Title: NOVEL USE OF PEPTIDE COMPOUNDS FOR TREATING PAIN IN TRIGEMINAL NEURALGIA

Abstract: The present invention is directed to the use of a class of peptide compounds for treating pain in trigeminal neuralgia.
Novel Use of Peptide Compounds for Treating Pain in Trigeminal Neuralgia

Description

The present invention is directed to the use of a class of peptide compounds for treating pain in trigeminal neuralgia.

Certain peptides are known to exhibit central nervous system (CNS) activity and are useful in the treatment of epilepsy and other CNS disorders. These peptides which are described in the U.S. Patent No. 5,378,729 have the Formula (Ia):

\[
\text{R} - \text{NH} - \left[\begin{array}{c}
\text{C} - \text{CNH} - \\
\text{O} - \text{C} - \text{R}_1
\end{array}\right]_n - \text{C} - \text{R}_1
\]

Formula (Ia)

wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and
R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group;

Z is O, S, S(O)ₓ, NR₄, PR₄ or a chemical bond;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, halo, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, provided that when Y is halo, Z is a chemical bond, or

ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, OPR₄R₅, PR₄OR₅, SNR₄R₅, NR₄SR₅, SPR₄R₅ or PR₄SR₅, NR₄PR₅R₆ or PR₄NR₅R₆,

\[
\begin{align*}
&\text{NR}_{4}\text{C-}R_{5}, \quad \text{SCR}_{5}, \quad \text{NR}_{4}\text{C-OR}_{5}, \quad \text{SC-OR}_{5}; \\
&\quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O}
\end{align*}
\]

R₄, R₅ and R₆ are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, or lower alkynyl, wherein R₄, R₅ and R₆ may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

R₇ is R₈ or COOR₈ or COR₈;

R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4; and

a is 1-3.
U.S. Patent No. 5,773,475 also discloses additional compounds useful for treating CNS disorders. These compounds are N-benzyl-2-amino-3-methoxy-propionamide having the Formula (IIa):

\[
\begin{array}{cccc}
\text{H} & \text{H} & \text{H} \\
\text{Ar-CH}_2-N-C-C-N-C-R_1 \\
\text{O} & \text{CH}_2 & \text{O} \\
\text{R}_3 \\
\end{array}
\]

Formula (IIa)

wherein

Ar is aryl which is unsubstituted or substituted with halo; \(R_3 \) is lower alkoxy; and \(R_1 \) is methyl.

The patents US 5,378,729 and US 5,773,475 are hereby incorporated by reference. However, neither of these patents describes the use of these compounds as specific analgesics for the treatment of pain in trigeminal neuralgia.

WO 02/074297 relates to the use of a compound according to Formula (IIa) wherein Ar is phenyl which may be substituted by at least one halo, \(R_3 \) is lower alkoxy containing 1-3 carbon atoms and \(R_1 \) is methyl for the preparation of pharmaceutical compositions useful for the treatment of allodynia related to peripheral neuropathic pain.

WO 02/074784 relates to the use of a compound having Formula (Ia) or/and Formula (IIa) showing antinociceptive properties for treating different types and symptoms of acute and chronic pain, especially non neuropathic inflammatory pain, e.g. rheumatoid arthritic pain or/and secondary
inflammatory osteo-arthritis pain.

Pain is a subjective experience and the perception of pain is performed in particular parts of the Central Nervous System (CNS). Usually noxious (peripheral) stimuli are transmitted to the Central Nervous System (CNS) beforehand, but pain is not always associated with nociception. A broad variety of different types of clinical pain exists, that are derived from different underlying pathophysiological mechanisms and that will need different treatment approaches.

The perception of pain may be characterized by three major types of clinical pain:

- acute pain
- chronic pain
- neuropathic pain

Acute clinical pain may result from inflammation or soft tissue injury, for instance. This type of pain is adaptive and has the biologically relevant function of warning and enabling healing and repair of an already damaged body part to occur undisturbed. A protective function is achieved by making the injured/inflamed area and surrounding tissue hypersensitive to all stimuli so that contact with any external stimulus is avoided. The neuronal mechanisms underlying this type of clinical pain are fairly well understood and pharmacological control of acute clinical pain is available and effective by means of e.g. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) up to opioids depending on type and extension of the sensation.

Chronic clinical pain appears as sustained sensory abnormalities resulting from an ongoing peripheral pathology such as cancer or chronic inflammation (e.g. arthritis) or it can be independent of the initiating triggers. The latter being maladaptive, offering no survival advantage and very often no effective treatment is available.
There are several causes of human neuropathy with considerable variability in symptoms and neurological deficits. Painful neuropathies are defined as neurological disorders characterised by persistence of pain and hypersensitivity in a body region, of which the sensory innervation has been damaged, but damage to sensory nerves does not always produce neuropathic pain, usually loss of sensation rather than hypersensitivity or pain are observed.

Neuropathic pain can be classified as peripheral and central neuropathic pain. Peripheral neuropathic pain is caused by injury or infection of peripheral sensory nerves, whereas central neuropathic pain is caused by damage to the CNS or/and the spinal cord. Both peripheral and central neuropathic pain can occur without obvious initial nerve damage.

Common analgesics like opioids and non-steroidal anti-inflammatory drugs (NSAIDs) improve only insufficiently chronic abnormal pain syndromes as peripheral and central neuropathic pain due to insufficient efficacy or limiting side effects. In the search for alternative treatment regimes to produce satisfactory and sustained pain relief, corticosteroids, conduction blockade, glycerol, antidepressants, local anesthetics, gangliosides and electrostimulation have been tried, but mainly anti-convulsants have been found useful against various types of peripheral neuropathic pain conditions. A subset of patients with neuropathic pain responds to opioids. Carbamazepine is effective in reducing pain in patients with trigeminal neuralgia.

If general overactivity and unlined low threshold activation of sensory neurons is considered as one of the main syndroms of neuropathy and neuropathic pain sensation with a marked mechanoallodynia as the most disabling clinical symptom, selective inhibition of this pathophysiological event instead of general inhibition of high threshold noxious stimuli (by e.g. local anesthetics) of the normal sensory nociception provides clear
advantages.

The mechanisms of trigeminal neuralgia are poorly understood. Current treatments use a variety of pharmacological, surgical, physical and psychological approaches. However, the evidence for many of the treatments is still limited. Mononeuropathies in general can be caused by any trauma or lesion or may even exist without a known cause, as is very often the case with atypical facial pain.

The use of compounds of Formula (Ib) or/and Formula (IIb) for treatment of pain in trigeminal neuralgia has not been reported. Thus, the present invention concerns the use of said compounds of Formulae (Ib) or/and (IIb) for the preparation of a pharmaceutical composition for the prevention, alleviation or/and treatment of trigeminal neuropathic pain and other forms of mononeuropathies or atypical facial pain.

Surprisingly, application of compounds (Ib) or/and (IIb), particularly (R)-2-acetamide-N-benzyl-3-methoxypropionamide (SPM 927) exhibited a significant efficacy in reducing mechanical hypersensitivity in rats with infraorbital nerve injury. Thus, the compounds are useful as analgesic or/and anti-allodynic compounds for treating trigeminal neuropathic pain. Treatment with SPM 927 particularly leads to a significant increase in the response threshold indicating analgesic or/and anti-allodynic activity in trigeminal neuralgia.

A compound according to the invention has the general Formula (Ib)

\[
\begin{align*}
R_2 \\
\bigg\{ \begin{array}{c}
R-NH-\bigg[& C-\bigg[& CNH-\bigg]\bigg]_n- & C-R_1 \\
\quad \quad \quad \quad \quad & \bigg| & \bigg| \\
& O & O \\
\quad \quad \quad \quad \quad & R_3 & \\
\end{array}
\end{align*}
\]

Formula (Ib)
wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl or lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group, and/or at least one electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, lower alkyl heterocyclic, heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with at least one electron donating group and/or at least one electron withdrawing group;

and

R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group and/or at least one electron donating group;

Z is O, S, S(O)ₓ, NR₄, NRₛ, PR₄ or a chemical bond;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic and Y may be unsubstituted or substituted with at least one electron donating group and/or at least one electron withdrawing group, provided that when Y is halo, Z is a chemical bond, or

ZY taken together is NR₄NRₛR₇, NR₄ORₛ, ONR₄R₇, OPR₄Rₛ, PR₄ORₛ, SNR₄R₇, NR₄SR₇, SPR₄Rₛ, PRₛSR₇, NR₄PRₛRₛ, PR₄NRₛR₇ or N'RₛR₉R₇,
NR₄C-R₆, SCR₅, NR₄C-OR₅, SC-OR₅, NR₄NR₅-C-OR₆;

5 \(R'_6 \) is hydrogen, lower alkyl, lower alkenyl, or lower alkenyl which may be unsubstituted or substituted with at least one electron withdrawing group or/and at least one electron donating group;

10 \(R₄, R₅ \) and \(R₆ \) are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein \(R₄, R₅ \) and \(R₆ \) may independently be unsubstituted or substituted with at least one electron withdrawing group or/and at least one electron donating group;

15 \(R₇ \) is \(R₆ \) or COOR₅ or COR₅, which \(R₇ \) may be unsubstituted or substituted with at least one electron withdrawing group or/and at least one electron donating group;

20 \(R₈ \) is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with at least one electron withdrawing group or/and at least one electron donating group; and

25 n is 1-4; and an a is 1-3.

Preferably the compound according has the general Formula (IIb)

\[
\text{Ar}-\text{CH₂}-\text{N}-\text{C}-\text{C}-\text{N}-\text{C}-\text{R₁}
\]

Formula (IIb)

35 wherein
Ar is aryl, especially phenyl, which is unsubstituted or substituted with at least one halo; R₃ is -CH₂-Q, wherein Q is lower alkoxy; and R₁ is lower alkyl, especially methyl.

The present invention is also directed to a pharmaceutical composition comprising a compound according to Formula (Ib) or/and Formula (IIb) useful for the prevention, alleviation or/and treatment of trigeminal neuropathic pain.

The “lower alkyl” groups when used alone or in combination with other groups, are lower alkyl containing from 1 to 6 carbon atoms, especially 1 to 3 carbon atoms, and may be straight chain or branched. These groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl, amyl, hexyl, and the like.

The “lower alkoxy” groups are lower alkoxy containing from 1 to 6 carbon atoms, especially 1 to 3 carbon atoms, and may be straight chain or branched. These groups include methoxy, ethoxy, propoxy, butoxy, isobutoxy, tert-butoxy, pentoxy, hexoxy and the like.

The “aryl lower alkyl” groups include, for example, benzyl, phenylethyl, phenylpropyl, phenylisopropyl, phenylbutyl, diphenylmethyl, 1,1-diphenylethyl, 1,2-diphenylethyl, and the like.

The term “aryl”, when used alone or in combination, refers to an aromatic group which contains from 6 up to 18 ring carbon atoms and up to a total of 25 carbon atoms and includes the polynuclear aromatics. These aryl groups may be monocyclic, bicyclic, tricyclic or polycyclic and are fused rings. A polynuclear aromatic compound as used herein, is meant to encompass bicyclic and tricyclic fused aromatic ring systems containing from 10-18 ring carbon atoms and up to a total of 25 carbon atoms. The aryl group includes phenyl, and the polynuclear aromatics e.g., naphthyl, anthracenyl, phenanthrenyl, azulenyl and the like. The aryl group also includes groups
like ferroceny1. Aryl groups may be unsubstituted or mono or polysubstituted with electron withdrawing or/and electron donating groups as described below.

"Lower alkenyl" is an alkenyl group containing from 2 to 6 carbon atoms and at least one double bond. These groups may be straight chained or branched and may be in the Z or E form. Such groups include vinyl, propenyl, 1-but enyl, isobutenyl, 2-butenyl, 1-pentenyl, (Z)-2-pentenyl, (E)-2-pentenyl, (Z)-4-methyl-2-pentenyl, (E)-4-methyl-2-pentenyl, pentadienyl, e.g., 1, 3 or 2,4-pentadienyl, and the like.

The term "lower alkynyl" is an alkynyl group containing 2 to 6 carbon atoms and may be straight chained as well as branched. It includes such groups as ethynyl, propynyl, 1-butynyl, 2-butynyl, 1-penty nyl, 2-pentynyl, 3-methyl-1-pentenyl, 3-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl and the like.

The term "lower cycloalkyl" when used alone or in combination is a cycloalkyl group containing from 3 to 18 ring carbon atoms and up to a total of 25 carbon atoms. The cycloalkyl groups may be monocyclic, bicyclic, tricyclic, or polycyclic and the rings are fused. The cycloalkyl may be completely saturated or partially saturated. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclohexenyl, cyclopent enyl, cyclooctenyl, cycloheptenyl, decalanyl, hydroindanyl, indanyl, fenchyl, pinenyl, adamantyl, and the like. Cycloalkyl includes the cis or trans forms. Cycloalkyl groups may be unsubstituted or mono or polysubstituted with electron withdrawing or/and electron donating groups as described below. Furthermore, the substituents may either be in endo or exo positions in the bridged bicyclic systems.

The term "electron-withdrawing and electron donating" refer to the ability of a substituent to withdraw or donate electrons, respectively, relative to that of hydrogen if the hydrogen atom occupied the same position in the molecule. These terms are well understood by one skilled in the art and are discussed
in Advanced Organic Chemistry, by J. March, John Wiley and Sons, New York, NY, pp.16-18 (1985) and the discussion therein is incorporated herein by reference. Electron withdrawing groups include halo, including bromo, fluoro, chloro, iodo and the like; nitro, carboxy, lower alkenyl, lower alkynyl, formyl, carboxyamido, aryl, quaternary ammonium, haloalkyl such as trifluoromethyl, aryl lower alkanoyl, carbalkoxy and the like. Electron donating groups include such groups as hydroxy, lower alkoxy, including methoxy, ethoxy and the like; lower alkyl, such as methyl, ethyl, and the like; amino, lower alkylamino, di(loweralkyl) amino, aryloxy such as phenoxy, mercapto, lower alkylthio, lower alkylmercapto, disulfide (lower alkylthio) and the like. One of ordinary skill in the art will appreciate that some of the aforesaid substituents may be considered to be electron donating or electron withdrawing under different chemical conditions. Moreover, the present invention contemplates any combination of substituents selected from the above-identified groups.

The term "halo" includes fluoro, chloro, bromo, iodo and the like.

The term "acyl" includes lower alkanoyl containing from 1 to 6 carbon atoms and may be straight chains or branched. These groups include, for example, formyl, acetyl, propionyl, butyryl, isobutyryl, tertiary butyryl, pentanoyl and hexanoyl.

As employed herein, a heterocyclic group contains at least one sulfur, nitrogen or oxygen ring atom, but also may include several of said atoms in the ring. The heterocyclic groups contemplated by the present invention include heteroaromatics and saturated and partially saturated heterocyclic compounds. These heterocyclics may be monocyclic, bicyclic, tricyclic or polycyclic and are fused rings. They may preferably contain up to 18 ring atoms and up to a total of 17 ring carbon atoms and a total of up to 25 carbon atoms. The heterocyclics are also intended to include the so-called benzoheterocyclics. Representative heterocyclics include furyl, thieryl, pyrazolyl, pyrrolyl, methylpyrrolyl, imidazolyl, indolyl, thiazolyl, oxazolyl,
isothiazolyl, isoxazolyl, piperidyl, pyrrolinyl, piperazinyl, quinolyl, triazolyl, tetrazolyl, isoquinolyl, benzofuryl, benzothienyl, morpholinyl, benzoxazolyl, tetrahydrofuryl, pyranyl, indazolyl, purinyl, indolinyl, pyrazolindinyl, imidazolinyl, imadazolinindinyl, pyrrolidinyl, furazanyl, N-methylinodolyl, methylfuryl, pyridazinyl, pyrimidinyl, pyrazinyl, pyridyl, epoxy, aziridino, oxetanyl, azetidinyl, the N-oxides of the nitrogen containing heterocycles, such as the N-oxides of pyridyl, pyrazinyl, and pyrimidinyl and the like. Heterocyclic groups may be unsubstituted or mono or polysubstituted with electron withdrawing or/and electron donating groups.

The preferred heterocyclics are thienyl, furyl, pyrrolyl, benzofuryl, benzothienyl, indolyl, methylpyrrolyl, morpholinyl, pyridyl, pyrazinyl, imidazolyl, pyrimidinyl, or pyridazinyl. The preferred heterocyclic is a 5 or 6-membered heterocyclic compound. The especially preferred heterocyclic is furyl, pyridyl, pyrazinyl, imidazolyl, pyrimidinyl, or pyridazinyl. The most preferred heterocyclics are furyl and pyridyl.

The preferred compounds are those wherein n is 1, but di (n=2), tri (n=3) and tetrapeptides (n=4) are also contemplated to be within the scope of the invention.

The preferred values of R is aryl lower alkyl, especially benzyl, especially those wherein the phenyl ring thereof is unsubstituted or substituted with electron donating groups or/and electron withdrawing groups, such as halo (e.g., F).

The preferred R₁ is H or lower alkyl. The most preferred R₁ group is methyl.

The preferred electron donating substituents or/and electron withdrawing substituents are halo, nitro, alkanoyl, formyl, aroylalkanoyl, aryloyl, carboxyl, carbalkoxy, carboxamido, cyano, sulfonyl, sulfoxide, heterocyclic, guanidine, quaternary ammonium, lower alkenyl, lower alkynyl, sulfonium salts, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, di(loweralkyl)
amino, amino lower alkyl, mercapto, mercaptoalkyl, alkylthio, and alkylidithio. The term "sulfide" encompasses mercapto, mercapto alkyl and alkylthio, while the term disulfide encompasses alkylidithio. Especially preferred electron donating or/and electron withdrawing groups are halo or lower alkoxy, most preferred are fluoro or methoxy. These preferred substituents may be present on any one of the groups in Formula (Ib) or/and (IIb), e.g. R, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈ and/or R₅₀ as defined herein.

The ZY groups representative of R₂ and R₃ include hydroxy, alkoxy, such as methoxy, ethoxy, arylxy, such as phenoxy; thioalkoxy, such as thiomethoxy, thioethoxy; thioaryloxy such as thiophenoxy; amino; alkylamino, such as methylamino, ethylamino; arylamino, such as anilino; lower dialkylamino, such as, dimethylamino; trialkyl ammonium salt, hydrazino; alkylhydrazino and aryldrazino, such as N-methylhydrazino, N-phenylhydrazino, carbalkoxy hydrazino, aralkoxycarbonyl hydrazino, aryloxy carbonyl hydrazino, hydroxylamino, such as N-hydroxylamino (=-NH-OH), lower alkoxy amino [(NHOR₁₈ wherein R₁₈ is lower alkyl], N-lower alkylhydroxyl amino [(NR₁₈)OH wherein R₁₈ is lower alkyl], N-lower alkyl-O-lower alkylhydroxyamino, i.e., [N(R₁₈)OR₁₉ wherein R₁₈ and R₁₉ are independently lower alkyl], and o-hydroxylamino (-O-NH₂); alkylamido such as acetamido; trifluoroacetamido; lower alkoxyamino, (e.g., NH(OCH₃); and heterocyclicamino, such as pyrazoylaminio.

The preferred heterocyclic groups representative of R₂ and R₃ are monocyclic 5- or 6-membered heterocyclic moieties of the formula:
or those corresponding partially or fully saturated form thereof wherein n is 0 or 1; and

\[R_{50} \] is H or an electron withdrawing group or electron donating group;

A, E, L, J and G are independently CH, or a heteroatom selected from the group consisting of N, O, S;

but when n is 0, G is CH, or a heteroatom selected from the group consisting of NH, O and S with the proviso that at most two of A, E, L, J and G are heteroatoms.

When n is 0, the above heteroaromatic moiety is a five membered ring, while if n is 1, the heterocyclic moiety is a six membered monocyclic heterocyclic moiety. The preferred heterocyclic moieties are those aforementioned heterocycles which are monocyclic.

If the ring depicted hereinabove contains a nitrogen ring atom, then the N-oxide forms are also contemplated to be within the scope of the invention.

When \(R_2 \) or \(R_3 \) is a heterocyclic of the above formula, it may be bonded to the main chain by a ring carbon atom. When n is 0, \(R_2 \) or \(R_3 \) may additionally be bonded to the main chain by a nitrogen ring atom.

Other preferred moieties of \(R_2 \) and \(R_3 \) are hydrogen, aryl, e.g., phenyl, aryl alkyl, e.g., benzyl and alkyl.

It is to be understood that the preferred groups of \(R_2 \) and \(R_3 \) may be unsubstituted or mono or poly substituted with electron donating or/and electron withdrawing groups. It is preferred that \(R_2 \) and \(R_3 \) are independently hydrogen, lower alkyl, which is either unsubstituted or substituted with electron withdrawing groups or/and electron donating groups, such as lower alkoxy (e.g., methoxy, ethoxy, and the like), N-hydroxylamino, N-lower
alkylhydroxyamino, N-loweralkyl-O-loweralkyl and alkylhydroxyamino.

It is preferred that one of R₂ and R₃ is hydrogen.

It is preferred that n is one.

It is more preferred that n=1 and one of R₂ and R₃ is hydrogen. It is especially preferred that in this embodiment, R₂ is hydrogen and R₃ is lower alkyl or ZY; Z is O, NR₄ or PR₄; Y is hydrogen or lower alkyl; ZY is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, NR₄C-R₅ or NR₄C-OR₅.

In another especially preferred embodiment, n=1, R₂ is hydrogen and R₃ is lower alkyl which may be substituted or unsubstituted with an electron donating or electron withdrawing group, NR₄OR₅, or ONR₄R₇.

In yet another especially preferred embodiment, n = 1, R₂ is hydrogen and R₃ is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR₄OR₅ or ONR₄R₇, wherein R₄, R₅ and R₇ are independently hydrogen or lower alkyl, R is aryl lower alkyl, which aryl group may be unsubstituted or substituted with an electron withdrawing group and R₁ is lower alkyl. In this embodiment it is most preferred that aryl is phenyl, which is unsubstituted or substituted with halo.

It is preferred that R₂ is hydrogen and R₃ is hydrogen, an alkyl group which is unsubstituted or substituted by at least an electron donating or electron withdrawing group or ZY. In this preferred embodiment, it is more preferred that R₃ is hydrogen, an alkyl group such as methyl, which is unsubstituted or substituted by an electron donating group, or NR₄OR₅ or ONR₄R₇, wherein R₄, R₅ and R₇ are independently hydrogen or lower alkyl. It is preferred that the electron donating group is lower alkoxy, and especially methoxy or ethoxy.
It is preferred that R₂ and R₃ are independently hydrogen, lower alkyl, or ZY; Z is O, NR₄ or PR₄; Y is hydrogen or lower alkyl or

$$\text{ZY is } NR₄R₅R₇, NR₄OR₅, ONR₄R₇, NR₄C-R₅ \text{ or } NR₄C-OR₅.$$

It is also preferred that R is aryl lower alkyl. The most preferred aryl for R is phenyl. The most preferred R group is benzyl. In a preferred embodiment, the aryl group may be unsubstituted or substituted with an electron donating or electron withdrawing group. If the aryl ring in R is substituted, it is most preferred that it is substituted with an electron withdrawing group, especially on the aryl ring. The most preferred electron withdrawing group for R is halo, especially fluoro.

The preferred R₁ is lower alkyl, especially methyl.

It is more preferred that R is aryl lower alkyl and R₁ is lower alkyl.

Further preferred compounds are compounds of Formula (Ⅰb) wherein n is 1; R₂ is hydrogen; R₃ is hydrogen, a lower alkyl group, especially methyl which is substituted by an electron donating or electron withdrawing group or ZY; R is aryl, aryl lower alkyl, such as benzyl, wherein the aryl group is unsubstituted or substituted with an electron donating or electron withdrawing group and R₁ is lower alkyl. In this embodiment, it is more preferred that R₃ is hydrogen, a lower alkyl group, especially methyl, which may be substituted by electron donating group, such as lower alkoxy, (e.g., methoxy, ethoxy and the like), NR₄OR₅ or ONR₄R₇, wherein these groups are defined hereinabove.

The most preferred compounds utilized are those of the Formula (Ⅰlb):
wherein

Ar is aryl, especially phenyl, which is unsubstituted or substituted with at least one electron donating group or electron withdrawing group, especially halo,

R_1 is lower alkyl, especially containing 1-3 carbon atoms; and

R_3 is as defined herein, but especially hydrogen, loweralkyl, which is unsubstituted or substituted by at least an electron donating group or electron withdrawing group or Z. It is even more preferred that R_3 is, in this embodiment, hydrogen, an alkyl group which is unsubstituted or substituted by an electron donating group, NR_4OR_5 or ONR_4R_7. It is most preferred that R_3 is CH_2-Q, wherein Q is lower alkoxy, especially containing 1-3 carbon atoms; NR_4OR_5 or ONR_4R_7 wherein R_4 is hydrogen or alkyl containing 1-3 carbon atoms, R_5 is hydrogen or alkyl containing 1-3 carbon atoms, and R_7 is hydrogen or alkyl containing 1-3 carbon atoms.

The most preferred R_1 is CH$_3$. The most preferred R_3 is CH$_2$-Q, wherein Q is methoxy.

The most preferred aryl is phenyl. The most preferred halo is fluoro.

The most preferred compounds include:

(R)-2-acetamido-N-benzyl-3-methoxy-propionamide;

O-methyl-N-acetyl-D-serine-m-fluorobenzyl-amide;

O-methyl-N-acetyl-D-serine-p-fluorobenzyl-amide;
N-acetyl-D-phenylglycine benzylamide;
D-1,2-(N,O-dimethylhydroxylamino)-2-acetamide acetic acid benzylamide;
D-1,2-(O-methylhydroxylamino)-2-acetamido acetic acid benzylamide.

It is to be understood that the various combinations and permutations of the
Markush groups of R₁, R₂, R₃, R and n described herein are contemplated to
be within the scope of the present invention. Moreover, the present
invention also encompasses compounds and compositions which contain
one or more elements of each of the Markush groupings in R₁, R₂, R₃, n and
R and the various combinations thereof. Thus, for example, the present
invention contemplates that R₁ may be one or more of the substituents listed
hereinabove in combination with any and all of the substituents of R₂, R₃,
and R with respect to each value of n.

The compounds utilized in the present invention may contain one or more
asymmetric carbons and may exist in racemic and optically active forms.
The configuration around each asymmetric carbon can be either the D or L
form. It is well known in the art that the configuration around a chiral carbon
atoms can also be described as R or S in the Cahn-Prelog-Ingold
nomenclature system. All of the various configurations around each
asymmetric carbon, including the various enantiomers and diastereomers as
well as racemic mixtures and mixtures of enantiomers, diastereomers or
both are contemplated by the present invention.

In the principal chain, there exists asymmetry at the carbon atom to which
the groups R₂ and R₃ are attached. When n is 1, the compounds of the
present invention is of the formula

\[
\begin{align*}
R-\text{NH}-\overset{\text{R₂}}{\overset{\text{O}}{\text{C}}} - \overset{\text{R₁}}{\overset{\text{H}}{\text{C}}} - \overset{\text{N}}{\overset{\text{C}}{\text{R₃}}} \\
\end{align*}
\]

(III)

wherein R, R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, Z and Y are as defined
previously.

As used herein, the term configuration shall refer to the configuration around the carbon atom to which R₂ and R₃ are attached, even though other chiral centers may be present in the molecule. Therefore, when referring to a particular configuration, such as D or L, it is to be understood to mean the D or L stereoisomer at the carbon atom to which R₂ and R₃ are attached. However, it also includes all possible enantiomers and diastereomers at other chiral centers, if any, present in the compound.

The compounds of the present invention are directed to all the optical isomers, i.e., the compounds of the present invention are either the L-stereoisomer or the D-stereoisomer (at the carbon atom to which R₂ and R₃ are attached). These stereoisomers may be found in mixtures of the L and D stereoisomer, e.g., racemic mixtures. The D stereoisomer is preferred.

More preferred is a compound of Formula (III) in the R configuration, preferably substantially enantiopure, wherein the substituent R is benzyl which is unsubstituted or substituted with at least one halo group, wherein R₃ is CH₂-Q, wherein Q is lower alkoxy containing 1-3 carbon atoms and wherein R₁ is methyl. Preferably R is unsubstituted benzyl or benzyl substituted with at least one halo group which is a fluoro group.

Depending upon the substituents, the present compounds may form addition salts as well. All of these forms are contemplated to be within the scope of this invention including mixtures of the stereoisomeric forms.

The manufacture of the utilized compounds is described in U.S. Patent Nos. 5,378,729 and 5,773.475, the contents of both of which are incorporated by reference.

The compounds utilized in the present invention are useful as such as depicted in the Formulae (Ib) or/and (IIb) or can be employed in the form of
salts in view of its basic nature by the presence of the free amino group. Thus, the compounds of Formulae (Ib) or/and (IIb) form salts with a wide variety of acids, inorganic and organic, including pharmaceutically acceptable acids. The salts with therapeutically acceptable acids are of course useful in the preparation of formulation where enhanced water solubility is most advantageous.

These pharmaceutically acceptable salts have also therapeutic efficacy. These salts include salts of inorganic acids such as hydrochloric, hydroiodic, hydrobromic, phosphoric, metaphosphoric, nitric acid and sulfuric acids as well as salts of organic acids, such as tartaric, acetic, citric, malic, benzoic, perchloric, glycolic, gluconic, succinic, aryl sulfonic, (e.g., p-toluene sulfonic acids, benzenesulfonic), phosphoric, malonic, and the like.

The present invention is further directed to a method for the prevention, alleviation or/and treatment of a disease or condition as described above in a mammal, including a human being, comprising administering at least one compound of Formulae (Ib) or/and (IIb).

It is preferred that the compound utilized in the present invention is used in therapeutically effective amounts.

The physician will determine the dosage of the present therapeutic agents which will be most suitable and it will vary with the form of administration and the particular compound chosen, and furthermore, it will vary with the patient under treatment, the age of the patient, the type of malady being treated. He will generally wish to initiate treatment with small dosages substantially less than the optimum dose of the compound and increase the dosage by small increments until the optimum effect under the circumstances is reached. When the composition is administered orally, larger quantities of the active agent will be required to produce the same effect as a smaller quantity given parenterally. The compounds are useful in the same manner as comparable therapeutic agents and the dosage level is
of the same order of magnitude as is generally employed with these other therapeutic agents.

In a preferred embodiment, the compounds of the present invention are administered in amounts ranging from about 1 mg to about 100 mg per kilogram of body weight per day, more preferably in amounts ranging from about 1 mg to about 10 mg per kilogram of body weight per day. This dosage regimen may be adjusted by the physician to provide the optimum therapeutic response. Patients in need thereof may be treated with doses of the compound of the present invention of at least 50 mg/day, preferably of at least 200 mg/day, more preferably of at least 300 mg/day and most preferably of at least 400 mg/day. For example, a patient in need thereof may be treated with doses at a maximum of 6 g/day, more preferably a maximum of 1 g/day and most preferably a maximum of 600 mg/day. In some cases, however, lower or higher doses may be needed.

In another preferred embodiment, the daily doses are increased until a predetermined daily dose is reached which is maintained during the further treatment.

In yet another preferred embodiment, several divided doses may be administered daily. For example, three doses per day may be administered, preferably two doses per day. It is more preferred to administer a single dose per day.

In yet another preferred embodiment, an amount of the compounds of the present invention may be administered which results in a plasma concentration of 0.1 to 15 μg/ml (trough) and 5 to 18.5 μg/ml (peak), calculated as an average over a plurality of treated subjects.

The compounds of Formulae (Ib) or/and (IIb) may be administered in a convenient manner, such as by oral, intravenous (where water soluble), intramuscular, intrathecal or subcutaneous routes. Oral or/and i.v.
administration is preferred.

The pharmaceutical composition of the present invention may be prepared for the treatment regimen as described above, in particular for the treatment with doses as described above, to effect plasma concentrations as described above, for administration periods or/and administration routes as specified in the embodiments of the present invention as described above.

In another preferred embodiment, the method of the present invention as described above for the treatment of a mammal including a human being in need thereof comprises administering a compound of the present invention in combination with administering a further active agent for the prevention, alleviation or/and treatment of trigeminal neuropathic pain. The compound of the present invention and the further active agent may be administered together, i.e. in a single dose form, or may be administered separately, i.e. in a separate dose form. Thus, the pharmaceutical composition of the present invention may comprise a compound of the present invention as defined above and may further comprise a further active agent for the prevention, alleviation or/and treatment of trigeminal neuropathic pain. The pharmaceutical composition may comprise a single dose form or may comprise a separate dose form comprising a first composition comprising a compound of the present invention as defined above and a second composition comprising the further active agent.

The compounds of the present invention may be used for the preparation of a pharmaceutical composition as described above.

The compounds of Formulae (Ib) or/and (IIb) may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsules, or it may be compressed into tablets, or it may be incorporated directly into the fool of the diet. For oral therapeutic administration, the active compound of Formulae (Ib) or/and (IIb) may be incorporated with excipients and used in the form of ingestible
tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 1% of active compound of Formulae (Ib) or/and (IIb). The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound of Formulae (Ib) or/and (IIb) in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention contains between about 10 mg and 6 g active compound of Formulae (Ib) or/and (IIb).

The tablets, troches, pills, capsules and the like may also contain the following: A binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier.

Various other materials may be present as coatings or otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and formulations. For example, sustained release dosage forms are contemplated wherein the active ingredient is bound to an ion exchange resin which, optionally, can be coated with a diffusion barrier coating to modify the release properties of the resin.
The active compound may also be administered parenterally or intraperitoneally. Dispersions can also be prepared in glycerol, liquid, polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those
enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying the freeze-drying technique plus any additional desired ingredient from previously sterile-filtered solution thereof.

As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agent, isotonic and absorption delaying agents for pharmaceutical active substances as well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form or ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.

The specifics for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material an the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such as active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

The principal active ingredient is compounded for convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore described. A unit dosage form can, for example, contain the principal active compound in amounts ranging from about 10 mg to about 6 g. Expressed in proportions, the active compound is generally present in from about 1 to about 750 mg/ml of carrier. In the case of compositions containing supplementary
active ingredients, the dosages are determined by reference to the usual
dose and manner of administration of the said ingredients.

As used herein the term "patient" or "subject" refers to a warm blooded
animal, and preferably mammals, such as, for example, cats, dogs, horses,
cows, pigs, mice, rats and primates, including humans. The preferred patient
is a human.

The term "treat" refers to either relieving the pain associated with a disease
or condition or alleviating the patient's disease or condition.

The compounds of the present invention are administered to a patient
suffering from the aforementioned type of pain in an analgesic effective
amount. These amounts are equivalent to the therapeutically effective
amounts described hereinabove.

The following example shows the properties of SPM 927 in reducing
trigeminal pain in a rats with ischemic infraorbital nerve injury.

The used substance was SPM 927 which is the synonym for Harkoseride.
The standard chemical nomenclature is (R)-2-acetamide-N-benzyl-3-
methoxypropionamide.

Figure Legend

Figure 1 shows the effect (median ± median absolute deviation, M.A.D.) of
administration of vehicle (n=23 males, open circles) or SPM 927 at 7.5
mg/kg (open circles, 7 females), SPM 927 at 15 (open squares, 7 females, 8
males), 20 (filled circles, 7 females, 7 males) and 30 mg/kg (filled squares,
15 males) on vocalization threshold to stimulation with von Frey hairs in
male (A) and female (B) rats after infraorbital (IoN) nerve injury. *=p<0.05
and **=p<0.01 compared to baseline at time 0 with Wilcoxon signed-ranks
test.
Example

The present study, shows the analgesic effects SPM 927 in a rat model of injury to the infraorbital nerve (IoN) which is regarded as a model of trigeminal neuropathic pain.

Materials and methods

Male and female Sprague-Dawley rats (Möllegård, Denmark) weighing 200-250 g at the start of the experiments were used. All experimental procedures were approved by the local research ethics committee.

Photochemically-induced ischemic infraorbital nerve (IoN) injury

Rats were anesthetized with chloral hydrate. The left IoN was exposed via a longitudinal incision at the maxillary region and all branches of the nerve were carefully lifted on a glass hook. A piece of aluminium foil was placed under the nerve and the nerve was irradiated for 6 min with the tunable argon ion laser. The rat was positioned so that the laser beam was perpendicular and transversal to the exposed nerve. Immediately before irradiation erythrosin B was injected i.v. and the injection was repeated after 5 min. After irradiation the wound was closed in layers.

Assessment of mechanical sensitivity after IoN injury

Mechanical sensitivity was tested with a series of von Frey filaments. The rat was gently held by the experimenter and the von Frey filaments were applied in ascending order to the IoN territory on the hairy skin of the vibrissal pad. The stimulation with each filament consisted of four consecutive applications at 1/s on the injured and then on the contralateral side. The response threshold was taken as the force at which the rat either exhibited a withdrawal reaction or escape/attack in 75% of trials (Vos et al.
1994). The rats were habituated to the testing procedure for several days before nerve injury and baseline response was determined in two sessions. Testing was carried out 3, 7, 10 and 14 d after the injury to assess the development of mechanical hypersensitivity. The effect of SPM 927 (7.5, 15, 20 and 30 mg/kg) was tested 14-16 days after injury when mechanical hypersensitivity was well established. Measurements were taken 30 min, 1h, 2h, and 3h following drug injection.

Drugs and statistics

SPM 927 was dissolved in physiological saline and injected intraperitoneally. The data are expressed as median ± M.A.D. and analysed with Wilcoxon signed-ranks test.

Results

Effects of SPM 927 on mechanical hypersensitivity after IoN injury

Partial injury to the IoN leads to the development of mechanical hypersensitivity in the innervation area of the nerve. Normal response threshold to mechanical stimulation was between 18-40 g whereas after injury, the response threshold decreased significantly for both male and female rats (median 5.8 g and 4.0 g respectively). The mechanical hypersensitivity developed rapidly after IoN nerve injury, reaching peak level within 3 days and was stable thereafter for at least 3-4 weeks with the irradiation parameter used in the present study. In male rats SPM 927 at 15 or 20 mg/kg did not alleviate mechanical hypersensitivity whereas at 30 mg/kg it significantly alleviated mechanical hypersensitivity for 3 h (Fig. 1A). In female rats, SPM 927 significantly and markedly alleviated mechanical hypersensitivity at doses of 15 or 20 mg/kg whereas it has no effect at 7.5 mg/kg (Fig. 1B). SPM 927 did not cause motor deficits.
Conclusion

Systemic SPM 927 produced a dose-dependent analgesic or/and anti-allodynic effect in a rat model of trigeminal neuropathic pain following single dose administration. Thus, SPM 927 and related compounds are useful for the treatment of pain during trigeminal neuralgia in mammals including humans. As this nerve injury can be regarded as a model for a mononeuropathy, SPM 927 and related compounds are also useful for the treatment of pain resulting from neuropathies of other nerves (mononeuropathies). Furthermore, it can be regarded as an extended model for atypical facial pain. Consequently, SPM 927 and related compounds are useful for the treatment of atypical facial pain.
References

Claims

1. Use of a compound having the Formula (lb)

\[R_2 \]
\[R - \text{NH} - [\text{C} - \text{CNH} -]_n - \text{C} \equiv \text{R}_1 \]
\[\text{O} \]
\[\text{O} \]
\[R_3 \]

Formula (lb)

wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl or lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or/and at least one electron donating group;

R\textsubscript{1} is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, lower alkyl heterocyclic, heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with at least one electron donating group or/and at least one electron withdrawing group;

R\textsubscript{2} and R\textsubscript{3} are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R\textsubscript{2} and R\textsubscript{3} may be unsubstituted or substituted with at least one electron donating group or/and at least one electron withdrawing group; and wherein heterocyclic in R\textsubscript{2} and R\textsubscript{3} is furyl, thiényl, pyrazoly, pyrrolyl, methylpyrrolyl, imidazoly, indoly, thiazoly, oxazoly, isothiazoly, isoxazoly, piperidyl, pyrrolynyl, piperaziny,
quinolyl, triazolyl, tetrazolyl, isoquinolyl, benzofuryl, benzothienyl,
morpholinyl, benzoazolyl, tetrahydrofuryl, pyranyl, indazolyl, purinyl,
indolyl, pyrazolindinyl, imidazolindinyl, imidazolindinyl, pyrrolidinyl,
furazanyl, N-methylindolyl, methylfuryl, pyridazinyl, pyrimidinyl,
pyrazinyl, pyridyl, epoxy, aziridino, oxetanyl, azetidinyl or, when N is
present in the heterocyclic, an N-oxide thereof;

Z is O, S, S(O)₉, NR₄, NR₈, or PR₄ or a chemical bond;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower
alkynyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl
heterocyclic and Y may be unsubstituted or substituted with at least
one electron donating group or/and at least one an electron
withdrawing group, wherein heterocyclic has the same meaning as in
R₂ or R₃ and, provided that when Y is halo, Z is a chemical bond, or
ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, OPR₄R₅, PR₄OR₅,
SNR₄R₇, NR₄SR₇, SP₄R₅, PR₄SR₇, NR₄PR₅R₆, PR₄NR₅R₇, or N'R₅R₆R₇,

\[
NR₄C-R₅, SCR₅, NR₄C-OR₅, SC-OR₅, NR₄NR₅-C-O R₆;
\]

R₈ is hydrogen, lower alkyl, lower alkenyl, or lower alkynyl which may
be unsubstituted or substituted with at least one electron withdrawing
group or/and at least one electron donating group;

R₄, R₅ and R₆ are independently hydrogen, lower alkyl, aryl, aryl lower
alkyl, lower alkenyl, or lower alkynyl, wherein R₄, R₅ and R₆ may
independently be unsubstituted or substituted with at least one electron
withdrawing group or/and at least one electron donating group; and

R₇ is R₈ or COOR₈ or COR₈, which R₇ may be unsubstituted or
substituted with at least one electron withdrawing group or/and at least
one electron donating group;
R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with at least one electron withdrawing group or/and at least one electron donating group; and
n is 1-4; and
a is 1-3,

or of a pharmaceutically acceptable salt thereof,

for the preparation of a pharmaceutical composition useful for the prevention, alleviation or/and treatment of neuropathic trigeminal pain.

2. Use according to claim 1, wherein the pain is a pain associated with trigeminal neuralgia, mononeuropathies or/and atypical facial pain.

3. Use according to any one of claims 1-2 wherein one of R₂ and R₃ is hydrogen.

4. Use according to any one of claims 1-3 wherein n is 1.

5. Use according to any one of claims 1-4 wherein one of R₂ and R₃ is hydrogen and n is 1.

6. Use according to any one of claims 1-5 wherein R is aryl lower alkyl and R₁ is lower alkyl.

7. Use according to any one of claims 1-6 wherein R₂ and R₃ are independently hydrogen, lower alkyl, or ZY;
Z is O, NR₄ or PR₄;
Y is hydrogen or lower alkyl or
ZY is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, NR₄C-R₅ or NR₄C-OR₅.
8. Use according to claim 7 wherein R₂ is hydrogen and and R₃ is lower alkyl, or ZY;
Z is O, NR₄ or PR₄;
Y is hydrogen or lower alkyl;

\[
\begin{align*}
\text{ZY is NR₄NR₃R₇, NR₄OR₅, ONR₄R₇, NR₄C-R₆ or NR₄C-OR₅.}
\end{align*}
\]

9. Use according any one of claims 1-8 wherein R₂ is hydrogen and R₃ is lower alkyl, which may be substituted or unsubstituted with at least one electron donating group or/and at least one electron withdrawing group, NR₄OR₅, or ONR₄R₇.

10. Use according to any one of claims 1-9 wherein R₃ is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR₄OR₅ or ONR₄R₇, wherein R₄, R₅ and R₇ are independently hydrogen or lower alkyl, R is aryl lower alkyl, which aryl group may be unsubstituted or substituted with at least one electron withdrawing group and R₁ is lower alkyl.

11. Use according to any one of claims 1-10 wherein aryl is phenyl and is unsubstituted or substituted with halo.

12. Use according to any of claims 1-11 wherein the compound is
(R)-2-acetamido-N-benzyl-3-methoxy-propionamide;
O-methyl-N-acetyl-D-serine-m-fluorobenzylamide;
O-methyl-N-acetyl-D-serine-p-fluorobenzylamide;
N-acetyl-D-phenylglycinebenzylamide;
D-1,2-(N, O-dimethylhydroxylamino)-2-acetamido acetic acid benzylamide; or
D-1,2-(O-methylhydroxylamino)-2-acetamido acetic acid benzylamide.
13. Use of any one of claims 1-12 wherein the compound has the Formula (IIb)

\[
\begin{array}{c}
\text{H} & \text{H} \\
\text{Ar-CH}_2\text{N-C-C-N-C-R}_1 \\
\text{O} & \text{R}_3 & \text{O}
\end{array}
\]

Formula (IIb)

wherein

Ar is phenyl which is unsubstituted or substituted with at least one halo group;

R\(_3\) is CH\(_2\)-Q, wherein Q is lower alkoxy containing 1-3 carbon atoms and R\(_1\) is lower alkyl containing 1-3 carbon atoms

or of a pharmaceutically acceptable salt thereof.

14. Use according to claim 13 wherein Ar is unsubstituted phenyl.

15. Use according to claims 13 or 14 wherein halo is fluoro.

16. Use according to claims 13 to 15 wherein R\(_3\) is CH\(_2\)-Q, wherein Q is alkoxy containing 1-3 carbon atoms and Ar is unsubstituted phenyl.

17. Use of any one of claims 1-16 wherein the compound is in the R configuration and has the formula

\[
\begin{array}{c}
\text{R}_2 \\
\text{R-NH-C-C-N-C-R}_1 \\
\text{O} & \text{R}_3
\end{array}
\]

wherein
R is benzyl which is unsubstituted or substituted with at least one halo

group;

R₃ is CH₂-Q, wherein Q is lower alkoxy containing 1-3 carbon atoms
and R₁ is methyl

or a pharmaceutically acceptable salt thereof.

18. Use according to claim 17 which is substantially enantiopure.

19. Use according to claims 17 or 18 wherein R is unsubstituted benzyl.

20. Use according to claims 17 to 19 wherein halo is fluoro.

21. Use according to claims 17 to 20 wherein R₃ is CH₂-Q, wherein Q is

alkoxy containing 1-3 carbon atoms and R is unsubstituted benzyl.

22. Use according to claims 1 or 2, wherein the compound of Formula (Ib)
is (R)-2-Acetamido-N-benzyl-3-methoxypropionamide or a

pharmaceutically acceptable salt thereof.

23. Use according to claim 22 wherein the compound is substantially

enantiopure.

24. Use according to any one of the preceding claims, wherein the

pharmaceutical composition is prepared for treatment with doses of the

compound at least of 50 mg/day, preferably at least of 200 mg/day,

more preferably at least of 300 mg/day, most preferably at least of 400

mg/day.

25. Use according to any one of the preceding claims, wherein the

pharmaceutical composition is prepared for treatment with doses of the

compound at a maximum of 6 g/day, more preferably at a maximum of
1 g/day and most preferably at a maximum of 600 mg/day.

26. Use according to any one of the preceding claims, wherein the pharmaceutical composition is prepared for treatment with increasing daily doses until a predetermined daily dose is reached which is maintained during the further treatment.

27. Use according to any one of the preceding claims, wherein the pharmaceutical composition is prepared for treatment in three doses per day, preferably two doses per day, more preferably in a single dose per day.

28. Use according to any one of the preceding claims, wherein the pharmaceutical composition is prepared for an administration resulting in a plasma concentration of 0.1 to 15 µg/ml (trough) and 5 to 18.5 µg/ml (peak), calculated as an average over a plurality of treated subjects.

29. Use according to any one of the preceding claims, wherein the pharmaceutical composition is prepared for oral or i.v. administration.

30. Use according to any one of the preceding claims, wherein the pharmaceutical composition further comprises an active agent for the prevention, alleviation or/and treatment of neuropathic trigeminal pain.

31. Use according to claim 30 wherein the pharmaceutical composition comprises a single dose form or comprises a separate dose form comprising a first composition comprising a compound as defined in any of the claims 1 and 3 to 23 and a second composition comprising the further active agent.

32. Use according to any one of the preceding claims wherein the pharmaceutical composition is prepared for administration in mammals.
33. Use according to claim 32 wherein the pharmaceutical composition is prepared for administration in humans.

34. A pharmaceutical composition comprising
(a) a compound as defined in any of the claims 1 and 3 to 23, and
(b) a further active agent for the prevention, alleviation or/and treatment of trigeminal neuropathic pain.

35. The pharmaceutical composition according to claim 34 which is a single dose form or which comprises a separate dose form comprising a first composition comprising a compound as defined in any of the claims 1 and 3 to 23 and a second composition comprising the further active agent (b).
Figure 1A

A: Male

- Vehicle
- 15 mg/kg
- 20 mg/kg
- 30 mg/kg

Figure 1B

B: Female

- 7.5 mg/kg
- 15 mg/kg
- 20 mg/kg