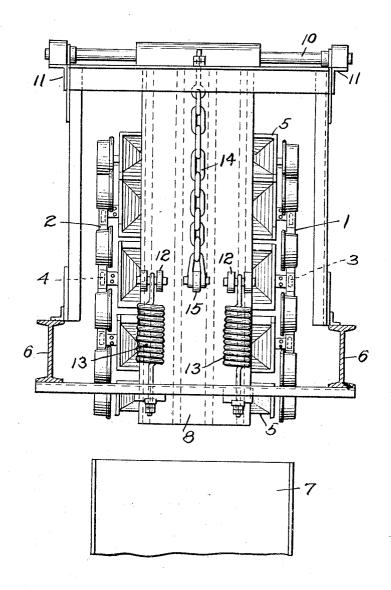

W. T. HURST. PIG METAL CASTING MACHINE. APPLICATION FILED FEB. 17, 1920.

1,354,975.

Patented Oct. 5, 1920.

FIG.1.

witnesses J. Hebel Bradlef.


Willis T. Hurst by Winter & Brown his attorneys

W. T. HURST. PIG METAL CASTING MACHINE. APPLICATION FILED FEB. 17, 1920.

1,354,975.

Patented Oct. 5, 1920.

FIG.Z.

J. Hebel Bradley.

Willis T. Hurst by Winter + Brown his attorneys

UNITED STATES PATENT OFFICE.

WILLIS T. HURST, OF PITTSBURGH, PENNSYLVANIA.

PIG-METAL-CASTING MACHINE.

1.354.975.

Specification of Letters Patent.

Patented Oct. 5, 1920.

Application filed February 17, 1920. Serial No. 359,366.

To all whom it may concern:

Be it known that I, WILLIS T. HURST, a resident of Pittsburgh, in the county of Allegheny and State of Pennsylvania, have 5 invented a new and useful Improvement in Pig-Metal-Casting Machines, of which the following is a specification.

The invention relates to machines for casting pig-metal, such as pig-iron and pig-10 copper, and has particularly to do with the construction of the discharge ends of such

The pig-metal casting machines contemplated herein are of the well known type
15 in which casting molds, arranged adjacently to each other are attached at their ends to a pair of endless conveyer chains which extend over, and are driven by, sprocket wheels. Molten metal is poured 20 into the casting molds as the conveyer is continuously driven, the metal usually being subsequently cooled by streams of water poured upon it. At the turning point of the conveyer the pigs, so formed, are suc-25 cessively discharged from the molds into a chute, or an equivalent structure, whereby the pigs are directed or carried as desired.

The object of the invention is to provide at the discharge end of the conveyer a 30 guide for so directing the pigs into the chute that they will have a minimum fall before striking the chute, such guide being also so constructed that it will not be broken or otherwise injured in case of certain 35 exigencies of operation which occasionally happen, as will presently be explained.

The invention is illustrated in the accompanying drawings, of which Figure 1 is a combined side and vertical sectional 40 view of the discharge end of a pig-metal casting machine, and Fig. 2 an end view

thereof.

In the casting machine a pair of endless conveyers 1 and 2 extend around and be-45 tween sprocket wheels, of which there is indicated in the drawings but one pair 3 and 4 at the discharge end of the machine. Arranged between, and supported by, the links of the conveyer chains, there are suit-50 able casting molds 5, which may be of any desired form or construction, but which are preferably of the general shape and arrangement indicated in the drawings. The sprocket wheels 3 and 4 may be rotatably 55 supported upon a suitable frame 6, and may be driven in any desired manner to cause the mold conveyer to continuously move beneath a stream of molten metal being

cast into the molds.

Below the discharge end of the conveyer 60 there is arranged a pig conveyer which may take the form of a downwardly inclined chute 7. The pigs, by the time they are carried to the discharge end of the conveyer having been sufficiently cooled to as- 65 sume a permanent set, readily fall from the molds as the conveyer turns downwardly around the sprocket wheels, as indicated by the pig 5°. The pigs usually have sharp edges, and, being quite heavy, they cause 70 considerable wear upon the receiving chute, particularly if they are permitted to fall unrestrained from the positions in which they drop out of the molds. To prevent the pigs from falling through a consider- 75 able space upon the chute 7, a guide 8 is arranged adjacent to the ends of the mold conveyer, such guide preferably curved in an arc of a circle concentric with the sprockets 3 and 4 and coöperating with 80 the molds to hold the pigs against falling until they are in proximity to the chute.

It occasionally happens that a rigid article, such as a pig, a bar of metal, tool, etc., falls upon the top of the mold conveyer, and, in 85 the general position indicated by the pig 9, is carried by the conveyer to the discharge end of the machine. To prevent injury to the casting machine, or the conveyer, or both, due to a pig being wedged between the molds 90 and the guide 8, such guide is attached to its supporting frame in such a manner that the guide may move laterally, means being provided for yieldingly holding the guide toward the conveyer. Preferably, the upper 95 end of the guide is pivoted, as at 10, to a supporting frame 11, which may be a part of the general supporting frame for the discharge end of the machine. For holding the guide yieldinly toward the conveyer, the 100 guide may be provided with a lug 12 to which there is attached one end of a spring 13, the other end of which is connected to the supporting frame. In the drawings two of such springs are shown, one being attached to each 105 side of the guide. For holding the guide against contact with the end of the conveyer, a suitable stop is provided, such stop preferably consisting of a flexible member, such as a chain 14, attached at one end to a lug 15, 110 projecting from the back of the guide, and at the other end to the supporting frame 11.

The general operation of the casting machine has been previously explained. Normally each pig partially falls from its mold when the mold is about in the position of the mold 5^{a} . However, the pig cannot fall directly upon the chute 7 from this height, because of its being restrained by the guide 8 which holds the pig in the outer end of the mold until the mold passes beyond the lower 10 end of the guide. When an obstacle, such as a pig 9, rides upon the top of the mold conveyer, the guide will, when pressure is placed upon it by the moving obstacle, move laterally against the resistance of the springs 13 15 to the position indicated in dotted lines in Fig. 1. Thus, the obstacle may pass between the mold conveyer and the guide without injuring either, and when the obstacle has dropped into the chute 7 the guide will be 20 returned to its normal operating position by the action of the springs.

According to the provisions of the patent statutes, I have described the principle and operation of my invention together with the 25 construction which I now consider to represent the best embodiment thereof. However, I desire to have it understood that, within the scope of the appended claims, my invention may be practised by other forms of 30 construction than that specifically shown and described herein.

I claim as my invention:

1. In a pig-metal casting machine, the combination with a supporting frame and a 35 continuous mold conveyer, of a pig-receiving chute below the conveyer, a laterally movable guide supported by said frame adjacent to the discharge end of the conveyer, and adapted to direct into said chute the 40 pigs discharged from the molds, and means for holding said guide yieldingly toward the

2. In a pig-metal casting machine, the

combination with a supporting frame and a continuous mold conveyer, of a pig-receiv- 45 ing chute below the conveyer, a guide pivoted at its upper end to said frame and extending adjacent to the discharge end of the conveyer in a position to direct into said chute the pigs discharged from the molds, 50 and means for holding said guide yieldingly toward the conveyer.

3. In a pig-metal casting machine, the combination with a supporting frame and a continuous mold conveyer, of a pig-receiv- 55 ing chute below the conveyer, a guide pivoted at its upper end to said frame and extending adjacent to the discharge end of the conveyer in a position to direct into said chute the pigs discharged from the molds, a 60 spring acting between said frame and guide to hold the guide yieldingly toward the conveyer, and a stop for holding said guide against contact with the conveyer.

4. In a pig-metal casting machine, the 65 combination with a supporting frame and a continuous mold conveyer, of a pig-receiving chute inclined downwardly from a position below and adjacent to the discharge end of the conveyer, a curved guide pivoted at 70 its upper end to said frame and extending adjacent to the discharge end of the conveyer, in a position to direct into said chute the pigs discharged from the molds, a lug extending laterally from said guide, a spring 75 attached at its opposite ends to said lug and frame to urge the guide toward the conveyer and a flexible member connected at its opposite ends to the said guide and frame for holding said guide against contact with the 80

In testimony whereof, I have hereunto

set my hand.

WILLIS T. HURST.

Witness:

ALICE A. TRILL.