The invention relates to enclosed circuit breakers and more particularly to circuit breakers which are mounted inside enclosing cabinets and having an operating handle mounted on the circuit breaker being mounted on an insulating housing, a portion of which at one end is transparent so that the contacts are visible, the insulating housing being mounted in an enclosure having an openable cover with an interlock for preventing closing of the circuit breaker when the cover is in the open position.

Another object of the invention is to provide a circuit breaker mounted in an enclosure having an openable cover with an insulating housing comprising a base and cover, the portion of the cover adjacent the contacts being transparent so that the contacts are visible from the front of the breaker.

In order to manually operate the circuit breaker 25 when the cover 13 is closed, an external handle 29 is rotateably mounted on the exterior of the cover. The handle 29 is attached to a short shaft 31 which may be integral with the handle 29 and which is rotateably supported in an opening in the cover. Rigidly mounted on the inner end of the shaft 31 for movement therewith is a cam-shaped plate forming a cam member 33. The cam member 33 is secured to the shaft 31 by means of screws 35 and carries a pin or anti-friction roller 37 which engages in a slot 39 in a sliding plate 41. The sliding plate 41 is slidably supported by grooved studs 43 mounted on a plate 44 which is rigidly secured to the inside of the cover 13. An actuating member 45 is adjustably secured to the under side of the sliding plate 41 by screws 47. The actuating member 45 is provided with a transverse opening 48 for engaging the breaker handle 27 in the operating position of the handle 29 in the closed position of the cover 13.

Movement of the handle 29 in clockwise direction (Fig. 3) from the "on" to the "off" position rotates the cam member 33 in the same direction and this movement, acting through the pin and slot connection 37—39, slides the plate 41 downwardly (Fig. 3) and toward the right as seen in Fig. 4. Due to the engagement of the actuating member 45 with the breaker handle 27 this movement moves the latter clockwise from the "on" to the "off" position to effect opening of the breaker contacts.

Movement of the handle 29 in a counterclockwise di-
rection from the "off" to the "on" position reverses the direction of movement of the parts just described and moves the plate 41 upwardly (Fig. 3) and toward the left (Fig. 4) to the "on" position. This movement through the engagement of the actuating member 45 with the breaker handle 27 moves the breaker handle counterclockwise (Fig. 4) to the "on" position to close the breaker contacts.

Locking means is provided for locking the cover 13 to prevent opening thereof. The locking means is effective to lock the cover closed in all positions of the operating handle 29 except when the handle is moved beyond the "off" position to a "reset" position in which position of the handle the cover may be opened. The locking means comprises a locking member 49 pivotedly mounted by means of a screw 51 rigidly secured to the locking member for movement therewith. The screw 51 extends through openings in the plate 44 and in the cover when the cover 13 is closed and the handle 29 for the screw. The locking member 49 is disposed between the cam member 33 and the plate 44 and is retained in place by the cam member. A clearance opening 53 (Fig. 2) is provided in the locking member 49 to permit movement thereof to the shaft 31. The locking member 49 is provided with a downwardly extending latching portion 55 (Figs. 4 and 5) which is adapted to engage in a notch 57 of a bracket 59 rigidly secured to the bottom of the casing 11 and extending upwardly therefrom. The locking member is biased to locking position by a spring 61 coiled about a pin 63 mounted on the plate 44.

The cam member 33 is provided with a shoulder 65 which is adapted to engage the locking member 49, when the handle 29 is moved beyond the "off" position, and move the locking member to the unlatching position. It will be seen that it is necessary to move the handle 29 beyond the "off" position before the cover 13 may be opened. This insures that the circuit breaker 25 is operated to the "off" or open contact position before the cover can be opened.

When the cover 13 is opened the actuating member 45 separates from the breaker handle 27 and, upon release of the handle 29, the plate 41 together with the actuating member 45 is returned to the "on" position by means of a spring 67 which is connected under tension between the sliding plate 41 and the fixed plate 44 so as to bias the plate 41 upwardly (Fig. 2) and toward the left (Fig. 4) or toward the "on" position. Movement of the plate 41 to the "on" position before the cover 13 may be opened. The spring 67 is located in the slot 37-39 of the cam member 33 and the handle 29 back to the "on" position thereby serving as a warning should the cover 13 be closed with the handle 29 in a position different from the breaker handle 27. Thus the handle 29 never indicated "off" when the breaker is in the closed position.

Interlocking means is provided that is operable upon opening of the cover 13 to engage and prevent movement of the handle 27 of the circuit breaker to close the breaker contacts. The interlocking means comprises a pivoted interlocking member 71 (Figs. 1 and 2) mounted on the circuit breaker 25 and a cam 73 rigidly secured to the cover 13.

The circuit breaker 25 is provided with a molded insulating housing comprising a base portion 75 and a cover portion 77, the base portion 75 extend endwise beyond the cover portion forming a ledge 79 at each end of the housing. The cover portion 77 is provided with a transparent plate 89 over the area adjacent the contacts 24 so that the contacts are visible from the front of the breaker. The mounting studs 28 and 30 are bolted and extend upwardly to a point above the top of the cover 77 as shown in Figs. 4 and 5. The upper ends of the mounting studs 28 and 30 are enlarged as at 81 and an angular plate 83 is mounted thereon and is rigidly secured to the stud 28 by a nut 85. Spaces 87 are disposed between the enlarged portions 81 of the studs 28 and 30 and are seated in the portion 75 of the breaker housing. The interlocking plate 71 is pivotally supported on the upper end of the mounting stud 30 at the end of the breaker opposite the contacts and is held in place by a nut 89 threaded on the upper end of the stud 30. The interlocking member 71 is biased by means of a spring 91 to move in a clockwise direction from the portion shown in Fig. 2 to the locking position as shown in Fig. 1. In the closed position of the cover 13, the cam 73 on the cover engages a tail 93 on the locking member 71 and holds it in the unlatching position which permits free operation of the breaker by the external handle 29 with the cover 13 closed.

When the cover 13 is opened the cam 73 is disengaged from the tail 93 of the locking member 71 wherupon the spring 91 moves the locking member from the position shown in Fig. 2 to the locking position (Fig. 1) in which a hook-shaped latch 95 is in the path of closing movement of the breaker handle 27 thus preventing movement of the breaker handle to the "on" position while the cover 13 is open. When the cover 13 is closed the cam 73 engages the tail 93 and moves the locking member 71 to the unlatching position where it is held until the cover 13 is again opened.

It will be noted that the locking plate 71 in the locking position (Fig. 1), which it assumes when the cover 13 is open, does not extend over the transparent plate 80 and, therefore, does not block the view of the contacts 24. The interlock provided by the member 71 as seen in Fig. 1 can be defeated by manually moving the member 71 out of the path of the breaker handle 27 which can then be moved to the on position. This could result in a hazardous condition for a person working on the circuit controlled by the circuit breaker. In order to prevent deliberate defeat of the interlock, means is provided for locking the member 71 in its locking position as shown in Fig. 1. This means comprises a slot 97 in the fixed plate 83 and a corresponding slot 99 in the locking member 71. As seen in Fig. 2, when the cover 13 is closed and the locking member 71 is in its retracted position the slots 97-99 are out of line. Upon opening the cover the locking member 71 is moved to locking position in the direction (Fig. 1) by the spring 67, and to the pin or slot connection 37-39 so that the shackle of a padlock 101 may be inserted through both of the slots thereby rigidly holding the locking member 71 in locking position and preventing defeat of the interlock.

The invention provides an improved interlocking device for preventing accidental closing of an enclosed circuit breaker when the cover of the enclosure is open and also provides means for positively preventing deliberate defeat of the interlocking device.

Having described the invention in accordance with the provisions of the patent statutes, it is to be understood that various changes and modifications may be made in the structural details thereof without departing from the spirit of the invention. We claim as our invention:

1. An enclosed circuit breaker having an operating handle movable to operate said circuit breaker, a casing in which said circuit breaker is mounted having an openable cover, operating means mounted on said cover and having means thereon for engaging and moving said operating handle, a biased member movable in a plane substantially parallel to the base of said casing to operate said operating handle to prevent closing said circuit breaker when the cover is moved to its open position, said biased member being actuated by movement of said
cover to the closed position to permit closing the circuit breaker when the cover is closed.

2. An enclosed circuit breaker having an operating handle movable to operate said circuit breaker, a casing in which said circuit breaker is mounted including an openable cover, operating means mounted on said openable cover having means thereon for engaging and moving said operating handle, a biased member movable in a plane substantially parallel to the base of said circuit breaker upon opening of said cover to engage said operating handle and prevent closing said circuit breaker when the cover is moved to its open position, and means on said cover engaging and actuating said member when said cover is moved to the closed position to permit closing said circuit breaker when the cover is closed.

3. An enclosed circuit breaker having an operating handle movable to operate said circuit breaker, a casing in which said circuit breaker is mounted including an openable cover, operating means mounted on said cover having means thereon for engaging and moving said operating handle to open and close said circuit breaker, a biased interlocking member movable upon opening said cover to engage said operating handle and prevent closing said circuit breaker when said cover is open, said interlocking member being manually releasable to permit closing said circuit breaker when said cover is open, and means for receiving a padlock to prevent manual release of said interlocking member.

4. An enclosed circuit breaker having an operating handle movable to operate said circuit breaker to open and closed positions, a casing in which said circuit breaker is mounted including an openable cover, an operating mechanism mounted on said openable cover having means thereon for engaging and moving said operating handle, a locking member normally locking said cover closed in the position of said operating mechanism in which said circuit breaker is closed, said operating mechanism moving said locking member to unlocking position to permit opening said cover when said operating mechanism is moved to a position in which said circuit breaker is open, an interlocking member movable in a plane substantially parallel to the base of said casing to engage said operating handle to prevent closing of said circuit breaker when said cover is moved to open position, and means on said cover engaging and moving said interlocking member to unlocking position by movement of said cover to closed position.

5. An enclosed circuit breaker having an operating handle movable to operate said circuit breaker to open and closed positions, a casing in which said circuit breaker is mounted including an openable cover, an operating mechanism mounted on said openable cover having means thereon for engaging and moving said operating handle, a locking member normally locking said cover closed in the position of said operating mechanism in which said circuit breaker is closed, said operating mechanism moving said locking member to unlocking position to permit opening said cover when said operating mechanism is moved to a position in which said circuit breaker is open, an interlocking member movable to engage said operating handle to prevent opening of said circuit breaker when said cover is moved to open position, said interlocking member being manually releasable to permit closing said circuit breaker while said cover is open, means for receiving a padlock to prevent manual release of said biased member, and means on said cover engaging and moving said interlocking member to unlocking position by movement of said cover to closed position.

6. An enclosed circuit breaker having an operating handle movable to open and close said circuit breaker, a casing in which said circuit breaker is mounted including an openable cover, operating mechanism mounted on said openable cover and having means thereon for engaging and moving said operating handle, mounting means mounting said circuit breaker in said casing, an interlocking member pivotally supported on said mounting means and movable in a plane substantially parallel to the base of said circuit breaker to prevent engaging said operating handle when said cover is moved to the open position.

7. An enclosed circuit breaker having an operating handle movable to open and close said circuit breaker, a casing in which said circuit breaker is mounted including an openable cover, operating mechanism mounted on said openable cover and having means thereon for engaging and moving said operating handle, mounting means mounting said circuit breaker in said casing, an interlocking member pivotally supported on said mounting means and movable in a plane substantially parallel to the base of said casing to engage said operating handle to prevent closing said circuit breaker when said cover is moved to the open position, and a cam member mounted on said cover and disposed to engage and move said interlocking member to unlocking position when said cover is moved to the closed position.

8. An enclosed circuit breaker having an operating handle movable to open and close said circuit breaker, a casing in which said circuit breaker is mounted including an openable cover, operating mechanism mounted on said openable cover and having means thereon for engaging and moving said operating handle, mounting means mounting said circuit breaker in said casing, an interlocking member pivotally supported on said mounting means and movable to engage said operating handle to prevent closing said circuit breaker when said cover is moved to the open position, and a means comprising a member fixedly mounted on said mounting means and adapted to receive a padlock to prevent movement of said interlocking member to unlocking position.

9. An enclosed circuit breaker having visible contact means at one end of the breaker and an operating handle movable to open and close said contact means, a casing in which said circuit breaker is mounted including an openable cover, an operating mechanism mounted on said openable cover and having means thereon for engaging and moving said operating handle, said operating mechanism engaging said handle when said cover is closed to operate said contact means, an interlocking member movable upon opening said cover to engage said operating handle and prevent closing said contact means when said cover is open, said interlocking member being mounted adjacent the end of said breaker opposite said visible contact means.

10. A circuit breaker having a two-part housing of molded insulating material comprising a base portion and a cover portion, separable contact means disposed in said housing, an operating handle movable to open and close said contact means, said cover portion adjacent said contact means being transparent so that said contact means are visible from the front of the breaker, a casing in which said circuit breaker is mounted including an openable cover, operating mechanism mounted on said openable cover having means for engaging and moving said operating handle, said operating mechanism being moved away from said circuit breaker upon opening of said openable cover, an interlocking member mounted at the end of said breaker opposite said contact means, said operating mechanism moving away from said circuit breaker upon opening of said openable cover to engage said operating handle and prevent movement of said handle to close said contacts when said cover is open.

References Cited in the file of this patent

UNITED STATES PATENTS

2,512,505 Rowe June 20, 1950
2,695,934 Wills Nov. 30, 1954
2,813,162 Wallace et al. Nov. 12, 1957
2,832,860 Matthias Apr. 29, 1958