(54) 发明名称

一次性自动无痛安全采血器

(57) 摘要

本发明涉及采血针，公开了一次性自动无痛安全采血器，其包括外壳、内套、针体组件和弹簧，针体组件内有穿刺针管，所述的针体组件一端套在内套内，另一端伸入外壳内，内套上设有钩爪固定面和凸扣，针体组件上设有钩爪，外壳内壁上设有钩爪导向斜面和凸扣限位筋，钩爪一端与钩爪固定面配合，另一端与钩爪导向斜面配合。本发明只需扭转短翼板，对准采血孔，推动外壳，即可完成采血穿刺操作，简单方便。穿刺后，针尖回缩入内套中，内套和外壳固定，从根本上防止了二次使用的问题。此外还可控制穿刺的深度。
1. 一次性自动无痛安全采血器，包括外壳 (1)、内套 (2)、针体组件 (3) 和弹簧 (5)，针体组件 (3) 内有穿刺针管 (4)，其特征在于：所述的针体组件 (3) 一端套在内套 (2) 内，另一端伸入外壳 (1) 内，内套 (2) 上设有钩爪固定面 (23) 和凸扣 (25)。针体组件 (3) 上设有钩爪 (34)，外壳 (1) 内壁上设有钩爪导向斜面 (133) 和凸扣限位筋 (12)，钩爪 (34) 一端与钩爪固定面 (23) 配合，另一端与钩爪导向斜面 (133) 配合。

2. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：在外壳 (1) 内壁上设有内套闭合固定凹筋 (134)，内套闭合固定凹筋 (134) 上设有凸点 (1341)，内套 (2) 外壁设有可与凸点 (1341) 相扣合的凹槽 (28)。

3. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：所述的钩爪 (34) 包括钩爪连接筋 (341) 和钩爪扣 (342)，钩爪连接筋 (341) 与钩爪 (34) 相连并向右端延伸，钩爪扣 (342) 占设于钩爪连接筋 (341) 的右端，钩爪扣 (342) 设有垂直于钩爪连接筋 (341) 的钩爪勾住面 (3421)，钩爪勾住面 (3421) 与钩爪固定面 (23) 配合。

4. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：所述的内套 (2) 内部设有针体组件位移腔 (21)，针体组件位移腔 (21) 左端设有针体组件限位端面 (213)，针体组件限位端面 (213) 上设有采血孔 (22)，采血孔 (22) 外边缘设有采血部位接触平面 (223)，内套 (2) 外部上下设有条形滑动翼 (24)，凸扣 (25) 设置在条形滑动翼 (24) 上，条形滑动翼 (24) 右端设有钩爪固定面 (23)。

5. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：所述的针体组件 (3) 包括针头保护杆 (32) 和弹簧安装杆 (37)，弹簧 (5) 套在弹簧安装杆 (37) 上，针头保护杆 (32) 的左端设有筋翼板 (31)，采血孔 (22) 内设有筋翼板贯穿槽 (221)，针头保护杆 (32) 为六棱柱，针头保护杆 (32) 上设有易于折断的凹陷缺口 (33)。

6. 根据权利要求5所述一次性自动无痛安全采血器，其特征在于：弹簧安装杆 (37) 为圆柱体，弹簧安装杆 (37) 右端设有针尖露出长度调节柱 (372)。

7. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：所述的外壳 (1) 内部左端设有内套位移腔 (13)，内套位移腔 (13) 右端上下设有钩爪导向斜面 (133)，外壳 (1) 内部右端设有弹簧安装杆位移孔 (14)，弹簧安装杆位移孔 (14) 内设有弹簧限位台阶 (143)，弹簧限位台阶 (143) 左侧的弹簧安装杆 (141) 的孔径大于弹簧限位台阶 (143) 右侧的弹簧安装杆延伸孔 (142) 的孔径，弹簧 (5) 的直径大于弹簧安装杆延伸孔 (142) 的孔径，外壳 (1) 外部上下设有凹扣位移槽 (11)，凹扣位移槽 (11) 左端设有凹扣限位筋 (12)。

8. 根据权利要求5所述一次性自动无痛安全采血器，其特征在于：弹簧安装杆 (37) 上设有防滑凸筋 (371)，弹簧安装杆 (141) 内壁上设有凸筋 (1411)。

9. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：内套 (2) 的条形滑动翼 (24) 右端设有滑动翼斜面 (27)，作动主体 (35) 右端设有斜面 (36)。

10. 根据权利要求1所述一次性自动无痛安全采血器，其特征在于：内套 (2) 外部前后壁上设有自动装配用凸筋 (26)，外壳 (1) 左端前后壁设有方形缺口 (16)，外壳 (1) 右端前后壁设有止滑凸筋 (15)。
一次性自动无痛安全采血器

技术领域

本发明涉及采血针，尤其涉及一次性自动无痛安全采血器。

背景技术

采血器是储存皮肤获取血液样本的采血工具。常见的采血器包括以下四中类型：

一、普通采血针

普通采血针是将不锈钢针管通过注塑包覆于塑料结构中，包覆针尖的部位设有一凹陷槽便于扭转将其破坏而使针尖露出，包覆针尖的外部为扁平形便于扭转施力于包覆针尖塑料表层。使用时，扭转外扁平形部位，破坏包覆针尖内部塑料使针尖露出，再将针尖刺穿采血部位之皮肤完成采血操作。采血针使用一次后即被抛弃。有部分采血针将扭转施力的扁平形部位改变成圆锥状，抛弃时将圆锥状盖住针尖，对针尖起一定安全保护作用。但是，仍存在针管被二次利用和意外伤伤的可能。

二、笔式采血器

笔式采血器外观如签字笔，中段依靠螺纹旋转连接。内部有滑道，滑道中有一针体安装固定座，针体安装固定座后端装设一弹簧，外物有与针体安装固定座结合的一连接柄，及类似板机的启动压扣钮；使用时，旋开螺纹后将前端外套分离，再取一个类似上述采血针（不同品牌的采血笔内部的安装座有差异，因此其与其对应的专业采集针），扭转破坏包覆针尖内部塑料使针尖露出，再将针体插入针体安装固定座，再将先前分离外套旋转螺纹与采血笔本体结合；拉动外物连接柄使针体安装固定座前端弹簧同部被压缩，直到针体安装固定座与板机扣上固定位置，完成采血准备动作；将采血笔前端中心孔贴紧采血部位，向下启动压扣钮，内部板机释放针体安装固定座，因弹簧伸张力使针体安装固定座上针尖朝采血部位刺穿皮肤表层，完成采血动作；最后再旋转螺纹分离外套，取出已用之采集针将之抛弃再将分离外套旋转螺纹与本体恢复结合，完成全部操作过程。如上述普通采集针，有部分扭转施力处为圆锥状，抛弃前请将圆锥状盖住针尖，抛弃后可避免他人意外伤伤事件。由此可知，整个过程相当麻烦费时，且仍存在针管二次利用和意外伤伤的可能。

三、一种一次性安全采血器

该一次性安全采血器包括一外壳、一包覆不锈钢针管的针体组件、一弹簧（或弹性机构）、及施压扣钮。弹簧套在针体组件前端，再将其装入外壳中空内，使针体组件通过外壳前端贯穿之中心孔露出外壳，装上施压扣钮。使用时首先旋转前端露出针体组件之施力柄，破坏包覆针体塑料表层并将其取出，使针体组件之针尖暴露在外壳内部，或摘下护盖，再将前端孔贴紧采血部位，利用手指向施压扣扭施力，或直接持外壳施力，弹簧被压缩使针尖从孔露出刺穿采血部位皮肤，完成采血操作，打开发血器后侧因弹簧张力使针尖退回外壳内，对针尖起安全保护作用。

四、另一种一次性安全采血器

该一次性安全采血器包括一外壳、一包覆不锈钢针管的组件、一弹簧；外壳呈一中空方形结构，用于安装针管组件，其外侧一侧设有一类似板机的压柄，板机扣勾伸入中空孔，可
对针管组件起扣住及释放作用；外壳中空内部安装针管组件，针管组件朝向针尖侧为一便于扭转施力的筋翼板露出外壳，反向安装固定弹簧。使用时，首先将筋翼板推入外壳，对弹簧起压缩作用直到与板机扣勾钩上固定；再扭筋翼板破坏包覆针体塑料表层，并取出破坏后的筋翼板，使针尖露出，此时露出的针尖隐藏在内套中孔内，再把准备采血部位贴住采血孔，压下外壳板机之压柄，板机扣勾启动释放针管组件，因弹簧张力使针体组件针尖弹向采血部位并刺穿皮肤表层，随后因弹簧张力使针体组件针尖缩回隐藏内套中孔内，对针尖起安全保护作用。

[0006] 上述四种产品皆存在结构缺陷：

采血针和采血笔，虽然近年来有不少采血针产品已加多血帽子形体结构，用于在使用后可将针头作保护，但在操作过程针尖暴露，很难避免针扎外伤，更在由医护人员及第二人协助采血操作，尤其盖上保护帽时更具危险。

[0007] 第三种的安全采血器，因使用压扣施力使针尖刺穿皮肤表层，难免使病患产生紧张焦虑的情绪。

[0008] 第四种的安全采血器，虽对第三种安全采血器的缺陷有所改善，但在操作时首先要将筋翼板推入外壳，对弹簧压缩直到与板机扣勾钩上固定，此点极可能误触外壳板机之压柄，则将破坏采血器功能，造成资源之浪费。此外，如未依步骤先推入筋翼板使弹簧压缩与板机扣勾钩上固定，而是先旋转筋翼板破坏包覆针体塑料表层，也将破坏采血器功能，造成资源之浪费。

发明内容

[0009] 本发明针对现有技术中存在的采血器使用操作复杂，易误操作造成浪费；无法从根本上防止二次使用和意外扎伤问题的不足，提供了一种操作简便，可从根本上防止二次使用和意外扎伤的新型自锁安全采血器。

[0010] 为了解决上述技术问题，本发明通过下述技术方案得以解决：

一次性自动无痛安全采血器，包括外壳、内套、针体组件和弹簧，针体组件内有穿刺针管，所述的针体组件一端设在内套内，另一端伸入外壳内，内套上设有钩爪固定面和凸扣，针体组件上设有钩爪，外壳内壁上设有钩爪导向斜面和凸扣限位筋，钩爪一端与钩爪固定面配合，另一端与钩爪导向斜面配合。

[0011] 作为优选，在外壳内壁上设有内套闭合固定凸筋，内套闭合固定凸筋上设有凸点，内套外壁设有可与凸点相扣合的凹槽。

[0012] 作为优选，所述的钩爪包括钩爪连接筋和钩爪扣，钩爪连接筋与钩爪相连并向左端延伸，钩爪扣设于钩爪连接筋的右端，钩爪扣设有垂直于钩爪连接筋的钩爪勾住面，钩爪勾住面与钩爪固定面配合。

[0013] 作为优选，所述的内套内部设有针体组件位移腔，针体组件位移腔左端设有针体组件限位端面，针体组件限位端面上设有采血孔，采血孔外边缘设有采血部位接触平面，内套外部上下设有条形滑动翼，凸扣设置在条形滑动翼上，条形滑动翼右端设有钩爪固定面。

[0014] 作为优选，所述的针体组件包括针头保护杆和弹簧安装杆，弹簧套在弹簧安装杆上，针头保护杆的左端设有筋翼板，采血孔内设有筋翼板贯穿槽，针头保护杆为六棱柱，针头保护杆上设有易于折断的凹陷缺口。
筋翼板便于扭转施力。凹陷缺口使针头保护杆易于扭转后与作动主体脱离使露出针尖。

作为优选，弹簧安装杆为圆柱体，弹簧安装杆右端设有针尖露出长度调节柱。

因每个患者采血部位皮肤厚度及采血需求量的差异，对穿刺深度和伤口大小亦有不同，伤口大小由针管内径大小来决定，但穿刺深度与针管长度相当。考虑到穿刺针管长度L一致化便于生产管理，所以在针体组件的弹簧安装杆右端设计为锥形，在锥形的尾端假设一小段针尖露出长度调节柱，在生产过程只要在注塑模具上改变针尖露出长度调节柱的长度即可调整注塑时穿刺针管置入的基准点，等于改变针尖露出刺穿的深度。当针管长度L为固定值时，则针尖露出长度调节柱长度为a时，则针尖露出长度=da；当针尖露出长度调节柱长度为a1时，则针尖露出长度=da1；当针尖露出长度调节柱长度为a2时，则针尖露出长度=da2；即a值越小而d值越大，相对应于刺穿深度越深。

作为优选，所述的外壳内部左端设有内套位移槽，内套位移腔右端上下设有钩爪导向斜面，外壳内部右端设有弹簧安装杆位移孔，弹簧安装杆位移孔内设有弹簧限位台阶，弹簧限位台阶左侧的弹簧安装孔的孔径大于弹簧限位台阶右侧的弹簧安装杆延伸孔的孔径，弹簧的直径大于弹簧安装杆延伸孔的孔径，外壳外部上下设有凸扣位移槽，凸扣位移槽左端设有凸扣限位筋。

作为优选，弹簧安装杆上设有防滑凸筋，弹簧安装孔内壁上设有凸筋。

防滑凸筋可沿弹簧安装杆圆周方向均布四条，用于固定弹簧防止松动。凸筋可设四条，防止螺旋弹簧在弹簧安装孔内松动。

作为优选，内套的条形滑动翼右端设有滑动翼斜面，作动主体右端设有斜面。滑动翼斜面的设计可避免与外壳的钩爪导向斜面位移时产生干扰；作动主体斜面可避让对钩爪位移造成干涉，便于钩爪沿钩爪导向斜面移动脱离内套。

作为优选，内套外部前后壁上设有自动装配用凸尖，外壳左端前后壁设有方形缺口，外壳右端前后壁设有止滑凸筋。

自动装配用凸尖是自动装配生产设备所必须，方形缺口是自动装配用凸尖的滑动槽，止滑凸筋可平行设置数根，防止手握时打滑。

组装时，先将针体组件的针头保护杆穿过内套的采血孔，钩爪勾住内套贴靠钩爪固定面，螺线弹簧套于弹簧安装杆，内套上下设有凸扣，两凸扣之间的距离略大于外壳上下两凸扣限位筋的距离，用较大的力量推动内套将凸扣强制推入凸扣限位槽，完成组装。

使用时，一手握住外壳，另一手旋转内套外部的筋翼板，使针头保护杆与作动主体分离露出针尖；将消毒后的采血部位贴靠采血孔，另一手握住外壳向采血部位施力，螺线弹簧被压缩，内套滑动插入外壳中，钩爪滑入接触钩爪导向斜面后，将被迫沿钩爪导向斜面向轴线移动，钩爪勾住内套脱离钩爪固定面，针体组件脱离了内套的限制后，在被压缩的螺线弹簧的弹力作用下冲向采血孔，针尖冲出采血口刺穿采血部位的皮肤，作动主体限位端面限制作动主体的移动终点，从而控制针尖刺穿深度，螺线弹簧释放压缩弹力使针尖完成刺穿采血后，螺线弹簧将恢复自由长度产生回拉而带动针尖插入内套；内套插入外壳后，外壳的凸点与内套的凹槽相扣合，从而使内套和外壳固定，达到无法重复使用及安全防护双重效果。

按照本发明的技术方案，只需扭转筋翼板，对准采血孔，推动外壳，即可完成采血。
穿刺操作，简单方便。穿刺后，针尖回缩入内套中，内套和外壳固定，从根本上防止了二次使用的问题。此外还可控制穿刺的深度。

附图说明
[0028] 图 1 为本发明实施例 1 的结构示意图。
[0029] 图 2 为图 1 分解示意图。
[0030] 图 3 为图 1 中针体组件的结构示意图。
[0031] 图 4 为图 1 中内套的结构示意图。
[0032] 图 5 为图 1 中外壳的结构示意图。
[0033] 图 6 为图 1 中内部结构示意图。
[0034] 图 7 为图 1 中内部结构示意图。
[0035] 图 8 为针头保护杆被扭断后针尖露出的结构示意图。
[0036] 图 9 为外壳向左运动，钩爪沿钩爪导向斜面运动与内套脱离的结构示意图。
[0037] 图 10 为弹簧释放弹力，针尖穿出采血孔的结构示意图。
[0038] 图 11 为弹簧恢复自然长度，针尖回缩入内套的结构示意图。
[0039] 图 12 为内套与外壳锁定的结构示意图。
[0040] 图 13 为针尖露出长度调节柱调节针尖露出长度的示意图。

具体实施方式
[0041] 下面结合附图 1-13 与具体实施方式对本发明作进一步详细描述：

实施例 1

一次性自动无痛安全采血器，包括外壳 1、内套 2、针体组件 3 和弹簧 5，针体组件 3 内有穿刺针管 4，所述的针体组件 3 —端套在内套 2 内，另一端伸入外壳 1 内，内套 2 上设有钩爪固定面 23 和凸扣 25，针体组件 3 上设有钩爪 34，外壳 1 内壁上设有钩爪导向斜面 133 和凸扣限位筋 12，钩爪 34 —端与钩爪固定面 23 配合，另一端与钩爪导向斜面 133 配合。

在外壳 1 内壁上设有内套闭合固定凸筋 134，内套闭合固定凸筋 134 上设有凸点 1341，内套 2 外壁设有与凸点 1341 相扣合的凹槽 28。

所述的钩爪 34 包括钩爪连接筋 341 和钩爪扣 342，钩爪连接筋 341 与钩爪 34 相连并由内套延伸，钩爪扣 342 凸设于钩爪连接筋 341 的右端，钩爪扣 342 设有垂直于钩爪连接筋 341 的钩爪勾住面 3421，钩爪勾住面 3421 与钩爪固定面 23 配合。

所述的内套 2 内部设有针体组件位移槽 21，针体组件位移槽 21 左端设有针体组件限位端面 213，针体组件限位端面 213 上设有采血孔 22，采血孔 22 外边缘设有采血部位接触平面 223，内套 2 外部上下设有条形滑动翼 24，凸扣 25 设置在条形滑动翼 24 上，条形滑动翼 24 右端设有钩爪固定面 23。

所述的针体组件 3 包括针头保护杆 32 和弹簧安装杆 37，弹簧 5 套在弹簧安装杆 37 上，针头保护杆 32 的左端设有筋翼板 31，采血孔 22 内设有筋翼板贯穿槽 221; 针头保护杆 32 为六棱柱，针头保护杆 32 上设有易于折断的凹陷缺口 33。

弹簧安装杆 37 为圆柱体，弹簧安装杆 37 右端设有钩爪导向斜面 372。

所述的外壳 1 内部左端设有内套位移腔 13，内套位移腔 13 右端上下设有钩爪导向斜面 132。
斜面 133，外壳 1 内部右端设有弹簧安装杆位移孔 14，弹簧安装杆位移孔 14 内设有弹簧限位台阶 143，弹簧限位台阶 143 左侧的弹簧安装孔 141 的孔径大于弹簧限位台阶 143 右侧的弹簧安装杆延伸孔 142 的孔径，弹簧 5 的直径大于弹簧安装杆延伸孔 142 的孔径，外壳 1 外部上下设有扣位移槽 11，扣位移槽 11 左端设有扣限位筋 12。

【0048】弹簧安装杆 37 上设有防滑凸筋 371，弹簧安装孔 141 内壁上设有凸筋 1411。弹簧 5 的外径大于弹簧安装孔 141 内壁之凸筋 1411 对角内径，弹簧 5 的内径小于弹簧安装杆 37 上之防滑凸筋 371 对角外径。

【0049】内套 2 的条形滑动翼 24 右端设有滑动翼斜面 27，作动主体 35 右端设有斜面 36。

【0050】内套 2 外部前后壁上设有自动装配用凸筋 26，外壳 1 左端前后壁设有方形缺口 16，外壳 1 右端前后壁设有止滑凸筋 15。

【0051】总之，以上所述仅为本发明的较佳实施例，凡依本发明申请专利范围所作的均等变化与修饰，皆应属本发明专利的涵盖范围。
图 3
图 4
图 5
图 8
图 9
图 10
图 11
图12