
US 2011 0209008A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0209008 A1

Arapov (43) Pub. Date: Aug. 25, 2011

(54) APPLICATION REPORTING LIBRARY G06F 5/16 (2006.01)
G06F 3/00 (2006.01)

(76) Inventor: Anton Arapov, Vranov u Brna (CZ) (52) U.S. Cl. 714/48; 719/328; 714/E11.025
(57) ABSTRACT

(21) Appl. No.: 12/713,009
An apparatus and a method for detecting and reporting mal

1-1. functions in computer programs is described. A reporting 22) Filed: Feb. 25, 2010
(22) File e 9 library of an Application Programming Interface (API) is

configured to direct a report of software malfunction to a
Publication Classification specified server. The API is implemented in an application to

(51) Int. Cl. be executed on a computer system. The application imple
G06F II/07 (2006.01) menting the API is to report software malfunction of the
G06F 9/46 (2006.01) application to the specified server.

OPERATING AN APPLICATION HAVING
A REPORTING AP

O2

APPLICATION

REPORT CRASH PER CONFIGURATION

Patent Application Publication Aug. 25, 2011 Sheet 1 of 4 US 2011/0209008 A1

SERVER
A

110

SERVER
B

112

FIG. 1

SERVER
A

110

SERVER
B

112

FIG. 2

SYSTEM
102

SYSTEM
102

Patent Application Publication Aug. 25, 2011 Sheet 2 of 4 US 2011/0209008 A1

302

FRAMEWORK/LIBRARY

12

FIG. 3

Patent Application Publication Aug. 25, 2011 Sheet 3 of 4 US 2011/0209008 A1

CONFIGURE AFRAMEWORK TO REPORT THE
BEHAVIOR OF AN APPLICATION

402

IMPLEMENT FRAMEWORK INAP

404

IMPLEMENT API IN AN APPLICATION

406

FIG. 4

Patent Application Publication Aug. 25, 2011 Sheet 4 of 4 US 2011/0209008 A1

OPERATING AN APPLICATION HAVING
A REPORTING AP

O2

APPLICATION
CRASH

FIG.5

US 2011/0209008 A1

APPLICATION REPORTNG LIBRARY

TECHNICAL FIELD

0001 Embodiments of the present invention relate to com
puting systems, and more particularly, to error reporting in
computer programs.

BACKGROUND

0002 Software malfunction may still occur despite a soft
ware developer's efforts to eliminate errors from the software
before it is placed on the market. To assist software develop
ers in better identifying potential errors, commercially avail
able software have been developed to collect information
upon the occurrence of a program error. One example of Such
Software creates a Snapshot of a portion of the computer's
memory at the time of a crash. The crash is an event that is
usually prompted by an error. It prevents the further normal
operation of the Software and, depending upon the severity of
the error, of the computer system itself. Users may be offered
an opportunity to transmit the crash data to provide the manu
facturer an opportunity to diagnose the cause of the error. The
crash data can contain information to assist in identifying
program errors.
0003. However, such software is limited in how a crash is
detected. The crash data is also limited to be sent to one
particular destination—the Software developer. Specifying
how and what kind of information to gather, and where to
send it to can be a daunting task for a non-power user or a user
without any knowledge of debugging techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

0004. The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which:
0005 FIG. 1 is a block diagram illustrating one embodi
ment of a computer system having applications reporting to
third party servers.
0006 FIG. 2 is a block diagram illustrating one embodi
ment of a computer system disabling applications reporting to
third party servers.
0007 FIG. 3 is a block diagram illustrating one embodi
ment of a computer system having applications implementing
an API of a configurable library.
0008 FIG. 4 is a flow diagram illustrating one embodi
mentofa method for implementing the API with applications.
0009 FIG. 5 is a flow diagram illustrating one embodi
ment of a method for detecting and reporting Software mal
functions to a specified server.

DETAILED DESCRIPTION

0010 Described herein is an apparatus and a method for
detecting and reporting malfunctions in computer programs.
In one embodiment, a reporting library of an Application
Programming Interface (API) is configured to direct a report
of software malfunction to a specified server. The API is
implemented in an application to be executed on a computer
system. The application implementing the API is to report
software malfunction of the application to the specified
SeVe.

0011 FIG. 1 is a block diagram illustrating one embodi
ment of a computer system having applications reporting to
third party servers (e.g. the application developers). Many
Software products (applications) have their own mechanism

Aug. 25, 2011

for delivering information about crashes, misbehavior or any
related problems to developers. For example, a computer
system may include numerous applications taken from open
Source community. Many of these applications mention
reporting facilities and are configured to report to specific
place. A user of the computer system may not want these
applications to report anywhere for many reasons, e.g. sensi
tive data disclosure.
0012 Computer system 102 includes for example appli
cations 104,106, and 108. Each of these application may be
configured to report any software malfunction to an external
server. For example, application 104 is configured to report
software malfunction to external server 110. Application 106
and 108 are configured to report software malfunction to
external server 112.
0013. One way of preventing reporting of such informa
tion to third party servers or external servers would be to just
disable reporting features in the applications as illustrated in
FIG. 2. Unfortunately, some of the software malfunction
problems can miss developers attention and are left unfixed.
In order to improve Software, as much information as possible
needs to be gathered.
0014 FIG. 3 is a block diagram illustrating one embodi
ment of a computer system 302 having applications 304,306,
and 308 implementing an API 310 of a configurable library
312. API 310 includes a configurable and extensible library
312. Such library allows for changing the reporting behavior
of applications 304,306, and 308.
(0015. Once application 304,306, and 308 uses library 312,
they will be reporting to a specified server 314 as configured
in the library 312. For example, an application may include a
web browser. If a user started the web browser, and the web
browser realized that it was closed ungracefully last time, it
will show a dialog window that has the description, some
debug information, and offers the user to send the reporting
data to, e.g. Bugzilla (a place that accumulates reports/bugs).
Behavior of this dialog will depend on library 312. The appli
cation can be configured to send bugs to Red Hat and user will
see the web browser offering to send the report to Red Hat
directly.
(0016 Developers of applications 304, 306, and 308 can
use the library 312 by the provided API310. Once the report
ing information is passed to library, it will be delivered to a
pre-specified place previously configured.
0017. In another embodiment, libraries are extensible by
design and can be extended by modules, e.g. module for
reporting to Red Hat directly, module for reporting to Bugz
illa.
0018. As such, library 312 abstracts the reporting process.
Software developers will not need to bother with the imple
mentation of the reporting in their applications anymore.
They will just reuse existing codes and extend them if needed.
0019. Examples of crash includes but are not limited to:

0020 dump of the state of the environment when appli
cation crashed;

0021 stack trace;
0022 any other meaningful data that can help in fixing
a problem;

0023 The crash report is generated and can be reported as
follows:

0024 saving the crash report to a database;
0025 sending the report to a bug tracking Software (e.g.
Bugzilla server);

0026 sending as an email to a predefined address:

US 2011/0209008 A1

0027 saving as a file to any kind of storage hardware:
0028 sending crash reports over network using differ
ent protocols; and

0029 sending to any other recipients.
0030 FIG. 4 is a flow diagram illustrating one embodi
mentofa method for implementing the API with applications.
At 402, a library is configured to report the behavior of an
application. At 404, the library is included in an API. At 406,
the API is implemented in an application.
0031 FIG. 5 is a flow diagram illustrating one embodi
ment of a method for detecting and reporting Software mal
functions to a specified server. At 502, an application is oper
ating on a computer system. The application includes the
reporting API. At 504, the application detects a crash. In
another embodiment, the application detects at least one type
of a software malfunction as defined in the reporting library
by a malfunction detector provided by the API.
0032. In one embodiment, data of the software malfunc
tion is collected and a crash report is generated by a data
collector provided by the API. At 506, data related to the crash
is reported to a specified server in a manner as specified in the
API.

0033. In one embodiment, the application implementing
the API is to redirect the report of software malfunction from
a default server associated with the application to the speci
fied server. In another embodiment, the application imple
menting the API does not report to the default server associate
with the application.
0034. The application implementing the API can form a

first reporting module and a second reporting module. The
first reporting module is configured to report to a first server.
The second reporting module is configured to report to a
second server.
0035. The computer system communicates with the speci
fied server over a network of computers (e.g. Internet).
0036 FIG.3 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system within
which a set of instructions, for causing the machine to per
formany one or more of the methodologies discussed herein,
may be executed. In alternative embodiments, the machine
may be connected (e.g., networked) to other machines in a
LAN, an intranet, an extranet, or the Internet. The machine
may operate in the capacity of a server or a client machine in
client-server network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), a tablet PC, a
set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network
router, Switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine' shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

0037. The exemplary computer system includes a process
ing device 316, a main memory (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM), a static
memory (e.g., flash memory, static random access memory
(SRAM), etc.), and a data storage device, which communi
cate with each other via a bus.

Aug. 25, 2011

0038 Processing device 316 represents one or more gen
eral-purpose processing devices Such as a microprocessor,
central processing unit, or the like. More particularly, the
processing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. Processing device may also be one or more special
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. The processing device is configured to execute
applications 304,306, 308 for performing the operations and
steps discussed herein with. In one embodiment, API 310
may be include hardware or software or a combination of
both.
0039. The computer system may further include a network
interface device. The computer system also may include a
Video display unit (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device (e.g.,
a keyboard), a cursor control device (e.g., a mouse), and a
signal generation device (e.g., a speaker).
0040. The data storage device may include a computer
accessible storage medium on which is stored one or more
sets of instructions embodying any one or more of the meth
odologies or functions described herein. The software may
also reside, completely or at least partially, within the main
memory and/or within the processing device during execu
tion thereof by the computer system, the main memory and
the processing device 316 also constituting computer-acces
sible storage media. The software may further be transmitted
or received over a network via the network interface device.
0041. The computer-accessible storage medium may also
be used to store API 310 and applications 304, 306, 308.
While the computer-accessible storage medium is shown in
an exemplary embodiment to be a single medium, the term
“computer-accessible storage medium’ should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“computer-accessible storage medium’ shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instructions for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the present invention. The term “computer
accessible storage medium’ shall accordingly be taken to
include, but not be limited to, Solid-state memories, optical
and magnetic media.
0042. In the above description, numerous details are set
forth. It will be apparent, however, to one skilled in the art,
that the present invention may be practiced without these
specific details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.
0043. Some portions of the detailed descriptions above are
presented in terms of algorithms and symbolic representa
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu

US 2011/0209008 A1

lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.
0044. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing or “computing or “calculating or “deter
mining or “displaying or the like, refer to the action and
processes of a computer system, or similar electronic com
puting device, that manipulates and transforms data repre
sented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly
represented as physical quantities within the computer sys
tem memories or registers or other Such information storage,
transmission or display devices.
0045. The present invention also relates to apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran
dom access memories (RAMs), EPROMs, EEPROMs, mag
netic or optical cards, or any type of media Suitable for storing
electronic instructions, and each coupled to a computer sys
tem bus.
0046. The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.
0047. It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art upon
reading and understanding the above description. The scope
of the invention should, therefore, be determined with refer
ence to the appended claims, along with the full scope of
equivalents to which Such claims are entitled.

What is claimed is:
1. A computer-implemented method comprising:
configuring a reporting library of an Application Program
ming Interface (API) to direct a report of software mal
function to a specified server; and

implementing the API in an application to be executed on a
computer system, wherein the application is to report
software malfunction of the application to the specified
SeVe.

Aug. 25, 2011

2. The computer-implemented method of claim 1 further
comprising:

detecting at least one type of a Software malfunction as
defined in the reporting library by a malfunction detector
provided by the API:

collecting data of the Software malfunction and generating
a crash report by a data collector provided by the API:
and

reporting the crash report in a manner specified in the
reporting library to the specified server.

3. The computer-implemented method of claim 1 wherein
the application implementing the API is to redirect the report
of software malfunction from a default server associated with
the application to the specified server.

4. The computer-implemented method of claim 3 wherein
the application implementing the API does not report to the
default server associate with the application.

5. The computer-implemented method of claim 1 wherein
the application implementing the API is to form a first report
ing module and a second reporting module, the first reporting
module configured to report to a first server, the second
reporting module configured to report to a second server.

6. The computer-implemented method of claim 1 wherein
the computer system communicates with the specified server
over a network.

7. The computer-implemented method of claim 1 wherein
the API is implemented with at least one application in the
computer system.

8. A non-transitory computer-readable storage medium,
having instructions stored therein, which when executed,
cause a computer system to perform a method comprising:

configuring a reporting library of an Application Program
ming Interface (API) to direct a report of software mal
function to a specified server; and

implementing the API in an application to be executed on a
computer system, wherein the application is to report
software malfunction of the application to the specified
Sever.

9. The computer-readable storage medium of claim 8
wherein the method further comprises:

detecting at least one type of a Software malfunction as
defined in the reporting library by a malfunction detector
provided by the API:

collecting data of the Software malfunction and generating
a crash report by a data collector provided by the API:
and

reporting the crash report in a manner specified in the
reporting library to the specified server.

10. The computer-readable storage medium of claim 8
wherein the application implementing the API is to redirect
the report of software malfunction from a default server asso
ciated with the application to the specified server.

11. The computer-readable storage medium of claim 10
wherein the application implementing the API does not report
to the default server associate with the application.

12. The computer-readable storage medium of claim 10
wherein the application implementing the API is to form a
first reporting module and a second reporting module, the first
reporting module configured to report to a first server, the
second reporting module configured to report to a second
SeVe.

13. The computer-readable storage medium of claim 10
wherein the computer system communicates with the speci
fied server over a network.

US 2011/0209008 A1

14. The computer-readable storage medium of claim 10
wherein the API is implemented with at least one application
in the computer system.

15. A computer system comprising:
a memory comprising an application;
a processor coupled to the memory;
a configurable malfunction reporting application program
ming interface (API) stored in the memory to be imple
mented in an application executed by the processor, the
configurable malfunction reporting API comprising:

a malfunction detector configured to detect a malfunction
of the application;

a data collector configured to collect data of the malfunc
tion and generating a crash report; and

a reporting module configured to direct a report of the
malfunction to a specified server.

Aug. 25, 2011

16. The computer system of claim 15 wherein the applica
tion implementing the API is to redirect the report of software
malfunction from a default server associated with the appli
cation to the specified server.

17. The computer system of claim 16 wherein the applica
tion implementing the API does not report to the default
server associate with the application.

18. The computer system of claim 15 wherein the applica
tion implementing the API is to form a first reporting module
and a second reporting module, the first reporting module
configured to report to a first server, the second reporting
module configured to report to a second server.

19. The computer system of claim 15 wherein the computer
system communicates with the specified server over a net
work.

20. The computer system of claim 15 wherein the API is
implemented with at least one application in the computer
system.

