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USE OF GROUP 13 METAL PERFLUOROARYL FLUORO ANIONS IN METALLOCENE
CATALYSTS FOR OLEFIN POLYMERIZATION
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This invention was made with Government support under Contract No. DE-
FG02-86ER13511 awarded by the Department of Energy. The Government has certain rights
in this invention.

This is a non-provisional application, from provisional application Serial No.

%7024,190, filed August 19, 1996.

Background of the Invention
This invention relates to the compositions of matter useful as a catalyst system,

to a method for preparing these catalyst systems and to a method for polymerization utilizing
the catalyst system.

The use of soluble Ziegler-Natta type catalysts in the polymerization of olefins
is well known in the prior art. In general, such systems include a Group IV-B metal
compound and a metal or metalloid alkyl cocatalyst, such as aluminum alkyl cocatalyst. More
broadly, it may be said to include a mixture of a Group I-IIT metal alkyl and a transition metal
complex from Group IVB-VB metals, particularly titanium, zirconium, or hafnium with
aluminum alkyl cocatalysts.

First generation cocatalyst systems for homogeneous metallocene Ziegler-Natta
olefin polymerization, alkylaluminum chlorides (AIR:Cl), exhibit low ethylene polymerization
activity levels and no propylene polymerization activity. Second generation cocatalyst
systems. utilizing methyl aluminoxane (MAOQO), raise activities by several orders of magnitude.
In practice however, a large stoichiometric excess of MAO over catalyst ranging from several
hundred to ten thousand must be employed to have good activities and stereoselectivities.
Moreover, it has not been possible to isolate characterizable metallocene active species using
MAO. The third generation of cocatalyst, B(CsFs)3, proves to be far more efficient while
utilizing a 1:1 catalyst-cocatalyst ratio. Although active catalyst species generated with
B(CsFs)s are isolable and characterizable, the anion MeB(CcFs)s formed after Me™ abstraction
from metallocene dimethyl complexes is weakly coordinated to the electron-deficient metal
center, thus resulting in a decrease of certain catalytic activities. The recently developed

B(CsFs)s type of non-coordinating anion exhibits some of the highest reported catalytic
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activities, but such catalysts have proven difficult to obtain in the pure state due to poor
thermal stability and poor crystallizability, which is crucial for long-lived catalysts and for
understanding the role of true catalytic species in the catalysis for the future catalyst design.
Synthetically, it also takes two more steps to prepare such an anion than for the neutral

organo-Lewis acid.

Summary of the Invention

Accordingly, it is an object of the subject invention to prepare and utilize a new
class of olefin polymerization catalytic system.

A further object of the subject invention is a catalytic system which permits
better control over molecular weight, molecular distribution, stereoselectivity, and comonomer
incorporation.

Another object of the subject invention is a Ziegler-Natta type catalytic system
which reduces the use of excess cocatalyst and activates previously unresponsive metallocenes.

These and other objects are attained by the subject invention whereby in one
embodiment, a strong organo-Lewis acid, such as a (perfluoroaryl)aluminate anion and in
particular tris(2,2',2" nonafluorobiphenyl)fluoroaluminate (PBA") is utilized as a highly
efficient cocatalyst for metallocene-mediated olefin polymerization. PBA" exhibits higher
catalytic activities and can activate previously unresponsive metallocenes. The synthesis of the
stable perfluoroaryl aluminum anion, tris(2,2',2"-nonafluorobiphenyl)fluoroaluminate (PBAY)
is accomplished with the use sterically encumbered perfluorobiphenyl ligand.

In one embodiment of the subject invention a strong organo-Lewis acid, such
as a fluoraryl metal compound, is utilized to synthesize stoichiometrically precise,
isolable/crystallographically ~ characterizable, highly active ‘“cation-like" metallocene
polymerization catalysts.

In the subject application, "Cp" represents a cyclopentadienyl radical which
may be substituted or unsubstituted, and:

(Cp)Cp') or Cp-ACp' and Cp and Cp' are the same or different
cyclopentadienyl ring substituted with zero to five substituent groups S and each substituent
group S is, independently, a radical which can be hydrocarbyl, substituted-hydrocarbyl,
halocarbyl, substituted-halocarbyl, hydrocarbyl-substituted organometalloid, halocarbyl-

2-
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substituted organometalloid, or halogen radicals (the size of the radicals need not be limited to
maintain catalytic activity; however, generally the radical will be a C: to C2 radical) or Cp
and Cp' are a cyclopentadienyl ring in which any two adjacent R groups are joined forming a
Cs to Cao ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand such as
indenyl, tetrahydroindenyl, fluorenyl, or octahydrofluorenyl and A is a bridging group which
restricts rotation of the two Cp-groups.

Each carbon atom in the cyclpentadienyl radical ("Cp") may be, independently,
unsubstituted or substituted with the same or different radical group which is a hydrocarbyl,
substituted-hydrocarbyl, halocarbyl, substituted-halocarbyl hydrocarbyl radicals in which
adjacent substituents are joined to form a ring of 4 to 10 or more carbon atoms, hydrocarbyl-
and halocarbyl-substituted organometalloid radicals and halogen radicals.

More specifically, a fluoroaryl metal compound such as ZR'R"R'"'F reacts
with early transition metal or actinide alkyls to yield highly reactive cationic complexes:

LL'MR: + PmC*(XR'R"R""'Fy » LL'MR” XR'R"R'""F) + PmCR (1)

where L,L' cyclopentadienyl, cyclopentadienyl substituted or bridged

cyclopentadienyl ligands such as CpACp', indenyl Cp, allyl Cp,
benzyl Cp; substituted indenyl Cp; substituted allyl Cp; substituted
benzyl Cp; n°-1,2-Me: CsHs; n’-1,3-(SiMes):CsHs; n°-CsMes;
Me:zSi(n’-MesCs)(‘BuN)

M = early transition metal or actinide, e.g., Ti, Zr, Hf, Th, U
R = PhCH_, alkyl or aryl group (C < 20), hydride
R',R".R"" = fluorinated phenyls, fluorinated biphenyl or fluorinated polycyclic
fused ring groups
X = Al Ga, In

As a specific example of the above, the reaction of PBA™ with a variety of
zirconocene dimethyl complexes proceeds rapidly and quantitatively to yield, after
recrystallization from hydrocarbon solvents, in the catalytic complex set forth in Eq. 2.
LL'MR: + PsC*(XR'R"R""'Fy » LL'MR*" XR'R"R'""F) + PsCR  (2)
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Such catalytic complexes have been found to be active homogeneous catalysts for a-olefin
polymerization.

The cocatalyst of the subject invention may be referred to as and XR'R"R’"’F;
where R', R" and R'"' represent at least one and maybe more fluorinated biphenyls or other
fluorinated polycyclic groups, such as naphthyl. Two of the biphenyls may be substituted with
a phenyl or other aryl group. Both the biphenyls and the phenyl groups should be highly
fluorinated, preferably with only one or two hydrogens on a group, and most preferably, as in

PBA" with no hydrogens and all fluorines. X represents Al, Ga or In.

Brief Description of the Drawings

The cocatalyst system of the subject invention can be better understood with
reference to the drawings wherein:
Fig. 1 is a reaction pathway for the synthesis of PBA’;
Figs. 2a, 2b, 2c and 2d each show the reaction pathway for a catalyst system according

to the subject invention.

Detailed Description of the Invention

Under a variety of reaction conditions and ratios of reagents, the reaction of 2-
nonafluorobipheny! lithium and AICIs all appear to lead to the formation of a compound with
the structure ArsAILi*, resulting from fluoride abstraction by the strongly Lewis acidic
trisperfluoro-biphenyl aluminum species generated in situ (Fig. 1). Ion exchange metathesis of
this lithium salt with PhsCCl results in the formation of stable trityl perfluorobiphenyl
aluminate (PBA’). The structure of PBA" has been characterized by X-ray diffraction and

shows a non-associated trityl cation and aluminate anion.

Isolation and Characterization of Cationic Group 4 Complexes Derived from PBA

The reaction of PBA" with various metallocene dialkyls readily generates the
corresponding cationic complexes (Figs. 2a-2d). The PBA" anion is weakly coordinated to the
metal center via F bridges in these complexes. This coordination is evident from the large
downfield shift (= 30 ppm) of the Al-F F resonance in the ’F NMR as compared to that of

free PBA. This coordination lowers the symmetry of the cation portion as well.
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Furthermore, the coordinated anion is chiral. The relatively stable chirality of the anion stems
from the bulkiness of the molecule which suppresses the rotation of perfluoroaryl rings and
renders the geometry fixed, resulting in nine (9) sets of characteristic resonances in the '°F
NMR. The influence of the anion chirality on the cation portion can be observed
spectroscopically. In the reaction product of Fig. 2a, there are two diastereotopic CH2Ph
protons with %/ value of 11.4 Hz and two magnetically nonequivalent Cp rings, which reflects
the chiral environment of the coordinated anion.

With diastereotopic ring substitution in the metallocene, the structure of the
reaction product shown in Fig. 2b offers unique NMR probes for a better understanding of the
molecular structure. Coordination of an achiral anion such as CHiB(CeFs)s™ to the metal center
of the cation portion of Fig. 2b results in the observation of two diastereotopic Cp methyls and
three types of Cp ring protons having different chemical shifts. However, in the reaction
product of Fig. 2b with a coordinated chiral anion, all the Cp methyls (four types) and Cp ring
protons (six types) have different chemical shifts, clearly indicating the chiral induction of the
anion.

Constrained geometry catalysts (Figs. 2c and 2d) activated by PBA exhibit two
distinct silyl methyls and four different Cp methyls. The structure of the reaction product of
Fig. 3c has been characterized by X-ray diffraction and reveals a chiral PBA" anion
coordinated via an F-bridge with Zr-F and AI-F bond lengths of (2.123) and (6) A,
respectively. The Zr-CHs of bond distance of 2.21(1) A is almost identical to that in
CGCZrMeMeB(CsFs)s (2.224 (5)) A, reflecting the cationic character of the zirconium center.
In cases where the bulkiness of cationic portion is increased, thereby pushing the anion away
from the coordinative periphery, the product formed from the reaction appears neither stable
nor isolable, e.g., [(CsMespZrMe:* PBA]. However, this distant contact cation-anion pair
exhibits extremely high activity for olefin polymerization when generated in situ.

PhsC*PBA’ has been synthesized in essentially quantitative yields as compared
to the 30-50% yields experienced with B(CsFs)s, currently a very important Lewis acidic
cocatalyst in the polyolefin industry. More particularly, reaction of PBA™ with group 4

methyls proceeds cleanly to yield cationic complexes such as set forth below.
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LL'MR:2 + PhsC* PBA™ --cecmemmmmeee »>LL'MR" PBA" + PsCR
orpentane (3)

L,L'=Cp = n’-CsMes
L.L'= Cp = n’-1,2-Me:CsHs

M = Ti, Zr, Hf

R = PhCHa, CHj, alkyl or aryl group with C < 20; hydride
LL'MR" PBA" may be any cyclopentadienyl, substituted cyclopentadienyl or bridged
cyclopentadienyl complex paired with PBA", such as CpZrCH:Ph* PBA". Cp.ZrH:;PBA"
Cp"ZrCHs*-PBA";  (Cp™%)ZrCHs*PBA’;  Cp":ZtCH3*PBA; CGCZrCHs* PBA':
CGCTiCHs" PBA’; and rac-Me:Si(Ind)2ZrCHs* PBA" (CGC = Me:Si(n’-Me«Cs) ‘BuN); (Ind
= 1’-CoHs), 2-methyl (Ind) ZrCHs* PBA’; (CpZrCp'Zr) ZrCHs*PBA".

For polymerization of olefin monomers, catalytic activities of the cations generated
from PBA™ can be greater than those of monomeric cations generated from B(CsFs): in cases of
bulky L. and L' ligands presumably because PBA" functions as a non-coordinating anion as
compared to the weakly coordinating anion MeB(CeFs);. Polymerization reactions show very
high activities for o-olefin polymerization, and identify PBA" to be a truly non-coordinating
anion. When polymerizing a-olefins larger than ethylene and particularly propylene and

styrene, high isotacticity can be observed.

Experimental
Materials and Methods. All manipulations of air-sensitive materials were performed with
rigorous exclusion of oxygen and moisture in flamed Schlenk-type glassware on a dual-
manifold Schlenk line or interfaced to a high-vacuum line (10® Torr), or in a nitrogen-filled
vacuum atmospheres glovebox with a high capacity recirculator (1-2 ppm O:). Argon
(Matheson, prepurified) and ethylene (Matheson, polymerization grade) were purified by
passage through a supported MnO oxygen-removal column and an activated Davison 4A
molecular sieve column.  Ether solvents were purified by distillation from Na/K
alloy/benzophenone ketyl. Hydrocarbon solvents (toluene, pentane) were distilled under
nitrogen from Na/K alloy. All solvents for vacuum line manipulations were stored in vacuo

over Na/K alloy in Teflon-valved bulbs. Deuterated solvents were obtained from Cambridge
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Isotope Laboratories (all > 99 atom %D) and were freeze-pump-thaw degassed and dried over
Na/K alloy and stored in resealable flasks. Non-halogenated solvents were dried over Na/K
alloy and halogenated solvents were distilled over P2Os and stored over activated Davison 4A
molecular sieves. BrCsFs (Aldrich) was vacuum distilled over P20s. AICl, PhsCCl and
"BuLi (1.6M in hexanes) were purchased from Aldrich. The zirconocene and titanocene
complexes Cp2ZrMe:; Cp2Zr(CH:Ph); (1,2-Me:CsHspZrMez:  [1,3-(SiMes).CsHs)2ZrMe:
(CsMes)ZrMe:, Me:Si(MesCs)(BuN) ZrMe: and MeaSi(Mes«Cs)BuNTiMe: were prepared

according to known procedures.

Physical and Analytical Measurements. NMR spectra were recorded on either Varian VXR
300 (FT 300 MHz, 'H; 75 MHz, “C) or Varian Germini-300 (FT 300 MHz, 'H: 75 MHz,
“C; 282 MHz, "F) instruments. Chemical shifts for 'H and C spectra were referenced using
internal solvent resonances and are reported relative to tetramethylsilane. 'F NMR spectra
were referenced to external CFCl;. NMR experiments on air-sensitive samples were
conducted in Teflon valve-sealed sample tubes (J. Young). Melting temperatures of polymers
were measured by DSC (DSC 2920, TA Instruments, Inc.) from the second scan with a

heating rate of 20°C/min.

EXAMPLE 1
Trityl Perfluorobiphenyl Aluminate, PhsC* PBA". n-Butyllithium (1.6 M in hexanes, 25
mL, 40 mmol) was added dropwise to bromopentafluorobenzene (18.0 g, 9.1 mL, 72.9 mmol)
in 100 mL of diethyl ether cooled by a cold-water bath. The mixture was then stirred for a
further 12 h at room temperature. Removal of the solvent followed by vacuum sublimation at
60-65°C/10* Torr gave 12.0 g of 2-bromononafluorobiphenyl as a white crystalline solid.
Yield: 83.3%. "F NMR (CeDs, 23°C): §-126.77 (d, *Jrr = 25.4 Hz, 1 F, F-3), -135.13 (,
‘Jer = 18.9 Hz, 1 F, F-6), -138.85 (d, *Jrr = 17.2 Hz, 2 F, F-2'/F-6'), -148.74 (t, *Jrr =
20.8 Hz, 1 F, F4), -150.13 (t, *Jer = 21.7 Hz, 1 F, F4"), -154.33 (t, *Jer = 21.4 Hz, 1 F,
F-5), -160.75 (t, *Jrr = 23.9 Hz, 2 F, F-3'/F-5").

To the above 2-bromononafluorobipyhenyl (8.29 g, 21.0 mmol) in a mixed
solvent of 70 mL of diethyl ether and 70 mL of pentane was gradually added 13.2 mL of n-

butyllithium (1.6 M in hexanes, 21.0 mmol) at -78°C. The mixture was stirred for an
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additional 2 h, and aluminum trichloride (0.67 g, 5.0 mmol) was then quickly added. The
mixture was stirred at -78°C for 1 h and the temperature was then allowed to slowly rise to
room temperature. A white suspension resulted after stirring for an additional 12 h. The
mixture was filtered and the solvent removed from the filtrate in vacuo. To the yellow sticky
residue was added 100 mL of pentane and the mixture was stirred for 1 h. The resulting white
solid was collected by filtration and dried in vacuo to give 3.88 g of Ar'sFAI'Li**OEt: yield:
72.4% "H NMR (C:Dg, 23°C): 6 2.84 (g, J = 7.2 Hz, 4 H, 2-CH:0), 0.62 (t, J/ = 7.2 Hz, 6
H, 2CH3CH:0-). F NMR (CsDs, 23°C): 6 -122.80 (s, br, 3 F, F-3), -134.86 (s, 3 F, F-6), -
139.12 (s, 6 F, F-2'/F-6'), -153.95 (t, “Jer = 18.3 Hz, 3 F, F4), -154.52 (t, *Jrr = 20.2 Hz,
6 F, F-4'/F-5), -162.95 (s, 6 F, F-3'/F-5"), -176.81 (s, br, 1 F, Al-F). The above lithium salt
(1.74 g, 1.62 mmol) and PhsCCl (0.48 g, 1.72 mmol) was suspended in pentane and stirred
overnight and the resulting orange solid was collected by filtration and washed with pentane.
The crude product was then redissolved in CH:Cl: and filtered through Celite to remove LiCl,
followed by pentane addition to precipitate the orange solid.  Recrystallization from
CH:Cl:/pentane at -78°C overnight gave 1.56 g orange crystals of the title compound. Yield:
70.5%. Analytical and spectroscopic data for PBA are as follows: 'H NMR (CDCl;, 23°C):
68.25(,J =75Hz, 3 H, p-H, Ph), 7.86 (t, / = 7.5 Hz, 6 H, m-H, Ph), 7.64 (dd, J = 8.4
Hz, J = 1.2 Hz, 6 H, o-H, Ph), 1.28 (m), 0.88(t) (pentane residue). “F NMR (CDCL,
23°C): 6 -121.05 (s, 3 F, F-3), -139.81 (s, 3 F, F-6), -141.19 (s, 6 F, F-2'/F-6"), -156.93 (t,
Jrr = 18.3 Hz, 6 F, F4/F-4"), -158.67 (s, 3 F, F-5). -165.32 (s, 6 F, F-3'/F-5"), -175.60 (s,
br, 1 F, Al-F). Anal. Calcd for CeoHisAlFs#CsHr: C, 57.12; H, 1.99. Found: C, 57.16; H,
1.43.

EXAMPLE 2

Cp2ZrCH:Ph* (PBA)Y(1). Cp2Zr(CHzPh): (0.081 g, 0.20 mmol) and PhsC* PBA™ (0.261 g,
0.20 mmol) were charged in the glove box into a 25-mL reaction flask with a filter frit and the
flask was reattached to the high vacuum line. Toluene (15 mL) was then vacuum-transferred
into this flask at -78°C. The mixture was slowly allowed to warm to room temperature and
stirred for 4 h. The volume of toluene was next reduced to 5 mL and 10 mL of pentane was
condensed into the flask at -78°C. A suspension which formed was quickly filtered and the

orange crystalline solid which collected was dried under vacuuum overnight. Yield, 0.22 g
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(84.4%). Large orange crystals were obtained by slow cooling a pentane solution of the
compound to -20°C over a period of several days. 'H NMR (CsDs, 23°C):  6.95 (t, J = 7.8
Hz, 2 H, m-H, Ph), 6.80 (t, / = 7.5 Hz, 1 H, p-H, Ph), 6.46 (d, / = 7.2 Hz, 2 H, o-H, Ph),
545 (,5H,Cp), 542 (,5H,Cp),247(d,J =114Hz, 1 H, CH), 1.92(d,J = 11.4
Hz, 1 H, -CH2). “F NMR (CsDs, 23°C): & -117.09 (t, *Jer = 20.5 Hz, 3 F), -133.17 (t, *Jrr
= 15.2 Hz, 3 F), -138.60 (d, *Jer = 27.3 Hz, 3 F), -139.53 (t, °Jrr = 21.2 Hz, 3 F), -
146.34 (s, br, 1 F, Al-F), -152.01 (t, *Jrr = 24.3 Hz, 3 F), -153.15 (1, Jer = 20.9 Hz, 3 F),
-153.92 (t, *Jrr = 18.3 Hz, 3 F), -160.82 (d, *Jer = 21.4 Hz, 3 F), -162.52 (t, *Jrr = 24.53
Hz, 3 F), "C NMR (C7Ds, 23°C): & 129.20 (d, *Jes = 156.2 Hz, Ph), 128.26 (4, *Jou =
157.1 Hz, Ph), 127.52 (s, ipso-Ph), 125.42 (d, *Jen = 158.1 Hz, Ph), 114.77 d, *Jeu =
176.5 Hz, Cp), 66.68 (t, *Jon = 122.8 Hz, -CH2), Anal. Calcd for CssHinAlFsZr: C, 48.82;
H, 1.31. Found: C, 48.77; H, 1.36.

EXAMPLE 3

Cp":ZrMe* PBA (2).

The procedure is the same as that of synthesis of Example 1 above. Yield: 81.7%. 'H NMR
(C2D2Cla, 23°C): 8 5.95 (s, br, 1 H, CsHsMez), 5.77 (s, br, 1 H, C5H:Me2), 5.72 (s, br, 1
H, (CsH:Mez), 5.46 (s, br, 1 H, CsH:Me2), 5.70 (s, br, 1 H, CsH:Mez), 5.40 (s, br, 1 H,
CsHiMez), 2.11 (s, 3 H, CsH:Me), 1.98 (s, 3 H, CsHsMe2), 1.76 (s, 3 H, CsHaMez), 1.70 (s,
3 H, CsHsMe), 0.28 (d, Jeu = 120.3 Hz, Zr-"CHs). F NMR (C:D:Cl4, 23°C) is similar to
the product of Example 1 except for a different chemical shift for the bridging F at -143.38
ppm. Anal. Caled for CsiHuAlFsZr: C, 47.71; H, 1.65. Found: 47.46; H, 1.37.

EXAMPLE 4

(Cp™52)2ZrMe*PBA " (3) .

This complex was prepared as described in Example 1 above. It decomposes in toluene
solution within 2 h at 25°C and undergoes rapid decomposition to a myriad of unidentified
products at higher temperatures. Characterization of the complex is based on very clean NMR

scale reactions. This complex was generated ir situ for polymerization studies. 'H NMR
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CiDs, 23°C): 6 6.88 (s, br, 1 H, CsH-TMS2), 6.71 (t, J = 2.1 Hz, 1 H, CsHyTMS:), 6.31 (s,
br, 1 H, CsH'TMS2), 6.23 (s, br, 1 H, CsHiTMS), 5.79 (s, br, 1 H, CsH:TMSe), 5.71 (s, br,
1 H, CGHTMS2), 0.70 (s, br, 3 H, Zr-CHs). 0.17 (s, 3 H, CH:TMSz), 0.10 (s, 3 H,
CsHTMS2), -0.05 (s, 3 H, CsHsTMS:), -0.07 (s, 3 H, CsHsTMS:). '°F NMR (C-Ds, 23°C):
8 -112.12 (d, *Jrr = 12.2 Hz, 3 F), -133.22 (t, *Jr¢ = 15.5 Hz, 3 F), -137.49 s,3F, -
138.40 (t, °’Jrr = 21.7 Hz, 3 F), -144.23 (s, br, 1 F, Al-F), -153.41 (m, 6 F), -154.15 (t, *Jrr
= 21.2Hz, 3 F), -161.80 (d, *Jrr = 18.3 Hz, 3 F), -162.82 (t, *Jr+ = 21.4 Hz, 3 F).

EXAMPLE 5

(Cp'2ZrMe* (PBA) (4) is too thermally unstable at 25°C to isolate. The 'H NMR monitored
reaction of Cp"2ZrMe: and PhsC*PBA" in C:D:Cls clearly reveals the formation of PhsCCH; (5
2.15) and a broad singlet at & 0.25 assignable to the ZrCHs* group. More than 4 Cp methyl
resonances at & 1.97-1.72 ppm with different intensities are observed indicating the
decomposition. Complex 4 was generated in situ for polymerization studies. 'F NMR
(C2D:Cle): & -114.77 (s, br, 3 F), -132.11 (t, *Jer = 15.2 Hz, 3 F), -136.84 (t, “Jrr = 22.0
Hz, 3 F), -137.29 (s, br, 3 F), -150.90 (t, *Jrr = 20.9 Hz, 3 F), -151.85 (¢, *Jrr = 23.9 Hz,
3 F), -152.47 (t, ’Jrr = 24.5 Hz, 3 F), -155.78 (s, br, 1 F Al-F), -160.02 (d, *Jer = 16.5
Hz, 3 F), -161.06 (t, *Jer = 21.2 Hz, 3 F).

EXAMPLE 6

Me:Si(BuN)(CsMes)ZrMe*'PBA".

Me:Si(MesCs)(BuN) ZrMe: (0.148 g, 0.4 mmol) and PisC* PBA™ (0.523, 0.4 mmol) were
reacted in the same manner as in Example 1 to yield 0.35 g of the above complex as a white
crystalline solid. Yield: 64.8%. The complex is quite soluble in pentane and cold pentane
was used to wash the product. 'H NMR (C7Ds, 23°C): & 1.98 (s, 3 H, CsMes), 1.82 (s, 3 H,
CsMes), 1.76 (s, 3 H, CsMes), 1.27 (s, 3 H, CsMes), 0.93 (s, 9 H, N-rBu), 0.24 (s, 3 H,
SiMez), 0.18 (s, 3 H,Zr-CHs), 0.15 (s, 3 H, SiMe2), '*F NMR (C:Ds, 23°C) & -108.92 (s, br,
1 F, Al-F), -117.26 (s, br, 3 F), -133.19 (t, *Jrr = 12.1 Hz, 3 F), -139.25 (s, 6 F), -152.53
(t, Jrr = 21.2 Hz, 3 F), -153.00 (d, *Jrr = 21.2 Hz, 3 F), -153.00 (d, *Jrr = 21.4 Hz, 3 F),
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-153.76 (t, *Jrr = 24.3 Hz, 3 F), -160.94 (t, *Jer = 22.6 Hz, 3 F), -162.80 (t, *Jr+ = 21.4
Hz, 3 F). "C NMR (C:Ds, 23°C): § 130.19 (CsMes), 129.09 (CsMes), 127.18 (CsMes),
126.44 (CsMeas), 124.33 (CsMes), 56.63 (N-CMes), 38.58 (q. J = 120.6 Hz, N-CMes), 32.70
(g. J = 120.8 Hz, Zr-CHs), 15.75 (q, J = 127.9 Hz, CsMes), 14.05 (q, J = 128.0 Hz,
CsMes), 12.00 (q, J = 127.8 Hz, CsMes), 10.18 (q, / = 128.1 Hz, CsMes), 8.49 (q, J =
121.0 Hz, SiMe), 6.52 (q, J = 120.9 Hz, SiMe2). Anal. Calcd for Cs:HiAlF2sNSiZr: C,
46.37; H, 2.25; N, 1.04. Found: C, 46.65; H, 2.13; N, 0.89.

EXAMPLE 7

Me:2Si(MesCs)(‘BuN) TiMe*PBA".

Me:zSi(MesCs)(rBuN)TiMe: (0.065 g, 0.2 mmol) and PisC* PBA™ (0.261, 0.2 mmol) were
reacted in the same manner as in Example 1 to yield 0.12 g of the above complex as a yellow
crystalline soldi. Yield: 46.0%. Due to its good solubility in pentane, a significant amount
of the product remained in the filtrate, resulting in a low isolated yield. An NMR scale
reaction indicates the formation of the compound in quantitative yield when the isolation is not
required. 'H NMR (CsDs, 23°C): 6 2.01 (s, 3 H, CsMes), 1.72 (s, 3 H, CsMeas), 1.61 (s, 3
H, CsMes), 1.20 (s, 3 H, CsMes), 0.93 (s, 9 H, N-rBu), 0.75 (d, J = 3.9 Hz, 3 H), 0.21 (s,
H), 0.06 (s, 3 H). "F NMR is similar to that of 3 except slightly different chemical shifts.
Anal. Calcd for Cs:>H»AIF»sNSiTi: C, 47.91; H, 2.32; N, 1.07. Found: C, 47.47; H, 1.96;
N, 0.87.

EXAMPLE 8

Synethesis of Me:Si(Ind):ZrMe*PBA". Me:Si(Ind2ZrMe: (0.082 g, 0.20 mmol) and
PhsC*PBA™ (0.261, 0.20 mmol) were reacted in the same manner as for the synthesis of 1
above to yield 0.19 g of the title complex as an orange crystalline solid. Yield: 68.6%. Two
diastereomers are found in a 1.3:1 ratio. 'H NMR (CsDe, 23°C) for diastereomer A
(56%): 6 7.45 d, J = 8.7 Hz, 1 H, Cs-HO, 7.27-6.88 (m, 4 H, Cs-H), 6.67 (t, J = 7.5 Hz,
2 H, C-H), 5.88 (t, / = 7.5Hz, 1 H, Cs-H), 6.82 (t, / = 3.3 Hz, 1 H, Cs-B H), 5.96 d, J
= 3.3 Hz, 1 H, Cs-p H), 5.69 (s, br, 1 H, Cs-a H), 5.19 (d, Jur= 2.1 Hz, 3 H,Zr-CH3).
Diastereomer B (44%): 6 7.94 (d, J = 8.7 Hz, 1 H, Ce-H), 7.27-6.88 (m, 4 H, Cs-H), 6.58
(t,J =75Hz,2H, Cs-H), 5.79(t,J = 7.5Hz, 1 H, C-H), 6.42(d,J = 3.3 Hz, 1 H, Cs-
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B H), 5.85(,J = 3.3 Hz, 1 H, Cs-B H), 5.56 (s, br, 1 H, Cs-a H), 4.80 (d, /= 3.3 Hz, 1
H, Cs, H), 0.46 (s, 3 H, SiMez), 0.25 (s, 3 H, SiMez), -0.64 (d, Jur = 2.1 Hz, 3 H, Zr-
CHs). "F NMR (CsDe, 23°C) for diastereomer A (56%): & -115.86 (s, br, 3 F), -132.23 (s,
br, 1 F, Al-F), -133.76 (t, °Jrr = 18.3 Hz, 3 F), -138.53 (s, br, 3 F), -139.40 (t, *Jrr 18.3
Hz, 3 F), -153.10 (t, *Jrr = 18.3 Hz, 3 F), -153.44 (t, *Jrr = 18.3 Hz, 3 F), -154.72 (t, *Jrr
= 21.2 Hz, 3 F), -161.18 (t, Jrr = 18.3 Hz, 3 F), -162.86 (1, *Jrr = 18.3 Hz, 3 F).
Diastereomer B (44%):  -113.48 (s, br, 3 F), -133.76 (1, Jer = 21.2 Hz, 3 F), -134.44 (s,
br, 1 F, Al-F), -137.89 (s, br, 3 F), -139.09 (t, *Jr+ = 18.3 Hz, 3 F), -153.10 (t, *Jr¢r = 18.3
Hz, 3 F), -153.28 (t, *Jrr = 18.3 Hz, 3 F), -153.73 (t, *Je¢ = 18.3 Hz, 3 F), -161.03 (t, *JeF
= 18.3 Hz, 3 F), -162.68 (t, *Jrr = 18.3 Hz, 3 F). "C NMR (CeDs, 23°C): § 134.02,
132.96, 132.43, 128.31, 127.67, 127.28, 126.95, 126.64, 126.21, 125.90, 125.81, 124.88,
124.20, 124.10, 123.57, 122.89, 122.01, 121.98 (Ce-ring), 119.16, 116.56, 115.96, 114.94,
112.90, 112.79 (Cs-ring), 91.82, 90.95, 89.30, 89.20, (Cs-Si), 51.46, 51.73, (Zr-CHs), -1.31,
-2.13, -2.88, -3.51 (SiMe2). Anal. Calcd for Cs7HuAlF2sSiZr: C, 49.47; H, 1.53. Found: C,
49.09; H, 1.27.

EXAMPLES 9-15

Ethylene and Propylene Polymerization. In a glove box, a 250 mL flamed, 3-necked round-
bottom flask equipped with a magnetic stirring bar was charged with metallocene (5-10 mg)
and cocatalyst PsC* PBA’, in a 1:1 molar ratio and the flask was then reattached to the high
vacuum line. A measured amount of dry toluene (50 mL for this study) was next condensed
onto the solids and the mixture was warmed to room temperature with stirring for 10 min to
preactivate the catalyst. The resulting solution was then equilibrated at desired reaction
temperature using an external constant temperature bath. Gaseous ethylene or propylene was
next introduced with rapid stirring and the pressure was maintained at 1.0 atm by means of a
mercury bubbler. After a measured time interval, the reaction was quenched by the addition
of 2% acidified methanol. The polymer was collected by filtration, washed with methanol,
and dried on high vacuum line overnight to a constant weight. Highly isotactic polypropylene
is the result of propylene polymerization using PBA" as a catalyst. The reaction parameters

and results are set forth in the Table.
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The table summarizes ethylene polymerization activities by various metallocene
catalysts activated with PBA. Cp:ZrMe: exhibits virtually no activity for ethylene
polymerization. This is presumably caused by the anion coordination through a Zr-F-Al
bridge (Figure 2a). However, as the ligand framework of the cation portion changes from Cp
(CsHs), to Cp"(1,2,-MexCsH3), to Cp™5; [1,3-(SiMes).CsH3], to Cp'(CsMes), the activity for
ethylene polymerization increases dramatically (Examples 1-4) and reaches the highest level of
6.90x10°g of PE/(mole of cat-atm-h) with the Cp2ZrMe: catalyst (Example 4). The
polyethylene produced is highly linear with melting temperature T of 139.4°C and crystalline
with heat of fusion AHp of 53.9 cal/g. As the bulkiness of cation portion increases, the
degree of anion coordination drops significantly, clearly reflecting the relationship between the
polymerization activity and the relative tightness of cation-anion pairing structure.

In the case of the Cp' ligand, the separation of cation and anion reaches an
optimum condition for reactivity that results in the maximum polymerization activity and
instability of the cationic complex derived therefrom as well. Such a dramatic influence of the
ligand framework substituents on polymerization activity is unprecedented and suggests the
special features of the subject anion. PBA is apparently such a large anion that separation of
anion and cation can be easily and substantially tuned and optimized by selecting the
appropriate bulky cation.

For the sterically more accessible CGC type of catalyst, PBA" promotes no
catalytic activity at room temperature, resulting from the strong anion coordination as reflected
by the 66 ppm down-field shift of the ALl-F F resonance as compared to PBA- (Figure 2c,
Example 5). However, as the temperature of polymerization increases, the polymerization
activity increases dramatically (Examples 5-7) presumably due to a higher degree of separation
of cation-anion pairs at higher temperatures.

While the invention has been described with reference to a preferred
embodiment, it will be understood by those skilled in the art that various changes may be
made and equivalents may be substituted for elements thereof without departing from the
scope of the invention. In addition, many modifications may be made to adapt a particular
situation or material to the teachings of the invention without departing from the essential
scop;: thereof. Therefore, it is intended that the invention not be limited to the particular

embodiment disclosed as the best mode contemplated for carrying out this invention, but that
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the invention will include all embodiments and equivalents falling within the scope of the
appended claims.

Various features of the invention are set forth in the following claims.
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What is claimed is:

1. A catalytic complex of the structure: (LL' MR)" XR'R"R'"'F where

LL = a cyclopentadienyl ligand
M = early transition metal or actinide
R = PhCHz, alkyl, benzyl or aryl group (C < 20), hydride
X = Al Ga,In
R, R",R"" = fluorinated phenyl, fluorinated biphenyl or fluorinated polycyclic fused

ring groups.

2. The complex of Claim 1 wherein M = Ti, Zr, Hf.

3. The complex of Claim 1 wherein said polycyclic fused ring groups include

naphthyl, anthryl, and fluorenyl.

4. The method of Claim 1, wherein said cyclopentadienyl ligand is selected from
the group consisting of indenyl, allyl, benzyl (C < 20), n’-CsHs; n’-1,2-Mez CsHs. 1y’-1,3-
(SiMes): CsHs; n°-CsMes and MezSi(n*-Me«Cs)(BuN).

5. A method of preparing a catalyst system including the steps of adding a

perfluoroaryl aluminate anion to a cationic metallocene.

6. The method of Claim 5, wherein said perfluororaryl aluminate is tris (2,2',2"-

nonafluorobiphenyl) fluoro aluminate.

7. The method of Claim 5, wherein said cationic metallocene is a

cyclopentadienyl ligand.
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8. The method of Claim 5, wherein said cationic metallocene ligands are selected
from the group consisting of indenyl, allyl, benzyl, n’-CsHs; 1°-1,2-Me:CsHs m’-1,3-(SiMes):
CsHs; n’°-CsMes and Me:Si(n’-MesCs)(BuN).

9. A method of polymerizing a monomer comprising the steps of adding the
catalyst (LL'MR)" XR'R"R""'F where
LL — acyclopentadienyl ligand
M = early transition metal or actinide
R = PhCH., alkyl, benzyl or aryl group (C < 20), hydride
X = Al Ga, In
R',R",R'"" = Fluorinated phenyl, fluorinated biphenyl or fluorinated polycyclic

fused ring groups.

10. The method of Claim 7 wherein said reaction is carried out at ambient

conditions.

11.  The method of Claim 9, wherein said reaction is initiated at temperatures from

25°Cto 110°C.

12. The method of Claim 9, wherein said monomer is an a-olefin.
13.  The method of Claim 9, wherein said cyclopentadienyl ligand is selected from
the group consisting of indenyl, allyl, benzyl (C < 20), n*-CsHs; n’-1,2-Me2 CsHs, n’-1,3-

(SiMes)2 CsHs; 1°-CsMes and Me:Si(n’*-Me«Cs)(‘BuN).

14.  The method of Claim 9, wherein said monomer is selected from the group of

ethylene, propylene and styrene.
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