

SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

① CH 674981 A5

61) Int. Cl.⁵: C 02 F B 01 D

C 02 F 1/52 B 01 D 21/02 B 01 D 21/34

Erfindungspatent für die Schweiz und Liechtenstein

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

12 PATENTSCHRIFT A5

(21) Gesuchsnummer:

937/88

73 Inhaber:

Aribo Staude, Kernen (DE)

22) Anmeldungsdatum:

11.03.1988

30 Priorität(en):

14.03.1987 DE 3708342

(72) Erfinder: Staude, Aribo, Kernen (DE)

24 Patent erteilt:

15.08.1990

Patentschrift veröffentlicht:

15.08.1990

74) Vertreter:

Patentanwalts-Bureau Isler AG, Zürich

64 Klärvorrichtung.

Um eine Klärvorrichtung für schlammhaltige Abwässer, insbesondere Laborabwässer, mit einem Zulauf, mindestens einem Absetzbecken und einem einen konstanten Wasserspiegel im Absetzbecken aufrecht erhaltenden Ablauf derart zu verbessern, dass eine zufriedenstellende Klärwirkung erreichbar ist, wird vorgeschlagen, dass das Absetzbecken unterhalb des Wasserspiegels in mindestens zwei Fächer unterteilt ist und dass der Zulauf als das zufliessende Abwasser mehreren Fächern zuleitender Verteiler ausgebildet ist und mindestens eine über dem Wasserspiegel angeordnete Mündungsöffnung aufweist.

Beschreibung

Die Erfindung betrifft eine Klärvorrichtung für schlammhaltige Abwässer, insbesondere Laborabwässer, mit einem Zulauf, mindestens einem Absetzbecken und einem einen konstanten Wasserspiegel im Absetzbecken aufrecht erhaltenden Ablauf, wobei das Absetzbecken unterhalb des Wasserspiegels durch eine Trennwand in mindestens zwei Fächer unterteilt ist, die miteinander in direkter Verbindung stehen, und wobei der Zulauf mindestens eine über dem Wasserspiegel angeordnete Mündungsöffnung aufweist.

1

dungsöffnung aufweist. Bei einer Vielzahl von Labors, insbesondere bei zahntechnischen und zahnärztlichen Labors oder anderen Gewerbebetrieben, fallen im Laufe des Laborbetriebs große Mengen schlammhaltiger Abwässer an, wobei darin enthaltene Schlammpartikel insbesondere Gipspartikel (Ca SO₄) oder Bimspartikel umfassen. Die Gipspartikel entstehen dadurch, daß Gipsmodelle beschliffen werden und zur Entfernung des Staubs gleichzeitig mit sehr viel Wasser gespült wird. Die Bimspartikel entstehen durch Polieren von Materialien mit Bimspulver, wobei ebenfalls gleichzeitig mit Wasser gespült wird. Außerdem entstehen Schlämme bei der Ver- und Bearbeisogenannter Einbettmassen, Herstellung von Formen für Gold-, Stahl- oder andere Metallgüsse dienen. Die Einbettmassen und damit auch die Schlammpartikel enthalten in hohem Maße Siliziumdioxide, Quarze, Phospate, Graphit und Christobalit. Es kann angenommen werden, daß ca. 1/3 des Gesamtverbrauchs von allein in der Bundesrepublik Deutschland jährlich mindestens verbrauchten 800 t in das Abwasser gelangen. Alle diese Schlammpartikel sind in über Regel im Wasser feinstverteilt und liegen auch häufig in kolloidaler Form vor.

Diese Schlammpartikel in den Laborabwässern führen nun dazu, dass sie sich beim Abfliessen in den Abwasserrohren absetzen und dort ablagern, so dass bei diesen Labors stets nach relativ kurzer Zeit die Abwasserrohre verstopft sind und mühsam unter Aufwendung hoher Kosten gereinigt werden müssen.

Ferner kommt hinzu, dass im Zuge strengerer Umweltschutzbestimmungen eine Einleitung dieser schlammhaltigen Abwässer in die Abwasserkanalisation nicht mehr möglich sein wird.

Daraus ergibt sich in zunehmendem Masse die Notwendigkeit, diese Laborabwässer im Labor noch zu klären.

Mit Klärvorrichtungen der eingangs beschriebenen Art ist jedoch eine Klärung dieser Abwässer nicht in befriedigendem Masse möglich, da die Schlämme, das heisst die Festsuspensionen, eine nur sehr geringe Tendenz zum Absetzen der Schlammpartikel aufweisen. Aus diesem Grunde wurde vielfach vorgeschlagen, in den Klärvorrichtungen der eingangs beschriebenen Art zusätzlich noch Flockungshilfsmittel und ähnliche chemische Stoffe zu verwenden.

Diese haben jedoch wiederum den Nachteil, dass sie zu einer zusätzlichen Umweltbelastung führen.

Ausgehend von diesem Stand der Technik liegt

der Erfindung daher die Aufgabe zugrunde, eine Klärvorrichtung der gattungsgemässen Art derart zu verbessern, dass eine zufriedenstellende Klärwirkung erreichbar ist.

Diese Aufgabe wird bei einer Klärvorrichtung der eingangs beschriebenen Art erfindungsgemäss dadurch gelöst, dass der Zulauf als das zulaufende Abwasser mehreren Fächern zuleitender Verteiler ausgebildet ist und dass sich die Trennwand zumindest im wesentlichen über die gesamte Füllhöhe des Absatzbeckens erstreckt. Die Formulierung, dass die Fächer in direkter Verbindung stehen, stellt heraus, dass die in den Fächern vorhandenen Abwasservolumina miteinander kommunizieren, bedeutet jedoch nicht, dass sämtliche Fächer jeweils mit ihren benachbarten Fächern in Verbindung stehen müssen. Vielmehr ist es ausreichend, wenn alle vorhandenen Fächer und die darin enthaltenen Volumina so miteinander verbunden sind, dass ein Kommunizieren sämtlicher Fächervolumina miteinander möglich ist, so dass der Wasserspiegel in allen Fächern gleich hoch ist.

Diese erfindungsgemässe Lösung hat den Vorteil, dass durch die Aufteilung des Absetzbeckens in mindestens zwei Fächer eine Querströmung von zugeleitetem Abwasser in einem unteren Bereich des Absetzbeckens unterbunden wird, so dass sich bereits in diesem unteren Bereich abgesetzte Schlämme durch das neu zufliessende Abwasser nicht wieder aufgewirbelt werden. Des weiteren ist der Zulauf oberhalb der Fächer angeordnet und als Verteiler ausgebildet, so dass die schlammhaltigen Abwässer auf mehrere Fächer verteilt werden, wodurch zu grosse Strömungen parallel zum Wasserspiegel in dem ersten Absetzbecken vermieden werden. Hierzu ist anzumerken, dass es bei den Laborabwässern - im Gegensatz zu den bekannten Goldfanganlagen - nicht möglich ist, das Abwasser sukzessive von einem Absetzbecken zum anderen Absetzbecken zu leiten, da dadurch eine zu grosse Querströmung parallel zur Wasseroberfläche erfolgen würde, was zur Folge hätte, dass sich die leichten Schlammpartikel, die überwiegend in den genannten Laborabwässern vorhanden sind, gar nicht absetzen. Aus diesem Grund ist es erforderlich, das zugeführte schlammhaltige Laborabwasser sofort auf mehrere Flächen zu verteilen, in denen sich dann - durch die Fächer gegen eine Querströmung geschützt - die einzelnen Schlammpartikel absetzen können. Schliesslich ist es ebenfalls noch vorteilhaft, dass der Zulauf mit seiner Mündungsöffnung oberhalb des Wasserspiegels liegt, da eine derartige Anordnung der Mündungsöffnung ein Verstopfen verhindert, was beispielsweise dann sehr häufig erfolgt, wenn ein Zulaufrohr in das Absetzbecken so weit eintaucht, dass seine Mündungsöffnung unterhalb des Wasserspiegels liegt. Durch die zusätzliche Aufteilung in einzelne Fächer würde eine derartige Anordnung noch stärker zum Verstopfen neigen.

Die die erfindungsgemässe Lösung charakterisierenden Merkmale führen somit durch ihr Zusammenwirken zu einer Klärvorrichtung, mit welcher eine ausreichend gute Klärwirkung erreichbar ist.

Bei dem vorstehend beschriebenen Ausfüh-

65

4

rungsbeispiel wird eine Querströmung in einem unteren Bereich des Absetzbeckens auch in ausreichendem Masse dann verhindert, wenn sich die Fächer nicht ganz bis zu einem Boden des Absetzbeckens erstrecken, sondern auch noch in einem geringen Abstand von diesem enden, so dass durch das von oben zufliessende neue schlammhaltige Abwasser bei einer ausreichenden Tiefe des Absetzbeckens keine Aufwirbelung bis zum Boden des Absetzbeckens verursacht wird. Zweckmässiger ist es jedoch, jegliche Querströmung im wesentlichen dadurch zu unterbinden, das sich die Fächer bis zu einem Boden des Absetzbeckens erstrecken.

Im Rahmen der erfindungsgemässen Lösung ist es günstig, die Zahl der Fächer zu erhöhen, so dass eine Lösung mit mindestens drei Fächern noch bessere Klärwirkungen erzielt, die beim Vorsehen von mindestens vier Fächern noch weiter gesteigert werden kann.

Damit eine Reinigung der einzelnen Fächer in dem Absetzbecken leicht und einfach erfolgen kann, ist es vorteilhaft, wenn die Fächer in einem herausnehmbaren Fächereinsatz vorgesehen sind, nach dessen Entfernen sich auch der abgesetzte Schlamm einfach entnehmen lässt, wobei dieser Fächereinsatz selbst einen Boden enthalten kann, so dass der Schlamm mit dem Fächereinsatz entnehmbar ist, oder der Fächereinsatz – der Einfachheit halber – lediglich quer zum Wasserspiegel stehende Wandflächen aufweist, nach deren Herausnehmen der Schlamm einfach aus dem Absetzbecken entfernt werden kann.

Zum Ausgleich des Wasserspiegels zwischen den einzelnen Fächern ist es vorteilhaft, wenn die Fächer durch Öffnungen miteinander verbunden sind. Dabei darf das Vorsehen der Öffnungen jedoch nicht so verstanden werden, dass diese eine ungehinderte Querströmung zwischen den einzelnen Fächern zulassen sollen, sondern lediglich so, dass durch die Öffnungen zumindest eine verzögerte Strömung von Fach zu Fach erfolgen kann.

Vorteilhafterweise sind die Öffnungen so angeordnet, dass sie in einem oberen, dem Wasserspiegel zugewandten Bereich der Fächer liegen.

Dieser obere Bereich erstreckt sich vorteilhafterweise über die Hälfte der Höhe der Fächer, besser ist es jedoch, wenn sich der obere Bereich nur über ein Drittel der Höhe erstreckt und noch besser ist es, wenn er sich lediglich über ein Viertel der Höhe ersteckt.

Bei den bisher beschriebenen Ausführungsbeispielen wurden keine näheren Angaben über die Form der Fächer, insbesondere über ein Verhältnis der Wurzel aus einer oberen Querschnittsfläche dieser Fächer zu deren Höhe gemacht. Ein vorteilhaftes Ausführungsbeispiel sieht vor, dass die Fächer ein Verhältnis von der Wurzel aus oberer Querschnittsfläche zu Höhe von kleiner als 1,5 aufweisen, denn bei einer derartigen Dimensionierung der Fächer tritt deren Wirksamkeit bei der Abwasserberuhigung in besonders vorteilhafter Weise zutage. Noch besser ist es jedoch, wenn dieses Verhältnis kleiner als 1 oder kleiner als 0,5 ist, das heisst wenn die Wurzel aus der Querschnittsfläche der Fächer im Verhältnis zu ihrer Höhe noch kleiner

gewählt wird, so dass nahe des Bodens des Absetzbeckens eine im wesentlichen vollständige Beruhigung des Abwassers eintritt und sich folglich auch die Schlammpartikel im wesentlichen absetzen.

Bei einem besonders einfach aufgebauten Ausführungsbeispiel ist vorgesehen, dass die Fächer einen ungefähr rechteckigen Querschnitt aufweisen, denn dann lassen sich die Fächer aus senkrecht zueinander verlaufenden Wandflächen in einfachster Weise aufbauen.

Bei einer weiteren, besonders vorteilhaften Weiterbildung der erfindungsgemässen Klärvorrichtung ist vorgesehen, dass die Fächer eine dem Zufluss zugewandte Fächeroberfläche bilden, die ein Mehrfaches eines Querschnitts des Zulaufs beträgt. Dieses zusätzliche Merkmal führt in vorteilhafter Weise zu einer weiteren Verringerung und Verlangsamung einer Querströmung des Abwassers in dem Absetzbecken, da die zugeführte Abwassermenge, begrenzt durch den Querschnitt des Zulaufs auf eine möglichst grosse Fächeroberfläche verteilt wird und folglich die Schlammpartikel nicht aufgewirbelt werden, sondern sich sehr schnell absetzen.

Eine vor allem möglichst gleichmässige Verringerung und Verlangsamung der Strömung parallel zur Wasseroberfläche ist dadurch zu erreichen, dass die Mündungsöffnung des Zuflusses zentrisch zur Fächeroberfläche angeordnet ist, so dass auf der Fächeroberfläche eine gleichmässige Verteilung der zugeführten Abwassermenge erfolgt.

Bei den bisherigen Ausführungsbeispielen wurde nur festgelegt, dass sich die Fächer in dem ersten Absetzbecken unterhalb des Wasserspiegels erstrecken sollen. Bezüglich der Erstreckung der Fächer in Richtung des Wasserspiegels wurden keine Aussagen gemacht. So ist es ausreichend, wenn die Fächer nach oben bis nahe an den Wasserspiegel reichen, so dass eine Verteilung der Abwassermenge durch Überströmen der Fächer erfolgen kann. Eine noch bessere Verminderung der Strömung parallel zum Wasserspiegel ist jedoch dadurch möglich, dass die Fächer nach oben bis zum Wasserspiegel reichen. Bei diesem Ausführungsbeispiel ist also ein Überströmen der Fächer lediglich aufgrund der Erhöhung des Wasserspiegels durch die zugeführte Abwassermenge in dem Absetzbecken möglich.

Eine weitere verbesserte Lösung sieht vor, dass die Fächer über den Wasserspiegel hinaus nach oben überstehen. Bei dieser Lösung müssen jedoch zum Ausgleich des Wasserspielgels in den einzelnen Fächern Öffnungen vorgesehen sein, die ein Überströmen des Abwassers von Fach zu Fach zum Ausgleich des Wasserspiegels erlauben. Diese Öffnungen können jedoch kleiner bemessen werden, so dass dadurch eine zusätzliche Siebwirkung auftritt, die verhindert, dass grobe Partikel von Fach zu Fach mitgenommen werden. Ausserdem kann durch die kleinen Öffnungen die Strömungsgeschwindigkeit noch zusätzlich herabgesetzt werden.

Eine konstruktiv möglichst einfache Ausbildung der Fächer sieht vor, dass die Fächer bildenden Wandflächen ungefähr senkrecht zum Wasserspiegel verlaufen.

Bei den vorstehend beschriebenen Ausführungsbeispielen der erfindungsgemässen Klärvorrichtung wurde nicht näher auf die Ausbildung des Verteilerorgans eingegangen. Dies kann prinzipiell alle möglichen geometrischen Formen haben, die es erlauben, das zugeführte schlammhaltige Abwasser auf mehrere Fächer zu verteilen. Beispielsweise ist es möglich, dass dieses in der Form einer Rohrverzweigung ausgebildet ist. Eine derartige Ausbildung neigt jedoch, insbesondere dann, wenn mit groben Schlammpartikeln gerechnet werden muss, zum Verstopfen. Aus diesem Grund ist es vorteilhaft, wenn der Verteiler ein Verteilerorgan mit schräg zu einer Zuflussrichtung des Abwassers stehenden Verteilerflächen aufweist, so dass das schlammhaltige Abwasser immer noch mit möglichst grosser Geschwindigkeit über die Verteilerflächen strömt und damit ein Festsetzen von Schlammpartikeln auf diesen unterbunden wird. Beispielsweise kann daran gedacht werden, das Verteilerorgan in Form eines Konus auszubilden, dessen Mantelflächen von dem schlammhaltigen Abwasser angeströmt werden. Es sind aber auch beliebige andere Ausführungsformen mit schräg zur Zuflussrichtung des Abwassers stehenden Verteilerflächen denkbar.

Eine noch bessere Verteilerwirkung ist dadurch erreichbar, dass das Verteilerorgan um eine Achse drehbar ist, wobei eine zweckmässige Ausbildung vorsieht, dass das Verteilerorgan um eine zur Mündungsöffnung zentrische Achse drehbar ist. Im Zusammenhang mit derart ausgebildeten Verteilerorganen ist insbesondere an Flügel- oder Propellerräder zu denken, welche durch das zufliessende Abwasser in Rotation versetzt werden und dadurch eine gleichmässige Verteilung des Abwassers auf mehrere Fächer bewirken.

Insbesondere bei sehr feinen Schlammpartikeln kann es erforderlich sein, dass dem Absetzbecken weitere Absetzbecken nachgeordnet sind, in denen dann durch weitere Beruhigung des Abwassers ein Absetzen dieser feinsten Schlammpartikel möglich ist

Zur Verbindung dieser Absetzbecken ist es günstig, wenn zwischen den Absetzbecken eine einen Überlauf aufweisende Überströmeinrichtung vorgesehen ist. Durch diesen Überlauf wird vermieden, dass das Abwasser beim Übertritt vom einen Absetzbecken zum anderen sehr stark verwirbelt wird. Ein derartiger Überlauf führt im Gegenteil dazu, dass das Abwasser sehr langsam und ruhig von einem Absetzbecken zum anderen strömt.

Eine weitere Beruhigung des Abwassers beim Überströmen von einem Absetzbecken zum anderen ist dadurch erreichbar, dass die Überströmeinrichtung siphonähnlich ausgebildet ist, da das Durchströmen eines Siphons eine zusätzliche Verlangsamung und Beruhigung des Wassers bewirkt.

Allerdings hätte ein als Kante ausgebildeter Überlauf den Nachteil, dass beim Überströmen dieser Kante eine gewisse Verwirbelung noch auftritt. Dies wird dadurch vermieden, dass die siphonähnliche Überströmeinrichtung eine schräg zum Wasserspiegel verlaufende Einströmfläche aufweist, wobei die Einströmfläche zweckmässigerweise eine von einer Tangentialrichtung parallel zur Was-

seroberfläche in eine Richtung quer zum Wasserspiegel verlaufende Krümmung aufweist.

Die bisher beschriebenen Klärvorrichtungen wurden hinsichtlich des notwendigerweise vorhandenen Ablaufes nicht näher spezifiziert. So hat es sich bei einem weiteren Ausführungsbeispiel als besonders vorteilhaft erwiesen, wenn das Absetzen einen von einem Boden desselben anströmbaren Ablauf mit einer einen Wasserstand in diesem Absetzbecken festlegenden Überlaufkante aufweist. Durch diesen lediglich von einem Boden des Absetzbeckens anströmbaren Ablauf werden vor allem leichte Schlammpartikel in dem Absetzbecken vor einem Einströmen in den Ablauf nach unten bewegt und dadurch wird ihre Neigung vergrössert, sich auf dem Boden des Absetzbeckens abzusetzen.

Um die letzten in dem Abwasser noch vorhandenen Schlammpartikel aus diesem zu entfernen, ist es noch günstig, wenn an dem Ablauf ein Feinfilter angeordnet ist, das bei einem Ausführungsbeispiel, bei welchem der Ablauf eine Überlaufkante aufweist, zweckmässigerweise nach der Überlaufkante angeordnet ist, um lediglich die noch diese Überlaufkante passierenden Schlammpartikel herauszufiltern.

Vor allem bei den Ausführungsbeispielen, bei denen ein Feinfilter Verwendung findet, besteht die Gefahr, dass dieses Feinfilter sich im Laufe der Zeit zusetzt und nicht rechtzeitig eine Reinigung der Klärvorrichtung erfolgt. Aus diesem Grund hat es sich als zweckmässig erwiesen, dass das Absetzbecken mit einem Überlaufschutz versehen ist, so dass selbst bei einem Verstopfen des Feinfilters durch Schlammpartikel gewährleistet ist, dass die Klärvorrichtung als solche nicht überläuft, sondern das zugeführte schlammhaltige Abwasser weiterhin, allerdings nicht durch das Feinfilter, gereinigt in die Kanalisation eingeleitet wird.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und der zeichnerischen Darstellung eines Ausführungsbeispiels. In der Zeichnung zeigen:

Fig. 1 eine schematische Darstellung eines Längsschnitts durch ein Ausführungsbeispiel der erfindungsgemässen Klärvorrichtung (längs Linie 1–1 in Fig. 2) und

Fig. 2 einen Schnitt durch das Ausführungsbeispiel gemäss Fig. 1 längs Linie 2–2 in Fig. 1.

Ein Ausführungsbeispiel einer erfindungsgemässen Klärvorrichtung, dargestellt in den Fig. 1 und 2, zeigt im einzelnen einen als Ganzes mit 10 bezeichneten rechteckigen Kasten mit einem Boden 12 und mit sich von diesem ungefähr senkrecht nach oben erhebenden Längsseitenwänden 14 und 16 sowie Querseitenwänden 18 und 20. Dieser Kasten 10 ist dichtend mit einem Deckel 22 verschlossen.

Der Kasten 10 wird durch eine zu den Querseitenwänden 18 und 20 parallel angeordnete Trennwand 24 in ein erstes Absetzbecken 26, eingeschlossen von den beiden Längsseitenwänden 14 und 16, der Querseitenwand 18 und der Trennwand 24, sowie ein zweites Absetzbecken 27, eingeschlossen von

45

der Querseitenwand 20, den Längsseitenwänden 14 und 16 sowie der Trennwand 24, unterteilt.

In dem ersten Absetzbecken 26 ist ein als Ganzes mit 28 bezeichneter Fächerkasten vorgesehen, welcher einen Fächerkastenboden 30, sowie sich von diesem im wesentlichen senkrecht nach oben erstreckende Längswände 32 sowie Querwände 34 umfasst, die insgesamt 16 Fächer mit einem ungefähr quadratischen Querschnitt bilden. Die Höhe der Längswände 32 und Querwände 34 ist so bemessen, dass diese mit ihren Oberkanten 36 und 38 mit einem strichpunktiert gezeichneten Wasserspiegel 40 abschliessen.

Sowohl die Längswände 32 als auch die Querwände 34 sind zweckmässigerweise in ihrem oberen, sich von den Oberkanten 36, 38 in Richtung des Fächerkastenbodens 30 erstreckenden Bereich 42 mit Öffnungen 46 versehen, welche eine Verbindung zwischen den Fächern 35 herstellten und damit ein Überströmen von Abwasser von Fach zu Fach erlauben.

Wenn, wie bei dem hier beschriebenen Ausführungsbeispiel, der Fächerkasten 28 als Ganzes in das erste Absetzbecken 26 eingesetzt werden kann, ist es ebenfalls zweckmässig, die Öffnungen 46 auch an den äusseren Längswänden 32 und den äusseren Querwänden 34 anzuordnen, so dass auch ein Ausströmen von Abwasser aus den äusseren Fächern 35a in das erste Absetzbecken 26 möglich ist.

Es ist aber ebenfalls eine erfindungsgemässe Ausgestaltung dieses Ausführungsbeispiels denkbar, bei welchem die äusseren Längswände 32 und die äusseren Querwände 34 nicht mit Öffnungen 46 versehen sind, so dass ein Überströmen von Abwasser aus den äusseren Fächern 35a in das erste Absetzbecken lediglich durch Überfluten der Oberkanten 36 und 38 der Längswände 32 und Querwände 34 möglich ist.

Erfindungsgemäss sind zusätzlich noch unterhalb des oberen Bereichs 42 sowohl die Längswände 32 als auch die Querwände 34 mit kleinen Öffnungen 48 versehen, welche einen mindestens um einen Faktor 2 kleineren Querschnitt als die Öffnungen 46 aufweisen sollen und lediglich dazu gedacht sind, ein langsames Überströmen von Abwasser zwischen den Fächern 35 unterhalb des oberen Bereichs 42 zuzulassen. Diese kleinen Öffnungen 48 dienen insbesondere bei sich schwer absetzenden Schlämmen dazu, einen Ausgleich zwischen den einzelnen Fächern 35 herzustellen.

Der Fächerkasten 28 ist als Ganzes mit dem Fächerkastenboden 30 auf dem Boden 12 des Kastens 10 aufgesetzt, wobei zwischen dem Boden 12 und dem Fächerkastenboden 30 Unterlagen 50 vorgesehen sind.

Eine Zufuhr von Abwasser in das erste Absetzbecken 26 erfolgt über einen in dem Deckel 22 angeordneten Zulauf 52, welcher ein an dem Deckel 22 gehaltenes Zuflussrohr 54 mit einer Mündungsöffnung 56 sowie einem unterhalb der Mündungsöffnung 56 angeordneten Verteilerrad 58 umfasst, welches um eine zum Zuflussrohr 54 zentrische Achse 60 drehbar ist. Das Verteilerrad 58 weist mehrere schräg zur Achse 60 verlaufende Verteilerflügel

62 auf.

Der gesamte Zulauf 52 ist oberhalb des Wasserspiegels 40 und somit auch oberhalb des Fächerkastens 28 ungefähr zentrisch zu letzterem angeordnet, so dass über das Zuflussrohr 54 zugeführtes, aus der Mündungsöffnung 56 austretendes und von den Verteilerflügeln 62 des Verteilerrads 58 in radialer Richtung zur Achse 60 noch zusätzlich verteiltes Abwasser im wesentlichen den vier mittleren Fächern 35 des Fächerkastens 28 zugeführt wird.

Im Rahmen der erfindungsgemässen Lösung ist es jedoch ebenfalls möglich, den Zulauf 52, beispielsweise durch Vergrösserung des Verteilerrads 58 so auszubilden, dass das Abwasser sämtlichen Fächern 35 des Fächerkastens 28 zugeführt wird.

Um ein Weiterfliessen des dem ersten Absetzbecken 26 zugeführten Abwassers in das zweite Absetzbecken 27 zu ermöglichen, ist die Trennwand 24 mit einer siphonähnlichen Überströmeinrichtung 64 versehen, welche eine in der Trennwand 24 angeordnete Überströmöffnung 66 sowie beiderseits dieser Überströmöffnung 66 angeordnete Leitflächen 68 und 70 umfasst, welche sich von einer Unterkante 72 der Überströmöffnung in Richtung des Deckels 22 nach oben jeweils bis zu einer Überströmkante 74 bzw. 76 erstrecken. Die dem ersten Absetzbecken 26 zugewandte Leitfläche 68 legt mit ihrer Überströmkante 74 den Wasserspiegel 40 im ersten Absetzbecken 26 fest. Damit kann nur dann Abwasser aus dem ersten Absetzbecken 26 in die Überströmeinrichtung 64 einfliessen, wenn zum ersten Absetzbecken 26 zugeführtes Abwasser zu einer Erhöhung des Wasserspiegels 40 im ersten Absetzbecken 26 führt, so dass dann Abwasser über die Überströmkante 74 in die Überströmeinrichtung 64 einlaufen kann.

Um ein möglichst gleichmässiges Ausströmen des Abwassers aus dem ersten Absetzbecken 26 zu erreichen, erstreckt sich die Leitfläche 68 mit ihrer Überströmkante 74 über die gesamte Breite des ersten Absetzbeckens 26 von der Längsseitenwand 14 bis zur Längsseitenwand 16. Ausserdem ist die Leitfläche 68 im Anschluss an die Überströmkante 74 so gekrümmt, dass das Abwasser zunächst parallel zum Wasserspiegel 40 weiterfliesst und dann im Laufe der Krümmung in eine im wesentlichen senkrecht zum Wasserspiegel 40 verlaufende Strömung in Richtung auf den Boden 12 übergeht.

Die dem zweiten Absetzbecken 27 zugewandte Leitfläche 70 liegt mit ihrer Überströmkante 76 unterhalb der Überströmkante 74 der Leitfläche 68, so dass ein Wasserspiegel 78 in der Überströmeinrichtung 64 unterhalb des Wasserspiegels 40 liegt. Die Leitfläche 70 ist ebenfalls im Bereich ihrer Überströmkante 76 so gekrümmt, dass ein möglichst gleichmässiges Überströmen des Abwassers von der Überströmeinrichtung 64 in das zweite Absetzbecken 27 erfolgen kann. Vorzugsweise ist daher die Leitfläche 70 im Bereich der Überströmkante 76 halbkreisförmig umgebogen.

In dem zweiten Absetzbecken 27 kann nun eine weitere Beruhigung des Abwassers und somit ein weiteres Absetzen von eventuell noch enthaltenen Schlammpartikeln erfolgen. Um dieses Absetzen zu erleichtern, ist ein als Ganzes mit 80 bezeichneter Auslauf des zweiten Absetzbeckens 27 so ausgebildet, dass in diesen das Abwasser nur von seiten des Bodens 12 einströmen kann. Hierzu umfasst der Auslauf 80 einen Auslaufstutzen 82. welcher mit seiner Eintrittsöffnung 84 einen Wasserspiegel 86 im zweiten Absetzbecken 27 festlegt. Dieser Auslaufstutzen 82 ist von einer an der Querseitenwand 20 gehaltenen Abschirmung 88 umgeben, welche nach oben über den Wasserspiegel 86 übersteht und sich in Richtung des Bodens 12 bis zu einer nahe desselben angeordneten Unterkante 90 erstreckt. Zusammen mit der Querseitenwand 20 sorgt die Abschirmung 88 dafür, dass in den Auslauf 80 lediglich von seiten des Bodens 12 im Bereich der Unterkante 90 Abwasser einströmen kann, das dann innerhalb des von der Abschirmung 88 und der Querseitenwand 20 definierten Volumens nach oben in Richtung der Eintrittsöffnung 84 steigt und dann in den Einlaufstutzen 82 einlaufen kann, der seinerseits wiederum mit einem üblichen Wasserablauf verbunden ist. Um ein Austreten von Feinschlämmen im Bereich des Ablaufstutzens 82 zu verhindern, ist in diesem ein Feinfilter 92 auswechselbar eingesetzt.

Der ganze Auslauf 80 ist zusätzlich mit einer Abdeckung 94 versehen.

Um zu verhindern, dass bei eventuell verstopftem Feinfilter 92 das zweite Absetzbecken 27 sich bis zum Deckel 22 füllt und dann überläuft, ist noch ein Sicherheitsüberlauf 96 vorgesehen, welcher oberhalb der Abdeckung 94 des Auflaufs 80 in das zweite Absetzbecken 27 mündet und seinerseits wiederum mit dem Auslaufstutzen 82 hinter dem Feinfilter 92 verbunden ist.

Zur leichteren Transportierbarkeit ist der Kasten 10 in eine Wanne 102 eines mit Rollen 104 versehenen Wagens 100 eingesetzt und ruht dabei mit seinem Boden 12 auf Distanzhaltern 106.

Die erfindungsgemässe Klärvorrichtung funktioniert folgendermassen:

Das beispielsweise Gipsschlämme und Gipspartikel aufweisende Abwasser wird über das Zuflussrohr 54 und die Mündung 56 dem ersten Absetzbecken zugeführt, wobei das Verteilerrad 58 dafür sorgt, dass dieses Abwasser in die Fächer 35b eingeleitet wird. Dies führt zu einem Überlaufen der bereits bis zum Wasserspiegel 40 gefüllten Fächer 35b, so dass entweder durch Überströmen der Oberkanten 36 und 38 der Längswände 32 und 34 oder durch Durchströmen der im oberen Bereich 42 angeordneten Öffnungen 46 auch die rings um die Fächer 35b angeordneten äusseren Fächer 35a mit Abwasser gefüllt werden. Da diese ihrerseits ebenfalls bis zum Wasserspiegel 40 bereits gefüllt sind, läuft der gesamte Fächerkasten 28 über.

Der Sinn des Fächerkastens 28 ist darin zu sehen, dass das von oben in die Fächer 35b eingeleitete Abwasser lediglich zu einer Abwasserströmung im oberen Bereich des Fächerkastens 28 führt, wobei diese Strömung durch die Verteilung der Abwassermenge über die gesamte Oberfläche des Fächerkastens 28 verlangsamt wird. Ausserdem verhindern die einzelnen Fächer 35 des Fä-

cherkastens 28 durch das von oben zugeführte Abwasser eine Aufwirbelung des in dem Fächerkasten 28 nahe des Fächerkastenbodens 30 stehenden Abwassers und somit auch eine Aufwirbelung der in diesem Bereich im Absetzen begriffenen Schlammpartikel. Von dem neu zugeführten Abwasser fallen zunächst sämtliche schweren Schlammpartikel sofort innerhalb der inneren Fächer 35b nach unten. so dass diese bereits nicht mehr in die nächsten Fächer weitertransportiert werden. Alle etwas leichteren Schlammpartikel werden teilweise noch durch die Strömung bei der Verteilung des Abwassers über die gesamte Oberfläche des Fächerkastens 28 mitgenommen, verlassen jedoch zum grössten Teil den Fächerkasten 28 nicht, sondern beginnen spätestens in den äusseren Fächern 35a sich abzusetzen.

Da das Abwasser in der Regel schubweise der erfindungsgemässen Klärvorrichtung zugeführt wird, haben die Schlammpartikel nach ihrer Verteilung über die einzelnen Fächer 35 des Fächerkastens 28 Zeit, sich innerhalb der einzelnen Fächer 35 abzusetzen, so dass sich im Laufe der Zeit auf dem Fächerkastenboden 30 eine Schlammschicht ausbildet.

Durch das günstige Verhältnis des Querschnitts der einzelnen Fächer 35 zu deren Höhe, das bei dem beschriebenen erfindungsgemässen Ausführungsbeispiel unter 0,6 liegt, wird erreicht, dass neu über den Zulauf 52 zugeführtes Abwasser nicht zu einer Aufwirbelung der sich bereits im unteren Teil der Fächer 35 nahe des Fächerkastenbodens 30 abgesetzten Schlammpartikel führen kann, da in diesem Bereich keine nennenswerte Querströmung von Fach zu Fach auftreten kann. Selbst wenn bei den inneren Fächern 35b durch das von oben einfallende Abwasser über einen gewissen Bereich dieser Fächer eine Durchwirbelung auftreten sollte, so ist diese im Rahmen des erfindungsgemässen Ausführungsbeispiels nicht schädlich, da sich in den mittleren Fächern 35b in der Regel nicht die feinen Schlammpartikel, sondern die Grobschlammpartikel absetzen, die auch schwerer aufzuwirbeln sind. Dagegen erfolgt in den äusseren Fächern 35a, in denen sich die leichteren Schlammpartikel abzusetzen begonnen haben, keine Aufwirbelung derselben, da in diese Fächer 35a das schlammhaltige Abwasser lediglich im oberen Bereich 42 einströmt

Damit führt der Fächerkasten 28 bereits zu einer weitgehenden Beruhigung des zugeführten Abwassers, so dass sich einerseits die in dem Abwasser enthaltenen Schlammpartikel leicht absetzen können und andererseits bereits abgesetzte oder im Absetzen begriffene Schlammpartikel durch neu zugeführtes Abwasser nicht wieder aufgewirbelt werden können.

Durch die geringfügige Erhöhung des Wasserspiegels 40 beim Zuführen von Abwasser in das erste Absetzbecken 26 erfolgt ein Überströmen von Abwasser in die Überströmeinrichtung 64. Dieses Abwasser ist jedoch weitgehend von den enthaltenen Schlammpartikeln befreit. Nur noch Feinschlämme, die sich sehr schwer absetzen, werden von dem einströmenden Abwasser mitgenommen. Durch die

gebogene Leitfläche 68 im Anschluss an ihre Überströmkante 74 erfolgt keine erneute Durchwirbelung des Abwassers, sondern dieses wird möglichst ohne grössere Wirbel durch die Überströmeinrichtung 64 hindurchgeführt und in das zweite Absetzbecken 27 eingeleitet.

In diesem findet nun eine letzte Beruhigung des Abwassers statt, wobei die Neigung der Feinschlammpartikel, sich abzusetzen, dadurch noch verstärkt wird, dass das Abwasser lediglich von unten in den Auslauf 80 einströmen kann, so dass im gesamten zweiten Absetzbecken 27 eine sehr langsame Strömung des gesamten Abwassers in Richtung des Bodens 12 erfolgt, auf dem sich dann die Feinschlammpartikel absetzen, bevor das Abwasser wiederum innerhalb des von der Abschirmung 88 und der Querseitenwand 20 definierten Volumens nach oben strömt.

Eine letzte Reinigung von Feinschlammpartikeln erfolgt durch das Feinfilter 92 in dem Auslaufstutzen 82, so dass das den Auslaufstutzen 82 verlassende und in Abwasserrohre eingeleitete Abwasser nahezu frei von sämtlichen Schlammpartikeln ist.

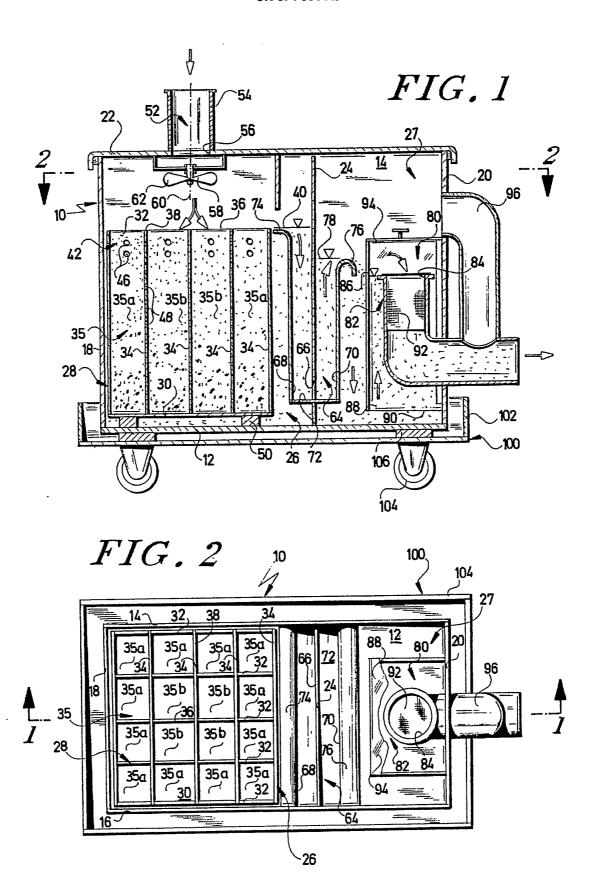
In Anlehnung an das vorstehend beschriebene Ausführungsbeispiel sind auch weitere Abwandlungen dieses Ausführungsbeispiels denkbar.

Der Fächerkasten 28 mit dem Fächerkastenboden hat zwar den Vorteil, dass er die Reinigung des ersten Absetzbeckens 26 dadurch erleichtert, dass der Fächerkasten 28 als Ganzes aus diesem herausgenommen und somit auch die sich im Fächerkasten 28 abgesetzten Schlämme sehr einfach entfernt werden können, er stellt jedoch eine sehr aufwendige Lösung dar.

So ist es beispielsweise im Rahmen eines vereinfachten Ausführungsbeispiels ausreichend, anstelle des Fächerkastens 28 lediglich einen Satz von Längswänden 32 und Querwänden 34 in das erste Absetzbecken 26 einzusetzen, welche sich ihrerseits bis zu dem Boden 12 des Kastens 10 erstrecken. Wenn diese Längswände 32 und Querwände 34 herausnehmbar sind, kann das erste Absetzbecken 26 ebenfalls einfach gereinigt werden.

Ausserdem kann auch die aufwendige Überströmeinrichtung durch eine einfache Überlaufkante zwischen dem ersten Absetzbecken 26 und dem zweiten Absetzbecken 27 ersetzt werden. Diese Lösung ist konstruktiv etwas einfacher, hat jedoch eine nicht so weitgehende Beruhigung des in das zweite Absetzbecken 27 einströmenden Abwassers zur Folge. Sofern jedoch lediglich Abwässer mit sich sehr schnell absetzenden Schlammpartikeln in der Klärvorrichtung von diesen befreit werden sollen, ist diese vereinfachte Lösung ausreichend.

Schliesslich kann in Abwandlung des vorstehend beschriebenen Ausführungsbeispiels auch die Abschirmung 88 für den Auslauf 80 weggelassen werden, sofern ein Absetzen der in dem Abwasser enthaltenen Schlammpartikel mit ausreichender Geschwindigkeit erfolgt.


Patentansprüche

1. Klärvorrichtung für schlammhaltige Abwässer, insbesondere Laborabwässer, mit einem Zulauf,

mindestens einem Absetzbecken und einem einen konstanten Wasserspiegel im Absetzbecken aufrecht erhaltenden Ablauf, wobei das Absetzbecken unterhalb des Wasserspiegels durch eine Trennwand in mindestens zwei Fächer unterteilt ist, die miteinander in direkter Verbindung stehen, und wobei der Zulauf mindestens eine über dem Wasserspiegel angeordnete Mündungsöffnung aufweist, dadurch gekennzeichnet, dass der Zulauf als das zulaufende Abwasser mehreren Fächern zuleitender Verteiler ausgebildet ist und dass sich die Trennwand zumindest im wesentlichen über die gesamte Füllhöhe erstreckt.

2. Klärvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sich die Fächer (35) bis zu einem Boden (12) des Absetzbeckens (26) erstrecken.

- 3. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Fächer (35) in einem herausnehmbaren Fächereinsatz vorgesehen sind.
- 4. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Fächer (35) durch Öffnungen (46, 48) miteinander verbunden sind.
- 5. Klärvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Öffnungen (46) in einem oberen, dem Wasserspiegel (40) zugewandten Bereich (42) der Fächer (35) liegen.
- 6. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Fächer (35) ein Verhältnis der Wurzel aus der oberen Querschnittsfläche zur Höhe kleiner als 0,5 aufweisen.
- 7. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Fächer (35) einen ungefähr rechteckigen Querschnitt aufweisen.
- 8. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Fächer (35) eine dem Zulauf (52) zugewandte Fächeroberfläche bilden, die ein Vielfaches eines Querschnitts des Zulaufs (52) beträgt.
- 9. Klärvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Fächer (35) nach oben bis zum Wasserspiegel (40) reichen.
- 10. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Verteiler ein Verteilerorgan (58) mit schräg zu einer Zuflussrichtung des Abwassers stehenden Verteilerfläche (62) aufweist.
- 11. Klärvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Verteilerorgan (58) um eine zur Mündungsöffnung (56) zentrische Achse (60) drehbar ist.
- 12. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Absetzbecken (27) einen von einem Boden (12) desselben anströmbaren Ablauf (80) mit einer einen Wasserstand in diesem Absetzbecken (27) festlegenden Überlaufkante (84) aufweist.
- 13. Klärvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass an dem Ablauf ein Feinfilter (92) angeordnet ist.

