发明名称 17β-取代-1-甲基-5α-雄甾-1-烯-3-酮及其衍生物的制备方法

摘要
本发明属化学合成领域，涉及化合物17β-取代-1-甲基-5α-雄甾-1-烯-3-酮(美替诺龙)及其衍生物的制备方法。本发明以17β-乙酰氧基-5α-雄甾-1-烯-3-酮为原料，经环氧化、氢解、缩酮化、氧化、格氏反应5步反应制得美替诺龙，17β-羟基酰化成相应的美替诺龙醋酸酯、丙酸美替诺龙、庚酸美替诺龙、十一酸美替诺龙；17β-羟基酰化成美替诺龙四氢吡喃醚；17β-羟基酰化成相应的美替诺龙甲酸酯、美替诺龙乙酸酯、美替诺龙丙酸酯、美替诺龙苯甲酸酯。本发明具有以下优点：避免了重氮化反应对环境的污染，使用环氧化和催化氢解，缩酮化反应后不经分离直接进入碱性氧化，简化操作程序，产物总收率以及纯度高。
1. 一种制备下式的化合物美替诺龙及其衍生物的方法，其特征是用 17β-乙酰氧基-5α-雄甾-1-en-3-酮为原料，经环氧化、氢解、缩酮化、氧化和格氏反应 5 步反应制得。

式中 R = -H，-C-OCH₃，-C-C₂H₅，-C-C₆H₁₃，-C-C₁₀H₂₁，-O，-C-OR₁

其中 R₁ = -CH₃，-C₂H₅，-C₃H₇，-CH₃C₆H₅。

2. 根据权利要求 1 的方法，其特征是所述 5 步反应是，

以 17β-乙酰氧基-5α-雄甾-1-en-3-酮为原料，在碱性过氧化氢的存在下环氧化反应，制得 1α, 2α-环氧-17β-羟基-5α-雄甾烷-3-酮；用 H₂ / 钯-碳酸钙或钯-炭，或活性镍催化氢解，制得 1α, 17β-二羟基-5α-雄甾烷-3-酮 17-醋酸酯；在对甲苯磺酸的催化下在苯中与乙二醇共沸脱水，制得 3, 3-乙撑二氧代-5α-雄甾烷-1α, 17β-二醇 17-醋酸酯；在吡啶中用铬酸进行氧化，制得 17β-乙酰氧基-3, 3-乙撑二氧代-5α-雄甾烷-1酮，再经格氏-脱水连续化反应制得 17β-羟基-1-甲基-5α-雄甾-1-en-3-酮（美替诺龙）。

3. 根据权利要求 1 的方法，其特征是以美替诺龙为原料，经乙酰化制得美替诺龙醋酸酯；经丙酰化制得丙酸美替诺龙；经庚酰化制得庚酸美替诺龙；经十一酰化制得十一酸美替诺龙；与 2, 3-二氢-4H-吡喃反应成美替诺龙四氢吡喃-2-醚；经氯甲酸甲酯酰化制得美替诺龙甲基氯酸酯；经氯甲酸乙酰氯化制得美替诺龙乙基氯酸酯；经氯甲酸丙酯酰化制得美替诺龙丙基氯酸酯；经氯甲酸苄酯酰化制得美替诺龙苄基氯酸酯。

4. 根据权利要求 1-3 的方法，其特征是按上述步骤进行

(i) 环氧化反应：a. 17β-乙酰氧基-5α-雄甾-1-en-3-酮溶于甲醇中，搅拌冷却至 5~15℃，b. 加入过氧化氢，搅拌，c. 15~20℃下滴加氢氧化钠溶液，搅拌，d. 水中放置，过滤，水洗制得 1α, 2α-环氧-17β-羟基-5α-雄甾烷-3-酮；
(2) 氢解反应： a. 将 1α, 2α-环氧-17β-羟基-5α-雄甾烷-3-酮溶于乙醇，加入钯-碳酸钙，用氢气换气后，25～50℃下搅拌通氢，b. 反应完毕，停止通氢，反应液过滤，乙醇洗涤，c. 减压浓缩，冷却，过滤。制得 1α, 17β-二羟基-5α-雄甾烷-3-酮 17-醋酸酯；

(3) 缩酮化反应： a. 1α, 17β-二羟基-5α-雄甾烷-3-酮 17-醋酸酯中加入苯，对甲苯磺酸和乙二醇，回流分水，b. 冷却至室温，加入吡啶，c. 减压浓缩至干，制得 3, 3-乙撑二氧代-5α-雄甾烷-1α, 17β-二醇 17-醋酸酯；

(4) 氧化反应： a. 将 3, 3-乙撑二氧代-5α-雄甾烷-1α, 17β-二醇 17-醋酸酯溶于吡啶，b. 室温搅拌加入铬酸溶液，c. 室温反应，d. 冲入亚硫酸钠水溶液中，放置过夜，过滤，水洗制得 17β-乙酰氧基-3, 3-乙撑二氧代-5α-雄甾烷-1-酮；

(5) 格氏-脱水连续化反应： a. 镁条中加入四氢呋喃，碘甲烷，室温搅拌反应，回流，b. 冷却至室温，加入 17β-乙酰氧基-3, 3-乙撑二氧代-5α-雄甾烷-1-酮及苯，回流，c. 冷却至室温，加入浓盐酸，水破坏剩余的格氏试剂，d. 分出苯层，水层用苯提取，合并苯层，水洗，减压浓缩至干，e. 加入甲醇，硫酸，回流，f. 冲入水中，析出结晶，过滤，水洗，干燥，制得美替诺龙；

(6) 乙酰化反应： a. 美替诺龙溶于吡啶中，加入醋酐，放置过夜，b. 冲入水中，过滤，水洗，干燥，乙醇重结晶，制得美替诺龙醋酸酯；

(7) 丙酰化反应： a. 美替诺龙溶于吡啶中，搅拌溶解，加入丙酸酐，室温搅拌反应，b. 冲入冰水，放置，过滤，水洗，抽干，干燥，乙醇重结晶，制得丙酸美替诺龙；

(8) 庚酰化反应： a. 美替诺龙溶于吡啶，控制反应物温度低于 30～50℃，加入庚酰氯，25-30℃反应，放置过夜，b. 冲入水中，放置，c. 水析液用氯仿提取，氯仿液依次用盐酸、水、碳酸钠以及水洗涤，分出氯仿层，减压至无氯仿，冲入甲醇，继续浓缩至无溶剂，再冲入甲醇，浓缩至无溶剂，加入甲醇，冷冻过夜，析出结晶，过滤，甲醇洗涤，抽干，40～60℃干燥，制得庚酰美替诺龙；

(9) 十一酰化反应： a. 将美替诺龙溶于吡啶中，搅拌至溶解，加入十一酰氯，室温反应，b. 冲入冰水，放置，过滤，水洗至无吡啶，抽干，干燥，乙醇重结晶，制得十一酰美替诺龙；

(10) 醚化反应： a. 在氯仿中加入吡啶和对甲苯磺酸，室温搅拌，加入美替诺龙，
全溶后搅拌下加 2,3-二氯-4H-吡喃，回流反应，b. 反应毕，水洗，减压浓缩至几无溶剂，冷入甲醇，继续浓缩至几无溶剂，冷入甲醇，继续浓缩至几无溶剂，冷入甲醇，冷却过夜，过滤，冰甲醇洗涤，抽干，水洗至中性，干燥得美替诺龙四氢吡喃醚；

(1) 甲基碳酸酯化反应：a. 美替诺龙溶于吡啶中，搅拌至溶解，于 5～15℃滴加氯甲酸甲酯，室温搅拌反应；b. 冲入冰水，放置，过滤，水洗至无吡啶味，抽干，干燥，甲醇重结晶，制得美替诺龙甲基碳酸酯；

(2) 乙基碳酸酯化反应：a. 将美替诺龙溶于吡啶中，搅拌至溶解，于 5～15℃滴加氯甲酸乙酯，室温搅拌反应；b. 冲入冰水，放置，过滤，水洗至无吡啶味，抽干，干燥，乙醇重结晶，制得美替诺龙乙基碳酸酯；

(3) 丙基碳酸酯化反应：a. 美替诺龙溶于吡啶中，搅拌至溶解，于 5～15℃滴加氯甲酸丙酯，室温搅拌反应；b. 冲入冰水，放置，过滤，水洗至无吡啶味，抽干，干燥，乙醇重结晶，制得美替诺龙丙基碳酸酯；

(4) 苯基碳酸酯化反应：a. 美替诺龙溶于吡啶中，搅拌至溶解，于 5～15℃滴加氯甲酸苯酯，室温搅拌反应；b. 冲入冰水，放置，过滤，水洗至无吡啶味，抽干，干燥，乙醇重结晶，制得美替诺龙苯基碳酸酯。
17β-取代-1-甲基-5α-雄甾-1-烯-3-酮及其衍生物的制备方法

技术领域

本发明属化学合成领域，涉及化合物17β-取代-1-甲基-5α-雄甾-1-烯-3-酮（美替诺龙）及其衍生物的制备方法。

背景技术

美替诺龙，又名甲烯氢龙，化学名为17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮，为一种较强的蛋白同化激素，其最大的优点是对肝脏的副作用极小。有关已有技术是，Wiechert R 等于1960年合成了美替诺龙醋酸酯，合成路线如图1所示：

上述的合成路线简短，步骤不多，但存在下列缺陷，重氮甲烷反应对环境的污染较严重，并且脱氮反应的副产物较多，且难除去，产物转化率不高等。

发明内容

本发明的目的是提供一种便宜的、对环境污染轻，副产物少的合成美替诺龙醋酸酯的制备方法，本发明方法反应较成熟，条件不苛刻，能获得较高的收率和很高的收率。

本发明方法针对Wiechert R 等的合成路线中重氮甲烷反应，产物转化率不高之不足，采用17β-乙酰氧基-5α-雄甾-1-烯-3-酮为原料，经环氧、氢解、缩酮化、氧化、格氏反应5步反应制得下式的化合物美替诺龙及其衍生物。
式中 \(R = \text{-H, } -\text{C-CH}_3, -\text{C-C}_2\text{H}_5, -\text{C-C}_6\text{H}_{13}, -\text{C-C}_{10}\text{H}_{21}, -\text{C-OR}_1 \)。

其中 \(R_1 = -\text{CH}_3, -\text{C}_2\text{H}_5, -\text{C}_6\text{H}_{13}, -\text{CH}_2\text{C}_6\text{H}_5 \)。

通过式（I）的合成路线，采用17β-乙酰氧基-5α-雄甾-1-烯-3-酮为原料，在碱性过氧化氢的存在下进行环氧化反应，制得1α, 2α-环氧-17β-羟基-5α-雄甾烷-3-酮；用H₂/钯-碳酸钙催化氢解，制得1α, 17β-二羟基-5α-雄甾烷-3-酮17-醋酸酯；然后在对甲苯磺酸的催化下在苯中与乙二醇共沸脱水，制得3, 3-乙撑二氧代-5α-雄甾烷-1α, 17β-二醇17-醋酸酯；然后不加分离在吡啶中用铬酸进行氧化，制得17β-乙酰氧基-3, 3-乙撑二氧代-5α-雄甾烷-1-酮，再经格氏-脱水连续化反应制得17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮（又称美替诺龙）。

通过式（II）的合成路线，采用美替诺龙为原料，经乙酰化制得17β-乙酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（又称美替诺龙醋酸酯）。

通过式（III）的合成路线，采用美替诺龙为原料，经丙酰化制得17β-丙酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（又称丙酰美替诺龙）。
通过式（IV）的合成路线，采用美替诺龙为原料，经庚酰化制得17β-庚酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（庚酸美替诺龙）。

通过式（V）的合成路线，采用美替诺龙为原料，经十一酰化制得17β-十一酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（十一酸美替诺龙）。

通过式（VI）的合成路线，采用美替诺龙为原料，与2,3-二氢-4H-吡喃反应制得美替诺龙17-四氢吡喃-2-醚。

通过式（VII）的合成路线，采用美替诺龙为原料，经甲基碳酸酯化制得美替诺龙甲基碳酸酯。
通过式（Ⅷ）的合成路线，采用美替诺龙为原料，经乙基碳酸酯化制得美替诺龙乙基碳酸酯。

通过式（Ⅸ）的合成路线，采用美替诺龙为原料，经丙基碳酸酯化制得美替诺龙丙基碳酸酯。

通过式（Ⅹ）的合成路线，采用美替诺龙为原料，经苄基碳酸酯化制得美替诺龙苄基碳酸酯。

本发明通过下述步骤制备 17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮（美替诺龙）及其衍生物：

1) 环氧化反应：a. 17β-乙酸氧基-5α-雄甾-1-烯-3-酮溶于甲醇中，搅拌冷
却至 5～15℃；b. 加入过氧化氢，搅拌均匀；c. 15～20℃以下滴加氢氧化钠溶液，搅拌反应；d. 冲入水中，放置，过滤，水洗制得 1α, 2α-环氧-17β-羟基-5α-雄甾烷-3-酮。

2) 氢解反应：a. 将 1α, 2α-环氧-17β-羟基-5α-雄甾烷-3-酮溶于乙醇，加入钯-碳酸钙，用氢气置换，然后在 25～50℃下搅拌通氢（氢压为常压～70bar）；b. 反应完毕，停止通氢，反应液过滤，乙醇洗涤；c. 减压浓缩，冷却，过滤，制得 1α, 17β-二羟基-5α-雄甾烷-3-酮 17-醋酸酯。

3) 缩酮化反应：a. 1α, 17β-二羟基-5α-雄甾烷-3-酮 17-醋酸酯中加入苯，对甲苯磺酸和乙二醇，在装有分水器的反应器中回流分水；b. 冷却至室温，加入吡啶；c. 减压浓缩至干，制得 3, 3-乙撑二氧代-5α-雄甾烷-1α, 17β-二醇 17-醋酸酯。

4) 氧化反应：a. 3, 3-乙撑二氧代-5α-雄甾烷-1α, 17β-二醇 17-醋酸酯溶于吡啶；b. 室温下搅拌下加入铬酸溶液；c. 在室温反应；d. 冲入亚硫酸钠水溶液中，放置过夜，过滤，水洗制得 17α-乙酰氧基-3, 3-乙撑二氧代-5α-雄甾烷-1酮。

5) 钙氏-脱水连续化反应：a. 在镁条中加入四氢呋喃，碘甲烷，室温搅拌反应，回流；b. 冷却至室温，加入 17α-乙酰氧基-3, 3-乙撑二氧代-5α-雄甾烷-1-酮及苯，回流；c. 冷却至室温，加入浓盐酸，水破坏剩余的格氏试剂；d. 分出苯层，水层用苯提取，合并苯层，水洗，减压浓缩至干；e. 加入甲醇，硫酸，回流；f. 冲入水中，析出结晶，过滤，水洗，干燥，制得 17β-羟基-1-甲基-5α-雄甾-3-酮（美替诺龙）。

6) 乙酰化反应：a. 将美替诺龙溶于吡啶中，加入醋酐，放置过夜；b. 次日冲入水中，过滤，水洗，干燥，乙醇重结晶，制得 17β-乙酰氧基-1-甲基-5α-雄甾-3-酮（美替诺龙醋酸酯）。

7) 丙酰化反应：a. 将美替诺龙溶于吡啶中，搅拌至全部溶解；于室温加入丙酸酐，室温搅拌反应；b. 冲入冰水中，放置，过滤，水洗，抽干，干燥，乙醇重结晶，制得 17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮 17-丙酸酯（丙酸美替诺龙）。

8) 庚酰化反应：a. 将美替诺龙溶解于吡啶，在控制反应物温度低于 30～50℃的条件下，加入庚酰氯，于 25-30℃反应，放置过夜；b. 次日冲入水中，放置；c. 水析液用氯仿提取，氯仿液依次用盐酸、水、碳酸钠及水洗涤，分出
氯仿层，减压浓缩至无氯仿，冲入甲醇，继续浓缩至无溶剂，再次冲入甲醇，
继续浓缩至无溶剂，加入甲醇，冷冻过夜，析出结晶，过滤，少量甲醇洗涤，
抽干，40～60℃干燥，制得 17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮 17-庚酸
酯（庚酸美替诺龙）。

9) 十一酰化反应：a. 将美替诺龙溶于吡啶中，搅拌至全部溶解，于室温加入
十一酰氯，室温反应；b. 冲入冰水中，放置，过滤，水洗至无吡啶味，抽干，
干燥，乙醇重结晶，制得 17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮 17-十一酸
酯（十一酸美替诺龙）。

10) 酰化反应：a. 在氯仿中加入吡啶和对甲苯磺酸，室温搅拌，加入美替诺
龙，全溶后在搅拌下加入 2,3-二氢-4H-吡喃，回流反应；b. 反应毕，水洗，
减压浓缩至几无溶剂，冲入甲醇，继续浓缩至几无溶剂，冲入甲醇，继续浓缩
至几无溶剂，冲入甲醇，冷却过夜，过滤，冰甲醇洗涤，抽干，在用水洗至中
性，干燥得白色结晶状的美替诺龙 17-四氢吡喃-2-酮（美替诺龙四氢吡喃酮）。

11) 甲基碳酸酯化反应：a. 将美替诺龙溶于吡啶中，搅拌至全部溶解，于 5～
15℃滴加氯甲酸甲酯，于室温搅拌反应；b. 冲入冰水中，放置，过滤，水洗至
无吡啶味，抽干，干燥，甲醇重结晶，制得美替诺龙甲基碳酸酯。

12) 乙基碳酸酯化反应：a. 将美替诺龙溶于吡啶中，搅拌至全部溶解，于 5～
15℃滴加氯甲酸乙酯，于室温搅拌反应；b. 冲入冰水中，放置，过滤，水洗至
无吡啶味，抽干，干燥，乙醇重结晶，制得美替诺龙乙基碳酸酯。

13) 丙基碳酸酯化反应：a. 将美替诺龙溶于吡啶中，搅拌至全部溶解，于 5～
15℃滴加氯甲酸丙酯，于室温搅拌反应；b. 冲入冰水中，放置，过滤，水洗至
无吡啶味，抽干，干燥，乙醇重结晶，制得美替诺龙丙基碳酸酯。

14) 苄基碳酸酯化反应：a. 将美替诺龙溶于吡啶中，搅拌至全部溶解，于 5～
15℃滴加氯甲酸苄酯，于室温搅拌反应；b. 冲入冰水中，放置，过滤，水洗至
无吡啶味，抽干，干燥，乙醇重结晶，制得美替诺龙苄基碳酸酯。

本发明具有下述优点：1. 避免了重氮化反应对环境的污染；2. 使用适当活
性的催化氢解催化剂，使得 1α, 17β-二羟基-5α-雄甾烷-3-酮 17-酯酸酯的收率
达到 70%；3. 采用缩合化反应后不加分离直接进入氧化反应，减少了因后处理
产生的不必要的损失，简化了操作程序，提高了反应收率。4. 由美替诺龙可以
通过酰化，酯化，醚化等和合成各种衍生物。

具体实施方式：
实施例1

制备1α,2α-环氧-17β-羟基-5α-雄甾烷-3-酮

将17β-乙酰氧基-5α-雄甾-1-烯-3-酮46g溶于甲醇460ml中，搅拌冷却至10℃。加入30-35%过氧化氢溶液50.6ml，搅拌均匀，在18℃以下滴加10%氢氧化钠-甲醇溶液13.1ml，约15分钟加完。继续反应45分钟。冲入2000ml水中，搅拌，放置过夜。次日过滤，水洗至中性，打浆，彻底水洗，干燥得1α,2α-环氧-17β-羟基-5α-雄甾烷-3-酮42g。

实施例2

制备1α,17β-二羟基-5α-雄甾烷-3-酮17-醋酸酯

在1α,2α-环氧-17β-羟基-5α-雄甾烷-3-酮42g中加入95%乙醇1260mL，钯-碳酸钙12.6g。用氢气换气3次，然后在40bar的氢压下40℃搅拌6小时。反应完毕，停止通氢。反应液过滤，催化剂用乙醇洗涤，合并反应液，减压浓缩至糊状，冷却过夜。次日过滤，少量乙醇洗涤，抽干，干燥制得29.6g的1α,17β-二羟基-5α-雄甾烷-3-酮17-醋酸酯，mp190～192℃。MS：348（M+）。

实施例3

制备3,3-乙撑二氧代-5α-雄甾烷-1α,17β-二醇17-醋酸酯

在1α,17β-二羟基-5α-雄甾烷-3-酮17-醋酸酯29.6g中加入苯930mL，乙二醇93mL及对甲苯磺酸0.31g。回流分水，约2小时反应完全。冷至室温。加入吡啶15.5mL，分出苯层。乙二醇层用水提取。合并苯层，水洗至中性，浓缩至干。得3,3-乙撑二氧代-5α-雄甾烷-1α,17β-二醇17-醋酸酯，待氧化。

实施例4

制备17β-乙酰氧基-3,3-乙撑二氧代-5α-雄甾烷-1-酮

在3,3-乙撑二氧代-5α-雄甾烷-1α,17β-二醇17-醋酸酯中加入吡啶93mL，搅拌至全溶。于是温下搅拌滴加铬酐-水溶液（铬酐9.3g，水15.5mL）。加完后于40℃反应5小时。反应毕，冲入含亚硫酸钠21.7g的水930mL中，放置过夜。次日过滤，水洗至中性，抽干，干燥得17β-乙酰氧基-3,3-乙撑二氧代-5α-雄甾烷-1-酮32g。粗晶经乙酸乙酯重结晶，mp175～178℃；MS（m/z）392（M+）。

实施例5

制备17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮（美替诺龙）

在镁条2.93g中加入四氢呋喃244mL，碘甲烷28.4g。室温搅拌反应1小时，回流15分钟，冷却至室温。加入17β-乙酰氧基-3,3-乙撑二氧代-5α-雄甾烷-1-
酮（粗品）32g及苯600mL。升温回流30分钟，冷却至室温。加入浓盐酸85.4
mL，水488mL破坏剩余的格氏试剂，然后分出苯层。水层用苯提取。合并苯层，
水洗至中性，减压浓缩至干（油状物）。加入甲醇390mL，30%硫酸30mL。回
流1小时，冲入1000mL水中，析出结晶，过滤，水洗至中性，干燥后用乙醇重
结晶，制得17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮（美替洛龙）18g。

实施例6

制备17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮17-醋酸酯（美替洛龙醋酸酯）

将17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮10g溶于吡啶20mL中，搅拌至全
部溶解。于室温加入醋酸酐8mL，室温搅拌反应4小时。冲入冰水中，放置，过
滤，水洗至无吡啶味，抽干，干燥，得17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮
17-醋酸酯粗品。用甲醇重结晶得17β-乙酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（美
替洛龙醋酸酯）10g。含量99%（HPLC），mp140～141°C；UV：λmax（MeOH）240 nm（ε
13300）（mp137～138.5°C；UV：λmax=13300；[α]D=+56°；MS：344（M+）；
1HNMR：δ=0.85（s，3H，C18-CH3），1.08（s，3H，C18-CH3），2.06（s，3H，C1-CH3），
4.61（t，1H，C17-H，J=8Hz），5.71（s，1H，C2-H）。

实施例7

制备17β-丙酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（丙酸美替诺龙）

将17β-羟基-1-甲基-5α-雄甾-1-烯-3-酮10g溶于吡啶20mL中，搅拌至全
部溶解。于室温加入丙酸酐9mL，室温搅拌反应4小时。冲入冰水中，放置，过
滤，水洗至无吡啶味，抽干，干燥，得17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮
17-丙酸酯12g。用乙酸乙酯重结晶得丙酸酸美替诺龙10g。

实施例8

制备17β-庚酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（庚酸美替诺龙）

将美替诺龙10g溶解于吡啶20mL，在控制反应物温度低于40°C的条件下，
加入庚酰氯11g，于25～30°C反应3小时，放置过夜。次日冲入水中，放置2小
时。水析液用氯仿提取4次之后弃之。氯仿液依次用盐酸、水、碳酸钠以及水洗
涤，分出氯仿层，减压浓缩至无氯仿，冲入甲醇，继续浓缩至无溶剂，再次冲入
甲醇，继续浓缩至无溶剂，加入甲醇，冷冻过夜，析出结晶，过滤，少量甲醇洗
涤，抽干，50°C干燥。得庚酸美替诺龙11g。

实施例9

制备17β-十一酰氧基-1-甲基-5α-雄甾-1-烯-3-酮（十一酸美替诺龙）
将17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮10g溶于吡啶20ml中，搅拌至全部溶解。于室温加入十一酰氯12g，4小时，冲入冰水中，放置，过滤，水洗至无吡啶味，抽干，干燥，得17β-羟基-1-甲基-5α-雄甾烷-1-烯-3-酮17-十一酸酯14g。用甲醇重结晶得十一酸美替诺龙12g。

实施例10

制备美替诺龙 17-四氢吡喃-2-酮（美替诺龙四氢吡喃酮）

在氯仿10ml中加入吡啶1g和对甲苯磺酸1g，室温搅拌10分钟，加入美替诺龙10g，全溶后在搅拌下加入2,3-二氢-4H-吡喃6g，回流反应3小时。反应毕，水洗，减压浓缩至几无溶剂，冲入甲醇，继续浓缩至几无溶剂，冲入甲醇，继续浓缩至几无溶剂，冲入甲醇10ml，冷却过夜，过滤，冰甲醇洗涤，抽干，在用水洗至中性。干燥得白色结晶状的美替诺龙 17-四氢吡喃-2-酮10g。

实施例11

制备美替诺龙烷碳酸酯

将美替诺龙10g溶于吡啶20ml中，搅拌至全部溶解。于10℃滴加氯甲酸酯11～14ml，约15分钟加完。然后于室温搅拌反应4小时。冲入冰水中，放置，过滤，水洗至无吡啶味，抽干，干燥，得美替诺龙烷碳酸酯12～15g。用乙醇重结晶得精品。（产物包括甲基碳酸酯，乙基碳酸酯，丙基碳酸酯及苄基碳酸酯）。