wo 2014/062948 A2 |11 0FV0 00O 0 0 A0 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/062948 A2

24 April 2014 (24.04.2014) WIPO I PCT
(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GOG6F 17/22 (2006.01) DO, DZ, EC, EE, EG, ES, F1, GB, GD, GE, GH, GM, GT,
. . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
PCT/US2013/065497 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
17 October 2013 (17.10.2013) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(25) Filing Language: English ZW.
(26) Publication Language: English (84) Designated States (uniess otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
13/653,581 17 October 2012 (17.10.2012) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant: MICROSOFT CORPORATION [US/US]; TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
One Microsoft Way, Redmond, Washington 98052-6399 EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Tnventors: GULWANI, Sumit; c/o Microsoft Corpora- gﬁ ﬁ‘ipll\/[(gFﬁEBJ ’SEF’T%G’TS)L CM, GA, GN, GQ, GW,
tion, LCA - International Patents, One Microsoft Way, > > O ’
Redmond, Washington 98052-6399 (US). SINGH, Rish- Declarations under Rule 4.17:
abh; o/o Microsoft Corporation, LCA - International Pat- as to applicant'’s entitlement to apply for and be granted a
ents, One Microsoft Way, Redmond, Washington 98052- patent (Rule 4.17(ii))
6399 (US). ’
. L — as to the applicant’s entitlement to claim the priority of the
(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: RANKING FOR INDUCTIVE SYNTHESIS OF STRING TRANSFORMATIONS

100 —~

102
™

(57) Abstract: Ranking technique embodi-

Programs

Input The Set Of Candidate Transformation

ments are presented that use statistical and
machine learning techniques to learn the de-
sired ranking function for use in inductive

v

program synthesis for the domain of string

That Sub-Expression

For Each Sub-Expression Of Each Candidate
Transformation Program For Which A Ranking
Scheme Has Been Established (From Smaller To
Larger Sub-Expressions), Establish A Likelihood
Score Using The Ranking Scheme Established For

transformations. This generally involves auto-
matically creating a training dataset of posit-
ive and negative examples from a given set of
training tasks, each including multiple in-
put-output examples. From the training data-
set, a ranking function is learned that assigns
an expression in a program in the domain spe-
cific language to a likelihood measure. This

v

ranking function is then used to compute like-
lihoods of learnt programs from a very small

number of input-output examples for a new

104
\

For Each Candidate Transformation Program,
Compute An Overall Ranking Score From The Sub-
Expression Likelihood Scores Established For That

Candidate Transformation Program

FIG. 1

task.

WO 2014/062948 A2 |IIIWAT 00N 000 OO AR A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

RANKING FOR INDUCTIVE SYNTHESIS OF STRING
TRANSFORMATIONS

BACKGROUND
[001] Millions of people worldwide use spreadsheets, and the like, for storing and
manipulating data. These data manipulation scenarios often involve converting a large
quantity of input information from one format to another format to produce a desired
output. Typically, these tasks are accomplished manually or with the use of small, often
one-off, computer programs that are either created by the end-user or by a programmer for
the end-user.
[002] Another approach has involved attempts to employ a computer to synthesize a
program to accomplish the desired data transformation. There are two major approaches
of synthesizing programs: deductive and inductive. In deductive program synthesis, a
complete high-level specification is translated into the corresponding low-level program
where each step of translation is validated using some axioms. This approach requires
users to provide a complete specification, which in some cases may potentially be harder
than writing the program itself. This has caused the inductive synthesis approaches to
become more popular recently. In the inductive program synthesis approach, a program is
synthesized from an incomplete specification such as a specification consisting of a set of
input-output examples. It has been used recently for synthesizing programs from various
domains ranging from low-level pointer manipulating code to spreadsheet macros.
[003] Since the specification in inductive program synthesis approaches is incomplete
and often ambiguous, there exists many different programs in the underlying domain-
specific language that are consistent with the given specification. To remove ambiguity
and converge to the desired program, the user needs to strengthen the specification by
providing additional input-output examples. The number of examples are directly
proportional to the expressivity of the domain-specific language, i.e. the more expressive
the language, the more input-output examples required to converge to the desired program.
[004] The domain-specific language needs to be expressive to express most tasks that
user’s desire, but at the same time the users cannot be expected to provide an onerous

number of input-output examples to learn the desired program.

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

SUMMARY
[005] Ranking technique embodiments described herein generally involve ranking
candidate transformation programs generated through an inductive program synthesis
procedure using just a small number of user-supplied input-output examples. In one
embodiment, a computer is used for ranking candidate transformation programs to
establish a ranked group of one or more transformation programs each of which produces
an output string in a user-desired form from each input string entered by a user, consistent
with each of one or more user-supplied input-output examples.
[006] More particularly, the set of candidate transformation programs is input. It is noted
that each transformation program is made up of program expressions in a domain-specific
language, which are in turn made up of sub-expressions. Ranking schemes are established
from offline training data for sub-expressions found in the candidate transformation
programs. Each of these ranking schemes produces a likelihood score indicative of the
likelihood that the sub-expression is part of a program capable of producing an output
string in the user-desired form from each input string entered by a user, which is consistent
with each of the user-supplied input-output examples. For each sub-expression of each
candidate transformation program for which a ranking scheme has been established, a
likelihood score is established using the ranking scheme established for that sub-
expression. The likelihood scores are computed in the order from smaller sub-expressions
to larger ones. An overall ranking score is then computed for each candidate
transformation program from the sub-expression likelihood scores established for that
candidate transformation program.
[007] In one embodiment, the overall ranking associated with each of the candidate
transformation programs is used to select a prescribed number of the top ranking candidate
transformation programs. These top ranking programs are then designated as the
aforementioned ranked group of one or more transformation programs. It is noted that in
one implementation the prescribed number is one, and so only the highest-ranking
candidate transformation program is selected and designated.
[008] It should be noted that this Summary is provided to introduce a selection of
concepts, in a simplified form, that are further described below in the Detailed
Description. This Summary is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used as an aid in determining the scope

of the claimed subject matter.

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

DESCRIPTION OF THE DRAWINGS
[009] The specific features, aspects, and advantages of the disclosure will become better
understood with regard to the following description, appended claims, and accompanying
drawings where:
[0010] FIG. 1 is a flow diagram generally outlining one embodiment of a process for
ranking candidate transformation programs.
[0011] FIG. 2 is a flow diagram generally outlining an implementation of the part of the
process of Fig. 1 involving establishing ranking schemes for atomic expressions.
[0012] FIG. 3 is a flow diagram generally outlining an implementation of the part of the
process of Fig. 2 involving generating training data from a training set of tasks.
[0013] FIG. 4 is a flow diagram generally outlining an implementation of the part of the
process of Fig. 3 involving generating training data from each substring expression in sets
of positive and negative training sub-expressions.
[0014] FIG. 5 is a flow diagram generally outlining an implementation of the part of the
process of Fig. 1 involving establishing a likelihood score for each sub-expression of a
candidate transformation program for which a ranking scheme has been established using
that ranking scheme.
[0015] FIG. 6 is a flow diagram generally outlining one embodiment of a process for
performing string transformations using the highest-ranking candidate transformation
program.
[0016] FIG. 7 is a table depicting a spreadsheet having an input column containing input
strings representing a person's last name, and an output column having one example output
string containing the corresponding input string name with the string "Mr." placed in front
of it.
[0017] FIG. 8 is a table depicting a spreadsheet having an input column containing
addresses including a city name, and an output column having one example output string
containing a part of the corresponding input string corresponding to the city name.
[0018] FIG. 9 is a diagram depicting a general purpose computing device constituting an
exemplary system for implementing ranking technique embodiments described herein.

DETAILED DESCRIPTION

[0019] In the following description of ranking technique embodiments reference is made
to the accompanying drawings which form a part hereof, and in which are shown, by way

of illustration, specific embodiments in which the technique may be practiced. It is

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

understood that other embodiments may be utilized and structural changes may be made
without departing from the scope of the technique.

[0020] It is also noted that for the sake of clarity specific terminology will be resorted to
in describing the ranking technique embodiments described herein and it is not intended
for these embodiments to be limited to the specific terms so chosen. Furthermore, it is to
be understood that each specific term includes all its technical equivalents that operate in a
broadly similar manner to achieve a similar purpose. Reference herein to "one
embodiment”, or "another embodiment", or an "exemplary embodiment”, or an "alternate
embodiment”, or "one implementation", or "another implementation", or an "exemplary
implementation", or an "alternate implementation” means that a particular feature, a
particular structure, or particular characteristics described in connection with the
embodiment or implementation can be included in at least one embodiment of the ranking

technique. The appearances of the phrases “in one embodiment"”, "in another

embodiment”, "in an exemplary embodiment", "in an alternate embodiment"”, "in one
implementation", "in another implementation", "in an exemplary implementation”, "in an
alternate implementation” in various places in the specification are not necessarily all
referring to the same embodiment or implementation, nor are separate or alternative
embodiments/implementations mutually exclusive of other embodiments/implementations.
Yet furthermore, the order of process flow representing one or more embodiments or
implementations of the ranking technique does not inherently indicate any particular order
nor imply any limitations of the ranking technique.

[0021] It is further noted that the term "input-output example" as used herein refers to a
tuple of character strings that form the input and a character string that forms the output.
The input represents an example of the input that the user wishes to transform, whereas the
output string represents an example of the output that the user wishes to be produced from

the input.

1.0 Ranking Technique For Inductive Program Svynthesis

[0022] Ranking technique embodiments described herein use statistical and machine
learning techniques to learn a desired ranking function for use in inductive program
synthesis. In general, a training dataset of positive and negative examples are
automatically created from a given set of input-output examples. From the training
dataset, ranking functions are learned that assign an expression in a program in a domain

specific language to a likelihood measure. These ranking functions are then used to

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

compute likelihoods of learnt programs from a very small number of input-output
examples.

1.1 String Transformation Language L;

[0023] In this section, a string transformation language for implementing the ranking
technique embodiments is described herein. The syntax for the string transformation
language Ls is as follows:

Trace expre := Concatenate(fi, .., fn)

Atomic expr f = SubStr(v, p1, p2)

| ConstStr(s)

Position expr p := CPos(k) | Pos(r1, 12, ¢)

Integer exprc =k

Regular exprr := TokenSeq(7h,.., Tm).
[0024] A trace (or concatenate) expression ¢ denotes the concatenation of atomic
expressions fi, .., f=. An atomic expression f can either denote a constant string expression
ConstStr(s) or a substring expression SubStr(v;, p1, p2). The constant string expression
ConstStr(s) denotes an expression that generates the constant string “s”. The substring
expression SubStr(v;, p1, p2) represents a substring of the input string present in column v;
whose left and right positions are represented by position pair expressions p1 and p2
respectively. The position expression CPos(k) refers to the £ index in the given string
from the left side (or right side), if the integer constant is positive (or negative). The
position expression Pos(r1, 72, ¢) denotes a position in the input string whose left and right
sides match the regular expressions 71 and 72 respectively, and it is the ¢ such match of
the regular expressions in the string. Formally, the regular expression 1 matches some
suffix of s[0.. -1] and 2 matches some prefix of s[0../ +1], where / = Length(s), and # is
the ¢ such index/position starting from the left side (or the right side) if ¢ is positive (or
negative).

1.2 Ranking Sets of L, Expressions

[0025] The data-structure for representing a large set of Ls expressions is as follows:
& = Dag(fin°n" & W)
f = SubStr (vi: {pj}j:{pk}k)
| ConstStr(s)
p := CPos(k) | Pos(ry, 1y, ¢)
r := TokenSeq(Ty,..,Ty)

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

[0026] The data structure maintains independent sub-expressions of an expression

independently to represent an exponential number of expressions in polynomial space.

For example, the set of substring expressions SubStr (vi, {p j}j’ {pk}k) maintains the set of

left ({p y }]) and right position expressions ({py}) independently. The mapping W maps

cach edge in ¢ to a set of SubStr and ConstStr expressions, thereby achieving sharing even
between Concatenate expressions of different lengths (Each path in the dag from the start
node n5to target node n' represents a set of Concatenate expressions obtained by taking
any expression from each edge in the path and concatenating them.) The ranking
technique embodiments described herein maintain this independence of sub-expressions
and ranks the set of sub-expressions independently. Three techniques for ranking the set
of sub-expressions are used: frequency-based ranking (for ranking regular expressions r
and position expressions p), feature-based ranking (for ranking Substr expressions), and
path-based ranking (for ranking the Concatenate expression).

1.2.1 Frequency-Based Ranking

[0027] For regular expressions and position expressions (both of which take values from
some finite sets), a frequency-based ranking is preformed to rank such expressions. There
exists a dictionary D that maps each possible expression value to its frequency as
estimated from the training data. The likelihood score of a regular expression is defined to
be directly proportional to its frequency score. The likelihood score of a position
expression can be defined to be any linear function of its frequency score and square-root
of the likelihood scores of its constituent regular expressions.

1.2.2 Feature-Based Ranking

[0028] For expressions such as atomic expressions f that take values from an unbounded
sct, a feature-based ranking is performed. A set of features ¢ (e) are computed from the
underlying input-output example and the likelihood is obtained from a machine learning
procedure. For ranking the choice between a constant string expression and a substring
expression for the atomic expression f, a support vector machine (SVM) binary-
classification procedure is used in one embodiment.

1.2.3 Path-Based Ranking

[0029] For concatenate expressions, which are made up of atomic expressions, a path-
based ranking is performed. In one embodiment, this path-based ranking involves

combining scores for individual atomic expressions found in a concatenate expression. In

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

one implementation, the likelihood scores for the atomic expressions are combined by
multiplying them, and in another implementation they are added together.

1.3. Automated Training Data Generation

[0030] In this section, one embodiment of a method for automatically generating training
data consisting of positive examples (or, positive and negative examples) from a set of
input-output examples for frequency-based ranking(or, feature-based ranking respectively)
is described. A large set of tasks, each consisting of multiple input-output examples {(i1,
01),...,(in, 0n)}, is obtained. A synthesis procedure learns the set of all programs Py, that
are consistent with each input-output example (ix, ox). The positive and negative
expression values are then obtained as follows: Positive expression values are made up of
expression values present in the set P; N P, ...N P,; and negative expression values are
made up of expression values present in the set {P\ (P, N P, ..Nn B,) | 1 < k < n}.

1.3.1 Positive And Negative Expression Values

[0031] Given two directed acyclic graphs (dags) Dk and Dy = (D1 N D, ... D,), the
challenge is to align the edges in the two dags to compute the positive and negative
expression values. After aligning the dags, the common edges between them constitutes
the positive expression values and the edges that are present in Dk but not in D,
constitutes the negative expression values.

[0032] The DAG programs Dk and D, are run on the input string ix and the dag nodes are
annotated with the indices of the output string ok using the label function L : n — int. The
start node # ¢ of a dag is annotated with index 0, such that L(# ¥) = 0. A node #2 in a dag is
annotated with index m (i.e., L(n ?) = m) if L(51) = [and the expressions on the dag edge
(11, 112) produce the string ox[/..m] when run on the input string ix. Once the nodes of both
dags have been annotated, the expressions on edges between nodes that have the same
labels are collected for comparison. The set of expressions that generate the string ox[/..m]
in dag Dx is denoted as &) p ., where & m i = Uy, 5, e, €M1,M2), L) = 1, L(p2) = m.
Expressions that appear in €, ,, , arc denoted as positive expressions and expressions that
appear in the set &, ,\ & ., » are denoted as the negative expressions. The set of positive
and negative expression values is obtained for each input-output example pair.

1.3.2 Frequencv-Based Training Data Generation

[0033] For ranking regular expressions and position expressions, a frequency-based
ranking approach is performed as both of them takes values from finite sets. A database of

token sequences together with their frequency scores for token sequence expressions is

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

also created. The frequencies are estimated from the set of positive training expressions.
The frequencies can also be estimated for each different context in which a certain
expression occurs. For example, a position expression can either be a left position
expression or a right position expression (denoting whether that position expression occurs
as the first or second argument of a SubStr expression). A regular expression expression
also occurs in two different contexts inside a position expression.

1.3.3 Feature-Based Training Data Generation

[0034] One of the major ambiguities in learning string transformations comes from
making the decision as to whether a substring in the output string is a constant string or a
substring of an input string. Since making such a decision is not only dependent on the
possible values for position pair and constant string expressions but also on the input and
output strings, it is not possible to use frequency-based ranking in this case as there are
infinitely many possible input and output strings. Instead, in one embodiment, a feature-
based ranking approach is used to select between SubStr and ConstStr expressions. More
particularly, a set of features is defined for each SubStr expression. Examples of features
that can be used, include, but are not limited to, the following:

a) IsOutputLeftTok: a boolean value that denotes whether the left position of the
output substring can be recognized by a token;

b) IsOutputLeftConstant: a boolean value that denotes whether the character at the
left position of the output substring is a constant;

c) IsOutputRightTok: a boolean value that denotes whether the right position of the
output substring can be recognized by a token;

d) IsOutputRightConstant: a boolean value that denotes whether the character at the
right position of the output substring is a constant;

e) IsOutputTok: a boolean value that denotes whether the output substring denotes a
token;

) IsInputLeftTok: a boolean value that denotes whether the left position of the input
substring can be recognized by a token;

2) IsInputRightTok: a boolean value that denotes whether the right position of the
input substring can be recognized by a token;

h) IsInputTok: a boolean value that denotes whether the input substring is a token;

1) Casing: the casing performed to obtain the output substring;

i) LenSubstring: the length of the substring;

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

k) RelLenInSubstring: the relative length of the substring to the length of the input
string (lenSubstring/lenInputString); and

1) RelLenOutSubstring: the relative length of the substring to the length of the output
string (lenSubstring/lenOutputString).

m) The likelihood scores of the constituent position expressions estimated using the
frequency based ranking scheme.

[0035] All these features can be computed in a constant O(1) time. For each positive and
negative SubStr expression, a feature vector is computed together with a class label (e.g.,
+1 for positive expressions and 0 for negative expressions). An off-the-shelf support-
vector machine (SVM) procedure can then used to learn the binary classifier. More
particularly, each feature vector created has a prescribed order of elements where each
element (except one reserved for the class label) corresponds to a feature value
respectively associated with one of the aforementioned features. For each of the
aforementioned features in the order corresponding to the prescribed order of elements, if
the feature is exhibited in the SubStr expression under consideration, then a feature value
having a first binary value (e.g., 1) is assigned to the corresponding feature vector element.
If the feature is not exhibited, then a feature value having a second binary value (e.g., 0) is
assigned to the corresponding feature vector element. In addition, the feature vector
element reserved for the aforementioned class label is assigned one binary value (e.g., 1) if
the SubStr expression is a positive SubStr expression, and another binary value (e.g., 0) if
the SubStr expression is a negative SubStr expression.

14. Ranking Programs

[0036] In this section, it will be described how programs represented by a dag are ranked.
1.4.1 Ranking Dag Edge Expressions

[0037] Each edge of a dag consists of a set of SubStr and ConstStr expressions. In one
embodiment, the feature based ranking assigns a likelihood score between +1 and 0 to
cach SubStr expression, while the likelihood score of a ConstStr expression is taken to be
0.5.

1.4.2 Ranking Dag Paths

[0038] Each path in a dag D represents several programs that conforms to the given input-
output example. Thelikelihood score w(e) of an edge e is defined as the highest likelihood
score of any SubStr or ConstStr expression on that edge. The likelihood score of a path is

defined as w(p) = [lecedges(p) W(€), such that it is computed by multiplying (or adding)

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

the likelihood scores of the corresponding edge expressions on the path. The Dijkstra’s
shortest path procedure is then used to compute the highest ranked path in the dag, and
execute it to generate the highest ranked output string. The likelihood score of a path can
also be a more sophisticated function of various features such as: the product/sum of the
likelihood scores of all edges, the number of edges, the min/max likelihood score of any
edge. Furthermore, this function can also be learned by using machine learning techniques.

1.5 Exemplarv Processes For Ranking Candidate Transformation Programs

[0039] The foregoing aspects of the ranking technique embodiments described herein can
be realized, in one general implementation, by the process outlined in Fig. 1. More
particularly, a computer (such as any of the computing devices described in the Exemplary
Operating Environments to follow) is used for ranking candidate transformation programs
to establish a ranked group of one or more transformation programs each of which
produces an output string in a user-desired form from each input string entered by a user,
consistent with each of one or more user-supplied input-output examples. More
particularly, a set of candidate transformation programs is received as input (process
action 100). Each of the candidate transformation programs was inductively synthesized
using conventional methods from the one or more user-supplied input-output examples,
and produces an output string in a form exhibited by each user-supplied output example
from each user-supplied input example. It is noted that, as described previously, each
transformation program is made up of program expressions which in turn are made up of
sub-expressions. Next, for each sub-expression of each candidate transformation program
for which a ranking scheme has been established (from smaller to larger sub-expressions),
a likelihood score is established using the ranking scheme established for that sub-
expression (process action 102). It is noted that each of the ranking schemes produces a
likelihood score indicative of the likelihood that the sub-expression is part of a program
capable of producing an output string in the user-desired form from each input entered by
a user, which is consistent with each of the user-supplied input-output examples. An
overall ranking score is then computed for each candidate transformation program from
the sub-expression likelihood scores established for that candidate transformation program
(process action 104).

[0040] Different kinds of ranking schemes are used for different kinds of expressions. As
described previously, a sub-expression can be either a regular expression or a position
expression or an atomic expression or a concatenate expression. In one embodiment,

regular and position expressions employ frequency-based ranking (as this type of ranking

10

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

is applicable to expressions that take values from a finite set of tokens). In addition,
feature-based ranking is used for atomic expressions, and path-based ranking is used for
concatenate. It is also noted that for the sake of efficiency, in one embodiment, ranking
schemes are established for regular expressions first, then position expressions, then
atomic expressions, and finally concatenate expressions.

[0041] In the case of atomic expressions, as indicated previously these can be either a
constant string expression or a substring expression. Given this, referring to Fig. 2,
establishing ranking schemes for atomic expressions in one embodiment first involves
identifying whether the atomic expression is a constant string expression or a substring
expression (process action 200). A training set of tasks is then input (process action 202).
Each task set is made up of multiple input-output examples. Training data is generated
from the training set (process action 204), and used to train a machine learning classifier to
assign a likelihood score to each substring expression and each constant string expression
(process action 206). In one embodiment, the machine learning classifier is a support
vector machine (SVM) binary-classifier, and it is trained to assign a likelihood score to
cach substring expression having a value in a range from 0 to 1 depending on how likely it
is that the sub-expression is part of the intended program. In addition, the classifier
assigns a prescribed likelihood score value (e.g., 0.5) to each constant string expression.
[0042] With regard to generating training data from the training set of tasks, in one
implementation this involves the following for each task in the training set. Referring to
Fig. 3, a previously unselected input-output example in the task is selected (process action
300). A set of transformation programs is inductively synthesized from the selected input-
output example (process action 302). Each of the transformation programs produces an
output string in a form exhibited in the output of the example from a tuple of input strings
in the input of the example. The tuple of input strings refers to the one or more parts of
the input in an input-output example that is used to generate the output of the example.
Next, a set of positive training sub-expressions is established from the set of
transformation programs (process action 304), and a set of negative training sub-
expressions is also established from the set of transformation programs (process action
306). In one embodiment, establishing the set of positive training sub-expressions from
the set of transformation programs involves designating each sub-expression found in the
intersection of all sets of transformation programs synthesized from the input-output
examples in the task as a positive training sub-expression. Whereas, establishing a set of

negative training sub-expressions from the set of transformation programs involves

11

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

designating each sub-expression in the set of transformation programs that is not identified
as positive training sub-expression as a negative training sub-expression.

[0043] At this point, ranking schemes for regular expressions and position expressions are
established. More particularly, a dictionary is generated that maps sub-expressions that
generate an output substring that takes values from a set having a finite number of pre-
defined tokens (i.e., the regular and position expressions) to a frequency-based score based
on their frequencies in the sets of positive training sub-expressions (process action 308).
[0044] Next, for cach substring expression from both the positive and negative training
sets of sub-expressions, training data is generated for feature-based ranking (process
action 310). It is then determined if all the input-output examples in the task have been
selected and processed (process action 312). If not, then process actions 300 through 312
are repeated. Otherwise the procedure ends for the selected task. The foregoing
procedure is repeated for all the remaining tasks and their input-output examples.

[0045] With regard to the foregoing process action of generating training data from each
substring expression in the sets of positive and negative training sub-expressions for
feature-based ranking, this is accomplished in one embodiment as shown in Fig. 4. First, a
set of one or more features (such as those described previously) is input (process action
400). Each of the features is indicative of whether a substring in the output string is
produced by a one of the substring expressions in the sets of positive and negative training
sub-expressions. Then, for each substring expression in the sets of positive and negative
training sub-expressions, a feature vector is generated (process action 402). As described
previously, each feature vector is a prescribed order of elements where each element,
except one reserved for a class label, corresponds to a feature value respectively associated
with one of the aforementioned features. In one embodiment, each feature vector is
generated by, for each of the features in an order corresponding to the prescribed order of
clements, assigning a feature value having a first binary value (e.g., 1) if the feature is
exhibited in a substring in the output string produced by the substring expression under
consideration. More specifically, the feature value is assigned to the feature vector
element associated with the exhibited feature. In addition, a feature value having a second
binary value (e.g., 0) is assigned to the feature vector element associated with the feature
under consideration if that feature is not exhibited in a substring in the output string
produced by the substring expression. Further, the feature vector element reserved for the

aforementioned class label is assigning one binary value (e.g., 1) if the substring

12

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

expression is in the set of positive training sub-expressions, and a different binary value
(e.g., 0) if the substring expression is in the set of negative training sub-expressions.
[0046] With regard to establishing ranking schemes for concatenate expressions, in one
embodiment, this involves combining likelihood scores for individual atomic expressions
found in a concatenate expression. In one implementation this combining is accomplished
by multiplying the scores, and in one implementation it is accomplished by adding the
scores.

[0047] In view of the foregoing, in one embodiment, establishing a likelihood score for
cach sub-expression of a candidate transformation program for which a ranking scheme
has been established using that ranking scheme involves the following. Referring to Fig.
5, first the likelihood for each regular expression is identified using a frequency-based
ranking scheme (process action 500). Then, the likelihood of each position expression is
identified also using a frequency-based ranking scheme (process action 502). As
described previously, this frequency-based ranking can involve employing a dictionary
that maps regular expressions and position expressions to a frequency-based score. Next,
the likelihood of each atomic expression is identified using a feature-based ranking
scheme (process action 504). As described previously, an atomic expression is either a
constant string expression or a substring expression. When the atomic expression is a
constant string expression, the feature-based ranking can involve assigning a prescribed
likelihood score value (e.g., 0.5). And when an atomic expression is a substring
expression, the feature based ranking can involve assigning a likelihood score value (e.g.,
ranging from 0 to 1) using a machine learning classifier that has been trained to assign a
likelihood score to each substring expression. The likelihood of each concatenate
expression is then identified using path-based ranking scheme (process action 506). As
described previously, this path-based ranking can involve combining scores for individual
atomic expressions found in a concatenate expression.

[0048] With regard to the aforementioned overall ranking established for each of the
candidate transformation programs, it is possible to use these rankings in a variety of
ways. For example, in one embodiment, the ranking associated with each of the candidate
transformation programs is used to select a prescribed number of the top ranking candidate
transformation programs, and designate these top-ranking programs as the aforementioned
ranked group of one or more transformation programs. It is noted that in one
implementation the prescribed number is one, and so only the highest-ranking candidate

transformation program is selected and designated.

13

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

1.6 Exemplarv Processes For Performing String Transformations Using The

Highest Ranking Transformation Program

[0049] With regard to the latter embodiment involving selecting the highest-ranking
candidate transformation program, this can be used in an application where a computing
device performs string transformations. More particularly, referring to Fig. 6, in one
general implementation, a set of candidate transformation programs that were inductively
synthesized from one or more user-supplied input-output examples are input (process
action 600). As described previously, each of the candidate transformation programs
produces an output string in a form exhibited by each user-supplied output example from
cach user-supplied input example.

[0050] Once input, the set of candidate transformation programs is ranked to identify a
highest-ranked transformation program (process action 602). This highest-ranked
transformation program is then applied to a user-supplied input string to produce an output
string (process action 604).

1.7 Example Transformation Scenarios

[0051] In this section, a couple of example transformation scenarios are presented. The
ranking technique embodiments described herein can be employed to establish a
transformation program capable of producing the desired output string from each input
string entered based on the small number of input-output examples found in these
scenarios.

[0052] In a first example scenario, a spreadsheet user has a series of names in an input
column and wants to add the title "Mr." in front of each name. The user provided the
input-output example shown in Fig. 7.

[0053] The challenge is to learn the desired transformation program from the given input-
output example by deciding which substrings in the output string "Mr. Roger" are constant
strings and which are substrings of the input string "Roger". In this case, it can be inferred
that since the output substring 0, [0..0] = M is not present in the input string, it has to be a
constant string. But the output substring 0,[1..1] = r can come from two different
substrings in the input string (i; [0..0] = R and i; [4..4] = r). The ranking technique
embodiments described herein learn all possible expressions to compute the substring "r"
in the output string that includes (i) a position pair expression to extract the substring
i;[0..0] and perform lower case operation to produce "r" from "R", and (ii) a position pair

[

expression to extract the substring i; [4..4], and the constant string expression “r”’. The

14

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

substrings of output string that do not exist in the input strings are guaranteed to be a
constant string, whereas the substrings that do exist in the input strings can be either a
constant string or substrings of the input string (although experience has shown they are
more likely to be coming from the input string). For example, the output substring
01[4..8] = Roger is more likely to be coming from the input string i1 than being a
constant string "Roger". Using a similar argument, the substring 0;[1..1] = r in the
output string also exists in two places in the input string and is more likely to be coming
from there. But in this example, "r" is required to be a constant string as the desired
behavior of the program is to add the constant string "Mr." in front of each input string.
To learn the desired transformation from one input-output example, the ranking technique
embodiments described herein need to rank the constant string expression higher than the
position pair expressions for the output substring "r". Some of the features that might help

in ranking "r" as a constant string include:

a) Length of substring: Since the length of substring "r" is 1 it is unlikely to be an
input substring;

b) Relative length of substring: The relative length of substring "r" as compared to the
output string is also quite small, i.e., 1/10; and

c) Constant neighboring characters: The neighboring characters "M" and "." of "r" are
both constant expressions.

[0054] In a second example scenario, a spreadsheet user has series of addresses in a
column and wants to extract the city names from them. The user provided the input-
output example shown in Fig. 8.

[0055] In this case, the ranking technique embodiments described herein could learn more
than 100 different SubStr expressions to extract the substring “Cambridge” from the input
string “243 Flyer Drive, Cambridge, MA 02145”, some of which are:

a) p1: Extract the 3™ alphabet token string;

b) p2: Extract the 4% alphanumeric token string;

c) p3: Extract the substring between the 15 and 2™ token sequence consisting of
comma and whitespace tokens; and

d) pa: Extract the substring between the 3™ capital token (inclusive) and the 2™
comma token from the left.

[0056] The problem with learning position pair expressions pi1 and p2 is that on the input

string “512 Wright Ave, Los Angeles, CA 789117, it produces the output string “Los” that

is not the desired output. In addition, position pair expression p4 does not produce any

15

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

output string from the input string “64 128th St, Seattle, WA 98102”. On the other hand,
the position pair expression p3 generates the desired output string for each of the position
pair expressions (i.c., Cambridge, Los Angeles, Seattle and San Francisco, respectively).
As such, the ranking technique embodiments described herein would rank the position pair
expression p3 higher than the other position pair expressions to generate the desired output
string from the one input-output example.

2.0 Exemplarv Operating Environments

[0057] The ranking technique embodiments described herein are operational within
numerous types of general purpose or special purpose computing system environments or
configurations. FIG. 9 illustrates a simplified example of a general-purpose computer
system on which various embodiments and elements of the ranking technique
embodiments, as described herein, may be implemented. It should be noted that any boxes
that are represented by broken or dashed lines in FIG. 9 represent alternate embodiments
of the simplified computing device, and that any or all of these alternate embodiments, as
described below, may be used in combination with other alternate embodiments that are
described throughout this document.

[0058] For example, FIG. 9 shows a general system diagram showing a simplified
computing device 10. Such computing devices can be typically be found in devices
having at least some minimum computational capability, including, but not limited to,
personal computers, server computers, hand-held computing devices, laptop or mobile
computers, communications devices such as cell phones and PDA’s, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, audio or video media
players, etc.

[0059] To allow a device to implement the ranking technique embodiments described
herein, the device should have a sufficient computational capability and system memory to
enable basic computational operations. In particular, as illustrated by FIG. 9, the
computational capability is generally illustrated by one or more processing unit(s) 12, and
may also include one or more GPUs 14, either or both in communication with system
memory 16. Note that that the processing unit(s) 12 of the general computing device may
be specialized microprocessors, such as a DSP, a VLIW, or other micro-controller, or can
be conventional CPUs having one or more processing cores, including specialized GPU-

based cores in a multi-core CPU.

16

10

15

20

25

30

WO 2014/062948 PCT/US2013/065497

[0060] In addition, the simplified computing device of FIG. 9 may also include other
components, such as, for example, a communications interface 18. The simplified
computing device of FIG. 9 may also include one or more conventional computer input
devices 20 (e.g., pointing devices, keyboards, audio input devices, video input devices,
haptic input devices, devices for receiving wired or wireless data transmissions, etc.). The
simplified computing device of FIG. 9 may also include other optional components, such
as, for example, one or more conventional display device(s) 24 and other computer output
devices 22 (e.g., audio output devices, video output devices, devices for transmitting wired
or wireless data transmissions, etc.). Note that typical communications interfaces 18,
input devices 20, output devices 22, and storage devices 26 for general-purpose computers
arc well known to those skilled in the art, and will not be described in detail herein.

[0061] The simplified computing device of FIG. 9 may also include a variety of computer
readable media. Computer readable media can be any available media that can be
accessed by computer 10 via storage devices 26 and includes both volatile and nonvolatile
media that is either removable 28 and/or non-removable 30, for storage of information
such as computer-readable or computer-executable instructions, data structures, program
modules, or other data. Computer readable media may comprise computer storage media
and communication media. Computer storage media refers to tangible computer or
machine readable media or storage devices such as DVD’s, CD’s, floppy disks, tape
drives, hard drives, optical drives, solid state memory devices, RAM, ROM, EEPROM,
flash memory or other memory technology, magnetic cassettes, magnetic tapes, magnetic
disk storage, or other magnetic storage devices, or any other device which can be used to
store the desired information and which can be accessed by one or more computing
devices.

[0062] Retention of information such as computer-readable or computer-executable
instructions, data structures, program modules, etc., can also be accomplished by using
any of a variety of the aforementioned communication media to encode one or more
modulated data signals or carrier waves, or other transport mechanisms or
communications protocols, and includes any wired or wireless information delivery
mechanism. Note that the terms “modulated data signal” or “carrier wave” generally refer
to a signal that has one or more of its characteristics set or changed in such a manner as to
encode information in the signal. For example, communication media includes wired
media such as a wired network or direct-wired connection carrying one or more modulated

data signals, and wireless media such as acoustic, RF, infrared, laser, and other wireless

17

10

15

20

25

WO 2014/062948 PCT/US2013/065497

media for transmitting and/or receiving one or more modulated data signals or carrier
waves. Combinations of the any of the above should also be included within the scope of
communication media.

[0063] Further, software, programs, and/or computer program products embodying some
or all of the various ranking technique embodiments described herein, or portions thereof,
may be stored, received, transmitted, or read from any desired combination of computer or
machine readable media or storage devices and communication media in the form of
computer executable instructions or other data structures.

[0064] Finally, the ranking technique embodiments described herein may be further
described in the general context of computer-executable instructions, such as program
modules, being executed by a computing device. Generally, program modules include
routines, programs, objects, components, data structures, etc., that perform particular tasks
or implement particular abstract data types. The embodiments described herein may also
be practiced in distributed computing environments where tasks are performed by one or
more remote processing devices, or within a cloud of one or more devices, that are linked
through one or more communications networks. In a distributed computing environment,
program modules may be located in both local and remote computer storage media
including media storage devices. Still further, the aforementioned instructions may be
implemented, in part or in whole, as hardware logic circuits, which may or may not
include a processor.

3.0 Other Embodiments

[0065] It is noted that any or all of the aforementioned embodiments throughout the
description may be used in any combination desired to form additional hybrid
embodiments. In addition, although the subject matter has been described in language
specific to structural features and/or methodological acts, it is to be understood that the
subject matter defined in the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features and acts described above are

disclosed as example forms of implementing the claims.

18

WO 2014/062948 PCT/US2013/065497

CLAIMS
1. A computer-implemented process for ranking candidate transformation
programs, cach comprising program expressions comprising sub-expressions, to establish
a ranked group of one or more transformation programs each of which produces an output
string in a user-desired form from input strings entered by a user, consistent with each of
one or more user-supplied input-output examples, comprising:
using a computer to perform the following process actions:
inputting the set of candidate transformation programs, which were
inductively synthesized from the one or more user-supplied input-output examples, each
of which produces an output string in a form exhibited by each user-supplied output
example from each user-supplied input example;
for each candidate transformation program,
for each sub-expression of the candidate transformation program, in
an order from smaller to larger, for which a ranking scheme has been established,
establishing a likelihood score using the ranking scheme established for that sub-
expression, and
computing an overall ranking score for the candidate transformation
program from the sub-expression likelihood scores established for that candidate

transformation program.

2. The process of Claim 1, wherein a sub-expression is either a regular
expression or a position expression or an atomic expression or a concatenate expression,
and wherein said ranking schemes are established for ranking each of said regular
expressions, position expressions, atomic expressions, and concatenate expressions, in that

order.

3. The process of Claim 2, wherein an atomic expression is either a constant
string expression or a substring expression, and wherein the process action of establishing
ranking schemes for atomic expressions, comprises the actions of:

identifying whether the atomic expression is a constant string expression or
a substring expression;

inputting a training set of tasks, where each task consists of multiple input-
output examples;

generating training data from the training set; and

19

WO 2014/062948 PCT/US2013/065497

training a machine learning classifier to assign a likelihood score to each

substring expression and each constant string expression.

4. The process of Claim 3, wherein the process action of assigning a
likelihood score to each substring expression comprises assigning a likelihood score
having a value in a range from 0 to 1, and wherein the process action of assigning a
likelihood score to cach constant string expression comprises assigning a prescribed

likelihood score value.

5. The process of Claim 3, wherein the process action of generating training
data from the training set of tasks, comprises the actions of:
for each task in the training set,
for each input-output example in the task,

establishing a set of transformation programs inductively
synthesized from the input-output example, each of which produces the output string in
the example from a tuple of input strings in the example,

establishing a set of positive training sub-expressions from
the set of transformation programs,

establishing a set of negative training sub-expressions from
the set of transformation programs, and

generating the training data from each substring expression

in the sets of positive and negative training sub-expressions.

6. The process of Claim 5, wherein the process action of generating training
data from each substring expression in the sets of positive and negative training sub-
expressions, comprises the actions of:

inputting a set of one or more features, each of said features being
indicative of whether a substring in the output string is produced by a substring expression
in the sets of positive and negative training sub-expressions;

for each substring expression in the sets of positive and negative training
sub-expressions, generating a feature vector comprising a prescribed order of elements
wherein each element, except one reserved to a class label, corresponds to a feature value
respectively associated with one of said features, said feature vector generation

comprising,

20

WO 2014/062948 PCT/US2013/065497

for each of said features in an order corresponding to the prescribed
order of elements, assigning a feature value having a first binary value if the feature is
exhibited in a substring in the output string produced by the substring expression under
consideration to the corresponding feature vector element, and assigning a feature value
having a second binary value if the feature is not exhibited in a substring in the output
string produced by the substring expression under consideration to the corresponding
feature vector element, and

for the feature vector element reserved for said class label, assigning
one binary value if the substring expression is in the set of positive training sub-
expressions, and assigning a different binary value if the substring expression is in the set

of negative training sub-expressions.

7. The process of Claim 5, wherein the process action of establishing a set of
positive training sub-expressions from the set of transformation programs established from
an input-output example in a task comprises designating each sub-expression found in the
intersection of all sets of transformation programs synthesized from the input-output

examples in said task as a positive training sub-expression.

8. The process of Claim 7, wherein the process action of establishing a set of
negative training sub-expressions from the set of transformation programs established
from the input-output example in the task comprises designating each sub-expression in
the set of transformation programs that is not identified as positive training sub-expression

as a negative training sub-expression.

9. The process of Claim 5, wherein the process action of establishing ranking
schemes for regular expressions and position expressions, comprises an action of
computing a dictionary that maps sub-expressions that generate an output substring that
takes values from a set having a finite number of pre-defined tokens to a frequency-based

score based on their frequencies in the sets of positive training sub-expressions.
10. The process of Claim 2, wherein the process action of establishing ranking

schemes for concatenate expressions comprises combining scores for individual atomic

expressions found in a concatenate expression.

21

WO 2014/062948 PCT/US2013/065497

1/5

100 — Input The Set Of Candidate Transformation
Programs

v

For Each Sub-Expression Of Each Candidate
102 Transformation Program For Which A Ranking
\ Scheme Has Been Established (From Smaller To
Larger Sub-Expressions), Establish A Likelihood
Score Using The Ranking Scheme Established For
That Sub-Expression

v

104 For Each Candidate Transformation Program,
\ Compute An Overall Ranking Score From The Sub-
Expression Likelihood Scores Established For That
Candidate Transformation Program

FIG. 1

200 \ Identify Whether The Atomic Expression Is A
Constant String Expression Or A Substring
Expression

v

Input A Training Set Of Tasks

v

Generate Training Data From The Training Set

v

Use The Training Data To Train A Machine Learning

206 "\ Classifier To Assign A Likelihood Score To Each

Substring Expression And Each Constant String
Expression

FIG. 2

WO 2014/062948 PCT/US2013/065497

2/5

<

300 Seclect A Previously Unselected Input-Output
Example From The Task

v

302 .
N Inductively Synthesize A Set Of Transformation
Programs From The Selected Input-Output Example

v

304\ Establish A Set Of Positive Training Sub-
Expressions From The Set Of Transformation
Programs

¢ No

306 ~ Establish A Set Of Negative Training Sub-
Expressions From The Set Of Transformation
Programs

v

Generate A Dictionary That Maps Sub-Expressions
That Generate An Output Substring That Takes Values
308\ From A Set Having A Finite Number Of Pre-Defined
Tokens (i.e., The Regular And Position Expressions)

To A Frequency-Based Score Based On Their
Frequencies In The Sets Of Positive Training Sub-
Expressions

v

310 For Each Substring Expression From Both The
\ Positive And Negative Training Sets Of Sub-
Expressions, Generate Training Data For Feature-
Based Ranking

312

Have All
Input-Output Examples In The
Task Been Selected And

Processed
()

Yes

FIG. 3

WO 2014/062948 PCT/US2013/065497

3/5

400 Input A Set Of One Or More Features, Where Each Feature Is
\ Indicative Of Whether A Substring In The Output String Is
Produced By A Substring Expression In The Sets Of Positive And
Negative Training Sub-Expressions

v

For Each Substring Expression In The Sets Of Positive And
Negative Training Sub-Expressions, Generate A Feature Vector
By, For Each Of The Features In An Order Corresponding To The
402_\ Prescribed Order Of Elements, Assigning A Feature Value Having

A First Binary Value If The Feature Is Exhibited In A Substring In
The Output String Produced By The Substring Expression Under
Consideration And Assigning A Feature Value Having A Second
Binary Value If The Feature Is Not Exhibited In A Substring In The
Output String Produced By The Substring Expression

FIG. 4

500\ Identify The Likelihood Score For Each Regular
Expression Using A Frequency-Based Ranking
Scheme

v

502~| Identify The Likelihood Score Of Each Position
Expression Using The Frequency-Based Ranking
Scheme

v

504
\ Identify The Likelihood Score Of Each Atomic
Expression Using A Feature-Based Ranking Scheme

v

506\ Identify The Likelihood Score Of Each Concatenate
Expression Using A Path-Based Ranking Scheme

FIG. 5

WO 2014/062948 PCT/US2013/065497

4/5

600 \ Input A Set Of Candidate Transformation
Programs That Were Inductively Synthesized
From One Or More User-Supplied Input-Output
Examples

v

602\ Rank The Set Of Candidate Transformation

Programs To Identify A Highest-Ranked
Transformation Program

!

604\ Apply The Highest-Ranked Transformation
Program To A User-Supplied Input String To
Produce An Output String

FIG. 6

Input vy Output
Roger My Roger

Simon
Benjamin

FIG. 7

WO 2014/062948

5/5

PCT/US2013/065497

In Py

Ot

Cambridge

243 Fiver Drnve, Cambridge, MA 02143
ST Wright Ave, Los Angeles, UA et

L0 B S

G 12810 SL Seatitle, WA sl

360 Hearst Ave, San Francisen, CA W42

FIG. 8

12\ -----------

SIMPLIFIED COMPUTING DEVICE 10

”~ [y g meeeeccecscscccccss Y

PROCESSING i DISPLAY i P28~ E

UNIT(S) i DEVICE(®S) | ' i REMOVABLE § i

‘epencancccaa ’ M s 0

24 /K p L STORAGE o

. --------

D T T PEPRERPEE pCTTTTRONTTTTY

16 : ’° y + REMOVABLE i i

A vy ,oeea X/ 14 1 _STORAGE §

] [] []

SYSTEM ' : ' 30 '

--- GPU(S) o ' '

MEMORY [)i © : i STORAGE DEVICES |

LI 2
0 g ooTTessSescosnoooososEsTTTA '
P STmmTessseseses ' '
----. ' :

[} [L 3

i INPUT &4 OUTPUT i i COMMUNICATIONS §
i DEVICE(S) : i DEVICE(S) & & INTERFACE |
Cecccceccremea ¢ PR -me

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings

