, and generate related software delivery
documentation.

[0063] The change request can be rejected at any time when the status is in backlog,
approved, or under development and a decision is made, for example at the backlog meeting. If
the rejected work item should be reopened, the item may be placed directly in the backlog to

reschedule during either a different sprint iteration than the current iteration or for the current

S11 -

WO 2015/179705 PCT/US2015/032065

sprint iteration. The sub-work items may be placed back in the backlog until the change request
is approved.

[0064] A user with role “approver” may send a change request to status “quote” and set
the assignee to a user with access to the verification tool. When an item is in the status, software
development estimates may be analyzed and the change request may indicate the overall estimate
with sub-work items. Once the quote has been accepted either by an internal or external supplier
or customer then, the quote can be approved.

[0065] Figure 9 illustrates an example user interface showing creation of a work item or
a sub-work item. Figure 10 illustrates an example user interface showing manual creation of link
associations.

[0066] A user with access to the verification tool and to the specific project can create a
change request work item and fill the fields requested either in lite or full views. To make the
tool easy to use the lite view will request only the required fields according to a status or when it
is transitioned to another status.

[0067] The tables below provide examples for severity, priority, and resolution of work

items.

- 12-

WO 2015/179705 PCT/US2015/032065

flust Have Sysiam ¥ FALSE
Heeded i the system 3 TRIE
Coufd be inthe sysiem S FALUSE
Mo raquired & FALSE

)
.l
1
&
%
—
i
@
)
—
s 3
i
G
-
g)
1]
=
=3
1]
)
£
[77]
&
oy
]
=
i
n
Pl
i
2
i
£
=3

Highest
High 2nd priovity 2] 2 FALSE
hedian 3 TRUE
Lo g FALBE

LA
’1’|
il

Lonsest

Resolutions

Done ts rzzodved i FALSE

Teynpoeary Fartial brnpdemnentation 2 FALSE

War't Do 3 FALSE
Duplinated with another

Duplicate weark #ern B FALLE

[0068] The table below provide examples showing actions, roles, ficlds, and transitions.

- 13 -

WO 2015/179705

PCT/US2015/032065

irdt

approve

project_aporoey

tmePoing

Lih-rEwh

DICIRIT annrover assignee
Spprove and start
devaingment project_aporove Fssignee

FYLEY QU

Start Qunte

Dart-quats

asgignee
theRoint

[0069]

request related to the FMEA, a change request initiator may create a new change request working

The FMEA may be a child of the change request. If there is no current change

item. A backlog software team meeting may be conducted to review the work items and define

the priority, severity, time point and the assignee for resolution. The selection of the work items

may follow the Agile Scrum guidelines (or other guidelines) and select the highest priority work

items from the backlog. The selected work items may be indicated as “iteration work items” to

be implemented at a time point (sprint). The subtasks of the change request may be created by

the assignee once the work item has been assigned to an individual with role “developer.”

- 14 -

WO 2015/179705 PCT/US2015/032065

[0070] The workflow transitions may include role setup in the account of a user in the
verification tool. A FMEA work item may be created under the change request. The
FMEA work item may include fields to cover the regular columns or information of the FMEA
such as causes, occurrence, severity, rate levels, and controls, among others. This work item may
be used as an individual FMEA if desired.

[0071] Figure 11 illustrates an example flow for a work item or a change request.

[0072] In one embodiment, the FMEA working items may be set to status “draft” as a
default. The “draft” status may be used to gather all the possible failures regardless if the failures
are true failures. If not a true failure, then the working item can be rejected or deleted. The fields
of the working item in draft status can be modified by a user with access to the project in the
verification tool. The author of the FMEA working item may be designated as the assignee by
default. The designation can be changed if desired to another user or developer.

[0073] In one embodiment, the status can be set to “analysis” by a user with the role
“developer” or “approver” to initiate actions based on the causes of failure associated with the
risk. The actions may include analysis and collaboration. For example, collaboration can occur
via a meeting or electronic means such as email. The comments or the attachments fields in the
working item may be used to provide additional information to aid in the analysis.

[0074] A new assignee may be changed to a user who will perform the activities
defined in the “recommended actions” field and the status may be transitioned to “Pending
actions.” The assignee may create links associated with the work item such as safety goals or test
cases.

[0075] Figure 12 illustrates an example user interface showing creation of a sub work
item. Associated links may be added, and the status may be maintained until associated actions
are performed and requirements or safety goals have been completed.

[0076] When pending actions and associated sub-working items are completed, the
FMEA working item may be transitioned to the status “done” and the assignee field may be
changed to the individual with role “approver.” The approver may review the actions taken and
associated implementations with sub-work items, and modify the “approvals” field with the
decision taken. If the item is unapproved, then the assignee field may be changed to the
developer and the status may be set to “analysis.”

[0077] A user with role “quality” may review change request with status “done” with
the approval field set either to “approved” or “unapproved” to collect the information that will be
baselined or released to the customer. If the work item shows “unapproved” then the reason for

keep the work item in the current release may be addressed in the comments field.
- 15 -

WO 2015/179705 PCT/US2015/032065

[0078] A user with role “quality” may collect sub-work items associated with the
current sprint, set a baseline in the verification tool, and generate the related software delivery
documentation. A change request may be rejected when, for example, the status is in backlog,
approved, or under development, and a decision to reject is made (e.g., at the backlog meeting).
If the rejected work item needs to be reopened, the work item may be placed directly in the
backlog to reschedule in a different sprint iteration than the current iteration or the work item
may be approved for the current sprint iteration. Sub-work items may be placed back in the
backlog until the change request is approved.

[0079] FMEA work items may include the following custom fields.

FMEA work tem pstom felds

integee

fasatogs integear

integee

oR iisk Pricity Numbey inbeger
Causeiz} Fotertial Cause{s) or
Source of
faifinction

Durvend Controis Text ikl ines}
Characteristic Text {Rull Enest

Recommmended

C _as ¢ Tmnt o &8 i Yoo Y
Actions Taken Tent {hhel linesd

faw Geve

ity Bating

sppesityRatingNew after A integer
Mew Risk Priovity Ko Biish Friority
rprfdew iumber after Actions integer

[0080] Actions and transactions may include the following:

- 16 -

WO 2015/179705

PCT/US2015/032065

Foome: dealy 1w

SIS
swfetyperiiods
mafetp¥aiuee
EIUTAY
Borermine Satety beved sy
mlan-actass szferplepnritpivt
whaverihy Batinngie
safeiylontraifiatonsie
mefetpSit
recamvnendeddoiang
Frammr oot
. N A i . N
Brigns Taken nraRiutian o Peysivad
sehiommaaies tebmndetives
wREreyais
. Frrgeoen: sawahaag s
- ST 3R e i
aeiine ; PEEON T Tazeiined
Eazaiine e Badny
Srrurs dv Dra® N Fraa: grtiss-geeding
T Froject_zporever fone R
returr-aratt ra Sra®t
Fromn: awmpiysis b
roject_aporaver Hone

Froe: amalpsis o
rejeched
From: avtinr-pending

s sejechad

Fraseo: sfeal s

[0081] A safety goal work item may be included under an FMEA work item. The safety

goal work item may contain fields to cover [SO26262 items such ASIL level, exposure,

controllability, severity, and rationale taken to determine the safety level. In one embodiment,

safety goal working items may be set to the status “draft” as a default. This status may be used to

gather the possible safety failures regardless if those are true failures or not. If it is not a true

failure, then the working item may be rejected or deleted. The fields of the working item in draft

status may be modified by a user with access to the project in the verification tool. The author of

-17 -

WO 2015/179705 PCT/US2015/032065

the safety goal may be designated as the assignee by default. This designation may be changed if
desired to another developer or user.

[0082] The work item status can be set to “analysis” by a user with role “developer” or
“approver” to initiate analysis of the causes of failure associated with the risk. The analysis can
be performed automatically or by collaboration between one or more users (for example by
meeting or by email). The comments or the attachments fields in the working item may be used
to add additional information to aid the analysis. A new assignee may be changed to the
individual who will perform the activities defined in the “recommended actions” field and the
status may be transitioned to “Pending actions.” The assignee may create links associated to the
work item such as requirements or agile tasks. Links may be added, and the status may be
maintained until all the actions are performed and all the requirements or safety goals have been
completed. Once the pending actions and associated sub-working items are completed, the safety
goal working item may be transitioned to status “done” and the assignee field may be changed to
the user with role “approver.” The approver may review the actions taken, the associated
implementation with sub-work items, and modify the “approvals” field with the decision taken.
If the item is unapproved then the assignee field may be changed back to the developer and the
status may be set to “analysis.” The user with role “quality” or “build manager” may reviews the
change request in status “done” with the approvals field set either to “approved” or
“unapproved” to collect the information that will be baselined or released to the customer. If the
work item shows “unapproved” then the reason for keeping the item in the current release may
be addressed in the comments field. A user with role “quality” or “build manager” may collect
all the sub-work items associated with the current sprint, set a baseline in the verification tool
and generate the related software delivery documentation. The change request can be rejected at
when the status is in backlog, approved, or under development and a decision is made, for
example at the backlog meeting. If the rejected work item needs to be reopened then the item
may be placed directly in the backlog to reschedule in a different sprint iteration than the current
iteration or the item may be approved for the current sprint iteration.

[0083] Safety goal fields may include the following:

- 18 -

WO 2015/179705 PCT/US2015/032065

[0084] Custom fields may include the following:

- 19 -

PCT/US2015/032065

WO 2015/179705

Ar
w1

o

A
w1

Actions and transitions may include the following:

[0085]

-20 -

WO 2015/179705 PCT/US2015/032065

&g Howe

rwterming Safade Leww!
Fan-aciians
raferyEvgnraretsi
S safernyErprsureRatinnaie
' artiov-perding
safatpliontradlad
safeayinrtraiBationalie
safatydRL
recmmnEn e otians,
Hetienzs Takex L.
saemiih o
artimnRaesn TRERIRSS
;‘5:"" . 0 .
T tabenSrtans
From: actinn-panding
aEavoals :
Brzedine resmintion

ForaPaind
N PIRLT SRErEET
Nane
Froee: refecied b deafy
Reiure t Sty Praie SEpeT . . ardon-pending
. e . "
rEkuITERRiREy
Peiuey e et ba
- POTET 2R \E.’:m..‘ FNEEE b

nEs rajeThEs

TRENIITIGR Fooww. aedion-pendng

Froee: traft too refacted

[0086] A vehicle requirement may be a child of the change request or a safety goal. The
user may search for an existent change request or create a new change request working item in
the current project using one of the user interfaces described herein. For example, a user may
create a new work item link in the main wiki page or by making a selection under the change
request or under safety goal work items. Figure 13 illustrates an example requirements
workflow. In one embodiment the workflow transitions may be limited to the role set up in the
account of the user in the verification tool. The requirement work item may be under the change

request or the safety goal work items. The requirement work item may further contain fields to

201 -

WO 2015/179705 PCT/US2015/032065

cover the type of requirement such as drivability, safety, manufacturing service, or experimental.
Requirement working items may be set to the status “draft” as a default. The assignee and time
point fields may be inherited from the change request or safety goal. The draft status may be
used to describe the requirement or wiki requirements. If it is not a true requirement, then the
working item can be unmarked or deleted. The fields of the working item in draft status can be
modified by a user with access to the project in the verification tool. The author of the safety
goal may be the assignee by default, which can be changed if desired to another user or
developer.

[0087] A requirement may be created in a Wiki page by writing directly in the desired
wiki using the view edit, using for example “rich text.” Links can be created to other wiki pages.
The wiki page may include attachments if desired. Additionally and optionally, the wiki page
may include scripts. Text may be included in the wiki as reference or commentary. A
requirement ID may be displayed in the wiki as an indication of the work item. The new
requirement work item may be linked back to a change request to allow processing of approvals
and coverage in the software iteration.

[0088] The requirement may be transitioned to status “approved” when the parent
change request work item is approved by the user with role “approver.” The requirement may be
transitioned to status “Done” when the associated coding tasks are completed by the user with
role “developer.” The requirement may be placed back to status “draft” for further modifications
in the text if required. Typically the time point of a requirement may be inherited from the
change request, but the time point may be changed, even when its status is “approved” or
“done.” The purpose is to reuse the same requirement in a newer sprint to address a defect or
another agile task related to it.

[0089] A user with role “quality” or “build manager” may reviews the work items with
status “done” to collect the information that will be baselined or released to the customer. If the
work item indicates “unapproved” then the reason may be addressed in the comments field. The
user with role “quality” or “build manager” may collect all the sub-work items associated with
the current sprint, set a baseline in the verification tool, and generate the related software
delivery documentation. The work item may be rejected when the status is in backlog, approved
or under development, and a decision is reached, for example, at the backlog meeting. If the
rejected work item should be reopened then the item may be placed directly in the backlog to
reschedule in a different sprint iteration than the current iteration or may be approved for the
current sprint iteration. The sub-work items may go back to the backlog until the change request

is approved.
-0 -

WO 2015/179705 PCT/US2015/032065

[0090] Custom fields may include the following:

I

reqtvpe Reguirement

[0091] Vehicle requirement fields may include the following:

[0092] Actions and transitions may include the following:

-03 -

WO 2015/179705 PCT/US2015/032065

arwy

", P T T .
Fromy: appnovesd tor

[0093] Test case work items based on software change requests and software baselines
may be initiated, processed, and implemented. A test case work item may be created when an
initiator of thea safety goal creates a new working item in a project. A backlog software team
meeting may review the work items and define the priority, severity, time point, and the assignee
for resolution. In one embodiment the selection of the work items may follow the Agile Scrum
guidelines where the highest priority work items are selected from the backlog. The selected
items are “iteration work items” to be implemented in a time point (sprint). The subtasks below
the change request may be created by the assignee once the work item has been assigned to a
user role “developer.” It should be understood that development models other than Agile Scrum
may be implemented.

[0094] Figure 14 illustrates an example test case work flow. The test case working
items may be set to the status “draft” as a default. This status may be used to create the test case
steps and any user assigned to it with role “approver” may transition to active or inactive
statuses. The “active” status may be set when a test case has been selected to a specific software

iteration (sprint). The table view can be selected to modify the status in bulk. A user or assignee
-4 -

WO 2015/179705 PCT/US2015/032065

with role “developer” may execute the test and fill the fields “result” and “comments” to stamp
the date when the test was executed. The time point field may be used to identify the software
package used on that sprint iteration.

[0095] When testing is finished, the approver may peer review the final testing,
coverage of requirements, coding, and test cases, and modify the field “approvals” with the
decision. Inactive status may be selected when the test cases are not scheduled for current
software iteration (sprint) and may be reused in future iterations.

[0096] A user with role “quality” or “build manager” may review the test cases with
status “active” with the approvals field set either to “approved” or “unapproved” to collect the
information that will be baselined or released to the customer. If the work item shows
“unapproved” then the reason may be addressed in the comments field. A user with role
“quality” may collect the sub-work items associated with the current sprint, set a baseline in the
verification tool, and generate the related software delivery documentation. The change request
may be rejected when the status is in backlog, approved, or under development and the decision,
for example, is taken at the backlog meeting. If the rejected work item needs to be reopened then
the item may go directly to the backlog to reschedule in a different sprint iteration than the
current iteration or the iteration may be approved for the current sprint iteration. The sub-work
items may go back to the backlog until the change request is approved.

[0097] A testrun is a group of test cases used to identify what will be tested per
category, release, or special request. A test run is created to query the test cases in active status to
be executed in the sprint. In one embodiment this can be done by selecting a “Create Test Run”
button in the Testing Wiki page or individually when the test case is executed and a “test run”
group is selected. The test cases may be individual entities in the verification tool and thus can be
moved to another document or exist in multiple test runs or documents. A test run by category
template may be selected to execute test cases for a specific feature. The test run ID may be the
release version followed by the feature (category). For example: v378 torque may be used where
“v” is the version, “378” is the release number and “torque” is the category. A test tun by
severity “regression” emplate may be selected to create a test run with all the individual test
cases set with severity of “regression.” This type of test run may be executed when a major
change in software is to be released and a number of regression test cases may be selected by
setting the status to active or inactive. Templates for test runs by other severity levels for
integration, unit, or integration and basic may be provided. A template for a test run for release
checkout may be selected to create a test run with a single test case or group of test cases with

severity set to “release checkout.” This test run may execute an overall test to confirm the final
-05 -

WO 2015/179705 PCT/US2015/032065

build prior to release to the customer. The approval of this template may be restricted to a user
with role “project_approver.” The test cases may be executed directly in a test run wiki page that
may be autogenerated from the templates or individually when the work item table view is used.
If the test run is used then the overall results may be displayed along with the test run approvals.

[0098] Test run ficlds may include the following:

pstom Flelds

tostRun Sing

[0099] Test run actions/transitions may include the following:

sxesute ay

[0100] Test run field IDs may include the following:

- 26 -

WO 2015/179705 PCT/US2015/032065

S Regcyiption

wpdatedd

“;"_*ilazz\.med e

sty

[0101] New tasks pertaining to a particular software development standard or process
may also be supported. For example, a new agile task may be initiated, processed, and
implemented based on a software change request and software baselines.

[0102] The initiator of an agile task may create a new working item in the project. The
initial status may be set to “backlog” as a default. During the backlog software team meeting, the
work items may be reviewed and the priority, severity, time point, and the assignee for resolution
may be determined. The selection of the work items may follow Agile Scrum guidelines, where
the highest priority work items from the backlog may be selected as “iteration work items” to be
implemented at a time point (sprint). The subtasks of the change request may be created by the
assignee once the work item has been assigned to an individual with role “developer.”

[0103] Figure 15 illustrates an example coding, calibration, defect and supporting task

work flow. By default, the tasks working items may be set to the status “backlog.” This status

_27 -

WO 2015/179705 PCT/US2015/032065

may be used to organize the priorities of the tasks to be reviewed in the backlog meeting. A user
assigned to the item with role “developer” may create tasks for the change request work items.
Fields of the working item in backlog status can be modified by a user with access to the project
in the verification tool. The team members at the backlog meeting may review the change
requests in “backlog” status. The user with role “approver” may transition the work item to the
“approved” status and set the new assignee, time point, and priority. The work item can return to
the backlog status if the software development on that specific item has been delayed to sprint
iteration. The status of the agile task may be changed to approved when the parent change
request work item is approved by the user with role “approver” or “developer.” In the case of a
defect task, the user with role “developer” can authorize the implementation but the impact or
timing is typically discussed with the user with role “approver.”

[0104] The agile task may remain in “under development” status until the
implementation is completed. The coding change may be peer reviewed and the “comments” or
“attachments” field in the work item may be used for this purpose. The agile task may be linked
to a requirement. If the agile task is a safety related, the task may be linked to an individual test
case to ensure testing has been completed for that specific functionality. If the agile task is
drivability related then the task may be linked to a group of test cases or to the overall test case
for that specific sprint. An assignee with role “approver” may review the comments of the agile
task and the parent-work items associated with the task applicable to the current sprint iteration.
If satisfied with the implementation, the ficld “approvals” in the parent change request may be
set to “approved,” and otherwise the field may be set to “unapproved.” in which case the change
request status may be changed to “under development” and the assignee may be sent to the
developer.

[0105] A user with role “quality” may review agile tasks and their traceability to the
source code. The change requests with status “done” and the approvals field may be set either to
“approved” or “unapproved” to collect the information that will be baselined or released to the
customer. If the change request indicates “unapproved” then the reason for maintaining in the
current release may be addressed in the comments field. A user with role “quality” may collect
the work items associated with the current sprint, set a baseline in the verification tool, and
gencrate the related software delivery documentation. The agile task may be rejected when the
status is in backlog, approved, or under development and such a decision is made at the backlog
meeting. If the rejected work item should be reopened then the item may be returned to the

backlog to reschedule at a different sprint iteration, the item may be approved for the current

-08 -

WO 2015/179705

PCT/US2015/032065

sprint iteration. Agile tasks items may be returned to the backlog until the change request is

approved.

[0106] Actions and transitions may include the following:

Rroject_approver

Roguest R tymeFoint

ndt

Apprnes FETGIveE Eroam opers b
SPPEEEE approved

Eronm rejacted fan
approved

Sravt e
FEavi-deesirgnrent

vy

SISTREE
timeFoint

From: approved too
meveinprant

vy

tmaipent

Sromy: develogswent b

rasmdaes

o
)
#

Teleyed or ruzad Infurmatic

(2] FO}E{I’_&}}S’R’Q‘*\?.\' '

. hmefoist N
PEGECT_Rpprswes o Froan rRanhren e
RERERES azelineg
Searark ey RGeS Froom: resoived Tl
vework Suvelopment
asngres Froum: spproseed to:

BackingRessinticn

DS

LS

Froum: cdeveiopmsnt Tor

Froam. rejected to) open

sesigmes
Spyeove and start development | project_apgrover
Fromm: mypars 300
quitch-vawaek tymePoint
PETIETT_BRETSVEe ressiution Fram: deveiopment to.
_BPY :

rejectad

[0107] Field IDs may include the following:

-29 -

WO 2015/179705 PCT/US2015/032065

[0108] In some embodiments, a software quality tool may be provided that may be
implemented as a web based platform with a database and set up on a server. The bundled
applications with the tool may include a web interface or configuration management tool,
Apache server repository and Sub Version as the revision control tool.

[0109] In one embodiment the roles may include:

-30 -

WO 2015/179705 PCT/US2015/032065

Eie

3 PEITRINSIO

Y iy

e
8RRy

[0110] The software quality tool may use project templates to create new projects. The
templates may contain dedicated workflows, system variables, scripts, wiki pages, roles, work
items, quality monitoring charts as part of a specific process. For example, a template that
incorporates the Capability Maturity Model (CMM), Automotive SPICE, ISO 26262, and Agile
Scrum may be generated.

[0111] Figure 16 is a flowchart depicting an example of a method for providing a
software development environment. As seen at 1602, the method may begin when a user, such as
a developer, logs into an application development environment, such as that illustrated in Figures
1 and 2. In response to validating the user's login credentials, a user may select an option to
create a new project, as illustrated at 1604. The user may also be presented with options to edit or
view an existing project.

[0112] Figure 17 illustrates an example of an operational procedure for developing and
deploying software applications. In one embodiment, the operational procedure may be

implemented in a computing environment hosted by a multi-user computing services platform.

-31 -

WO 2015/179705 PCT/US2015/032065

[0113] In some embodiments, a system may be implemented. The system may be
configured to develop and deploy software applications in a computing environment hosted by a
multi-user web services platform. The system may comprise a memory storing computer
instructions that, when executed by one or more processors of the system, cause the system to
implement functions such as a developer editor and a development environment.

[0114] A “computer,” as used in this disclosure, means any machine, device, circuit,
component, or module, or any system of machines, devices, circuits, components, modules, or
the like, which are capable of manipulating data according to one or more instructions, such as,
for example, without limitation, a processor, a microprocessor, a central processing unit, a
general purpose computer, a super computer, a personal computer, a laptop computer, a palmtop
computer, a smart phone, a cellular telephone, a tablet, a web-book, a notebook computer, a
desktop computer, a workstation computer, a server, a cloud, or the like, or an array of
processors, microprocessors, central processing units, general purpose computers, super
computers, personal computers, laptop computers, palmtop computers, notebook computers,
desktop computers, workstation computers, servers, or the like.

[0115] A "network," as used in this disclosure, means any combination of software
and/or hardware, including any machine, device, circuit, component, or module, or any system of
machines, devices, circuits, components, modules, or the like, which are capable of transporting
signals from one location to another location, where the signals may comprise information,
instructions, data, and the like. A network may include, but is not limited to, for example, at least
one of a local area network (LAN), a wide area network (WAN), a metropolitan area network
(MAN), a personal area network (PAN), a campus area network, a corporate arca network, a
global area network (GAN), a broadband area network (BAN), or the like, any of which may be
configured to communicate data via a wireless and/or a wired communication medium.

[0116] A "server," as used in this disclosure, means any combination of software and/or
hardware, including at least one application and/or at least one computer to perform services for
connected clients as part of a client-server architecture. The at least one server application may
include, but is not limited to, for example, an application program that can accept connections to
service requests from clients by sending back responses to the clients. The server may be
configured to run the at least one application, often under heavy workloads, unattended, for
extended periods of time with minimal human direction. The server may include a plurality of
computers configured, with the at least one application being divided among the computers
depending upon the workload. For example, under light loading, the at least one application can

run on a single computer. However, under heavy loading, multiple computers may be required to
-32-

WO 2015/179705 PCT/US2015/032065

run the at least one application. The server, or any of its computers, may also be used as a
workstation.

[0117] A "communication link," as used in this disclosure, means a wired and/or
wireless medium that conveys data or information between at least two points. The wired or
wireless medium may include, for example, a metallic conductor link, a radio frequency (RF)
communication link, an Infrared (IR) communication link, an optical communication link, or the
like, without limitation. The RF communication link may include, for example, Wi-Fi, Wi-MAX,
1IEEE 802.11, DECT, OG, 1G, 2G, 3G, or 4G cellular standards, Bluctooth®, and the like. One
or more communication links may be used in an environment 100 (shown in Figure 1) to allow
sufficient data throughput and interaction between end-users (such as, e.g., agents, consumers,
insurance carriers, estate planners, financial providers, web host providers, and the like).
Techniques for implementing such communications links are known to those of ordinary skilled
in the art.

[0118] In at least some embodiments, a computer that implements a portion or all of
one or more of the technologies described herein may include a general purpose computer
system that includes or is configured to access one or more computer-accessible media. Figure
18 illustrates such a general purpose computing device 1800. In the illustrated embodiment,
computing device 1800 includes one or more processors 1810a, 1810b, and/or 1810n (which
may be referred herein singularly as “a processor 1810 or in the plural as “the processors 18107)
coupled to a system memory 1820 via an input/output (I/O) interface 1830. Computing device
1800 further includes a network interface 1840 coupled to I/O interface 1830.

[0119] In various embodiments, computing device 1800 may be a uniprocessor system
including one processor 1810 or a multiprocessor system including several processors 1810 (e.g.,
two, four, eight or another suitable number). Processors 1810 may be any suitable processors
capable of executing instructions. For example, in various embodiments, processors 1810 may
be general purpose or embedded processors implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or MIPS ISAs or any other suitable
ISA. In multiprocessor systems, each of processors 1810 may commonly, but not necessarily,
implement the same ISA.

[0120] System memory 1820 may be configured to store instructions and data
accessible by processor(s) 1810. In various embodiments, system memory 1820 may be
implemented using any suitable memory technology, such as static random access memory
(SRAM), synchronous dynamic RAM (SDRAM), nonvolatile/Flash-type memory or any other

type of memory. In the illustrated embodiment, program instructions and data implementing one
-33.

WO 2015/179705 PCT/US2015/032065

or more desired functions, such as those methods, techniques and data described above, are
shown stored within system memory 1820 as code 1825 and data 1826.

[0121] In one embodiment, I/O interface 1830 may be configured to coordinate I/O
traffic between processor 1810, system memory 1820 and any peripheral devices in the device,
including network interface 1840 or other peripheral interfaces. In some embodiments, I/O
interface 1830 may perform any necessary protocol, timing or other data transformations to
convert data signals from one component (e.g., system memory 1820) into a format suitable for
use by another component (e.g., processor 1810). In some embodiments, I/0 interface 1830 may
include support for devices attached through various types of peripheral buses, such as a variant
of the Peripheral Component Interconnect (PCI) bus standard or the Universal Serial Bus (USB)
standard, for example. In some embodiments, the function of I/O interface 1830 may be split
into two or more separate components, such as a north bridge and a south bridge, for example.
Also, in some embodiments some or all of the functionality of I/O interface 1830, such as an
interface to system memory 1820, may be incorporated directly into processor 1810.

[0122] Network interface 1840 may be configured to allow data to be exchanged
between computing device 1800 and other device or devices 1860 attached to a network or
networks 1850, such as other computer systems or devices as illustrated in FIGS. 1 through 18,
for example. In various embodiments, network interface 1840 may support communication via
any suitable wired or wireless general data networks, such as types of Ethernet networks, for
example. Additionally, network interface 1840 may support communication via
telecommunications/telephony networks such as analog voice networks or digital fiber
communications networks, via storage arca networks, such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

[0123] In some embodiments, system memory 1820 may be one embodiment of a
computer-accessible medium configured to store program instructions and data as described
above for FIGS. 1-10 for implementing embodiments of the corresponding methods and
apparatus. However, in other embodiments, program instructions and/or data may be received,
sent or stored upon different types of computer-accessible media. Generally speaking, a
computer-accessible medium may include non-transitory storage media or memory media, such
as magnetic or optical media, e.g., disk or DVD/CD coupled to computing device 1800 via I/O
interface 1830. A non-transitory computer-accessible storage medium may also include any
volatile or non-volatile media such as RAM (e.g., SDRAM, DDR SDRAM, RDRAM, SRAM,
etc.), ROM, etc., that may be included in some embodiments of computing device 1800 as

system memory 1820 or another type of memory. Further, a computer-accessible medium may
-34 -

WO 2015/179705 PCT/US2015/032065

include transmission media or signals such as electrical, electromagnetic or digital signals,
conveyed via a communication medium such as a network and/or a wireless link, such as may be
implemented via network interface 1840. Portions or all of multiple computing devices, such as
those illustrated in FIGURE 18, may be used to implement the described functionality in various
embodiments; for example, software components running on a variety of different devices and
servers may collaborate to provide the functionality. In some embodiments, portions of the
described functionality may be implemented using storage devices, network devices or special
purpose computer systems, in addition to or instead of being implemented using general purpose
computer systems. The term “computing device,” as used herein, refers to at least all these types
of devices and is not limited to these types of devices.

[0124] A network set up by an entity, such as a company or a public sector
organization, to provide one or more services (such as various types of cloud-based computing or
storage) accessible via the Internet and/or other networks to a distributed set of clients may be
termed a provider network. Such a provider network may include numerous data centers hosting
various resource pools, such as collections of physical and/or virtualized computer servers,
storage devices, networking equipment and the like, needed to implement and distribute the
infrastructure and services offered by the provider network. The resources may in some
embodiments be offered to clients in units called instances, such as virtual or physical computing
instances or storage instances. A virtual computing instance may, for example, comprise one or
more servers with a specified computational capacity (which may be specified by indicating the
type and number of CPUs, the main memory size, and so on) and a specified software stack (e.g.,
a particular version of an operating system, which may in turn run on top of a hypervisor).

[0125] A number of different types of computing devices may be used singly or in
combination to implement the resources of the provider network in different embodiments,
including general purpose or special purpose computer servers, storage devices, network devices
and the like. In some embodiments a client or user may be provided direct access to a resource
instance, e.g., by giving a user an administrator login and password. In other embodiments the
provider network operator may allow clients to specify execution requirements for specified
client applications and schedule execution of the applications on behalf of the client on execution
platforms (such as application server instances, Java™ virtual machines (JVMs), general purpose
or special purpose operating systems, platforms that support various interpreted or compiled
programming languages such as Ruby, Perl, Python, C, C++, and the like, or high-performance
computing platforms) suitable for the applications, without, for example, requiring the client to

access an instance or an execution platform directly. A given execution platform may utilize one
-35-

WO 2015/179705 PCT/US2015/032065

or more resource instances in some implementations; in other implementations multiple
execution platforms may be mapped to a single resource instance.

[0126] The terms "including," "comprising," "having," and variations thereof, as used
in this disclosure, mean "including, but not limited to," unless expressly specified otherwise.

[0127] The terms "a," "an,” and "the," as used in this disclosure, means "one or more,"
unless expressly specified otherwise.

[0128] Devices that are in communication with each other need not be in continuous
communication with each other, unless expressly specified otherwise. In addition, devices that
are in communication with each other may communicate directly or indirectly through one or
more intermediaries.

[0129] Although process steps, method steps, algorithms, or the like may be described
in a sequential order, such processes, methods and algorithms may be configured to work in
alternate orders. In other words, any sequence or order of steps that may be described does not
necessarily indicate a requirement that the steps be performed in that order. The steps of the
processes, methods or algorithms described herein may be performed in any order practical.
Further, some steps may be performed simultaneously.

[0130] When a single device or article is described herein, it will be readily apparent
that more than one device or article may be used in place of a single device or article. Similarly,
where more than one device or article is described herein, it will be readily apparent that a single
device or article may be used in place of the more than one device or article. The functionality or
the features of a device may be alternatively embodied by one or more other devices which are
not explicitly described as having such functionality or features.

[0131] A "computer-readable medium," as used in this disclosure, means any medium
that participates in providing data (for example, instructions) which may be read by a computer.
Such a medium may take many forms, including non-volatile media, volatile media, and
transmission media. Non-volatile media may include, for example, optical or magnetic disks and
other persistent memory. Volatile media may include dynamic random access memory (DRAM).
Transmission media may include coaxial cables, copper wire and fiber optics, including the
wires that comprise a system bus coupled to the processor. Transmission media may include or
convey acoustic waves, light waves and electromagnetic emissions, such as those generated
during radio frequency (RF) and infrared (IR) data communications. Common forms of
computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic
tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards,

paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a
-36 -

WO 2015/179705 PCT/US2015/032065

FLASH-EEPROM, any other memory chip or cartridge, a carrier wave as described hereinafter,
or any other medium from which a computer can read.

[0132] Various forms of computer-readable media may be involved in carrying
sequences of instructions to a computer. For example, sequences of instruction (i) may be
delivered from a RAM to a processor, (ii) may be carried over a wireless transmission medium,
and/or (iii) may be formatted according to numerous formats, standards or protocols, including,
for example, Wi-Fi, Wi-MAX, IEEE 802.11, DECT, OG, IG, 2G, 3G, or 4G cellular standards,
Bluetooth®, or the like.

[0133] The present disclosure is not to be limited in terms of the particular
embodiments described in this application, which are intended as illustrations of various aspects.
Many modifications and variations can be made without departing from its spirit and scope, as
will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses
within the scope of the disclosure, in addition to those enumerated herein, will be apparent to
those skilled in the art from the foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The present disclosure is to be limited
only by the terms of the appended claims, along with the full scope of equivalents to which such
claims are entitled. It is to be understood that this disclosure is not limited to particular methods,
reagents, compounds, compositions or biological systems, which can, of course, vary. It is also
to be understood that the terminology used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

[0134] There is little distinction left between hardware and software implementations of
aspects of systems; the use of hardware or software is generally (but not always, in that in certain
contexts the choice between hardware and software can become significant) a design choice
representing cost vs. efficiency tradeoffs. There are various vehicles by which processes and/or
systems and/or other technologies described herein can be effected (e.g., hardware, software,
and/or firmware), and that the preferred vehicle will vary with the context in which the processes
and/or systems and/or other technologies are deployed. For example, if an implementer
determines that speed and accuracy are paramount, the implementer may opt for a mainly
hardware and/or firmware vehicle; if flexibility is paramount, the implementer may opt for a
mainly software implementation; or, yet again alternatively, the implementer may opt for some
combination of hardware, software, and/or firmware.

[0135] One skilled in the art will appreciate that, for this and other processes and
methods disclosed herein, the functions performed in the processes and methods may be

implemented in differing order. Furthermore, the outlined steps and operations are only
-37-

WO 2015/179705 PCT/US2015/032065

provided as examples, and some of the steps and operations may be optional, combined into
fewer steps and operations, or expanded into additional steps and operations without detracting
from the essence of the disclosed embodiments.

[0136] While the disclosure has been described in terms of exemplary embodiments,
those skilled in the art will recognize that the disclosure can be practiced with modifications in
the spirit and scope of the appended claims. These examples given above are merely illustrative
and are not meant to be an exhaustive list of all possible designs, embodiments, applications or

modifications of the disclosure.

-38 -

WO 2015/179705 PCT/US2015/032065

Claims:
1. A computer-implemented method for developing and deploying software applications
comprising:
presenting, to a developer user of a multi-user computing platform, a user interface
providing one or more options for accessing a software development project hosted
by the multi-user computing services platform;
receiving, by the multi-user computing services platform via the user interface, inputs to
the software development project, wherein the inputs comprise at least one of a
change request and a work item;
in response to receiving the inputs, accessing data associated with at least one industry
standard and at least one software development process;
automatically generating, based on the data, one or more user actions consistent with
conformance to the at least one industry standard and at least one software
development process; and
providing, by the multi-user computing services platform, a user interface indicative of
the one or more user actions.
2. The method of claim 1, wherein the at least one industry standard comprises one or more
of ISO 26262, ISO/IEC 15504, and Automotive SPICE.
3. The method of claim 1, wherein the at least one software development process comprises
one or more of Agile Scrum and the Capability Maturity Model.
4. The method of claim 1, wherein the one or more user actions comprises one or more of
request, approve, baseline, start development, rework, and reject.
5. A system configured to develop and deploy software applications hosted by a multi-user
computing services platform comprising
at least one memory having stored therein computer instructions that, upon execution by
one or more processors of the system, cause the system to:
present, to a developer user of a multi-user computing platform, a user interface
providing one or more options for accessing a software development project
hosted by the multi-user computing services platform;
receive, by the multi-user computing services platform via the user interface,
inputs to the software development project, wherein the inputs comprise at
least one of a change request and a work item;
in response to receiving the inputs, access data associated with at least one

industry standard and at least one software development process;
-39

WO 2015/179705 PCT/US2015/032065

automatically generate, based on the data, one or more user actions consistent
with conformance to the at least one industry standard and at least one
software development process; and

provide, by the multi-user computing services platform, a user interface indicative
of the one or more user actions.

6. The system of claim 5, wherein the at least one memory further comprises computer
instructions that, upon execution by one or more processors of the system, cause the
system to implement a developer editor configured to present a web-based user interface
and a development environment.

7. The system of claim 5, wherein the at least one industry standard comprises one or more
of ISO 26262, ISO/IEC 15504, and Automotive SPICE.

8. The system of claim 5, wherein the at least one software development process comprises
one or more of Agile Scrum and the Capability Maturity Model.

9. The system of claim 5, wherein the one or more user actions comprises one or more of

request, approve, baseline, start development, rework, and reject.

- 40 -

PCT/US2015/032065

WO 2015/179705

1/18

JUBWUOJIAUT
Juswdolanaq uonedlddy

T 'Sl

0ET

\ 22IA2(Jasn
; \‘\OS\

22IAa(Q Jasn

o111

22In2(Joasn

WO 2015/179705 PCT/US2015/032065

2/18

/150

Application Development Environment

User Interface Component
202

Analysis Component
206

Storage Component
208

FIG. 2

PCT/US2015/032065

WO 2015/179705

3/18

€ Ol

HORPALLLIDA

F

. S

28ueyd

a1y10ads Jad 158 HUN

Sunsel
11Un 24eMm1oS 6-9

uonelusws|dwi
pue u3isap
11Un 3Jem1jos 8-9

uonejuswa|dwi

sadueyd ayy e
Uilm 159 uoneldaiu|

3uiisal pue uojiesdalul

uoledi e

aseyd ugiseq

\\

2.eMyos 0T-9

[2A2] UleJ}

JDMO(18 UOIIBDIJIIDA

00¢

sjuswadJinbal

Ugledljluan <
mwmmr_o_ 81 | uSisap |edn3anydle
Sunssy \ 3JEM}JOS /-9 usiseg
2lemijos 7
co_“m..u JUBA / /
sseyd udiseg
(STeIR=RIIIBEY h | 24N19UYIIY DIEMIJOS

aseyd isal

Ayajes aiem1yos

Sunsal
[9A] W3SAS B[2IYBA

JO Uonedllien TT1-9
3unsal pue

uoneJ3a1ul Wal| 8-

Sunsay °Jemiljos

UOIIBDIJIIDA

aseyd 1sa|

sjuswaJinbal
»| A1ojes auiemios
jJo uoneayeds 9-9

VAL

1]
Y

24N312:2IYydly

UOREIYLBA WId1SAS 9dIYDA

aseyd ysisaq
| \ \

301dS sAloWOoINY

9¢9¢ OSI

Joegpaad Jawoisn)

Sunsal way

P USISOp WISAS /-1

sjuswaJinbay
[9AD] WB3SAS 3[21YaA

VAN 1)

i)

29¢9¢ OSI 3D1dS aAowoINy

1doouo)

Ayajes euonaung ‘(vIN4AS)
spJezeH \mucmc;m‘___iumm_ Jowlolsn)

PCT/US2015/032065

WO 2015/179705

4/18

¥ "Old

*s@aualIadxa JNOA WOy

uJea :9Aadsoslay 1ulids
Wwia1sAg

.

"Julds 1xau JoJ Sulpun) <
ule8 pue sisp|oyayels 03
WIa1sAs owa :malnad Julids

Supom

"sanss| |enualod
Ajauapl pue snieis ajeys -
:8unesN wnuas Ajleq

Adeqpasy
g 8ujpund

syse] uldg

»

"S3SE] YoM
Ajnuspi 03 pue junds
1US.44N2J Jo4 S1UBWAJINbaY
109|9S 03 UOoISsas Suluue|d

Sopjoeg 3onpoud

3odeg

uudsg

IA sjuawaJinbay _

— Ayliond _
-3saysiH

WO 2015/179705

—Send to backlog a change request OR any task linked to it

PCT/US2015/032065

5/18

Change Request Q
SW Supervisor or Manager

Developer
link
A 4
Any user can DEMEA)
submit a task Deve/oper Q
Last Modifier)
€ .)
[Submit] link
A 4
\. Safety Goal \
Create coding or defect task Developer
Submit individual task [Task approvedl Last Modifier
A ¢ link
Backlog Waiting for approval Task Status *Approved* \ 4
SW Supervisor or Manager Developer Requirement Q
Peer Reviewer Last Modifier linky»| Developer
Last Modifier
‘ (S |
Task delayed until link
Start Development .
v r—lmplemented i
Task delayed (roqy status *Under Development* (rest Case V)
Developer Developer Q
Last Modifier Last Modifier
T Coding Done \. J/
Rework |
Defect found link
efect foun ¢
(-)
Agile Task *Resolved* @ — > befect -
Developer Last Modifier
Last Modifier Peer Reviewer
Defect found—J»
Baseline
* \. J
Task Status *Resolved* Q
SW Qualifier
Last Modifier

Review in SW Agile backlog

FIG.5

WO 2015/179705

6/18

PCT/US2015/032065

Select Project and Type for New Work Item Bllx]

Select Project and Type
for New Work Item

—

&>

Select Project and Type for New Work Item

Project:

Type:

Choose dest|
® Create in

O Create in

Space:

Document:

[Project Name

[v]

Change Request

[~]

Change Request
% FMEA

¢ Safety Goal

U Requirement
@ TestCase

@ Supporting Task
@ Coding Task

FIG. 6

WO 2015/179705 PCT/US2015/032065

7/18

[Submit]

Submit

v
Backlog

SW Supervisor or Manager
Peer Reviewer €]

J Delayed

Start Quote

(Qu ote
SW Supervisor or

Approve Delayed Developer
Approve—
\.
A 4
Approved
Developer
Last Modifier

Start Development

Under Development
Developer
Last Modifier

I 0

Implemented Rework

v I

L8

(M~ o)

Done
SW Supervisor or Manager
Peer Reviewer

Transition
Baselined
SW Quality
Last Modifier

FIG. 7

WO 2015/179705 PCT/US2015/032065

8/18

[Submit]

Submit

v

N\ Reject:

Backlog [¢—Re-scheduled

SW Supervisor or Manager -

Peer Reviewer ?’eject;ed

none
(none)
J
| Delayed
Approve Start Quote |
and
Start (Quote
Development ® sw supervisor or _
Approve Delayed Developer Reject—p
puE—
.
Delayed Approve

Approved Reject »

Developer A

Last Modifier pprove———

A
Backlog |
Start Development

" Reject /
Last Modifier

Under Development
Developer J

I 0

Implemented Rework

Done
SW Supervisor or Manager
Peer Reviewer

Transition

Baselined
SW Quality
Last Modifier

FIG. 8

| B

<)

PCT/US2015/032065

WO 2015/179705

9/18

6 'Old

159nbay a8uey) paauaq e a1eas) [T

1usWalInbay e ajeal) g
[e0D Alajes 21ea1) &jp
VIINL @1e21D

(punoy 8nq) 109J2Q 91e31) Q
1uawa|dwi 01 Joud jJuswnooq/azAleuy @

uoneqied yum uswaidwi @)

uonduisaqg

jse] Sulpod MS Yiim jusawajdwi) @

£

90(] auer :99udiIssy
uoI_WIOJUI PR3N @ :uonhjosay Sopjoeg
Soppeg @ :snjeys

1sanbay agueyd _Jlio._ :adAL

9T -XXXXX4 @ 6R8-0000: e

1S9 pue s1d142s 3sanbasadueyd — sjdwes — T9Z-XXXXX4 “O_

PCT/US2015/032065

10/18

0T 'Sid

A3

.HCNCLN.,__SUN.,_ |euoilounj-uou e jo m_o_Cc_mm
(+] weia | B[« peon] prustiam esisiyl - ﬁA@A_ z-31dINs | | [« [swewadur] M
o 4 =([(a] pean] guws tram OW3q s52901d - 5z0z-xxxxd I [[a Jsiuowaidu] O
_ SuoIY _ asugissy _ snieis _ UOISIASY _ 18loud o_t._._ 3|0y _ 1adsng

SWwa}| Y40M pPIUI

WO 2015/179705

WO 2015/179705 PCT/US2015/032065

11/18

Start Analysis

" Determine
Safety'Level

turn to Draft

Analysis

Pending
Actions

Rejected

rt Analysis

Reject Actions Ta

Reject Start Analysis

Reject

Basgline Returnto Draft

FIG. 11

PCT/US2015/032065

WO 2015/179705

12/18

¢1 'Oid

A ayes arean QB

.__”_ T9T-XXXXX4 @

< anjiey > ajduwies — T68-xxXxx4 (4

79T -XXXXX

WO 2015/179705 PCT/US2015/032065

13/18
(Draft O
p SW Supervisor or Manager \
Peer Reviewer
—> Reject: N\
. J

T Back to Draft

Approve Delayed

Back to Draft l ’

Approved 1 Rejected

Developer Reject SW Supervisor or
Last Modifier J SW Quality

Back to Draft

Mark as Implemented

l

Done
SW Supervisor or Manager
Peer Reviewer

Baseline

l

Baselined
SW Quality
Last Modifier

FIG. 13

WO 2015/179705 PCT/US2015/032065

14/18

Deactivate

vate

FIG. 14

WO 2015/179705 PCT/US2015/032065

15/18

Approved

Under
Develop-

Dev

A pprve and start
. development |

Backlog

Delayed or
need]
informa'n

FIG. 15

WO 2015/179705 PCT/US2015/032065

16/18
/1602
Receive and validate user login request
\ 4
1604
Receive selection to create or edit project -
\ 4
1606
Provide user project data a
\ 4
) /1608
Receive and load selected content
Receive change request /1610
Process change request /1612

FIG. 16

WO 2015/179705

17/18

Start
1750

y

Present user interface
1752

y

Receive inputs to software
development project
1754

y

Access process and standard data
1756

y

Generate flows
1758

y

Provide status and data to users
1760

FIG. 17

PCT/US2015/032065

WO 2015/179705 PCT/US2015/032065

18/18
1800
Processor Processor Processor
1810a 1810b 1810n

I ii I

I/O Interface 1830

System Memory 1820

Network Interface
Code Data 1840
1825 1826

Network(s)

1850

Other Device(s)
1860

FIG. 18

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2015/032065

A. CLASSIFICATION OF SUBJECT MATTER
GOO6F 9/44(2006.01)i, GO6F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOGF 9/44; GOGF 15/16; GO6F 3/048; GO6F 17/00; GOGF 3/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: software, development, project, industry, standard

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2003-0055659 A1 (ERIC R. ALLING) 20 March 2003 1-9
See abstract; paragraphs [0014]-[0022]; and figures 1-2.

A WO 2011-031328 A2 (LDRA TECHNOLOGY, INC. et al.) 17 March 2011 1-9
See abstract; paragraphs [0010]-[0055], [0185]; and figures 1A-2.

A US 05671415 A (HOSSAIN; K. OMAR) 23 September 1997 1-9
See abstract; column 5, line 42 — column 9, line 57; and figures 1-2.

A US 2008-0263505 A1 (STCLAIR WILLIAM GRYFFYTH et al.) 23 October 2008 1-9
See abstract; paragraphs [0022]-[0069]; and figures 1A-2.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
20 July 2015 (20.07.2015) 21 July 2015 (21.07.2015)
Name and mailing address of the [SA/KR Authorized officer JEC SN
International Application Division \\\\}“\ N
. Korean Intellectual Property Office R
N 3
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701, CHOL Jeong Kwon N
R Republic of Korea \
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8507 e

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2015/032065

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2003-0055659 Al 20/03/2003 None

WO 2011-031328 A2 17/03/2011 WO 2011-031328 A3 07/07/2011

US 05671415 A 23/09/1997 US 05671415 A 23/09/1997

US 2008-0263505 Al 23/10/2008 CN 101689111 A 31/03/2010
EP 2145252 Al 20/01/2010
EP 2145252 A4 21/12/2011
IL 201368 DO 31/05/2010
US 2015-095890 Al 02/04/2015
US 8949770 B2 03/02/2015
WO 2008-124038 Al 16/10/2008
WO 2008-124038 A8 31/12/2008

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - wo-search-report
	Page 62 - wo-search-report

