
(19) United States
US 20080320503A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0320503 A1
Kruglick et al. (43) Pub. Date: Dec. 25, 2008

(54) URL NAMESPACE TO SUPPORT Related U.S. Application Data
MULTIPLE-PROTOCOL PROCESSING

(63) Continuation of application No. 10/931.349, filed on
WITHIN WORKER PROCESSES Aug. 31, 2004, now Pat. No. 7,418,709.

(75) Inventors: Emily Kruglick, Sammamish, WA Publication Classification
(US); Geoffrey M. Kizer, Seattle, (51) Int. Cl.
WA S;S. Shallevue G06F 9/54 (2006.01)
Sammamish, WA (US); Erik B. (52) U.S. Cl. .. 71.9/332
Christensen, Seattle, WA (US); (57) ABSTRACT
Kenneth D. Wolf, Seattle, WA A server system in typical operation has a process manager
S.S.S.S.R.E.style, multiple listeners (each to receive requests for its protocols)
Nivogi Bellevue WA (US) and multiple worker processes that are each able to handle

yogi, s requests in multiple protocols. At server start-up, each lis
tener connects with the process manager via a pipe published

Correspondence Address: by the process manager. The listener then receives informa
LEE & HAYES PLLC tion via the process manager that includes information defin
421 W RIVERSIDEAVENUE SUTESOO ing the application(s) for which that listener is to “listen' and
SPOKANE, WA992.01 associating application(s) to application pool(s). When the

listener receives a request for Such an application, the listener
(73) Assignee: MICROSOFT CORPORATION, starts a queue for the associated application pool. The listener

Redmond, WA (US) may use a hierarchical matching scheme to determine the
associated application or application pool from the requested

(21) Appl. No.: 12/197.775 application. The process manager launches an appropriate
worker process to handle requests in the listener's protocol.

(22) Filed: Aug. 25, 2008 The worker process then makes a connection with the listener.

SERVER 102 - 100

st de PrOCESS WORKER
CONFIGURATION MANAGER PROCESSES

STORE 114
110 o

112

LISTENER LISTENER LISTENER
CLIENT CLIENT CLIENT

120(1) 120(2) 120(M) 104(1) 104(2) 104(N)

PRTCL. 1Y PRTCL. 2 PRTCL.M
PROTOCOL. 1 PROTOCOL2 PROTOCOLM

NETWORK
NETWORK iNTERFACE SERVICE 124

106

US 2008/0320503 A1

(NJF?TCZ??T(TEÒT(TNJÖZT(Z)OZI(TJÖZT LNBITOLNBITOINEITO
HENE ISITHENEILSITHENELSIT

ZIT ERHOLS

Dec. 25, 2008 Sheet 1 of 8

FITÕTT

Patent Application Publication

Patent Application Publication Dec. 25, 2008 Sheet 2 of 8 US 2008/0320503 A1

CONFIGURATION
STORE
112

WORKER
PROCESS MANAGER PROCESSES

110 114

LISTENER

12O1 ENDPOINT
INFORMATION

2O2

TCP/IP SERVICE
124

FIG 2

BALLOW SI EnEnO ETIHNA NOLLVINHO-IN? EÐNVHOXE

8 | 9

US 2008/0320503 A1

HENE ISIT O L LOENNOO

EnEnO LHV LS

FTIT SESSE OOH)- HEX HONN

EnEn?) LAHVIS

||SETTÖE}} BAIE OE}}

Dec. 25, 2008 Sheet 3 of 8

Edle | O || LOENNOO

HEÐVNVVNHENE ISIT

Patent Application Publication

Patent Application Publication Dec. 25, 2008 Sheet 4 of 8 US 2008/0320503 A1

CONNECT WITH APIPE FROM PROCESS MANAGER

402

RECEIVE AREQUEST THAT
NEEDSA NEW OUEUE 2

YES

START INTERNAL OUEUE AND WORKER PROCESS

SUPPORT COMMUNICATION BETWEEN WORKER PROCESS AND CLIENT WHILE
OUEUES ACTIVE

FIG. 4

408

410

Patent Application Publication Dec. 25, 2008 Sheet 5 of 8 US 2008/0320503 A1

502

DETECT PUBLICATION OF APIPE BY PROCESS MANAGER

ATTEMPT TO CONNECT TO PUBLISHED PIPE

CONNECTION MADE
2

YES

RECEIVE MAPPING INFORMATION RELATED TO

APPLICATION(S) AND APPLICATION POOL(S)

START LISTENING FORMATCHING REQUESTS

FIG. 5

Patent Application Publication

< Site name="site 1">

< bindings >

Dec. 25, 2008 Sheet 6 of 8 US 2008/0320503 A1

< add protocol = "http" binding info = "www.msn.com" />
< add protocol = "https" bindinginfo = "www.msn.com" />
< add protocol = "http" binding info = "www.xyz.com" />

< add protocol = "soap.tcp" bindinginfo = "*:90" />
</bindings >
K appS

< add path = "f" apppool = "Appool1" />

< add path = "/foo" apppool = "Appool.2" />

< add path = "/bar” apppool = "Apppool3' enabled Protocols = "soap. tcp" />
</apps >

< |Site D

Application: "I"

FIG. 6A

http: www.msn.com/
http: WWW.xyz.com/ >

https: www.msn.com/
SOap.tcp.

Application: "/foo"
http: www.msn.com/foo
http: www.xyz.com/foo
https: www.msn.com/foo

":k:90"/foo ^ SOap.tcp.

Application: "/bar"
http: www.msn.com/bar Ø
http: www.xyz.com/bar 2
https: www.msn.com/bar Ø
SOap.tcp.

Appool1

Appool2

Apppool3

FIG. 6B

FIG. 6C

FIG. 6D

Patent Application Publication Dec. 25, 2008 Sheet 7 of 8 US 2008/0320503 A1

702
COMPARE PATH PORTION OF URL TO APPLICATION(S) FOR

WHICH THE LISTENER IS LISTENING

704
DETERMINE WHETHER THE MAPPING IS DISABLED WHEN A

PATH PORTION MATCHES AN APPLICATION

706
OBTAIN AN APPLICATION POOLDENTIFIER ASSOCIATED WITH
A MATCHINGAPPLICATION WHEN THE MAPPING IS ENABLED

FIG. 7

Patent Application Publication Dec. 25, 2008 Sheet 8 of 8 US 2008/0320503 A1

800

REMOVABLE
STORAGE

SYSTEMMEMORY NON-REMOVABLE 810
STORAGE

PROCESSING
VOLATILE

OUTPUT DEVICES

NON-VOLATILE 802

INPUT DEVICE(s)

COMMUNICATION \
CONNECTION(S) A

FIG. 8

US 2008/0320503 A1

URL NAMESPACE TO SUPPORT
MULTIPLE-PROTOCOL PROCESSING

WITHIN WORKER PROCESSES

RELATED APPLICATIONS

0001. This patent application is a continuation application
of co-pending, commonly owned U.S. patent application Ser.
No. 10/931,349, filed on Aug. 31, 2004, and entitled “URL
NAMESPACE TO SUPPORT MULTIPLE-PROTOCOL
PROCESSING WITHIN WORKER PROCESSES. The
entire contents of the Application are hereby incorporated
herein by reference.

CROSS-REFERENCE TO RELATED
APPLICATIONS

0002 This application is related to co-filed and commonly
assigned U.S. patent application Ser. No. 10/931,600, filed on
Aug. 31, 2004, entitled “Method And System To Support A
Unified Process Model For Handling Messages Sent In Dif
ferent Protocols' and to co-filed and commonly assigned U.S.
patent application Ser. No. 10/931,437, filed on Aug. 31,
2004, entitled “Method And System To Support Multiple
Protocol Processing Within Worker Processes.”
0003. This application is also related to co-pending and
commonly assigned U.S. patent application Ser. No. 09/878,
950 entitled “Methods and Arrangements for Routing Server
Requests to Worker Processes Based on URL filed on Jun.
11, 2001; U.S. patent application Ser. No. 10/377,175 entitled
“An Improved Web Server Architecture' filed Feb. 28, 2003:
U.S. patent application Ser. No. 10/377,148 entitled “Ensur
ing the Health and Availability of Web Applications' filed
Feb. 28, 2003; and U.S. patent application Ser. No. 10/377,
176 entitled “Web Garden Application Pools Having a Plu
rality of User-Mode Web Applications' filed Feb. 28, 2003.

FIELD

0004 Various embodiments described below relate gener
ally to computers and like devices, and more particularly but
not exclusively to servers. Still more particularly, various
embodiments relate to connections to worker processes run
ning on servers.

BACKGROUND

0005. The popularity of the Internet, and in particular, the
portion of the Internet known as the World WideWeb, con
tinues to grow. The World WideWeb is basically a collection
of computers that are operatively linked together through a
plurality of communication networks. Typically, users access
the World Wide Web through a personal computer or like
device, which is connected to the Internet via a modem of
some type. For example, many users of the World Wide Web
connect to the Internet using a dial-up telephone networked
modem configured to establish data communications through
an Internet Services Provider (ISP). Other users connect to
the Internet with a faster modem, e.g., a cable modem, digital
subscriber line (DSL) modem, etc.
0006 Regardless of how a user ultimately connects to the
Internet/World WideWeb, once connected the user typically
accesses information available therein by using a web
browser or like application. A web browser is configured to
access web pages that are provided through the Internet by
other computers. For example, one or more web server com
puters may be connected to the Internet and configured with

Dec. 25, 2008

one or more web sites or other supporting web applications. A
web site typically has one or more static web pages and/or is
capable of supplying one or more dynamically generated web
pages that the user may selectively download, view and pos
sible interact with.
0007 To identify a particular web site/page the user will
typically select a hyper link to the desired web site/page or
may choose to manually enter a unique name for the web
site/page. The most common name used for identifying a web
site/page is known as the uniform resource locator (URL). For
example, by entering a URL, the user will be connected to an
appropriate web server which hosts the applicable web appli
cation(s), and the requested web page will be downloaded
using a hypertext transfer protocol (HTTP) to the web
browser. Within the Internet itself, the selected URL is asso
ciated with a specific Internet Protocol (IP) address. This IP
address takes the form of a unique numerical identifier, which
has been assigned to the targeted web server. Thus, a user may
also directly enter an IP address in the web browser. However,
the majority of users tend to favor the use of the more easily
remembered and entered URL.
0008. When a typical web server receives a request, e.g.,
an HTTP request, from a web browser, it needs to handle the
request. Hence, a web server process may be configured to
handle the request itself, or may need to pass the request on to
another process, e.g., a worker process, that is configured to
handle the request. Conventional web server processes typi
cally listen to a particular port (e.g., “port 80') provided by a
Transmission Control Protocol/Internet Protocol (TCP/IP)
kernel-mode provided service. When a request is received,
the web server process either handles the request or calls for
a worker process to handle the request. To determine which
worker process should handle the request, most conventional
web server processes either map the request to a physical file
or to a dynamic application of some sort, such as a dynamic
linked library (DLL) or common gateway interface (CGI)
process. Mapping is typically based on the extension pro
vided at the end of the URL. For example, an ".html exten
sion signifies that the desired web page is in a HyperText
Markup Language format. This extension could then be
found, for example, in a look-up table, and associated with a
specific worker process, if needed. Conversely, the .html
extension may identify that the web server process can handle
the request itself. There exists a plurality of extensions that
may be used to identify the applicable worker process.
0009. Once a specific worker process has been identified,
the worker process is started (as needed) and the request is
forwarded to the worker process. Such decisions and subse
quent routing of the request are conducted by user-mode
processes.
0010 Conventional web servers typically incur a delay
associated with such user-mode “process hops'. For such
web servers, which often receive thousands of requests each
minute, the delays associated with process hops can diminish
the efficiency of the web server. In certain configurations, the
web server process may be required to share a common com
munication port with one or more worker processes. This too
may further reduce the efficiency of the web server. In addi
tion, there can be a reduction in the robustness of the web
server in certain situations, e.g., when a worker process fails
to receive/complete the request, etc.

SUMMARY

0011. According to aspects of the various embodiments,
methods and systems are provided for connecting listeners

US 2008/0320503 A1

with worker processes to handle requests in multiple proto
cols. A system includes a server having a process manager,
one or more worker processes and one or more listeners. The
system also includes multiple clients that request services
from the server. The clients can send requests in different
protocols, and the server includes at least one listener to
process each Supported protocol. In one aspect, each listener
receives requests in its protocol, with different listeners pro
cessing different protocols so that multiple protocols are Sup
ported.
0012. In an initialization operation, each listener receives
endpoint information that the listeneruses to process received
requests. The endpoint information includes notification of
which application(s) that the listener is to listen for in requests
received from clients. The endpoint information also includes
associations (e.g., mappings) between applications and appli
cation pools. When the listener receives a request for an
application for which it is listening, the listener obtains an
identifier of the application pool associated with the
requested application and provides this identifier to the pro
cess manager to be used in launching a worker process for the
application pool.
0013. In another aspect, the listener compares a path por
tion of the request to identifiers of the applications referenced
in the endpoint information. In a further refinement, in com
paring the path portion to the application identifiers, the lis
tener searches for the longest hierarchical match between the
path portion and the application identifiers in the endpoint
information.
0014. In still another aspect, the endpoint information to
enable applications and/or application pools. Further, the
endpoint information can be updated to disable one or more
applications and/or application pools that were enabled.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 Non-limiting and non-exhaustive embodiments are
described with reference to the following figures, wherein
like reference numerals refer to like parts throughout the
various views unless otherwise specified.
0016 FIG. 1 is a functional block diagram illustrating a
client-server system having listeners Supporting multiple pro
tocols, according to one embodiment.
0017 FIG. 2 is a functional block diagram illustrating a
single listener in more detail, according to one embodiment.
0018 FIG. 3 is a diagram generally illustrating sequence
of events in establishing and using a connection between a
listener and a worker process, according to one embodiment.
0019 FIG. 4 is a flow diagram generally illustrating opera
tional flow of a particular listener in establishing a connection
with a worker process, according to one embodiment.
0020 FIG. 5 is a flow diagram generally illustrating a
process by which a listener can connect to a process manager,
according to one embodiment.
0021 FIGS. 6A-6D are diagrams generally illustrating an
association between applications and application pools,
according to one embodiment.
0022 FIG. 7 is a flow diagram generally illustrating a
process by which a listener can identify an application pool
that is associated with a requested application, according to
one embodiment.

0023 FIG. 8 is a functional block diagram generally
showing an illustrative computing environment in which vari

Dec. 25, 2008

ous embodiments of the techniques and mechanisms
described herein may be implemented.

DETAILED DESCRIPTION

0024. The following techniques and mechanisms are
directed to implementing methods and systems for establish
ing connections between listeners and worker processes to
Support handling of requests in different protocols. Generally
stated, a service (e.g., a listener) connects with a process
manager via a pipe published by the process manager. When
the listener receives a request, it starts an internal queue
corresponding to that request and signals (e.g., send a mes
sage or make a call) the process manager to launch a worker
process to handle the request. In signaling the process man
ager, the listener effectively indicates the protocol of the
request. For example, in one embodiment, each listener has
registered the protocol it handles with the process manager
during an installation process and, thus, inherently indicates
the request's protocol when it sends the message to the pro
cess manager. The process manager launches the worker pro
cess with an appropriate protocol handler so that the worker
process can correctly handle the requests. The worker process
then makes a connection with the listener and pulls requests
from the listener's internal queue. Specific implementations
of this general concept are described below.

General Overview of System

0025 FIG. 1 illustrates a client-server system 100 having
multiple listeners that each Support processing of requests in
a specified protocol, according to one embodiment. In this
embodiment, system 100 includes a server 102, clients 104
(1)-104(N), and a network 106 over which server 102 and
clients 104(1)-104(N) communicate. Further, during typical
operation, server 102 includes a process manager 110, a con
figuration store 112, worker processes 114 and listeners 120
(1)-120(M) in this embodiment. In some embodiments, each
listener includes a listener adapter (not shown) and a listener
component (not shown). In other embodiments, the listener
adapter and the listener component are separate components
and can be in separate processes. For each listener, the listener
adapter exchanges information with process manager 110
and configures the listener component based on information
received from process manager 110. Server 102, in this
embodiment, also includes a network interface service 124.
In one embodiment, network interface service 124 is imple
mented as a TCP/IP kernel mode service.
0026. In addition to describing methods and systems to
establish connections between listeners and worker processes
to support requests in multiple protocols, the general opera
tion of system 100 is described below to facilitate understand
ing of the operation of the various embodiments.
0027. In this exemplary embodiment, system 100 is used
to service requests in various protocols sent by clients 104
(1)-104(N) via network 106 for web services provided by
server 102. In some embodiments, listeners 120(1)-120(M)
and worker processes 114 are implemented as disclosed in the
aforementioned co-filed and commonly assigned U.S. patent
application Nos. Attorney Docket No. MS1-2108US and
Attorney Docket No. MS1-2107US, although in other
embodiments these components may be implemented differ
ently. Each of these elements is generally described below.
0028 Configuration store 112 is used to store information
about the configuration of server 102 to allow for associations

US 2008/0320503 A1

to be made between applications (which can include sites/
pages/services provided by server 102) and application pools.
For example, configuration store 112 may define multiple
application pools (as previously mentioned, an application
pool is a collection of applications that all route to the same
set of worker processes). In one embodiment, process man
ager 110 uses information in configuration store 112 to con
figure listeners 120(1)-120(M) to listen for application URIs
and identify appropriate application pools for servicing the
requests based on the application URIs. Configuration store
112 may be updated by an administrator.
0029 Process manager 110 generally operates to config
ure listeners 120(1)-120(M), and to launch and manage
worker processes 114 in response to requests received by
listeners 120(1)-120(M) from clients 104(1)-104(N). For
example, process manager 110 can configure listeners 120
(1)-120(M) using information from configuration store 112.
In other embodiments, process manager 110 may configure
listeners using information obtained in other ways.
0030 Listeners, after being configured by process man
ager 110, operate to receive service requests from clients
104(1)-104(N) and support communication between the cli
ents and worker processes 114. For example, in one embodi
ment, a listener examines a received request to identify an
appropriate application pool, as described in the aforemen
tioned U.S. patent application Nos. Attorney Docket No.
MS1-2107US and MS1-2109US). Each listener supports a
specific protocol so that together, the listeners Support han
dling of requests in multiple protocols.
0031 Worker processes 114 handle requests, which can
originate from clients in multiple protocols. As previously
described, worker processes 114 are launched by process
manager 110 in response to requests received by listeners
120(1)-120(M). Inside worker processes 114, protocol han
dlers are loaded to connect with listeners 120(1)-120(M) to
route requests to the appropriate application in the worker
process for servicing. A worker process can Support more
than one protocol. In this embodiment, each of the worker
processes is supported by a private (non-shared) interface
with a listener.
0032 Network interface service 124 provides services to
Support communication over network 106. In a typical
embodiment, network interface service 124 provides support
for TCP/IP communication over network 106. In other
embodiments in which network 106 uses a different protocol,
network interface service 124 would be configured to provide
support for this other protocol.
0033 FIG. 2 illustrates an embodiment of listener 120(1)
in more detail, which can also apply to listeners 120(2)-120
(M). This embodiment of listener 120(1) includes endpoint
information 202, and queues 204(1)-204(L). In addition, net
work interface service 124 (FIG. 1) is implemented as a
TCP/IP service in this embodiment.
0034. In this embodiment, endpoint information 202 is
obtained from configuration store 112 via process manager
110 as indicated by an arrow 220. As previously described,
endpoint information 202 can include information for con
figuring listener 120(1) to listen for one or more particular
applications when receiving requests. In addition, endpoint
information 202 can include information for associating
detected applications to appropriate application pools. For
example, one such association may map multiple applications
(also referred to herein as a binding) to a particular applica
tion pool.

Dec. 25, 2008

0035 Queues 204(1)-204(L) are created by listener 120
(1) in response to requests received from clients (see FIG. 1)
via network 106. For example, after receiving a request, lis
tener 120(1) can identify an application pool associated with
an application in the request using endpoint information 202
and then create a new queue for the identified application
pool. The listener can then route the request to this internal
queue.
003.6 Listener 120(1) may also route received requests to
existing queues. For example, if listener 120(1) receives a
request that references an application that is mapped to an
application pool for which a queue has already been created,
then listener 120(1) will route that request to that existing
queue.
0037 FIG.3 illustrates a sequence of operations that occur
in establishing and using a connection between listener 120
(1) and one of worker processes 114 to handle a request
received in one of the Supported multiple protocols, accord
ing to one embodiment. This sequence can also apply to
listeners 120(2)-120(M). Referring to FIGS. 2 and 3, a con
nection is established between listener 120(1) and one of
worker processes 114 according to one embodiment as fol
lows.

0038. At an initialization phase of server 102 (FIG. 1),
process manager 110 publishes a pipe so that all listeners (that
have not yet connected to such a pipe) can attempt to connect
to the pipe. In this example, listener 120(1) is the first to detect
the published pipe. This operation is represented by an arrow
302 in FIG.3. As previously described, each listener supports
aparticular protocol, so that together listeners 120(1)-120(M)
Support client-server communication in multiple protocols.
0039. In response, listener 120(1) connects to the pipe.
This pipe connection is indicated by an arrow 220 in FIG. 2.
Other listeners that have not yet connected to a pipe that was
published by process manager 110 then have to wait for
process manager 110 to publish the next pipe and attempt to
connect. This operation is represented by an arrow 304 in
FIG. 3.

0040. Once listener 120(1) is connected to the pipe, pro
cess manager 110 provides endpoint information 202 to lis
tener 120(1). This operation is represented by an arrow 306 in
FIG. 3. As previously described, this information identifies
the application(s) that listener 120(1) is to listen for when
receiving requests. This information also creates and enables
associations between applications and application pools that
allow listener 120(1) to identify an appropriate application
pool for an application requested in a received request.
0041 Listener 120(1) then “listens' for requests for which

it can identify an application and an association of the appli
cation with an application pool. If the requested application is
associated with an application pool for which listener 120(1)
has already created a queue, then the request can be placed in
that queue. On the other hand, if the request's application is
associated with an application pool for which listener 120(1)
has not yet created a queue, then the request can be catego
rized as one that “needs a new queue'.
0042. When listener 120(1) receives a request that needs a
new queue (indicated by an arrow 308 in FIG. 3), listener
120(1) then starts a new internal queue such as queue 204(1),
for example. In this embodiment, listener adapter 122(1) also
signals process manager 110 to start a new queue in a worker
process, as indicated by arrow 222 in FIG. 2. As previously
described for one embodiment, the protocol of the request is
“automatically indicated by the listener in that each listener

US 2008/0320503 A1

Supports a particular protocol and has registered this protocol
with process manager 110. Thus, process manager 110 knows
the protocol of the request by the identity of the listener that
starts the queue. This operation is represented by an arrow
310 in FIG. 3.
0043 Process manager 110, in response to listener 120(1)
starting a queue, launches a worker process (i.e., one of
worker processes 114) corresponding to the application pool
associated with the requested application. The worker pro
cess can include one or more applications. This operation is
represented by an arrow 312 in FIG. 3.
0044. After launching the worker process, process man
ager 110 in this embodiment also causes the worker process to
start a queue for received requests and, in Some scenarios,
messages to be sent to listener 120(1) in handling the request.
This operation is represented by an arrow 314 in FIG. 3. In
Some scenarios, a worker process may have more than one
queue.
0045. In this embodiment, the worker process launched in
operation 314 also includes a protocol handler for each pro
tocol needed to Support the queue(s) started in that worker
process. In one embodiment, starting the queue in the worker
process causes the worker process to load a protocol handler
corresponding to the protocol supported by listener 120(1).
0046) With the protocol handler loaded, a connection
between the worker process and listener 120(1) is established
as indicated by an arrow or connection 224 in FIG. 2. As
described below, requests in the protocol accepted by listener
120(1) can be routed to and handled by the worker process via
connection 224. This operation of forming connection 224 is
represented by an arrow 318 in FIG. 3.
0047. In some embodiments, process manager 110 can
configure listener 120(1) to request a start of a new queue
when process manager 110 determines a new instance of a
queue is needed or desirable (e.g., as part of a recycling
operation to improve stability).
0048 Listener 120(1) and the worker process can then
exchange information. For example, listener 120(1) routes
requests to the worker process via connection 224 (FIG.2). In
addition, information may also flow over connection 224
from the worker process to the client via listener 120(1). This
operation is represented by an arrow 322 in FIG. 3. With
listeners 120(2)-120(M) (see FIG. 1) configured to receive
requests in other protocols, system 100 (FIG. 1) can advan
tageously service requests in multiple protocols.
0049. Although a particular sequence of operations is
describe above, in other embodiments the operations may be
performed in other sequences, with some operations being
performed multiple times, in different orders, and/or concur
rently with other operations.

Exemplary Operational Flow of a Listener
0050 FIG. 4 is a flow diagram generally illustrating a
process 400 by which a listener can establish a connection
with a worker process, according to one embodiment. For
example, in one embodiment, process 400 can be performed
by listener 120(1) as depicted in FIG. 2; however, different
listener implementations can be used to perform the process
in other embodiments. As previously mentioned, each lis
tener will have already registered with the process manager,
declaring the protocol it supports.
0051. At a block 402, a listener connects to a pipe pub
lished by a process manager. In one embodiment, for
example, the listener is implemented as in listener 120(1)

Dec. 25, 2008

(FIG. 2) and, thus, the listener can connect to the published
pipe as described above for operation 304 (FIG. 3). This
connection can be used by the process manager to configure
the listener. One embodiment of block 402 is described in
more detail below in conjunction with FIG. 5.
0.052 At a block 404, after being configured, the listener
waits to receive a request that requires a new queue. Continu
ing the above example in which the listener is implemented
like listener 120(1), the listener can determine whether a
received request needs a queue by determining whether it
already has a queue for the application pool associated with
the application requested by the request. If Such a queue
already exists, the listener routes the request to that queue,
and the operational flow returns to the beginning of block 404
to await another request. On the other hand, if the listener
receives a request for an application that is associated with an
application pool for which the listener does not have a queue,
the operational flow proceeds to a block 408.
0053 At block 408, the listener creates a queue in the
listener (also referred to herein as an internal queue). Con
tinuing the above example, the listener can create the internal
queue as described above for operation 310 (FIG. 3). In
addition, the listener signals the process manager to start the
worker process appropriate for the application pool associ
ated with the request's application. One embodiment of block
408 is described in more detail in conjunction with FIG. 6.
0054. At a block 410, the listener supports transfer of
information between the worker process and the client. Con
tinuing the above example, the listener can support this com
munication as described above for operation 322 (FIG.3). In
this way, the process manager need not be involved in the
normal handling of the request. However, in some embodi
ments, the process manager may monitor this communication
and start recovery operations if an error in the request han
dling should occur.
0055 Although process 400 is illustrated and described
sequentially, in other embodiments, the operations described
in the blocks may be performed in different orders, multiple
times, and/or in parallel.
0056 FIG. 5 is a flow diagram generally illustrating a
process 500 by which a listener can connect to a process
manager, according to one embodiment. This process can be
used to implement block 402 of process 400 (FIG. 4). For
example, in one embodiment, the process to connect to a
process manager can be performed by listener 120(1) as
depicted in FIG. 2; however, different listener implementa
tions can be used to perform the process in other embodi
mentS.

0057. At a block 502, the listener detects publication of a
pipe by the process manager. During start-up of the server, the
process manager would publish a pipe to connect with one of
the multiple listeners. All of the listeners that have not con
nected with the process manager during the start-up phase
would attempt to connect with the pipe.
0.058 At a block 504, the listener attempts to connect to
the published pipe. In one embodiment, the first listener to
attempt to connect will make the connection. In this embodi
ment, other attempts to connect to this published pipe will be
rejected or ignored.
0059. At a block 506, if the listener does not connect to the
published pipe at block 504, the operational flow loops back
to block 502. This looping continues until the listener does
connect to a pipe published by the process manager. However,

US 2008/0320503 A1

if the listener does connect to a published pipe, the opera
tional flow of process 500 proceeds to a block 508.
0060. At a block 508, the listener receives information
related to applications and application pools. As previously
described, this information can include associations or map
pings between applications and application pools. In addi
tion, the information can identify the application(s) in
received requests for which the listener is to listen.
0061. At a block 510, the listener then begins listening for
requests for matching application(s). For example, in one
embodiment, TCP/IP service 124 (FIG. 2) routes requests to
the listeners so that the protocol of the request is the same as
the protocol of the listener. When a listener receives a request
in this embodiment, the listener determines from the infor
mation received in block 508 whether the requested applica
tion has been mapped to an application pool. If not, the
listener can ignore the request, send an error message, etc. If
the request's application has been mapped to an application
pool, the process can proceed to block 404 (FIG. 4).
0062 Although process 500 is illustrated and described
sequentially, in other embodiments, the operations described
in the blocks may be performed in different orders, multiple
times, and/or in parallel.
0063 FIG. 6A illustrates a portion of an extensible
markup language (XML) document that defines a namespace
600 that associates applications with application pools. In this
embodiment, a URL in a request has a binding and an appli
cation. The binding includes a protocol (e.g., HTTP) and
binding information (e.g., “www.msn.com'). An application
is defined by a path (e.g., "/foo"), and is associated with an
application pool (e.g., "AppBooll'). For example, as shown
in FIG. 6A, the application “f” is mapped to application pool
"AppBool1. For this example embodiment, these mappings
are illustrated more clearly in FIGS. 6B-6D.
0064. In the example illustrated by FIG. 6A, the binding
information “*:90 associated with protocol soap.tcp indi
cates that the listener for the protocol soap. tcp should listen
for all IP addresses on port 90. In addition, in this embodi
ment, the path "/bar is mapped to application pool "App
Pool3, which is enabled for protocol soap. tcp. In this
embodiment, the default condition is that all of the protocols
for the path are enabled, but when a protocol is specified as
enabled, all other protocols are disabled.
0065. In some embodiments, this XML document portion

is stored in configuration store 112 (FIG. 1), which process
manager 110 (FIG. 1) can process to provide information
(e.g., endpoint information 202 in FIG. 2) to listeners 120(1)-
120(M) (FIG.1). In one embodiment, each listener's endpoint
information includes all of the mappings defined in
namespace 600. Each listener can be configured to listen on
its endpoint information only for requests with bindings hav
ing the protocol that listener Supports.
0066 FIGS. 6B-6D illustrate the mapping of applications

to the application pools defined by namespace 600 (FIG. 6A).
In this example embodiment, the application"/ is mapped to
application pool "AppBool1 (FIG. 6B); the application
“/foo' is mapped to application pool "AppBool2 (FIG. 6C);
and the application "/bar is mapped to application pool
"AppBool3.” (FIG. 6D). FIGS. 6B-6C also show the bindings
of each application that are defined in namespace 600.
Although applications are mapped to application pools, the
binding of a requested application may be disabled, as indi
cated by the “0” symbol in FIG. 6D for the binding “http:
www.msn.com/bar.

Dec. 25, 2008

0067 FIG. 7 is a flow diagram generally illustrating a
process 700 by which a listener can identify an application
pool that is associated with a requested application, according
to one embodiment. This process can be used to implement
block 510 (FIG. 5) and block 402 (FIG. 4). For example, in
one embodiment, listener 120(1) as depicted in FIG. 2 per
forms process 700 to identify an application pool that is
associated with a requested application. However, different
listener implementations can be used to perform the process
in other embodiments.
0068. At a block 702, the listener compares a path of the
URL in the received request to application(s) identified in the
information received in block 508 (FIG. 5). As previously
described, in order for this request to be routed to this listener,
the request must beformatted in the protocol supported by the
listener. In an embodiment in which FIGS. 6B-6D identify the
applications for which the listener is listening, the listener
would compare the path of the URL to the applications of
FIGS. 6B-6D to identify the application with the longest
hierarchical matching path portion. For example, if the
received request included the URL “www.msn.com/foo', the
application with the longest hierarchical matching path
would be that shown in FIG. 6C (i.e., application "/foo". In
contrast, if the URL were “www.msn.com/foobar, the appli
cation with the longest matching path would be that shown in
FIG. 6B (i.e., application “f”) because “/foobar” matches
neither '/foo’ nor “/bar.
0069. At a block 704, the listener determines whether the
binding of the URL for the matching application is disabled.
For example, in an embodiment having bindings for the appli
cation"/bar” as defined by FIG. 6D, for an HTTP request, the
mapping of the binding “www.msn.com” is disabled. Thus, if
the listener were configured to receive HTTP requests and
received a request for “www.msn.com/bar, the listener
would determine that the mapping is disabled and would
return an error message, or ignore the request, or some other
appropriate action.
(0070. At a block 706, the listener obtains the application
pool identifier associated with the application if the mapping
is not disabled. Continuing the example of block 702, the
URL “www.msn.com/foo' matches the application "/foo" as
shown in FIG. 6C, which is mapped to the application pool
identified as "AppBool2. The listener can then use this appli
cation pool identifier in operation 310 (FIG. 3) to start a
worker process to handle the request.
0071 Although process 700 is illustrated and described
sequentially, in other embodiments, the operations described
in the blocks may be performed in different orders, multiple
times, and/or in parallel.

Illustrative Operating Environment

0072 The various embodiments described above may be
implemented in computer environments of server 102 and
clients 104(1)-104(N) of system 100 (FIG. 1). An example
computer environment suitable for use in the server and/or
clients is described below in conjunction with FIG. 8.
0073 FIG. 8 illustrates an exemplary system for imple
menting embodiments of the invention. The environment
includes a computing device. Such as computing device 800.
In a basic configuration, computing device 800 typically
includes at least one processing unit 802 and memory 804.
Depending on the exact configuration and type of computing
device, memory 804 may be volatile (such as RAM), non
volatile (such as ROM, flash memory, etc.) or some combi

US 2008/0320503 A1

nation of the two. This most basic configuration is illustrated
in FIG. 8 by dashed line 806. Additionally, computing device
800 may also have additional features/functionality. For
example, computing device 800 may also include additional
storage (removable and/or non-removable) including, but not
limited to, magnetic or optical disks or tape. Such additional
storage is illustrated in FIG. 8 by removable storage 808 and
non-removable storage 810. Computer storage media
includes Volatile and nonvolatile, removable and non-remov
able media implemented in any method or technology for
storage of information Such as computer readable instruc
tions, data structures, program modules or other data.
Memory 804, removable storage 808 and non-removable
storage 810 are all examples of computer storage media.
Computer storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical stor
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store the desired information and which
can accessed by computing device 800. Any Such computer
storage media may be part of computing device 800.
0074 Computing device 800 may also contain communi
cations connection(s) 812 that allow the device to communi
cate with other devices. Communications connection(s) 812
is an example of communication media. Communication
media typically embodies computer readable instructions,
data structures, program modules or other data in a modulated
data signal such as a carrier wave or other transport mecha
nism and includes any information delivery media. The term
"modulated data signal” means a signal that has one or more
of its characteristics set or changed in Such a manner as to
encode information in the signal. By way of example, and not
limitation, communication media includes wired media Such
as a wired network or direct-wired connection, and wireless
media Such as acoustic, RF, infrared and other wireless
media. The term computer readable media as used herein
includes both storage media and communication media.
0075 Computing device 800 may also have input device
(s) 814. Such as keyboard, mouse, pen, Voice input device,
touch input device, etc. Output device(s) 816 such as a dis
play, speakers, printer, etc. may also be included. All these
devices are well know in the art and need not be discussed at
length here.
0076 Computing device 800 may include a variety of
computer readable media. Computer readable media can be
any available media that can be accessed by computing device
800 and includes both volatile and nonvolatile media, remov
able and non-removable media. By way of example, and not
limitation, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for storage of information Such as computer readable
instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can accessed by computing device 800. Commu
nication media typically embodies computer readable
instructions, data structures, program modules or other data

Dec. 25, 2008

in a modulated data signal Such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in Such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec
tion, and wireless media Such as acoustic, RF, infrared and
other wireless media. Combinations of the any of the above
should also be included within the scope of computer read
able media.
0077. Various modules and techniques may be described
herein in the general context of computer-executable instruc
tions, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc
tures, etc. for performing particular tasks or implement par
ticular abstract data types. These program modules and the
like may be executed as native code or may be downloaded
and executed. Such as in a virtual machine or other just-in
time compilation execution environment. Typically, the func
tionality of the program modules may be combined or dis
tributed as desired in various embodiments.
0078. An implementation of these modules and tech
niques may be stored on or transmitted across some form of
computer readable media. Computer readable media can be
any available media that can be accessed by a computer. By
way of example, and not limitation, computer readable media
may comprise “computer storage media' and “communica
tions media.”
0079. “Computer storage media' includes volatile and
non-volatile, removable and non-removable media imple
mented in any method or technology for storage of informa
tion Such as computer readable instructions, data structures,
program modules, or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital ver
satile disks (DVD) or other optical storage, magnetic cas
settes, magnetic tape, magnetic disk storage or other mag
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
a computer.
0080 “Communication media typically embodies com
puter readable instructions, data structures, program mod
ules, or other data in a modulated data signal, such as carrier
wave or other transport mechanism. Communication media
also includes any information delivery media. The term
"modulated data signal” means a signal that has one or more
of its characteristics set or changed in Such a manner as to
encode information in the signal. As a non-limiting example
only, communication media includes wired media Such as a
wired network or direct-wired connection, and wireless
media Such as acoustic, RF, infrared, and other wireless
media. Combinations of any of the above are also included
within the scope of computer readable media.
I0081 Reference has been made throughout this specifica
tion to “one embodiment.” “an embodiment or “an example
embodiment’ meaning that a particular described feature,
structure, or characteristic is included in at least one embodi
ment of the present invention. Thus, usage of Such phrases
may refer to more than just one embodiment. Furthermore,
the described features, structures, or characteristics may be
combined in any suitable manner in one or more embodi
mentS.

US 2008/0320503 A1

0082 One skilled in the relevant art may recognize, how
ever, that the invention may be practiced without one or more
of the specific details, or with other methods, resources, mate
rials, etc. In other instances, well known structures, resources,
or operations have not been shown or described in detail
merely to avoid obscuring aspects of the invention.
0083. While example embodiments and applications have
been illustrated and described, it is to be understood that the
invention is not limited to the precise configuration and
resources described above. Various modifications, changes,
and variations apparent to those skilled in the art may be made
in the arrangement, operation, and details of the methods and
systems of the present invention disclosed herein without
departing from the scope of the claimed invention.
What is claimed is:
1. A computer readable storage medium having a data

structure to be used informing a connection between listeners
and worker processes in a server, the server including a pro
cess manager, a first listener to Support requests in a first
protocol and a second listener to Support requests in a second
protocol, the data structure of the computer readable storage
medium comprising:

a first plurality of fields to define bindings having a proto
col and a binding information; and

a second plurality of fields to associate an application and
an application pool,

wherein the first and second listeners are configured to
receive requests that each include a binding portion ref
erencing binding information and a path portion refer
encing an application.

2. The computer readable storage medium of claim 1,
wherein the data structure further includes a field to indicate
whether a protocol for an application pool is enabled.

3. The computer readable storage medium of claim 1,
wherein the data structure is in an XML format.

4. The computer readable storage medium of claim 1,
wherein the binding information specifies at least a port num
ber.

5. The computer readable storage medium of claim 1,
wherein the binding information specifies at least a Uniform
Resource Locator (URL).

Dec. 25, 2008

6. The computer readable storage medium of claim 1,
wherein the application is defined by a path and the applica
tion pool is defined by an application pool name.

7. The computer readable storage medium of claim 1,
wherein the data structure defines a namespace.

8. The computer readable storage medium of claim 1,
wherein the protocol is Hypertext Transfer Protocol (HTTP).

9. A server, comprising:
a configuration store to store information about a configu

ration of the server, the information to at least enable
associations to be made between applications and appli
cation pools, the information at least including:
a first plurality of fields to define bindings having a

protocol and a binding information, and
a second plurality of fields to associate an application

and an application pool; and
a plurality of listeners, each one of the plurality of listeners

being configured to listen for applications and identify
appropriate application pools based on the information
stored in the server.

10. The computer readable storage medium of claim 9.
wherein the information further includes a field to indicate
whether a protocol for an application pool is enabled.

11. The computer readable storage medium of claim 9.
wherein the information is in an XML format.

12. The computer readable storage medium of claim 9.
wherein the binding information specifies at least a port num
ber.

13. The computer readable storage medium of claim 9.
wherein the binding information specifies at least a Uniform
Resource Locator (URL).

14. The computer readable storage medium of claim 9.
wherein the application is defined by a path and the applica
tion pool is defined by an application pool name.

15. The computer readable storage medium of claim 9.
wherein the information defines a namespace.

16. The computer readable storage medium of claim 9.
wherein the protocol is Hypertext Transfer Protocol (HTTP).

c c c c c

