(54) Title: HYDROGEL COMPOSITIONS AND USES THEREOF

(57) Abstract:
Certain features and aspects are directed to a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups and where the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3.2. In certain examples, a method of repairing an articulating surface in a body using the inventive composition is described. The inventive hydrogel composition can be produced, for example, by blending two or more polymers to achieve the desired ratio of functional groups, reacting at least one polymer with a reagent that results in the formation of alcohol, acid, and/or amide functional groups of the desired ratio, and/or polymerizing at least one monomer to achieve the desired ratio of functional groups.
Title: HYDROGEL COMPOSITIONS AND USES THEREOF

Abstract: Certain features and aspects are directed to a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups and where the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2. In certain examples, a method of repairing an articulating surface in a body using the inventive composition is described. The inventive hydrogel composition can be produced, for example, by blending two or more polymers to achieve the desired ratio of functional groups, reacting at least one polymer with a reagent that results in the formation of alcohol, acid, and/or amide functional groups of the desired ratio, and/or polymerizing at least one monomer to achieve the desired ratio of functional groups.
HYDROGEL COMPOSITIONS AND USES THEREOF

PRIORITY APPLICATION
[0001] This application claims priority to U.S. Patent Application No.11/969,591 filed on January 4, 2008, the entire disclosure of which is hereby incorporated herein by reference.

TECHNOLOGICAL FIELD
[0002] The present invention relates generally to hydrogel compositions having a specified ratio of alcohol, acid, and amide functional groups contained in the hydrogel composition and specifically, to a device made of the inventive composition to be used as an implant at an articulating surface and for spinal disc repair and/or replacement.

BACKGROUND
[0003] Hydrogels are water-swellable or water-swollen materials whose structure is typically defined by a crosslinked or interpenetrating network of hydrophilic homopolymers or copolymers. The hydrophilic homopolymers or copolymers can be water soluble in free form, but in a hydrogel they may be rendered insoluble generally due to the presence of covalent, ionic, or physical crosslinks. In the case of physical crosslinking, the linkages can take the form of entanglements, crystallites, or hydrogen-bonded structures. The crosslinks in a hydrogel provide structure and physical integrity to the polymeric network.
[0004] Hydrogels can be classified as amorphous, semicrystalline, hydrogen-bonded structures, supermolecular structures, or hydrocolloidal aggregates. Numerous parameters affect the physical properties of a hydrogel, including porosity, pore size, nature of gel polymer, molecular weight of gel polymer, and crosslinking density. The crosslinking density influences the hydrogel's macroscopic properties, such as volumetric equilibrium swelling ratio, compressive modulus, or mesh size. Pore size and shape, pore density, and other factors can impact the surface properties, optical properties, and mechanical properties of a hydrogel.
[0005] Over the past three to four decades, hydrogels have shown promise for biomedical and pharmaceutical applications, mainly due to their high water content and rubbery or pliable nature, which can mimic natural tissue. Biocompatible hydrogels can be engineered to
be either degradable or resistant to degradation. An additional advantage of hydrogels, which has only recently been appreciated, is that they may provide desirable protection of drugs, peptides, and proteins from the potentially harsh environment in the vicinity of a release site. [0006] However, typical hydrogels lack the required mechanical and frictional properties to be useful as articulating and weight-bearing mediums. Biostable hydrogels are often based on alcohol functional polymers such as hydroxymethylmethacrylates, polyvinyl alcohol, etc. These materials are known to readily absorb and release water. However, they do not have the same frictional properties as that of articular cartilage. Particularly, the degree of bound water in these types of synthetic materials is far less than that for natural cartilage. [0007] Therefore, there is a need to develop hydrogel materials that mimic the frictional properties of natural articulating surfaces.

SUMMARY
[0008] Certain features, aspects, embodiments and examples are directed to a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups. The ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2. [0009] Certain other features, aspects, embodiments and examples are directed to a method of repairing an articulating surface in a body. In one embodiment, the method comprises creating a hydrogel composition containing at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel ranges from about 16:1 to about 3:2. In one embodiment, the hydrogel composition is created by blending two or more polymers to achieve the desired ratio of functional groups. In another embodiment, the hydrogel composition is created by reacting at least one polymer with a reagent that results in the formation of alcohol, acid, and/or amide functional groups of the desired ratio. In certain examples, the method may further comprise forming the composition into a hydrogel article of the approximate dimensions of the articulating surface to be repaired and replacing the damaged articulating surface with the hydrogel article.
DETAILED DESCRIPTION

[0010] Certain embodiments of the present invention provide a hydrogel composition having functional groups including alcohol groups, acid groups, and amide groups, that mimic the ratio of the functional groups found in synovial fluid components. Synovial fluid is a thick, stringy fluid found in the cavities of synovial joints and reduces friction between the articular cartilage and other tissues in joints to lubricate and cushion them during movement. Examples of synovial joints include ball and socket joints such as the shoulder and hip joints. The synovial fluid is composed primarily of glycosaminoglycans (GAG). The primary GAG component in synovial fluid is hyaluronate, comprising about 95%, with other sulphated GAGs making up the remainder. The components of synovial fluid exhibit the following ratios of functional alcohol groups to functional acid groups to functional amide groups, respectively: hyaluronate - 4:1:1; chondroitin sulfate - 3:2:1; keratin sulfate - 4:1:1; and dermatan sulfate - 3:2:1. According to the invention, by approximating the ratio of functional groups found in synovial fluid components, a hydrogel will exhibit properties similar to the synovial fluid components, in particular the frictional properties.

[0011] The present invention provides a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and/or amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel ranges from about 16:1 to about 3:2. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups ranges from about 4:1 to about 3:2. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 16:1:1 to about 3:2:1. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 4:1:1 to about 3:2:1.

[0012] Examples of acid functional groups include sulfuric, sulfurous, carboxylic, sulfonamide, phosphoric, and phosphorous groups, and combinations thereof. In certain embodiments, the acid functional group has a pKa less than 9. In certain embodiments, the acid functional group is in the form of a salt and may be at least partially neutralized. In some embodiments, the salt is formed with a cationic species such as sodium, potassium, calcium, dimethyl ammonium, or lithium.
[0013] Alcohol functional groups can be denoted as R-OH and examples include phenol, allyl alcohol, vinyl alcohol, and siloxol, and combinations thereof.

[0014] Amide functional groups can be denoted RCONR₂ and examples of amide functional groups include primary, secondary, and tertiary amides such as acrylamide, phthalimide, carboxamide, 2-ethyl-oxazoline, benzylphthalimide, benzamide, and acetamide.

[0015] In one embodiment, the inventive composition is a blend of two or more polymers that collectively provide the ratio of functional alcohol groups to functional acid groups to functional amide groups. For instance, an amide group can come from polyacrylamide wherein each repeat unit represents 1 mole of amide group, an acid group can come from polyacrylic acid wherein each repeat unit represents 1 mole of amide group, and an alcohol group can come from polyvinyl alcohol wherein each repeat unit represents 1 mole of alcohol group. In some embodiments, at least one polymer of the inventive composition is formed of polyvinyl alcohol (PVA) or methacrylate. In one embodiment, PVA is blended with polyacrylic acid.

[0016] In some embodiments of the present invention, the blend of two or more polymers may include a hydrophilic polymer, such as PVA, and a second polymer that is a copolymer. In one embodiment, the second copolymer has hydrophobic recurring units and hydrophilic recurring units. For example, the second polymer may be polyethylene-co-vinyl alcohol. As non-limiting examples, other suitable polymers include diol-terminated polyhexamethylene phthalate and polystyrene-co-allyl alcohol. In all embodiments, the relative amount of the polymers in the blend is determined by the overall resulting ratio of functional groups present.

[0017] In one embodiment, the desired ratio of functional groups in the inventive composition is achieved by polymerization of monomers. In one embodiment, monomers may be combined and polymerized to form co- or terpolymers with the resulting composition exhibiting the required ratio of alcohol, acid, and amide functional groups. An example of a copolymer is polyethylene-co-vinyl alcohol, also known as "EVAL", "PEVAL," or "EVOH." Other examples of copolymers that may be suitable include polyethylene-co-acrylic acid and polyethylene-co-methacrylic acid.

[0018] In one embodiment, the desired ratio of functional groups in the inventive composition is achieved by reacting one or more polymers with a reactant that is capable of
modifying the amount of alcohol functional groups, acid functional groups, and/or amide functional groups on the polymer. In one embodiment, reacting a polymer with a reactant results in the formation of a copolymer or terpolymer. An example of the formation of a terpolymer would include the polymerization of vinyl acetate with methacrylic acid and acrylamide followed by post hydrolysis to give polyvinyl alcohol-co-methacrylic acid-co-acrylamide. In another example, the terpolymer could be produced by the polymerization of vinyl pivilate with methyl methacrylate and acrylamide followed by post hydrolysis to give the polyvinyl alcohol-co-methacrylic acid-co-acrylamide polymer. In one embodiment, the reacting of one or more polymers results in one or more polymers having the desired ratio of functional groups.

[0019] In one embodiment, the inventive composition exhibiting the desired ratio of alcohol, acid, and amide functional groups is achieved by at least one of blending of one or more polymers, polymerization of one or more monomers, or reacting of one or more polymers with a reactant.

[0020] Polymeric materials that may be used to make the inventive composition include, but are not limited to, water-swellable materials and hydrogels and typically include a hydrophilic polymer. In one embodiment, the hydrophilic polymer may be polyvinyl alcohol (PVA), or derivatives thereof. By way of illustration only, other hydrophilic polymers that may be suitable include polyhydroxyethyl methacrylate, polyvinyl pyrrolidone, polyacrylamide, polyacrylic acid, hydrolyzed polyacrylonitrile, polyethyleneimine, ethoxylated polyethyleneimine, polyallylamine, or polyglycols as well as blends or mixtures of any of these hydrophilic polymers. Further examples of suitable materials to be used in the inventive composition can be found in U.S. Patent Application No. 11/614,389, incorporated by reference herein in its entirety.

[0021] The inventive composition may also include additional polymers, fibers, particles, peptides and proteins, such as collagen, or conventional additives such as plasticizers, components for inhibiting or reducing crack formation or propagation, components for inhibiting or reducing creep, or particulates or other additives for imparting radiopacity to the article. By way of example only, an additive for imparting radiopacity can include metal oxides, metal phosphates, and metal sulfates such as barium sulfate, barium titanate, zirconium oxide, ytterbium fluoride, barium phosphate, and ytterbium oxide. Biopolymers
may also be used in certain embodiments. Suitable biopolymers include anionic biopolymers such as hyaluronic acid, cationic biopolymers such as chitosan, amphipathic polymers such as collagen, gelatin and fibrin, and neutral biopolymers such as dextran and agarose. Facilitate crosslinking of the inventive composition. Other optional additives include biocompatible preservatives, surfactants, colorants and/or other additives conventionally.

[0022] Optionally, the polymeric materials, the hydrogel material, or articles of the present invention may be subjected to one or more crosslinking steps. Crosslinking may be carried out after forming the inventive composition, after shaping the inventive composition into an article, or at any other suitable point during processing.

[0023] A variety of conventional approaches may be used to crosslink the inventive composition, including, physical crosslinking (e.g., freeze thaw method), photoinitiation, irradiation and chemical crosslinking. Covalent crosslinking is a process by which individual polymer chains are irreversibly linked together and can be the result of either irradiation or chemical bonding using reagents. Reversible physical bonding forces or interactions may also occur in the polymers of the inventive composition, either alone or in combination with chemical crosslinking.

[0024] The present invention also provides a method of repairing an articulating surface in a body, in whole or in part, using a hydrogel composition containing at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel ranges from about 16:1 to about 3:2. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups in the composition ranges from about 4:1 to about 3:2. In one embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups in the composition ranges from about 16:1:1 to about 3:3:1. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups in the composition ranges from about 4:1:1 to about 3:2:1.

[0025] In one embodiment, the inventive composition is shaped into an article having the approximate dimensions of the articulating surface to be repaired, including a small damaged portion of the articulating surface or the entire articulating surface. The damaged articulating surface, in whole or in part, is then replaced with the shaped article by methods known to one skilled in the art, for instance, an orthopedic surgeon. Shaping of the article can be
accomplished by various processing methods known to one skilled in the art. Processing methods to obtain a resulting article of desired shape or size may include solution casting, injection molding, or compression molding. In general, these methods may be used before or after crosslinking, as well as before or after the article is hydrated, in the case of water-swellable materials.

[0026] The article formed from the inventive composition can be used in a variety of applications, including minimally invasive surgical procedures, as known in the field. By way of example, the inventive composition can be used to provide artificial articular cartilage. In one embodiment, the composition of the present invention is used to form an artificial meniscus or articular bearing components. In another embodiment, the composition of the present invention is used to form implants employed in temporomandibular joints, in proximal interphalangeal joints, in metacarpophalangeal joints, in metatarsalphalanx joints, or in hip capsule joint repairs. In various other embodiments, the article may be a knee component replacement implant or a tibial repair implant.

[0027] The composition of the present invention can also be used to replace or rehabilitate the nucleus pulposus of an intervertebral disc. Degenerative disc disease in the lumbar spine is marked by a dehydration of the intervertebral disc and loss of biomechanical function of the spinal unit. The inventive composition can be employed in a spinal disc prosthesis used to replace a part or all of a natural human spinal disc.

[0028] In some embodiments, the article is thermoplastic. In one embodiment where a water-swellable material is used in the inventive composition, the water-swellable material may be in the form of a lyogel, which is a term generally used to describe the physical state of a hydrogel material or article before the solvent used to prepare the hydrogel material is replaced with water. The thermoplastic lyogel can be melted and re-solidified without losing its water-swelling properties. The thermoplastic quality of the water-swellable article as a lyogel allows for easy processability. Upon melting, the lyogel becomes flowable and can therefore be extruded, injected, shaped, or molded.

[0029] In some embodiments, the inventive composition can be manually handled in a heated, flowable state without special precautions. Melt-processability allows the inventive composition to be manipulated so that in situ delivery and shaping can be accomplished. The heating can be accomplished with any conventional heat source that would permit the
inventive composition to be heated to a temperature at which it can flow. An example of a suitable means for heating is a hot gun. The in situ delivery can be accomplished with any suitable device, such as a delivery tube or a needle. In some embodiments, the means for heating and means for delivery can be combined into one physical device. Therefore, the thermoplastic inventive composition may be directly injected into the body of a patient, to allow for in situ formation and/or hydration of the hydrogel material. Such a technique may have practical application in several minimally invasive surgical procedures, as known to one skilled in the art.

[0030] In embodiments where the inventive composition contains a hydrogel, the hydrogel may be used to release therapeutic drugs or other active agents. Hydrogels can be suitably employed in vivo to provide elution of a protein, drug, or other pharmacological agent impregnated in the hydrogel or provided on the surface of the hydrogel.

[0031] Various embodiments of the present invention are set out in the following examples.

Example 1 - Blending to achieve desired ratio of alcohol, acid, and amide functional groups.

[0032] An inventive composition can be derived by blending polyacrylamide, polyacrylic acid, and polyvinyl alcohol. The mixture of all three polymers may also come from blending a homopolymer with that of a copolymer as in the case of polyvinyl alcohol with polyacrylamide-co-acrylic acid. The relative quantities of each polymer to be used in the synthesis of the inventive composition requiring 100 grams of polymer is shown in Table 1.

<table>
<thead>
<tr>
<th>Molar Ratio Alcohol-to-Acid-to-Amide</th>
<th>Poly(vinyl alcohol), g</th>
<th>Poly(acrylic acid), g</th>
<th>Poly(acrylamide), g</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:1:0</td>
<td>90.71</td>
<td>9.29</td>
<td>0.00</td>
</tr>
<tr>
<td>3:2:0</td>
<td>47.81</td>
<td>52.19</td>
<td>0.00</td>
</tr>
<tr>
<td>16:1:1</td>
<td>83.10</td>
<td>8.51</td>
<td>8.39</td>
</tr>
<tr>
<td>3:2:1</td>
<td>38.02</td>
<td>41.51</td>
<td>20.47</td>
</tr>
</tbody>
</table>
Example 2 - Blending to achieve required ratio of acid and alcohol functional groups.

[0033] 27.28 g polyvinyl alcohol and 31 ml of DMSO blended with 12 ml of polyacrylic acid partial sodium salt (0.3 weight percent sodium, MW of about 240,000, 25 weight percent in water) was added to a Haake twin screw rheometer. The materials were mixed at 120°C for five minutes. The polyvinyl alcohol, as used, was >99% hydrolyzed with an average molecular weight of 250,000 and was obtained from Yam & Poval Co., Ltd. (Japan). The DMSO was used as received from Sigma-Aldrich and contained; ≤0.4% water. The polyacrylic acid was used as received from Sigma-Aldrich (catalog number 192058). The resulting material was plastic and could be injection molded using a Battenfeld BA CD 100.

Example 3 - Blending of monomers prior to polymerization to achieve required ratio of functional groups.

[0034] An inventive composition can be derived by blending the monomers of polyacrylamide, polyacrylic acid, and polyvinyl alcohol. In this example, the monomers vinyl acetate, acrylic acid, and acrylamide are blended. The relative quantities of each monomer to be used in the synthesis of the inventive composition requiring 100 grams of polymer is shown in Table 2. The synthesis can be done by solution, emulsion, suspension, or other polymerization techniques to form a co- or ter- polymer. Polyvinyl alcohol is derived from polyvinyl acetate. After polymerization, a hydrolysis step is required to convert the vinyl acetate into the vinyl alcohol. The hydrolysis is typically done in an alcoholic base mixture such as methanol with sodium hydroxide.

Table 2. Blending of monomers to form the inventive composition

<table>
<thead>
<tr>
<th>Molar Ratio Alcohol-to-Acid-to-Amide</th>
<th>vinyl acetate, g</th>
<th>acrylic acid, g</th>
<th>acrylamide, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:1:0</td>
<td>95.02</td>
<td>4.97</td>
<td>0.00</td>
</tr>
<tr>
<td>3:2:0</td>
<td>64.18</td>
<td>35.82</td>
<td>0.00</td>
</tr>
<tr>
<td>16:1:1</td>
<td>90.59</td>
<td>4.74</td>
<td>4.67</td>
</tr>
<tr>
<td>3:2:1</td>
<td>54.54</td>
<td>30.44</td>
<td>15.01</td>
</tr>
</tbody>
</table>

[0035] The invention is further set forth in the claims listed below. This invention may take on various modifications and alterations without departing from the scope thereof. In
describing embodiments of the invention, specific terminology is used for the sake of clarity. The invention, however, is not intended to be limited to the specific terms so selected, and it is to be understood that each term so selected includes all technical equivalents that operate similarly.
CLAIMS

1. A hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2.

2. The composition of claim 1 wherein the ratio of the functional alcohol groups to the functional acid groups ranges from about 4:1 to about 3:2.

3. The composition of claim 1 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 16:1:1 to about 3:2:1.

4. The composition of claim 1 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 4:1:1 to about 3:2:1.

5. The composition of claim 1 wherein the at least one polymer comprises a blend of two or more polymers that collectively provide the ratio of functional alcohol groups to functional acid groups to functional amide groups.

6. The composition of claim 1 wherein the hydrogel composition is formed by at least one of blending two or more polymers, polymerizing at least one monomer, or reacting at least one polymer.

7. The composition of claim 1 wherein the acid functional group is selected from the group consisting of sulfuric, sulfurous, carboxylic, sulfonamide, phosphoric, and phosphorous, and combinations thereof.

8. The composition of claim 1 wherein the acid functional group has a pKa less than 9.
9. The composition of claim 1 wherein the acid functional group is in the form of a salt and is at least partially neutralized.

10. The composition of claim 9 wherein the salt is formed with a cationic species and includes sodium, potassium, calcium, dimethyl ammonium, or lithium.

11. The composition of claim 1 wherein the alcohol functional group is denoted as R-OH and is selected from the group consisting of phenol, allyl alcohol, vinyl alcohol, and siloxol, and combinations thereof.

12. The composition of claim 1 wherein the amide functional group is denoted as R$_1$CONR$_2$R$_3$ and is selected from the group consisting of acrylamide, pyrrolidone, phthalimide, carboxamide, 2-ethyl-oxazoline, benzylphthalimide, benzamide, and acetamide, and combinations thereof.

13. The composition of claim 1 wherein the at least one polymer is polyvinyl alcohol or a methacrylate.

14. A method of repairing an articulating surface in a body comprising:
producing a hydrogel composition containing at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2, wherein producing comprises blending two or more polymers, reacting at least one polymer with a reagent, or polymerizing at least one monomer;
forming the hydrogel composition into a hydrogel article of the approximate dimensions of the articulating surface to be repaired; and
replacing the damaged articulating surface with the hydrogel article.

15. The method of claim 14 wherein the ratio of the functional alcohol groups to the functional acid groups ranges from about 4:1 to about 3:2.
16. The method of claim 14 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 16:1:1 to about 3:2:1.

17. The method of claim 14 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 4:1:1 to about 3:2:1.